
Electronic Notes in Theoretical Computer Science 70 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 22 pages

Towards Proof Planning for M+
ω

?

Carsten Schürmann 1

Yale University, New Haven (CT), USA

Serge Autexier 2

German Research Center for Artificial Intelligence (DFKI)
Saarbrücken, Germany

Abstract

This paper describes the proof planning system P+
ω for the meta theorem prover

for LF implemented in Twelf. The main contributions include a formal system
that approximates the flow of information between assumptions and goals within
a meta proof, a set of inference rules to reason about those approximations, and a
soundness proof that guarantees that the proof planner does not reject promising
proof states. Proof planning in P+

ω is decidable.

1 Introduction

The difficulty and sheer complexity of automated deduction tasks are so daunt-
ing that implementers of many interactive theorem proving systems such as Is-
abelle [Pau94], Coq [DFH+93], Lego [LP92], PVS [ORS92], and INKA [Hut96]
prove lemmas and theorems with heuristics based techniques. Tactics [GW79],
for example, heuristically explore the search space until no more progress can
be made, and proof planning techniques [Bun88] heuristically plan a path
through the search space of states to guide proof search.

The degree and the success of automation that one can expect from a
theorem proving system seems directly related to the way a problem is repre-
sented. Many fully automatic theorem provers employ logic, either first-order
and less often higher-order logics with or without equality as the representa-
tion language. As a result the resulting theorem provers are typically highly
specialized for one particular class of problems.

? This work was supported in part by the National Science Foundation NSF under grants
CCR-0133502 and INT-9909952, and by the German Academic Exchange Service DAAD.
1 Email: carsten@cs.yale.edu
2 Email: autexier@dfki.de

c©2002 Published by Elsevier Science B. V.

mailto:carsten@cs.yale.edu
mailto:autexier@dfki.de

Schürmann, Autexier

Others such as the Twelf system [PS99] use logical framework technol-
ogy [Pfe99] for representing the domains in which theorem proving is to be
conducted. Those domains include various deductive systems, such as logics
and type systems. In addition, recent work on theorem proving about encod-
ings that are represented in LF using higher-order representation techniques
have led to the meta logic M+

ω [Sch00] and a prototype implementation as
part of the Twelf implementation.

The quintessential difference between theorem proving in first-order log-
ics where the subjects of reasoning are encoded using relations, and theorem
proving in logical frameworks is that in LF the theorem prover can take ad-
vantage of the inherent structure of the objects which can be quite complex
since they typically involve higher-order representation techniques together
with dependent types. Other advantages include efficient encodings of a va-
riety of deductive systems, automatic availability of various weakening and
substitution lemmas for the encodings, and a limited set of meta-logical op-
erators suitable for proof search. Those operators include the application of
induction hypotheses, case analysis over universally bound assumptions, and
straightforward resolution theorem proving to search for witness objects of
existentially quantified assumptions.

Theorem proving in a logical framework setting suffers from the same com-
binatorial problems other theorem prover also suffer from. One natural ques-
tion to ask is, how the proof planning techniques developed for the first-order
domain can be carried over to the domain of higher-order logical frameworks.
In particular, how does proof planning techniques interact with our approach
to theorem proving that follows the philosophy of Nqthm [BM79]? A theo-
retical development consists of a sequence of lemmas which can all be proven
automatically. If the gap in-between two lemmas is too large, the theory
implementer has to introduce auxiliary lemmas.

One of the main problems in automated theorem proving in a logical frame-
work such as Twelf is the choice of a universally bound variable for case
analysis, also called splitting candidate. Usually, the set of splitting candi-
dates grows quite big even for simple theorem proving problems. In addition,
previous attempts to limit the set of candidates by considering only those
assumptions that do not occur as index elsewhere, were incomplete. Other
heuristics have been successfully applied on a small scale, but have failed to
scale to bigger examples.

The key to success is recognizing early when a prover has reached an unsuc-
cessful state. To this end, we develop in this paper a proof planning calculus
P+

ω which captures the flow of information when applying lemmas, induction
hypotheses, or simply inference rules. Searching for proof plans serves as a
criterion for the prospects of a proof state to lead eventually to a proof of the
theorem. In addition, proof plans contain plenty of information about which
resources have been used and others that have not. In future work we plan to
exploit this information for constructing the actual proof.

2

Schürmann, Autexier

P+
ω is a natural deduction calculus for a fragment of first-order intuitionistic

monadic logic and hence decidable. Finding a proof plan is straightforward.
First, a proof state is converted into a P+

ω -formula, which is passed to a
resolution theorem prover. If a proof plan for this formula cannot be found in
P+

ω then the original proof state cannot be proven in M+
ω . Our meta theory

guarantees that P+
ω is sound. If a formula is provable in M+

ω , P+
ω will be able

to construct an appropriate proof plan.

The paper is organized as follows. We first discuss the type preservation
theorem for Mini-ML as running example in Section 2. We then give a brief
introduction to the meta-logic M+

ω in Section 3 before we define the proof
planning calculus P+

ω in Section 4 and its meta theory in Section 5. Finally
we conclude and assess results in Section 6.

2 Example

One of the examples that demonstrates our techniques well is the type preser-
vation theorem of a simply typed functional language. Let us consider a
fragment of Mini-ML [MP91] that contains only constructs for λ-abstraction
“lam”, application “app”, and fixed points “fix”. Although this language is
quite impoverished, it illustrates well the techniques described in this paper.
In fact, our techniques scale to full Mini-ML. Also, in the interest of space, we
restrict the presentation to a version of the language already represented in the
logical framework LF whose formal presentation we postpone until Section 3.
The reader not familiar with Mini-ML is referred to [MP91] for a detailed
description. Expressions in Mini-ML are represented as objects of type “exp”.

exp : type.
lam : (exp → exp) → exp.
app : exp → exp → exp.
fix : (exp → exp) → exp.

Note the use of higher-order abstract syntax for “lam” and “fix” as a mecha-
nism to bind Mini-ML level variables by variables of LF. Due to the simplicity
of the fragment, Mini-ML provides only one type constructor “arrow”.

tp : type.
arrow : tp → tp → tp.

Under the judgments as types paradigm, the typing judgment Γ ` e : τ is
expressed as a type family indexed by an expression and a type, that is an
object of type exp, and tp, respectively. The context Γ itself is represented by
the LF context.

of : exp → tp → type.
tp lam : (Πx:exp. of x T1 → of (E x) T2)

→ of (lam E) (arrow T1 T2).

tp app : of E2 T2 → of E1 (arrow T2 T1)

3

Schürmann, Autexier

→ of (app E1 E2) T1.

tp fix : (Πx:exp. of x T → of (E x) T)
→ of (fix E) T.

Hypothetical judgments that add new hypotheses to Γ are encoded using
higher-order techniques, as the functional argument to tp lam shows. Follow-
ing standard practice [Pfe91] we omit all implicit Π-abstractions from types
and we take βη-conversion as the notion of definitional equality [Coq91].

Finally, we give an operational semantics for this language which is a stan-
dard and call-by-value.

eval : exp → exp → type.
ev lam : eval (lam E) (lam E).
ev app : eval (E1

′ V2) V → eval E2 V2 → eval E1 (lam E1
′)

→ eval (app E1 E2) V.

ev fix : eval (E (fix E)) V
→ eval (fix E) V.

It is important to point out how efficient the representation of the evaluation
application rule is. Mini-ML programs in LF are considered equivalent modulo
α-conversion. The substitution lemma that occurs in an informal proof is
expressed by a simple LF level application (E ′

1 V2) in the definition of ev app.

The meta-logical foundation for reasoning about deductive systems that
are encoded in LF is discussed in detail in [Sch00]. The underlying concept of
the meta-theorem prover implemented in the Twelf system is that of a proof
state, which consists of a set of assumptions and a goal. The type preservation
theorem, for example,

∀E : exp.∀V : exp.∀T : tp.∀D : eval E V . ∀P : of E T.∃Q : of V T .>(1)

leads to an initial state of the following form.

E : exp, V : exp, T : tp, D : eval E V , P : of E T ` ∃Q : of V T .>
To the left of the ` symbol you find all assumptions that are made available
to prove the theorem, to its right the formula that is to be proven. To simplify
notation, we will use Ψ to refer to the list of assumptions. A complete proof
consists of a recipe of how to construct a Q out of E, V , T , D and P , and
constants defined in the LF signature.

The reasoning process can be described by the following three fundamental
operations: Splitting analyzes cases over variables declared in Ψ, such as D :
eval E V and results in general in a set of new proof states. Recursion applies
induction hypotheses and inserts new assumptions into Ψ. And finally, filling
attempts to construct LF objects for a given LF type by trying to generate
witness objects for existential quantifiers on the right, or argument objects
for universal quantifiers on the left of the ` symbol. All operations are non-
deterministic.

One of the main contributions of this paper is a proof planner that maps out
a way on how to close a proof state. The original problem space is simplified by

4

Schürmann, Autexier

converting proof states into proof planning problems which are formulated as
theorem proving problems in first-order intuitionistic logic. The correspond-
ing proof calculus is a natural deduction calculus. Therefore, the task of proof
planning is in fact executed by a theorem prover, and consequently a proof
plan is nothing but a natural deduction derivation. Our meta-theoretic con-
siderations guarantee that if the current proof state can be closed the proof
planner is guaranteed to find a plan.

When our proof planning algorithm is in action, it recursively constructs
a complete proof plan by continuously splitting assumptions, applying in-
duction hypotheses, and considering all lemmas. Once a plan is successfully
constructed, the theorem prover is invoked possibly taking advantage of the
information contained in the plan. The plan may shed some light on what
variable to split, which induction hypothesis or lemma to apply next, and
possibly even limits the fragment of the deductive system in which to conduct
proof search. This is a tremendous advancement compared to the naive and
straightforward implementation of the meta theorem prover implemented in
Twelf.

The subterm relationship between objects and parameters that underlies
the proof planning technique presented in this paper is the notion of approxi-
mate typability. Intuitively, approximate typability is a weak form of typing.
Instead of saying that M has type of E V , we record only the information that
object M contains information about objects E and V which we express as
approximate type (of E)∧(of V). Clearly, by moving to approximate types we
loose a lot of information about the objects themselves. On the other hand, we
gain the freedom to look for proof plans i.e. natural deduction proofs among
approximate types. The main theoretical result of this paper states, that if
for a particular theorem proving problem no proof plan can be found, a direct
proof is guaranteed not to exist. If it exists, however, we can use informa-
tion gained from the proof plan to guide the theorem prover. Following the
proposed classifications of Giunchiglia and Walsh, this means that our notion
of approximation satisfies the properties of a TI abstraction [GW92] with a
consistent abstract space. In order to illustrate the proof planning technique
we take as an example the proof state for the type preservation theorem and
analyze cases over D : eval E V yielding three cases.

1. E ′ : exp → exp, T : tp, P : of (lam E ′) T

` ∃Q : of (lam E ′) T .>

2. E1 : exp, E ′
1 : exp → exp, E2 : exp, V2 : exp, V : exp, T : tp,

D1 : eval E1 (lam E ′
1), D2 : eval E2 V2, D3 : eval (E ′

1 V2) V ,

P : of (app E1 E2) T

` ∃Q : of V T .>

5

Schürmann, Autexier

3. E ′ : exp → exp, V : exp, T : tp, D : eval (E ′ (fix E ′)) V , P : of (fix E ′) T

` ∃Q : of V T .>

and after computing all applicable induction hypotheses, we obtain:

1. E ′ : exp → exp, T : tp, P : of (lam E ′) T

` ∃Q : of (lam E ′) T .>

2. E1 : exp, E ′
1 : exp → exp, E2 : exp, V2 : exp, V : exp, T : tp,

D1 : eval E1 (lam E ′
1), D2 : eval E2 V2, D3 : eval (E ′

1 V2) V ,

P : of (app E1 E2) T ,

ih1 ∈ ∀t : tp.∀u : of E1 t.∃q : of (lam E ′
1) t.>,

ih2 ∈ ∀t : tp.∀u : of E2 t.∃q : of V2 t.>,

ih3 ∈ ∀t : tp.∀u : of (E ′
1 V2) t.∃q : of V t.>,

` ∃Q : of V T .>

3. E ′ : exp → exp, V : exp, T : tp, D : eval (E ′ (fix E ′)) V , P : of (fix E ′) T ,

ih ∈ ∀t : tp.∀p : of (E ′ (fix E ′)) t.∃q : of V t.>

` ∃Q : of V T .>

Proof planning with the approximate types in each of the three cases yields
the following observations: The goal formula of the first state corresponds to
the approximate type (of E ′)∧(of T) from Q, which is immediately discharged
by the approximate type of P . The goal of the second state corresponds to
the approximate type (of V) ∧ (of T). Using the approximate type of q in
ih3 after instantiating t with T yields (of E ′

1) ∧ (of V2) ∧ (of T). This can
be refined by ih1 and ih2 to (of E1) ∧ (of E2) ∧ (of T), which is discharged
by the approximate type of P . The goal of the third state corresponds to
the approximate type (of V) ∧ (of T). Using the approximate type of q in
ih, it entails (of E ′) ∧ (of T) which can be immediately discharged by the
approximate type of P .

This proof plan exhibits that each case may be directly provable, and there-
fore the meta-theorem prover should try to follow the plan taking advantage
of the information gathered throughout the planning process. Consider for
example the second case above when analyzing cases over D: The derivation
of the approximate goal contained backward applications of ih3, ih1, ih2, and
finally P . This information can be used by the filling operation to construct
an object of type Q : of V T . In general, however, a planner must provide all
possible proof plans for the meta theorem prover to extract information which
rules to use during filling.

6

Schürmann, Autexier

Kinds: K ::= type | Πx : A. K

Types: A ::= a | A M | Πx : A1. A2

Objects: M ::= c | x | λx : A. M | M1 M2 | πx(y)

Worlds: Φ ::= L : some Γ1 block Γ2 | Φ + Φ | Φ∗

Signatures: Σ ::= · | Σ, c : A | Σ, a : K

Substitutions: σ ::= id | σ, M/x | σ, y/x

Formulas: F ::= ∀x : A. F | ∀x : (L; σ). F | F1 ⊃ F2

| ∃x : A. F | ∃x : (L; σ). F | F1 ∧ F2 | >

Programs: P ::= Λx : A.P | Λx : (L; σ).P | Λx ∈ F.P

| x | 〈M ; P 〉 | 〈x; P 〉 | 〈P1; P2〉 | 〈〉 | P M

| νP | Px | P1 P2 | case Ω | µx ∈ F.P

Cases: Ω ::= . | Ω, (Ψ � σ 7→ P)

Contexts: Ψ ::= · | Ψ, x : A | Ψ, x : (L; σ) | Ψ,x ∈ F

Fig. 1. Syntactic Categories for M+
ω

In fact, the plan above will eventually lead to success. It is an easy exercise
to determine, that the sketched planning algorithm will not find a proof plan
when considering cases solely over V or E. Intuitively, this is to be expected,
since the proof of the type preservation theorem goes either by induction on
D or P , but never on V or E.

3 The Meta Logic M+
ω

In this work, the type theory that serves the representation of deductive sys-
tems is the logical framework LF [HHP93]. It has been employed for repre-
senting type systems, operational semantics, logics, and in particular Church’s
higher-order logic, which is used in research about secure mobile code [App01]
and proof carrying code [Nec97]. Figure 2 shows the usual definition of LF
as a three layered system consisting of objects M , types A, and kinds K. We
slightly deviate from the standard notation and present a version of LF which
includes block variables [Sch00,Sch01a,Sch01b]. Block variables y are under-
lined and range over instances of a world Φ. We write Γ for those contexts
Ψ that contain only declarations of the form x : A, and x : (L; σ). They
correspond to the standard contexts of LF. LF signatures denoted by Σ are

7

Schürmann, Autexier

standard, and substitutions σ differ from standard substitutions in that they
admit the renaming of block variables.

Σ(c) = A
obj con

Γ Σ̀;Φ c : A

Γ(x) = A
obj var

Γ Σ̀;Φ x : A

Γ(y) = (L;σ) (block L)[σ](x) = A
obj proj

Γ Σ̀;Φ πx(y) : A

Γ Σ̀;Φ A1 : type Γ, x : A1 Σ̀;Φ M : A2
obj lam

Γ Σ̀;Φ λx : A1.M : Πx : A1. A2

Γ Σ̀;Φ M1 : Πx : A2. A1 Γ Σ̀;Φ M2 : A2
obj app

Γ Σ̀;Φ M1 M2 : A1[M2/x]

Σ(a) = K
tp const

Γ Σ̀;Φ a : K

Γ Σ̀;Φ A1 : type Γ, x : A1 Σ̀;Φ A2 : type
tp pi

Γ Σ̀;Φ Πx : A1. A2 : type

Γ Σ̀;Φ A1 : Πx : A2.K Γ Σ̀;Φ M : A2
tp app

Γ Σ̀;Φ A1 M : K[M/x]

kd type
Γ Σ̀;Φ type : kind

Γ Σ̀;Φ A : type Γ, x : A Σ̀;Φ K : kind
kd pi

Γ Σ̀;Φ Πx : A.K kind

Fig. 2. The Logical Framework LF.

Projections from block variables are written as πx(y). They must adhere
to the structure of the block corresponding to y : (L; σ). This means that
x must be declared in the block part Γ2 of the block declaration of “L :
some Γ1 block Γ2” in Φ. The substitution σ simply instantiates all variables
in Γ1 which may occur free in Γ2. We also write (block L)[σ](x) to refer to
the type of parameter x.

Block variables can be seen as dynamic extensions of the set of constants
defining a type. Since theorem proving in M+

ω takes place in a higher-order
setting [Sch01b], appeals to the induction hypothesis may have to traverse λ-
binders, prompting the theorem prover to introduce new parameters in form
of block variables in accordance with the world declaration.

Intuitively, worlds Φ resemble regular expressions, whose language is a
set of regularly formed LF contexts. Each declaration in any of those LF
contexts can be thought of as a new constructor, dynamically extending the
types already defined in the signature. Without loss of generality, we can
assume all LF objects, LF types, and LF kinds to be in canonical form. The
typing rules for our version of LF are depicted in Figure 2.

The meta logic M+
ω that is designed for reasoning about LF encodings

is defined on a different level from LF. Due to the higher-order nature of the
encodings it is impossible to identify the quantifiers for LF with the quantifiers
of the meta logic [Sch01b]. On the contrary, both levels, LF and M+

ω must
be carefully kept apart. The distinguishing characteristics between the two
levels are that M+

ω ’s programs correspond to functions that are definable

8

Schürmann, Autexier

Ψ Σ̀;Φ A : type Ψ, x : A Σ̀;Φ P ∈ F
∀I LF

Ψ Σ̀;Φ Λx : A.P ∈ ∀x : A.F

Ψ Σ̀;Φ P ∈ ∀x : A.F Ψ Σ̀ M : A
∀E LF

Ψ Σ̀;Φ P M ∈ F [M/x]

Ψ, x : (L;σ) Σ̀;Φ P ∈ F
∀I block

Ψ Σ̀;Φ Λx : (L;σ). P ∈ ∀x : (L;σ). F

Ψ Σ̀;Φ P ∈ ∀x : (L;σ). F Ψ(y) = (L;σ)
∀E block

Ψ Σ̀;Φ P y ∈ F [y/x]

Ψ,x ∈ F1 Σ̀;Φ P ∈ F2

∀I meta
Ψ Σ̀;Φ Λx ∈ F1. P ∈ F1 ⊃ F2

Ψ Σ̀;Φ P1 ∈ F2 ⊃ F1 Ψ Σ̀;Φ P2 ∈ F2

∀E meta
Ψ Σ̀;Φ P1 P2 ∈ F1

Ψ Σ̀ M : A Ψ Σ̀;Φ P ∈ F [M/x]
∃I LF

Ψ Σ̀;Φ 〈M ;P 〉 ∈ ∃x : A.F

Ψ(y) = (L;σ) Ψ Σ̀;Φ P ∈ F [y/x]
∃I block

Ψ Σ̀;Φ 〈y;P 〉 ∈ ∃x : (L;σ).F

Ψ Σ̀;Φ P1 ∈ F1 Ψ Σ̀;Φ P2 ∈ F2

∧I
Ψ Σ̀;Φ 〈P1;P2〉 ∈ F1 ∧ F2

Ψ(x) = F
axiom

Ψ Σ̀;Φ x ∈ F
>I

Ψ Σ̀;Φ 〈〉 ∈ >

Ψ,x ∈ F Σ̀;Φ P ∈ F
rec1

Ψ Σ̀;Φ µx ∈ F . P ∈ F

Ψ Σ̀;Φ Ω ∈ F
case2

Ψ Σ̀;Φ case Ω ∈ F

Ψ Σ̀;Φ P1 ∈ F1 Ψ,x ∈ F1 Σ̀;Φ P2 ∈ F2

let
Ψ Σ̀;Φ let x = P1 in P2 ∈ F2

Ψ Σ̀;Φ P ∈ ∀x : (L;σ). F abs ((block L)[σ]). F = F ′

new
Ψ σ̀;Φ νP ∈ F ′

empty
Ψ Σ̀;Φ · ∈ F

Ψ1 Σ̀;Φ Ω ∈ F Ψ2 Σ̀;Φ σ ∈ Ψ1 Ψ2 Σ̀;Φ P ∈ F [σ]
cons

Ψ1 Σ̀;Φ Ω, (Ψ2 . σ 7→ P) ∈ F

Fig. 3. Meta Logic M+
ω .

through pattern matching for which no canonical forms are known to exist.
LF functions, on the other hand, do not allow function definition by cases.
It relies crucially on the existence of canonical forms otherwise it could not
guarantee adequate representations.

M+
ω ’s features include proof by induction over arbitrary higher-order en-

codings, i.e. encodings that make use of negative occurrences of parameter
binders with automatic application of substitution, weakening, and exchange
lemmas. The syntactic categories provided by the meta-logic M+

ω are depicted
in the lower half of Figure 1. F stands for the first-order formulas that express
the properties to be proven. For example, the type preservation theorem in
Equation (1) is an M+

ω formula. Universal and existential quantifiers may
range over LF variables and block variables. Implication and conjunction are
standard. Compared with other logics, M+

ω lacks user defined relational con-
stants, falsehood, and disjunction. We are currently investigating how those
operators can be added to M+

ω .

Programs P summarize proof derivations, but they are of little interest for
this work. We present them here anyway because they play an important role

9

Schürmann, Autexier

in the soundness proof of M+
ω . Under a realizer interpretation those proof

terms act as total functions mapping instantiations of universal quantifiers
to instantiations of existentials. M+

ω distinguishes three different kinds of
variables. LF variables x : A, block variables x : (L; σ), and meta variables
x ∈ F . We overload Λ to bind variables of all three kinds, and 〈·; ·〉 for pairs
of LF objects, blocks, or programs with programs, respectively. 〈〉 stands for
unit, and juxtaposition for application. We distinguish three different kinds
of application P M , P x, and P1 P2. ν is the program that introduces new
constants dynamically and interprets the result as functional objects in LF. µ
and “case” are the two program constructors that implement recursion, and
case analysis, respectively. “case” expects as argument a list of cases Ω, which
may be empty. Patterns are represented as substitutions σ, defined in a new
environment Ψ, and P is the body of the pattern.

The proof rules of M+
ω are given in Figure 3. Many of the rules are

standard, a few however require explanation. The rule new introduces new
parameter blocks into the context, and the result of executing the body is later
abstracted to the LF level [Sch01b]. The technique is based on the idea to
represent hypothetical derivations as parametric functions in LF; we generalize
the technique to M+

ω formulas, and write abs ((block L)[σ]). F = F ′ where
F ′ is the result of abstracting each LF declaration in F in turn. In a slight
deviation from previous presentations of M+

ω we split the introduction of new
parameters by ∀I block from their abstraction in new which leads to a cleaner
presentation of the various concepts. Nevertheless, in most M+

ω derivations,
applications of ∀I block are immediately followed by an application of the new
rule.

What makes M+
ω a sound meta-logic is that all programs are total which

is enforced by two side conditions. The first is associated with rec, denoted by
1 and requires that µx. P is terminating. The second is associated with case,
denoted by 2, and requires that all cases are covered. For each environment η
that instantiates all variables in Ψ, (for which we use the standard substitution
notation Γ ` η ∈ Ψ), Ω must contain a case (Ψ′ .σ 7→ P) that matches it. We
say that σ matches η, if η can be written as a substitution composition of a
new environment η′ (Γ ` η′ : Ψ′) and σ.

In previous work [Sch00], the first author has given syntactic criteria for
the implementation of the two side conditions, which have led to the meta
logic M+

2 . The 2 refers to the fragment of M+
ω with only Π2-formulas, these

are formulas with only one quantifier alternation. The techniques developed
in this paper however scale beyond the Π2-fragment. In fact, any syntac-
tic criteria for the two side conditions that guarantee totality are sufficient.
We therefore concentrate the current research on M+

ω and develop the proof
planning calculus P+

ω in the next section.

10

Schürmann, Autexier

Approximation Formulas: G ::= ∀x. G | ∀x : L. G | G1 ⊃ G2 | ∃x. G

| ∃x : L. G | G1 ∧G2 | > | (a x)

Approximation Contexts: ∆ ::= · | ∆, G | ∆, x | ∆, x : L

Fig. 4. Syntactic Categories for P+
ω .

4 The Proof Planning Calculus P+
ω

Our approach to proof planning is purely logical. This is exhibited by the
fact that the here proposed proof planning calculus P+

ω is in essence a natural
deduction calculus. Any valid derivation in P+

ω is called a proof plan. As
discussed in Section 2, proof plans contain information that may guide the
meta theorem prover to close a branch in a proof. For example, the set of
proof plans for a particular goal contains information about which lemmas,
and which induction hypotheses to apply, even which constants are necessary
to construct witness objects in LF, and potentially information about the
order in which constructors are to be applied.

Therefore, the task of constructing a proof plan reduces to finding a deriva-
tion in P+

ω . P+
ω lies in a fragment of first-order intuitionistic monadic logic,

which is decidable [Tho90]. Consequently effective decision procedures exist.
Resolution and tableaux methods are only a few techniques that are applicable
in a proof planner whose description we leave to a future paper.

Any proof state of the meta theorem prover that searches for derivations
in M+

ω can be translated into a proof planning problem as motivated already
in Section 2. Hereby we translate the proof state via the process of approx-
imation. The goal formula is translated into a P+

ω formula, which we also
call approximation formula, and the proof context into a P+

ω context, which
is also called approximation context. Both syntactic categories are depicted in
Figure 4. Approximation is a form of abstraction [GW92].

When comparing M+
ω formulas and M+

ω contexts with P+
ω formulas and

P+
ω contexts, respectively, we observe that they are very similar. This is not

very surprising, because the main difference between both calculi lies in the
treatment of LF related assumptions. In P+

ω , for example, LF type labels are
entirely eliminated from the quantifiers and replaced instead by an approx-
imation formula, that often consists of a conjunction of several propositions
(a x). a is a type family, and x a variable that may occur as a subobject in
an object of type family a. Besides approximation formulas, approximation
contexts contain also variable names x, and block variable declarations x : L.
The translation operation from M+

ω to P+
ω is described in detail in Section 4.1.

In Section 4.3 we then introduce the calculus for P+
ω .

11

Schürmann, Autexier

atom tp fam
Ψ;Γ ` a′ ;a >

Ψ;Γ ` A1 ;a G1 Ψ;Γ, x : A1 ` A2 ;a G2
atom tp pi

Ψ;Γ ` Πx : A1. A2 ;a G1 ∧G2

Ψ;Γ ` A ;a G1 Ψ;Γ ` M ;a G2
atom tp app

Ψ;Γ ` A M ;a G1 ∧G2

atom obj const
Ψ;Γ ` c ;a >

Γ(x) = A
atom obj par

Ψ;Γ ` x ;a >

Ψ(x) = A
atom obj var

Ψ;Γ ` x ;a (a x)

atom obj proj
Ψ;Γ ` πx(y) ;a (a πx(y))

Ψ; Γ ` A ;a G1 Ψ;Γ, x : A ` M ;a G2
atom obj lam

Ψ;Γ ` λx : A.M ;a G1 ∧G2

Ψ;Γ ` M1 ;a G1 Ψ;Γ ` M2 ;a G2
atom obj app

Ψ;Γ ` M1 M2 ;a G1 ∧G2

Fig. 5. Translation of Atomic Types and Objects.

4.1 Translation from M+
ω to P+

ω

We begin now with the formal definition of the translation relation. The
translation relation is defined on M+

ω formulas, types, objects, and contexts
via the following six translation judgments:

Translation of types: Ψ ` A ;a G

Translation of objects: Ψ ` M ;a G

Translation of substitution lemmas: Ψ ` A ; G

Translation of induction hypothesis: Ψ ` F ; G

Translation of contexts: ` Ψ ; ∆

Translation of blocks: Ψ ` Γ ; ∆; σ

Each of these judgments is explained below in turn.

4.1.1 Types and objects.

The rules that define the first two judgments are given in Figure 5. Assume
that M , or A, respectively occur as subobjects in the indices to a type family
a. The result of transforming A or M is an approximation formula that
captures the necessary subobject relation between parameters, variables, and
projections, and the type family a. As an example, let P : of (app E1 E2) T

12

Schürmann, Autexier

in (2) be a parameter in Ψ. After a few simplifications we obtain

Ψ ` of (app E1 E2) T ;of (of E1) ∧ (of E2) ∧ (of T)

which reads informally as that objects of type family “of” contain information
about E1, E2, and T . The conversion to approximation formulas, however,
does not preserve locality information among assumptions.

4.1.2 Substitution lemmas and induction hypotheses.

In M+
ω , a proof context may contain hypotheses of functional LF type. When

such a hypothesis is applied to arguments it will reduce to a normal form;
just in the same way as if one applies a substitution lemma. Hypothesis of
this kind are not at all uncommon in our setting. For example one more case
analysis on P in the third case of the type preservation example from Section 2
makes such a functional hypothesis P ′ available.

3′. E ′ : exp → exp, V : exp, T1 : tp, T2 : tp, D : eval (E ′ (fix E ′)) V ,

ih ∈ ∀t : tp.∀p : of (E ′ (fix E ′)) t.∃q : of V t.>,

P ′ : Πx : exp. of x T1 → of (E x) T2

` ∃Q : of V (arrow T1 T2).>

In P+
ω , substitution lemmas must be translated the same way as induction

hypotheses are translated: As rules that can be applied to reason about the
flow of information. For example, if ih is applied to T then (of E ′)∧ (of T) ⊃
(of V) ∧ (of T). The proof planning rules to be presented in Section 4.3 of
P+

ω permit reasoning about the flow of information as part of the proof plan.
The translation relation for substitution lemmas and induction hypotheses
are defined by the third and fourth judgment, respectively, with the rules that
are given in Figure 6. In those rules we use the notation a = head A, that
determines the head of an atomic type A. It denotes the type family A belongs
to.

head A =

 a if A = a

head A′ if A = A′ M

For example the head of type “of (app M1 M2) T” is the type family “of”.

When translating universally quantified formulas over blocks such as the
one in trans allP, one first transforms the context (block L)[σ] into an approx-
imation context ∆ following the rules defined in Figure 7 explained below. ∆
is then combined with the result of transforming F . We use the shorthand
∆ ⊃ G for the resulting approximation formula.

∆ ⊃ G =

 G if ∆ = ·

∆′ ⊃ (G′ ⊃ G) if ∆ = ∆′, G′

An existential quantified formula such as the one described in trans exP is
translated analogously, except that all assumptions in ∆ are glued together

13

Schürmann, Autexier

Ψ ` A ;a G
trans atom if A is atomic and a = head A

Ψ ` A ; G

Ψ ` A1 ; G1 Ψ, x : A1 ` A2 ; G2
trans pi

Ψ ` Πx : A1. A2 ; G1 ⊃ ∀x.G2

trans true
Ψ ` > ; >

Ψ ` A ; G1 Ψ, x : A ` F ; G2
trans all

Ψ ` ∀x : A.F ; G1 ⊃ ∀x.G2

Ψ ` A ; G1 Ψ, x : A ` F ; G2
trans ex

Ψ ` ∃x : A.F ; G1 ∧ ∃x. G2

Ψ, x : (L;σ) ` (block L)[σ] ; ∆; σ′ Ψ, x : (L;σ) ` F ; G
trans allP

Ψ ` ∀x : (L;σ). F ; ∀x : L. (∆ ⊃ G)

Ψ, x : (L;σ) ` (block L)[σ] ; ∆; σ′ Ψ, x : (L;σ) ` F ; G
trans exP

Ψ ` ∃x : (L;σ). F ; ∃x : L. (∆ ∧G)

Ψ ` F1 ; G1 Ψ ` F2 ; G2
trans and

Ψ ` F1 ∧ F2 ; G1 ∧G2

Ψ ` F1 ; G1 Ψ ` F2 ; G2
trans imp

Ψ ` F1 ⊃ F2 ; G1 ⊃ G2

Fig. 6. Translation of Formulas & Non-atomic Types.

using conjunction: we use ∆ ∧G′ as short-cut for

∆ ∧G =

 G if ∆ = ·

∆′ ∧ (G′ ∧G) if ∆ = ∆′, G′.

The other rules in Figure 6 are self explanatory. As example, consider the
induction hypothesis ih2 in our type preservation example in Section 2. Its
translation results in

Ψ ` ∀t : tp.∀u : of (E ′
1 V2) t.∃q : of V t.>

; ∀t. (of E ′
1) ∧ (of V2) ∧ (of t) ⊃ (of V) ∧ (of t)

The resulting approximation formula encodes the rule that objects of the type
family “of” with subobjects V and t can be constructed from an object of type
family “of” with subobjects E ′

1, V2, for any t.

4.1.3 Contexts and blocks.

The final two transformation judgments for contexts and blocks define how
to transform an M+

ω context Ψ into an approximation context ∆, and how
to transform a block Γ into an approximation context. Note, that Ψ may
only include variables of the form x : A, x ∈ (L; σ), and x ∈ F , and Γ only
parameter declarations of the form x : A because of its location in the block
definition. The second judgments also returns a substitution, that appropri-
ately substitutes projections for fixed parameters in Γ. The rules for both
judgments are given in Figure 7. Rule ctx lf, for example, defines how param-

14

Schürmann, Autexier

ctx imp
` · ; ·

` Ψ ; ∆ Ψ ` F ; G
ctx for

` Ψ,x ∈ F ; ∆, G

` Ψ ; ∆ Ψ, x : (L;σ) ` (block L)[σ] ; ∆′;σ′

ctx block
` Ψ, x : (L;σ) ; ∆, x : L,∆′

` Ψ ; ∆ Ψ ` A ; G
ctx lf

` Ψ, x : A ; ∆, G, x

block empty
Ψ;x : (L;σ) ` · ; ·; id

Ψ;x : (L;σ) ` Γ ; ∆; σ′ Ψ;x : (L;σ) ` A[σ′] ;a G
block cons

Ψ;x : (L;σ) ` (Γ, x : A) ; (∆, G); (σ′, πx(x)/x)

Fig. 7. Translation of Contexts.

eters x : A declared in Ψ are translated into two declarations in ∆: the name
of the parameter x, and the approximation formula that corresponds to A.

This completes the translation of M+
ω contexts and formulas to P+

ω . In the
next section we present the underlying concept of substitution for variables in
P+

ω .

4.2 P+
ω Substitutions

Approximation formulas have some non-standard properties. Quantifiers, for
example can only be substituted by variable names, and not composite terms.
How could one make sense of the approximation formula (a x), otherwise? On
the other hand there are reasons why one would like to let P+

ω -approximation
formulas to be be modeled closely to M+

ω proofs. The soundness proof of P+
ω

from Section 5, for example, requires exactly this. Lemmas may be applied in
an M+

ω proof in several different ways, each time instantiated with different
arguments. Consider a situation where the lemma ∀x : exp. (p x) ⊃ (q x)
is applied to “app E1 E2” and “lam (λx.x)”, respectively. The former term
contains two free variables, E1 and E2, and the latter is closed. Intuitively,
one would expect that the corresponding approximation formulas are similar
but structurally different from the original formulation of the lemma.

(p E1 ∧ p E2) ⊃ (q E1 ∧ q E2)

> ⊃ >

Our notion of substitution provides mechanisms to this effect. It is defined
with respect to the translation relation of atomic types and objects from Fig-
ure 5. For a context Ψ, its translation ∆, and a context of local variables Γ,
Figure 8 defines how to apply a non-structure preserving but capture avoiding
substitution of a term M (valid in Ψ) into a formula G is written as G[M/x].
Substituting block variables y for block variables x in G on the other hand is
standard (written as G[y/x]). We begin now with the discussion of the proof
theory for P+

ω .

15

Schürmann, Autexier

G[M/x] =

G′ if G = (a x) and Ψ; Γ ` M ;a G′

(a y) if G = (a y)

∀y. (G′[M/x]) if G = ∀y. G′

∃y. (G′[M/x]) if G = ∃y. G′

∀y : L. (G′[M/x]) if G = ∀y : L. G′

∃y : L. (G′[M/x]) if G = ∃y : L. G′

(G1[M/x] ∧G2[M/x]) if G = G1 ∧G2

(G1[M/x] ⊃ G2[M/x]) if G = G1 ⊃ G2

> if G = >

Fig. 8. Definition of Substitution.

4.3 Proof Theory for P+
ω

Applying the translation on some proof state of the meta theorem prover with
context Ψ and goal formula F results in a set of approximation formulas ∆
and a goal approximation formula G. The proof planning task consists in
proving G from ∆. To this end we define a natural deduction calculus for
approximation formulas as the proof theory for P+

ω . As judgment we write
∆

ǹd
G whose meaning is given in form of inference rules in Figure 9. The

logic for P+
ω resembles a fragment of intuitionistic first-order logic since it

consists of propositional formulas augmented with first-order quantifiers. Its
non-standard features include quantification over block variables.

G ∈ ∆
pp ax

∆
ǹd

G
pp true

∆
ǹd
>

∆, x
ǹd

G
pp allI

∆
ǹd
∀x.G

∆
ǹd
∀x.G

pp allE
∆

ǹd
G[M/x]

∆, x : L
ǹd

G
pp allPI

∆
ǹd
∀x : L.G

y : L ∈ ∆ ∆
ǹd
∀x : L.G

pp allPE
∆

ǹd
G[y/x]

∆
ǹd

G[M/x]
pp exI

∆
ǹd
∃x.G

∆
ǹd
∃x.G ∆, x,G

ǹd
G′

pp exE
∆

ǹd
G′

y : L ∈ ∆ ∆
ǹd

G[y/x]
pp exPI

∆
ǹd
∃x : L.G

∆
ǹd
∃x : L.G ∆, x : L,G

ǹd
G′

pp exPE
∆

ǹd
G′

∆
ǹd

G1 ∆
ǹd

G2
pp andI

∆
ǹd

G1 ∧G2

∆
ǹd

G1 ∧G2
pp andE1

∆
ǹd

G1

∆
ǹd

G1 ∧G2
pp andE2

∆
ǹd

G2

∆, G1 ǹd
G2

pp impI
∆

ǹd
G1 ⊃ G2

∆
ǹd

G2 ⊃ G1 ∆
ǹd

G2
pp impE

∆
ǹd

G1

Fig. 9. P+
ω ’s Proof Theory.

In order to illustrate the proof planning process, we apply the P+
ω calculus

to find a proof plan for the third case of the case split over D in the type

16

Schürmann, Autexier

preservation theorem from Section 2. The abstraction of the proof state after
case splitting results in the proof obligation

E1, E2, E
′
1, V2, V, T, D1, D2, D3, P, (eval E1) ∧ (eval E′

1),

(eval E2) ∧ (eval V2), (eval E′
1) ∧ (eval V2) ∧ (eval V), (of E1) ∧ (of E2) ∧ (of T)

ih1 ∈ ∀t. (of E1) ∧ (of t) ⊃ (of E′
1) ∧ (of t)

ih2 ∈ ∀t. (of E2) ∧ (of t) ⊃ (of V2) ∧ (of t)

ih3 ∈ ∀t. (of E′
1) ∧ (of V2) ∧ (of t) ⊃ (of V) ∧ (of t)

∆

`nd (of V) ∧ (of T)

To prove ∆
ǹd

(of V) ∧ (of T) we first apply the rule pp impE and obtain the
subgoals

∆
ǹd

(of E ′
1) ∧ (of V2) ∧ (of T) ⊃ (of V) ∧ (of T)(2)

∆
ǹd

(of E ′
1) ∧ (of V2) ∧ (of T)(3)

Applying pp allE on (2) results in

∆
ǹd
∀t. (of E ′

1) ∧ (of V2) ∧ (of t) ⊃ (of V) ∧ (of t)(4)

The goal (4) can be immediately discharged by pp ax as the goal formula
occurs in ∆. It remains to prove (3): Applying pp andI on (3) results in the
subgoals

∆
ǹd

(of E ′
1)(5)

∆
ǹd

(of V2) ∧ (of T)(6)

On (5) we apply pp andE1 and obtain

∆
ǹd

(of E ′
1) ∧ (of T)(7)

Applying pp implE results in

∆
ǹd

(of E1) ∧ (of T) ⊃ (of E ′
1) ∧ (of T)(8)

∆
ǹd

(of E1) ∧ (of T)(9)

The proof of (8) is analogously to the proof of (2). From pp andE2 on (9) we
obtain (of E1)∧(of T)∧(of E2) which is immediately proved by pp ax. It then
remains to prove (6), whose proof is analogous to the proof of (7). In pseudo
notation, one possible representation of the proof plan for ∆

ǹd
(of V) ∧ (of T)

is therefore

pp impE(pp allE(pp ax(∀t. (of E′
1) ∧ (of V2) ∧ (of t))),

pp andI(pp andE1(pp impE(pp allE(pp ax(∀t. (of E1) ∧ (of t) ⊃ (of E′
1) ∧ (of t))),

pp andE2(pp ax((of E1) ∧ (of T) ∧ (of E2))))),

pp impE(pp allE(pp ax(∀t. (of E2) ∧ (of t) ⊃ (of V2) ∧ (of t))),

pp andE2(pp ax((of E1) ∧ (of E2) ∧ (of T)))))).

We are hopeful that the proof theory P+
ω leads to attractive algorithms and

implementations which can draw on previous research result in the field of first-
order theorem proving. The small proof plan from above illustrates already

17

Schürmann, Autexier

how our proof planner can benefit form techniques that handle associativity
and commutativity efficiently.

5 Meta Theory

What remains to be discussed is the soundness of P+
ω . When a proof state is

converted into an approximation context and approximation formula in P+
ω for

which no proof plan exist, we can show that the original goal in M+
ω without

further splits must remain unprovable. Conversely, the soundness property
states that if a formula is provable in M+

ω without applications of the case
or recursion rule, we can always construct a derivation of the translated goal
in P+

ω . We assume implicitly that the entire LF signature Σ is translated
into a signature of P+

ω lemmas that can be used freely. The soundness proof
is carefully divided into a series of lemmas whose proofs can be found in the
accompanying technical report [SA02]. First, we point out that the translation
from M+

ω to P+
ω is unique.

Lemma 5.1 (Uniqueness)

(i) If P1 :: Ψ ` F ; G and P2 :: Ψ ` F ; G′ then G = G′

(ii) If P1 :: Ψ ` A ; G and P2 :: Ψ ` A ; G′ then G = G′

(iii) If P1 :: Ψ; Γ ` A ;a G and P2 :: Ψ; Γ ` A ;a G′ then G = G′

(iv) If P1 :: Ψ; Γ ` M ;a G and P2 :: Ψ; Γ ` M ;a G′ then G = G′

Proof. By simultaneous induction on the structure of P1,P2, in all four
cases. 2

Next, we show several substitution lemmas including a lemma that shows
that the concept of non-structure preserving substitutions from Section 4.2 is
sound. We write ∆[M/x] for substituting all occurrences of x in ∆ in turn.

Lemma 5.2 (Substitution P+
ω) Let ∆1 be an approximation context as the

result of translating Ψ in which N is valid. If D :: ∆1, x, ∆2 ` G then
∆1, ∆2[N/x] ` G[N/x].

Proof. By induction on D. 2

A similar substitution lemma holds for the translation relation. Again, we
use a suffix notation Ψ[N/x] to denote the substitution of all x in Ψ by N .
Note, that this substitution is the standard substitution common to LF and
M+

ω and not the one defined for P+
ω in Section 4.2.

Lemma 5.3 (Substitution Translation) Let Ψ1 be a context, and N valid
in Ψ1.

(i) If P :: Ψ1, x : B, Ψ2 ` F ; G
then Ψ1, Ψ2[N/x] ` F [N/x] ; G[N/x].

18

Schürmann, Autexier

(ii) If P :: Ψ1, x : B, Ψ2 ` A ; G
then Ψ1, Ψ2[N/x] ` A[N/x] ; G[N/x].

(iii) If P :: Ψ1, x : B, Ψ2; Γ ` A ;a G
then Ψ1, Ψ2[N/x]; Γ[N/x] ` A[N/x] ;a G[N/x].

(iv) If P :: Ψ1, x : B, Ψ2; Γ ` M ;a G
then Ψ1, Ψ2[N/x]; Γ[N/x] ` M [N/x] ;a G[N/x].

Proof. By simultaneous induction on the structure of P , in all four cases. 2

If an LF type is inhabited by an LF object, we can guarantee that there
is a proof plan in P+

ω that corresponds to this object. However, we do not
make any claims related to the efficiency of the proof plan. On the contrary, we
suspect that the proof plans that are generated by the algorithms contained in
the proof of the Filling Lemma 5.4 are in general unnecessarily big. Intuitively,
one can see those proof plans as a recipe to construct the filling object directly.

Without loss of generality [HHP93], we can assume that the witness LF
object is canonical, which allows us to look only for canonical derivations. The
two judgments defining canonical objects are Ψ ` M ⇑ A for canonical forms,
and Ψ ` M ↓ A for atomic objects.

Lemma 5.4 (Filling)

(i) If D :: Ψ ` M ⇑ A and ` Ψ ; ∆ then Ψ ` M ; G and ∆
ǹd

G.

(ii) If D :: Ψ ` M ↓ A and ` Ψ ; ∆ then Ψ ` M ; G and ∆
ǹd

G.

Proof. By simultaneous induction on the structure of D, in both cases, using
Lemma 5.1, 5.2, and 5.3. 2

Lemma 5.4 does not include the application of any lemmas, which might
be present in Ψ. Those are treated in the proof of the soundness theorem. It
asserts that the proof planner will not skip valid proof plans.

Theorem 5.5 (Soundness) Let D :: Ψ ` P ∈ F where D does neither con-
tain any applications of the case rule nor the recursion rule. Furthermore, let
` Ψ ; ∆ and Ψ ` F ; G. Then ∆

ǹd
G.

Proof. By induction on the structure of D using Lemmas 5.1, 5.2, 5.3, and
Lemma 5.4. 2

6 Conclusion

We have presented a proof planning technique for M+
ω . The meta logic M+

ω

formalizes reasoning about deductive systems that are represented in the logi-
cal framework. Although it is expressive, elegant, and concise, its case analysis
rule is one of the reasons for the bushiness of the search space which renders
automated reasoning techniques still difficult. The heuristic approach that has
been implemented in the meta theorem prover for M+

ω as part of the Twelf

19

Schürmann, Autexier

system, for example, does not scale well. Hardwired specialized heuristics
have made theorem proving in this setting feasible to a large extend, but the
general problem seems to require more general proof search strategies than
are provided by the current implementation.

The present paper proposes a proof planning technique that is based on
approximating the information contained in a proof state. Intuitively, it uses
dependent type information to study the information flow within a proof.
Based on a careful analysis of the proof state, our criterion can in general
quickly predict the prospects of a proof state for success. In addition, it is
decidable. If there is hope the meta theorem prover is asked to work out
the details, if not case analysis over other assumptions or forward lemma
application must be considered.

A proof plan is a natural deduction derivation in P+
ω which is decidable.

In addition, P+
ω is sound with respect to M+

ω . If no proof plan can be found,
a proof is guaranteed not to exist.

In future work we plan to implement P+
ω into the Twelf system [PS99]. This

implementation will allow us experiment with proof planning in a dependent,
higher-order type theoretic setting. In addition, we believe that it will open up
research opportunities related to interpreting proof plans operationally, which
can be passed to the different components of the theorem proving system.
It seems, that the filling operation, for example, could greatly profit from
information contained in proof plans, such as which lemmas to apply next
and which to never try.

References

[App01] Andrew W. Appel. Foundational proof-carrying code. In 16th Annual
IEEE Symposium on Logic in Computer Science (LICS ’01), pages 247–
258, Boston, USA, June 2001.

[BM79] Robert S. Boyer and J. Strother Moore. A Computational Logic. ACM
monograph series. Academic Press, New York, 1979.

[Bun88] Alan Bundy. The use of explicit plans to guide inductive proofs. In
R. Lusk and R. Overbeek, editors, Proceedings of the 9th International
Conference on Automated Deduction (CADE-9), LNCS 310, pages 111–
120, Argonne, Illinois, USA, 1988. Springer.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory.
In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
255–279. Cambridge University Press, 1991.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner. The
Coq proof assistant user’s guide. Rapport Techniques 154, INRIA,
Rocquencourt, France, 1993. Version 5.8.

20

Schürmann, Autexier

[GW79] Milner A. J. Gordon, M. J. and C. P. Wadsworth. Edinburgh LCF:A
Mechanised Logic of Computation. LNCS 78. Springer-Verlag, 1979.

[GW92] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artificial
Intelligence, 57(2-3):323–389, 1992.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

[Hut96] Dieter Hutter. Inka - the next generation. In 13th International
Conference on Automated Deduction, New Brunswick, USA, 1996.

[LP92] Zhaohui Luo and Robert Pollack. The LEGO proof development system:
A user’s manual. Technical Report ECS-LFCS-92-211, University of
Edinburgh, May 1992.

[MP91] Spiro Michaylov and Frank Pfenning. Natural semantics and some of
its meta-theory in Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-
Heister, editors, Proceedings of the Second International Workshop on
Extensions of Logic Programming, pages 299–344, Stockholm, Sweden,
January 1991. Springer-Verlag LNAI 596.

[Nec97] George C. Necula. Proof-carrying code. In Neil D. Jones, editor,
Conference Record of the 24th Symposium on Principles of Programming
Languages (POPL’97), pages 106–119, Paris, France, January 1997. ACM
Press.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, Procedings of the 11th International
Conference on Automated Deduction (CADE-11), pages 748–752,
Saratoga Springs, New York, June 1992. Springer Verlag LNAI 607.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-
Verlag LNCS 828, 1994.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[Pfe99] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science
Publishers, 1999. In preparation.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf
— a meta-logical framework for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-
Verlag LNAI 1632.

[SA02] Carsten Schürmann and Serge Autexier. Towards proof planning for
M+

ω . Technical Report Yale/DCS/TR1231, Yale University, Computer
Science, New Haven, CT, USA, June 2002.

21

Schürmann, Autexier

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems.
PhD thesis, Carnegie Mellon University, 2000. CMU-CS-00-146.

[Sch01a] Carsten Schürmann. Recursion for higher-order encodings. In Laurent
Fribourg, editor, Proceedings of the Conference on Computer Science
Logic (CSL 2001), pages 585–599, Paris, France, August 2001. Springer
Verlag LNCS 2142.

[Sch01b] Carsten Schürmann. A type-theoretic approach to induction with
higher-order encodings. In Proceedings of the Conference on Logic for
Programming, Artificial Intelligence and Reasoning(LPAR 2001), pages
266–281, Havana, Cuba, 2001. Springer Verlag LNAI 2250.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133–191.
MIT Press/Elsevier, 1990.

22

