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Abstract. Module systems for proof assistants provide administrative
support for large developments when mechanizing the meta-theory of
programming languages and logics.
In this paper we describe a module system for the logical framework LF.
It is based on two main primitives: signatures and signature morphisms,
which provide a semantically transparent module level and permit to
represent logic translations as homomorphisms. Modular LF is a conser-
vative extension over LF, and defines an elaboration of modular into core
LF signatures. We have implemented our design in the Twelf system and
used it to modularize large parts of the Twelf example library.

1 Introduction

The Twelf system [PS99] is a popular tool for reasoning about the design and
properties of modern programming languages and logics. It has been used, for ex-
ample, to verify the soundness of typed assembly language [Cra03] and Standard
ML [LCH07], for checking cut-elimination proofs for intuitionistic and classical
logic [Pfe95], and for specifying and validating logic morphisms, for example,
between HOL and Nuprl [SS06]. Twelf, however, supports only monolithic proof
developments and does not offer any support for modular proof engineering,
composing logic morphisms, code reuse, or name space management. In this pa-
per we develop a simple yet powerful module system for pure type systems in
general, and therefore for the logical framework LF [HHP93] in particular.

If one subscribes to the judgment-as-types methodology (as we do in the
Twelf community), the defining features of a logical framework, such as its equa-
tional theory, determine usually the application areas it excels in. The logical
framework LF shines, for example, when applied to areas of programming lan-
guages and logics, where variable binding and substitution application are preva-
lent. LF is dependently typed, it supports higher-order abstract syntax, and its
inductive definition of canonical forms has led to complex inductive reasoning
and logic programming environments that are well-known to and frequently used
by the users of the Twelf system.
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Retrofitting a logical framework with a module system is therefore a delicate
undertaking. On the one hand, the module system should be as powerful as
possible, convenient to use, and support brief, precise, and reusable program
code. On the other hand, it must not break any of the features neither of the
logical framework nor of its reasoning and programming environments.

Therefore, we advocate a module system that is conservative over LF, which
means that code that is written using the features of the module system will
eventually be elaborated into core LF that is implemented in the Twelf system.
After elaboration, the set of tools and algorithms that are already part of the
Twelf system, such as mode analysis, termination checking, coverage checking,
etc. can without modification still be applied to the elaborated Twelf code.

The module system that we describe in this paper is deceptively simple. It
introduces two new concepts, namely that of a signature and a signature mor-
phism. A signature is simply a collection of constant declarations and constant
definitions. Signature morphisms map terms valid in the source signature into
terms valid in the target signature by replacing object-level and type-level con-
stants with objects and types, respectively. This leads to the notion of signature
graphs, which have proved to be a simple, flexible, and scalable abstraction to
express interrelations between signatures (see [ST88,CoF04,AHMS99]).

In the current design, signature morphisms are not aware of meta-theoretic
properties yet, such as termination, totality, or coverage; these may have been
established for type families in one signature but might not be preserved under
a signature morphism. However, this is not a restriction because the user may
manually recheck the desired property wherever necessary.

We have implemented our design as part of the Twelf distribution, see http:
//www.twelf.org/mod/ for details. We demonstrate in this paper that the mod-
ule system allows for compact and elegant formalizations of logic morphisms
when defining for example the Kolmogorov translation from classical into in-
tuitionistic propositional logic in a modular manner. Furthermore we provide
experimental evidence that the module system for LF does not jeopardize run-
time performance. Further examples are available from the project homepage,
which include a modular and type directed development of the meta theory of
Mini-ML and a modular definition of the algebraic hierarchy.

This paper is organized as follows. We briefly describe the relevant back-
ground of the logical framework LF and our running example in Section 2. In
Section 3, we give a formal definition of the module system and its semantics,
not only for LF but for pure type systems in general. In Section 4, we report
on our experimental findings that provide evidence that the module system im-
plemented in Twelf does not degrade performance. And finally, we assess results
and discuss future work in Section 5.
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Fig. 1. Intuitionistic Logic

2 Preliminaries

2.1 The Logical Framework LF

The Twelf system is an implementation of the logical framework LF [HHP93]
designed as a meta-language for the representation of deductive systems, which
we also call core LF. Judgments are represented as types, and derivations as
objects:

Kinds: K ::= type | {x:A} K | A -> K
Types: A,B ::= a | A M | {x:A} B | A -> B
Objects: M ::= c | x | [x:A] M | M1 M2

where we write {·} for the Π-type constructor and [·] for a λ-binder. We will
omit type labels whenever they are inferable. Core LF permits declarations of
type- or object-level constants. Constants are declared in the form of declara-
tions “a : K.” or “c : A.”, or definitions “a : K = A.” or “c : A = M .”
Constants c may be used infix, below the declaration “%infix n m c.” n defines
the associativity of c, which can either be left or right, and m the binding
precedence of c. The Twelf system offers a variety of algorithms for checking the
meta-theory of signatures, including termination, coverage, and totality, which
we will not discuss further in this paper, but which will remain available in
modular Twelf.

2.2 The Kolmogorov Translation

We illustrate the design of our module system by giving a modular definition
of the embedding of classical logic into intuitionistic logic, which is often called
the Kolmogorov translation. We focus on the fragment containing implication
⊃ and negation ¬. We say that A is true, if A true can be derived using the
rules depicted in Figure 1. By adding an axiom ¬¬A ⊃ A true (the law of the
excluded middle), we obtain classical logic. The Kolmogorov translation uses
double-negations to map formulas A to Ā satisfying that A true is derivable in
classical logic iff A true is derivable in intuitionistic logic. For example, we have
p ⊃ q = ¬¬(¬¬p ⊃ ¬¬q) for propositional variables p, q.
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3 The Module System

3.1 Syntax

In the past, various module systems for proof assistants have been proposed,
for example, for Agda [Nor07], Coq [Chr03], Isabelle [KWP99,HW07], and even
LF [HP98,LSL06] itself. With the exception of Agda, these differ from ours in
that they do not insist that modules be elaborated into the core theory. In this
sense, our design is more closely related to the systems, described in [ST88] and
[AHMS99].

%sig JUDGMENTS = {
o : type.
true : o -> type.

}.

With this goal in mind, our central idea is to
collect various declarations and definitions in larger
named entities, called signatures. We use R,S, T
for named signatures, and define that two signatures
are equal iff they have the same name.

Example 1 (Judgments). The signature with name JUDGMENTS given above de-
fines the judgments from Section 2.2.

We will simplify the presentation of LF and describe the module system in
terms of pure type systems [Bar91], which collapse the three syntactic categories
into terms.

Terms: C ::= T”~c | x | type | {x:C} C | [x:C] C | C C

Here T”~c refers to the constant ~c of signature T .
Signature morphisms define mappings between signatures. A morphism from

a signature S to T maps every constant c declared in S to a term C over T such
that C is typed (or kinded) by µ(A) where µ(−) is the homomorphic extension
of µ to terms. This homomorphic extension preserves the typing relation and
the definitional equality of S (see, e.g., [HST94]).

Signature morphisms come in two flavors: structures, which copy and in-
stantiate a signature S into T , and views, which translate from a signature S
to T . In the following we will look at structures first.

In the simplest case, a structure declaration in a signature T consists of a
fresh name s and a signature S. If S declares a constant c, then the structure
declaration induces a constant s.c in T by copying c. s induces a signature
morphism, which maps all constants S”c to T”s.c. In general, this leads to the
definition of qualified identifiers ~c ::= s. . . . .s.c of constants. Similarly, we define
qualified structure identifiers ~s ::= s. . . . .s.s. In our running example, we get
around this complex syntax by using %open to introduce constants c abbreviating
s.c.

Example 2 (Implication). ⊃ and its introduction and elimination rules from Fig-
ure 1 are encoded as follows:

%sig IMP = {
%struct J : JUDGMENTS %open o true.
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⊃: o -> o -> o. %infix left 10 ⊃.
⊃I : (true A -> true B) -> true (A ⊃ B).
⊃E : true (A ⊃ B) -> true A -> true B.

}.

Here we import o and true from JUDGMENTS using a structure J. It induces
the constants IMP”J.o and IMP”J.true. Within IMP, we can refer to them as J.o
and J.true, and %open o true makes them available as o and true.

Example 3 (Negation). Similarly, we encode negation and its rules:

%sig NEG = {
%struct J : JUDGMENTS %open o true.
¬ : o -> o.
¬I : (p true A -> true p) -> true (¬ A).
¬E : true (¬ A) -> true A -> true B.
n = [p] (¬ (¬ p)).
¬¬I : true A -> true (n A)

= [D] (¬I [p:o] [u: true (¬ A)] (¬E u D)).
}.

Negation satisfies the double negation introduction rule “If A true then
¬¬A true.”. The proof is direct, and it defines the derived rule of inference
¬¬I.

In addition to copying declarations from S to T , structures can instantiate
constants and structures declared in S with corresponding expressions over T .
We call such pairs of S-symbol and T -expression assignments.

Example 4 (Intuitionistic Logic). To obtain an encoding of intuitionistic logic as
in Figure 1, we combine IMP and NEG. The common structure J must be shared:

%sig IL = {
%struct I : IMP %open o true ⊃ ⊃I ⊃E.
%struct N : NEG = { %struct J := I.J.} %open ¬ n ¬I ¬E ¬¬I.

}.

Here %struct J := I.J. is an assignment: J refers to the structure declared
in NEG, which is copied into IL resulting in the structure N.J; assigning I.J to
it, yields the desired sharing relation N.J = I.J. The assignment is well-typed
because both N.J and I.J are instances of the same signature, namely JUDGMENTS.

In %struct N : NEG = { %struct J := I.J.}, readers familiar with SML
may think of NEG as a functor that is passed I.J as an argument with the result
being assigned to N.

Example 5 (Classical Logic).
Finally, by extending intuitionistic
logic with the axiom of the excluded
middle, we obtain the definition of
classical logic.

%sig CL = {
%struct IL : IL %open true ⊃ ¬.
exm : true (¬ (¬ A) ⊃ A).

}.
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Formally, we define the body of a signature by Σ ::= · | Σ, Dc | Σ, Ds. Here
Dc stands for a constant definition/declaration Dc ::= c : C | c : C := C, and
Ds ::= ~s : T := {σ} stands for a structure declaration where σ ::= · | σ, ~c :=
C | σ, ~s := µ gives a list of assignments. For the sake of convenience, we omit
the keywords %sig, %struct, %view from the formal presentation.

JUDGMENTS

NEG

IMP

IL CL

NEG”J

IMP”J

IL”N

IL”I
CL”IL

KOLM

structure
view

A signature graph is a multi-
graph with signatures as nodes and
structures or views as edges. The sig-
natures and structures introduced in
the running example so far form the
signature graph on the right. Now we
turn to views and define the view KOLM
that interprets classical proofs over CL
as intuitionistic proofs over IL. It is
composed modularly from four different views into IL.

Example 6 (Kolmogorov view). We begin with translating the judgments in the
view KOLMJ from JUDGMENTS to IL: The assignment o := o expresses that for-
mulas are mapped to formulas, and the assignment true := [x] true (n x)
expresses that the judgment A true is mapped to the judgment ¬¬B true where
B is the translation of A. As for structures, the left hand side of an assignment
is a symbol of the domain, and the right hand side is an expression over the
codomain.

Similarly, we define the views KOLMI and KOLMN, which translate implication
and negation, respectively. The proof rules are translated to derived rules of
inference, which are easily determined by pen and paper. Note that these views
are total: There is an assignment for every constant declared in the domain with
the only exception of those that are defined.

%view KOLMJ : JUDGMENTS -> IL = {
o := o.
true := [x] true (n x).

}.

%view KOLMI : IMP -> IL = {
%struct J := KOLMJ.
⊃ := [x][y] ((n x) ⊃ (n y)).
⊃I := [A][B][D] ¬¬I (⊃I D).
⊃E := [A][B][D][E] ¬I [p][u]
¬E D (¬I [q][v]

¬E (⊃E v E) u).
}.

%view KOLMN : NEG -> IL = {
%struct J := KOLMJ.
¬ := [x] ¬ x.
¬I := [A][D] ¬I [q][u]
¬E (D (¬ A) u) u.

¬E := [A][C][D][E] ¬I [p][u]
¬E D E .

}.

%view KOLM : CL -> IL = {
%struct IL.I := KOLMI.
%struct IL.N := KOLMN.
exm := [A] ¬I [p] [u] ¬E u
(⊃I [u] ¬I [p] [v] ¬E u
(¬I [q][w] ¬E w v)).

}.
In summary, the view KOLM is the Kolmogorov translation mapping the em-

bedding from CL into IL. It illustrates nicely the expressive strength of what
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we call deep assignments: Instead of providing an assignment for the structure
IL of CL, it assigns morphisms to the structures IL.I and IL.N. Intuitively, the
assignment %struct IL.I := KOLMI. is justified as follows: IL.I is a copy of
IMP into the domain CL of KOLM; thus, it is mapped to the view KOLMI, which is
a translation of IMP into the codomain IL of KOLM. The last assignment in KOLM
is the translation of the law of the excluded middle.

Thus, KOLM implements a meta-theoretic proof that classical proofs can be
translated to intuitionistic ones: It covers all cases because it substitutes terms
for all constants of CL, and it is clearly terminating. 2

Formally, we write Dv ::= v : S → T := {σ} for a view v from S to T where
σ is as for structures except that it must provide assignments for all constants
of S.

Finally, given a set of signature and view declarations, we define signature
morphisms µ by µ ::= T”~s | v | µ • µ. Here T”~s refers to the structure ~s of the
signature T , v refers to a view, and µ • µ′ represents the composition of two
morphisms in diagrammatic order. In the running example, IL”N • CL”IL • KOLM
is a morphism from NEG to IL. Then we can also state the semantics of qualified
structure identifiers more precisely: The structure CL”IL.I.J is meant to be equal
to the morphism IMP”J • IL”I • CL”IL.

Thus, morphisms are lists of named links in the signature graph. While it is
straightforward to define equality and normal forms for morphisms (using their
semantics as mappings between terms), it is non-trivial to do this in a scalable
way. We will return to this observation in Section 3.4.

This concludes the definition of the syntactic categories of our module system
for LF, which we summarize in Figure 2. The figure introduces two productions
that have not been covered by the above: Structures and views may also be
declared as abbreviations of existing morphisms µ. This is not only syntactic
sugar — it also makes our language strong enough to express all aspects of the
semantics of structures.

Signature graph G ::= · | G, DT | G, Dv
Signature DT ::= T := {Σ}
View Dv ::= v : T → T := {σ} | v : T → T := µ

Signature body Σ ::= · | Σ, Dc | Σ, Ds
Constant Dc ::= c : C | c : C := C
Structure Ds ::= s : T := {σ} | s : T := µ
Assignment list σ ::= · | σ, ~c := C | σ, ~s := µ

Term C ::= T”~c | type | {x : C}C | [x : C]C | C C
Morphism µ ::= T”~s | v | µ • µ
Qualified identifiers ~c ::= s. . . . .s.c

~s ::= s. . . . .s.s
Identifiers T, v, c, s, x

Fig. 2. The Grammar for Expressions
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3.2 Elaboration

The semantics of a structure declaration s : S := {σ} in T is defined by its
elaboration into a set of induced constant declarations in the core theory. For
example, if S contains c : A and s contains no assignment for c, elaboration
induces the declaration s.c : T”s(A) and similarly, if s contains the assignment
c := B, then elaboration induces the declaration s.c : T”s(A) := B. The
elaboration of an assignment s := µ where the domain of s is R yields a set of
induced assignments containing s.c := µ(R”c) for every constant c declared in
R.

Formally, we define elaboration by three mutually dependent judgments. The
judgment G ≫T ~c : A := B expresses that the declaration ~c : A := B may
be induced in the signature T . In the interest of brevity, we write B = ⊥ if
the declaration is of the form ~c : A. Similarly to the elaboration of structures
in signatures, we elaborate assignments to structures in links. The judgment
G ≫m ~c := B expresses that the assignment ~c := B is induced in the link m. If
the domain of m has an induced declaration for the constant ~c but m provides
no assignment for it, we write G ≫m ~c := ⊥.

Elaborating a structure s from S to T does not only induce constants s.~c
but also structures s.~r. The meaning of the structure T”s.r is defined to be the
composition S”r • T”s. Therefore, we use the judgment G ≫T m : S := D to
express that m is a link from S to T (alternative reading: a structure expression
over T of type S) defined by D where D may be a morphism µ or a list of
assignments {σ}.

These three judgments are defined in Fig. 3 and 4. There µ(C) denotes the
result of applying the morphism µ to the expression C, which is defined below.
These judgments can be seen as functions if there are no name clashes in G:
No signature graph or signature may declare the same identifier twice, and no
link may assign an object to the same identifier twice. In this case we write
GT (~c) = (A,B) if G ≫T ~c : A := B, and Gv(~c) = B if G ≫T ~c := B, and
G(m) = (S, T ) if G ≫T m : S := .

Finally we define the application of a morphism µ to a term C by induction
on µ and C. The definition is relative to a fixed signature graph G, which we
drop from the notation.

µ • µ′(S”~c) := µ′(µ(S”~c))

m(S”~c) :=


m(B) if B 6= ⊥
B′ if B = ⊥, m = v view
T”s.~c if B = ⊥, m = T”s structure

 where GS(~c) = ( , B),
Gm(~c) = B′

µ(type) := type
µ(x) := x
µ([x : A]C) := [x : µ(A)]µ(C)
µ({x : A}C) := {x : µ(A)}µ(C)
µ(C C ′) := µ(C) µ(C ′)

In the interest of brevity, and without loss of generality we let µ(⊥) = ⊥.
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T := {. . . , c : A := B, . . .} in G

G ≫T c : A := B

T := {. . . , c : A, . . .} in G

G ≫T c : A := ⊥

G ≫T T”s : S := G ≫S ~c : A := B G ≫T”s ~c := B′ B′ 6= ⊥

G ≫T s.~c : T”s(A) := B′

G ≫T T”s : S := G ≫S ~c : A := B G ≫T”s ~c := ⊥

G ≫T s.~c : T”s(A) := T”s(B)

G ≫T m : S := µ

G ≫m ~c := µ(S”~c)

G ≫T m : S := {. . . , ~c := C, . . .}

G ≫m ~c := C

G ≫T m : S := {. . . , ~s := µ, . . .} G ≫S S”~s : R :=

G ≫m ~s.~c := µ(R”~c)

Fig. 3. Elaboration of Structures

v : S → T := D in G

G ≫T v : S := D

T := {. . . , s : S := D, . . .} in G

G ≫T T”s : S := D

G ≫T T”s : S := G ≫S S”~r : R :=

G ≫T T”s.~r : R := S”~r • T”s

Fig. 4. Elaborated Links

3.3 Type System

In this section we present an inference system to define well-formed expressions.
The judgments are given in Fig. 5. The judgment ` G states the well-formedness
of signature graphs. The judgment G B D expresses that G can be extended
with the module, symbol, or assignment D. Finally, there are three judgments
that define well-formed terms and morphisms relative to a signature graph and
a signature declared in that graph.

In order to express that a declaration or assignment for the identifier n can be
added to the signature or linkN , we use the auxiliary judgment noClash(G, N, n),
which is true if one of the following holds. (i) G ends in the declaration of a sig-
nature with name N and n is an identifier that has not been declared in N yet;
(ii) G ends in the declaration of a view N and GN (p) = ⊥ for every qualified
identifier p for which n = p, n.n′ = p, or n = p.p′; (iii) N = T”s and G ends in
the declaration of a signature T whose body ends in the declaration of a struc-
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Judgment Intuition

` G G is a well-formed signature graph.
G B D The declaration D can be added to G.
G `T µ : S µ is a well-formed morphism from S to T (or: a well-

formed structure over T of type S).
G `T C ≡ B C and B are equal over G and T .
G `T C : A C is a well-formed term of type A over G and T .

Fig. 5. Main Judgments

ture s, and GN (−) satisfies the same property as in (ii). Similarly, noClash(G, N)
holds iff N does not occur as the identifier of a signature or view in G.

Furthermore, we define Sig(G) to be the set of signature names declared in
G.

The structure of signature graphs is defined by the rules in Fig. 6. These rules
follow the grammar and iterate a well-formedness judgment over all components
of a signature graph, they also check that views are total (i.e., provide assign-
ments for all constants that do not have a definiens) and that module names
do not clash. The well-typedness of constant declarations and assignments (red
assumptions) and objects (blue assumptions) is defined by the rules in Fig. 7.

Firstly, the rule G∅ constructs an empty signature graph. The rules Sig and
V iew extend a well-formed signature graph with a well-formed signature or view;
while signatures can be added directly, views must be total, which means that
they must provide an assignment for every constant or structure declaration.

Whether or not a signature or view is well-formed is defined in the remain-
ing rules. The rules Sig∅ and Sym construct signatures by successively adding
well-formed symbols, and the rules V iew∅ and V iewAss construct views by suc-
cessively adding well-formed assignments. Alternatively, V iewµ adds a view that
is defined by an existing morphism.

The rules for structures correspond to those for views: Str∅ and StrAss con-
struct structures by successively adding well-formed assignments, and Strµ adds
a structure that is defined by an existing morphism.

The rules above the dotted line in Fig. 7 define when constants and assign-
ments are well-typed. The rule Con says that constant declarations c : A := B
are well-typed for a signature T if B has type A, and if c is not already de-
clared in T . In order to save case distinctions, we use the following convention:
We permit the case B = ⊥ for constants without definitions, and say that the
typing judgment G `T ⊥ : A holds if A is a well-formed type or kind. Note
that extensions to other type systems only require to modify this convention
appropriately.

The rule ConAss defines well-typedness of an assignment ~c := B. The first
three premises look up the domain and codomain of the last link m in G, make
sure that an assignment for ~c does not clash with existing assignments in m, and
look up the type of ~c. The definition of ~c must be ⊥, i.e., defined constants cannot
be instantiated. Then the final premise type-checks B against the translation of
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G∅
` ·

` G G B T := {Σ}
Sig

` G, T := {Σ}

` G G B v : S → T := {σ} Gv(~c) 6= ⊥ whenever GS(~c) = (A,⊥)
V iew

` G, v : S → T := {σ}

noClash(G, T )
Sig∅

G B T := {·}

G B T := {Σ} G, T := {Σ} B DSym
Sym

G B T := {Σ,DSym}

noClash(G, v) S ∈ Sig(G) T ∈ Sig(G)
V iew∅

G B v : S → T := {·}

noClash(G, T, s) S ∈ Sig(G) \ {T}
Str∅

G B s : S := {·}

G B v : S → T := {σ} G, v : S → T := {σ} B DAss
V iewAss

G B v : S → T := {σ,DAss}

G, T := {Σ} B s : S := {σ} G, T := {Σ, s : S := {σ}} B DAss
StrAss

G, T := {Σ} B s : S := {σ,DAss}

noClash(G, v) G `T µ : S
V iewµ

G B v : S → T := µ

noClash(G, T, s) G `T µ : S
Strµ

G B s : S := µ

Fig. 6. Structural Rules

A. If m(A) is not defined, which is possible if m is a view and A contains
constants for which m does not provide an assignment yet, we consider the
typing judgment not to hold. Thus, the order of assignments in a link must
respect the dependency order between the symbols declared in the domain.

R S T
S”~s m

µ
The rule StrAss for assignments to

structures is very similar to ConAss. The
first three premises correspond to those of
ConAss. In particular, R corresponds to
A as the type of ~s, and the fourth premise
checks the type of µ against R. To understand the last premise, note that the
intended semantics of assignments to structures is that the diagram on the right
commutes. This is only possible if µ agrees with S”~s • m for all constants for
which m is already determined.

The rules below the dotted line in Fig. 7 define the typing of objects. T: and
T≡ replace the core LF rule for the lookup of constants in the signature (called
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con in [Pfe01]). All other typing and equality rules of core LF are retained. To
obtain module systems for other type theories, the typing and equality rules have
to be changed accordingly. Finally the rules Mm and M• construct morphisms
as sequences of links. Composition is written in diagrammatic order, i.e., from
the domain to the codomain.

noClash(G, T, c) G `T B : A
Con

G B c : A := B

noClash(G,m,~c)
G(m) = (S, T )

GS(~c) = (A,⊥)
G `T B : m(A)

ConAss
G B ~c := B

noClash(G,m,~s)
G(m) = (S, T )

G(S”~s) = (R,S)
G `T µ : R

ˆ
GS(~s.~c) = ( , B), B 6= ⊥

˜
...

G `T µ(R”~c) ≡ m(B)
StrAss

G B ~s := µ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GT (~c) = (A, )
T:

G `T T”~c : A

GT (~c) = ( , B), B 6= ⊥
T≡

G `T T”~c ≡ B

G(m) = (S, T )
Mm

G `T m : S

G `S µ : R G `T µ′ : S
M•

G `T µ • µ′ : R

Fig. 7. Typing Rules

3.4 Meta Theory

We turn now to the meta-theoretical results that we have shown about the
module system, most notably, conservativity.

Definition 1. Assume G `T µ : S and G `T µ′ : S. We define the judgment
G ` µ ≡ µ′ to hold iff for all ~c for which GS(~c) is defined we have G `T µ(S”~c) ≡
µ′(S”~c).

Theorem 1. Assume G `T µ : S. If G `S C : A, then G `T µ(C) : µ(A). If
G `S C ≡ C ′ and G ` µ ≡ µ′, then G `T µ(C) ≡ µ′(C ′).

Proof. This is a special case of the results given in [Rab08].

The following result is the cornerstone of adequacy proofs. For example, it
immediately entails the adequacy of the LF encoding of intuitionistic logic under
structure sharing in Example 4.
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Theorem 2. Assume ` G. If there is an assignment ~s := µ in a link m from S
to T in G, then G ` S”~s •m ≡ µ.

Proof. This is a special case of the results given in [Rab08].

Finally, we show that modular LF is conservative over core LF. The core of
the argument is that elaboration is sound. The only caveat is easily explained:
Qualified identifiers in modular LF need to be considered constants in core LF,
which means that “”” and “.” may occur in constant names.

Theorem 3. Assume a signature graph G. Let Σ be the core LF signature con-
taining the declarations

– for all signatures T declared in G: whenever G ≫T ~c : A := B, the decla-
ration T”~c : A := B (where B is omitted if B = ⊥),

– for all views v with domain S declared in G: whenever G ≫S ~c : A := ⊥,
the declaration v”~c : v(A) := B where Gv(~c) = B,

in some order that respects the dependencies between them. Then ` G iff Σ is a
valid core LF signature.

Proof. This is a special case of the results given in [Rab08]. The only modification
of the argument is that here Σ is always ill-formed if any view in G is not total
because it will contain the illegal symbol ⊥.

As core LF signatures elaborate to themselves, modular LF is a conservative
extension over core LF.

4 Implementation

The module system for LF discussed in this paper has been implemented as part
of the Twelf system. More information about the implementation can be found on
the webpage at http://www.twelf.org/mod. The implementation uses the same
code base as the traditional Twelf, except that it uses hash tables for constant
lookup, which renders the modular Twelf implementation at times faster than the
traditional one. Figure 8 provides empirical evidence for this claim. All timings
are measured in seconds and rounded. The experiments where conducted on a
Dell Poweredge 1950 equipped with two dual-core Xeon 5140 2.33GHz processors
and 8GB RAM.

The experiments compare the run times of various mechanisms inside Twelf
when loading a core Twelf signature. We conclude that the module system
does not come at the price of lost efficiency — on the contrary it enables us
to study separate checking in analogy to separate compilation in future work.
We conducted experiments with three larger developments in Twelf: first, the
cut-elimination proof for intuitionistic and classical logic [Pfe95], the formaliza-
tion of the meta-theory of typed assembly language [Cra03] (which consists of
about 2500 meta-theorems), and the formalization of the meta-theory of the in-
termediate language of full Standard ML of New Jersey [LCH07] (which consists
of about 1300 meta-theorems).
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Cut-Elim TALT SML

Parsing 0.008 (0.008) 3.590 (2.733) 0.583 (0.851)
Reconstruction 0.017 (0.017) 8.620 (14.00) 1.688 (2.324)
Abstraction 0.008 (0.007) 7.154 (6.254) 0.738 (1.004)
Modes 0.002 (0.002) 2.130 (3.129) 0.193 (0.477)
Subordination 0.004 (0.002) 18.39 (10.87) 5.851 (4.392)
Termination 0.009 (0.010) 1.157 (0.698) 0.273 (0.213)
Compilation 0.001 (0.001) 0.077 (0.078) 0.044 (0.045)
Solving 0.000 (0.000) 0.838 (0.498) 0.000 (0.000)
Coverage 0.225 (0.270) 2173 (2176) 8.003 (7.190)
Worlds 0.002 (0.002) 2.810 (1.241) 2.124 (1.922)

Total 0.275 (0.319) 2218 (2216) 19.49 (18.42)

Fig. 8. Experimental Data. Modular Twelf (Traditional Twelf) in seconds.

5 Conclusion

We have described a practical module system for the logical framework LF that
is deceptively simple because it is designed around signatures and signature mor-
phisms. It is expressive, sound, and conservative over LF because each signature,
structure, or view is fully elaborated into core LF, which implies that the module
system per se does not pollute any prior and future meta-theoretic analysis of
LF encodings. And finally, it is practical, because it is available to users of the
Twelf system and we have shown that it does not degrade runtime performance.

Acknowledgments Our module system is a special case of a generic system that
the first author developed with Michael Kohlhase. Design and implementation
of the LF version benefited from discussions with Frank Pfenning and previous
work by Kevin Watkins.
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