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Abstract

We present a decidable yet incomplete criterion for clas-
sifying recursive functions into polynomial and superpoly-
nomial complexity classes. We circumvent the usual ne-
cessity for encoding domains on Turing tapes by employ-
ing proof search for uniform derivations in a logic pro-
gramming setting as the underlying model of computation.
We reason about functions as relations and measure com-
plexity in terms of the height of the derivation indexed by
the size of the input. Our notion of complexity coincides
with that characterized by Turing machines. This way, we
can let functions range over first-order, higher-order, or
dependently-typed domains and still examine their complex-
ity in a meaningful way.

1. Introduction

Cobham [6] gave the first functional characterization
of a complexity class by exhibiting an equational schema
that generates precisely the poly-time functions over nat-
ural numbers. Later, in their seminal papers, Bellantoni
and Cook [2], and Leivant [14, 15] have given a recursion-
theoretic characterization of polynomial time computable
functions. Based on that work, Bellantoni,et al. [3]
and Hofmann [11] have developed type systems where all
well-typed functions correspond to polynomial time com-
putable functions. On the other hand, Ganzinger and
McAllester [8], and Givan and McAllester [9] have given
various criteria for identifying polynomial time predicates
in bottom-up logic programs. In this paper, we chose to
represent recursive functions as relations between input and
output arguments hereby lifting the underlying model of
computation away from Turing and RAM machines into
the world of logic programming and the search for uniform
derivations and Abstract Logic Programming Languages

(ALPL) [5, 18]. We measure the complexity of an algo-
rithm as the size of the resulting derivation (should it exist),
in terms of the size of the input arguments. The main con-
tribution of this paper is a decidable criterion that decides
if a logic program runs in polynomial time. Our criterion
runs in time depending only on the size of the program and
is independent of the inputs to the program.

Interpreting functions as relations and logical programs
allows us to reason about the run-time of an algorithm in
terms of the size of a uniform derivation where each infer-
ence is counted as one computation step, and not in terms of
the number of execution steps of a RAM or Turing machine.
Functions as relations alleviate many restrictions commonly
associated with RAM machines. Arguments that are usually
elements of a freely generated term algebra need not be ar-
tificially encoded as data objects in RAM memory, but can
be analyzed and constructed as they are. The technique de-
veloped in this paper has many applications as many logical
formalisms possess a uniform derivations property, for ex-
ample, the Horn or hereditary Harrop fragment of first-order
logic, and even the logical framework LF. Thus, the com-
plexity of computational counterparts that are commonly
associated with representational particularities, for exam-
ple, dependently typed, linear, or higher-order encodings,
can be easily studied in extensions to the framework pre-
sented here.

The search for uniform derivations is in general
parametrized by a unification algorithm. For the purpose
of this work, where functions are encoded as logic pro-
grams, all input arguments may be assumed to be ground
(i.e. terms that do not contain free variables). Every subgoal
in the logic program will have a logic variable in its output
position, to bind (but not match) the result of the subcom-
putation, which will be a ground term again. The running
time of the unification algorithm is a substantial part of the
overall proof search runtime. Therefore, we require of each
function that we analyze to trigger only runs of the unifi-



cation algorithms whose running time can be bounded by
a polynomial in the size of the pattern. Different term al-
gebras require domain specific unification algorithms. For
example, in our setting, the runtime of first-order unification
restricted to linear patterns is bounded by polynomial in the
size of the pattern. Higher-order unification with depen-
dent types is in general not decidable unless it is restricted
to Miller patterns [17] (each existential variable is applied
only to pairwise distinct parameters). In addition, variables
must occur linearly, which can only be achieved if redun-
dant information is removed from the pattern ahead of time.

The central contribution of this paper is a criterion that
decides if a logic program can be executed in polynomial
time. Informally, it consists of two parts. The first part re-
quires that the sum (of the sizes) of all recursive arguments
is not larger than the sum (of the sizes) of all input argu-
ments to the function. In the second part, we require that
all auxiliary (non-recursive) functions that take recursively
computed arguments as inputs are non-size-increasing. If
these conditions are satisfied, we show that the search for
uniform derivations will terminate in a number of steps that
is bounded by a polynomial in the size of the input argu-
ments. The technique applies to various logical formalisms
and handles the case of higher-order encodings correctly.

The paper is organized as follows. First, we give a gen-
eral theorem for computing complexity of integer-valued
recursive functions. The criteria we describe in Section 3
for classifying recursive functions are based on this theo-
rem. We develop these conditions in two stages. In Stage
1 we restrict ourselves to functions where outputs of re-
cursive calls are not provided as input to auxiliary func-
tions used. In Stage 2, we relax this condition, but now re-
quire that these auxiliary functions are non-size-increasing.
Aehlig, et al. [1] and Hofmann [12, 13] have also used the
latter condition (originally proposed by Caseiro [4]) to ex-
tend Hofmann’s polynomial-time type system to include a
larger class of functions. Finally, in Section 4, we argue that
our results can be extended to higher-order hereditary har-
rop formulas and illustrate the expressiveness of our results
with some examples.

2. Functions as logic programs

We are primarily interested in studying general re-
cursive functions and classifying their running time into
complexity classes using syntactic criteria. We shall
represent the functions by predicates where a function
(y1, y2, . . . , ym) = f (x1, x2, . . . , xn) is denoted by a pred-
icate Pf (x1, x2, . . . , xn; y1, y2, . . . , ym). We represent func-
tion computation by restricting ourselves to a particular
subclass of logic programs whose argument positions have
a well-defined meaning with respect to input and out-
put behavior of ground terms. Thus, in the predicate

Pf (x1, x2, . . . , xn; y1, y2, . . . , ym), the xi ’s correspond to the
input arguments andyi ’s correspond to the output argu-
ments. The value of the function is computed by performing
a proof search where the input arguments are ground and
the output arguments are free logic variables. On successful
return, the output arguments are ground.

We represent input and output arguments in simply-
typedλ-calculus shown below. Further, we disallow non-
canonical terms (terms withβ-redexes). Later, in Section 4,
we shall show how to extend our results to programs with
non-canonical terms.

Types A ::= a | A→ B
Canonical Terms M,N ::= λx : A.N | R
Atomic Terms R ::= c | x | RN

We are only considering logic programs which corre-
spond to functions. This subclass of logic programs satisfies
two important properties. First, the predicates correspond-
ing to the functions have a well-defined mode behavior and
all proof search that corresponds to function computation
is non-backtracking. Second, we only need to usehigher-
order patterns[7] to represent the terms in a logic program.
Higher-order patternsare simply typedλ-terms whose free
variablesX are only applied to a sequence of distinct bound
variables, i.e. (Xx1x2 . . . xp). For example, ifc is a con-
stant,λx.Xx andcX are higher order patterns butXc is not
a higher-order pattern. It has been shown that unification
is decidable when only higher-order patterns are allowed.
Presently, we also restrict ourselves to functions where a
variable does not appear more than once in an input posi-
tion and disallow patterns in output positions of any sub-
goals. This ensures that unification take time polynomial in
the size of the pattern (See section 5). Later, we shall show
how to include such functions in our analysis.

We shall present our results in the logic programming
language shown below. The goalsG and clausesD are rep-
resented using Horn clauses and the termsN are simply-
typed λ-terms in canonical form. Predicates are given
by Pf (N1, . . . ,Nn; M1, . . . ,Mm) with input and output argu-
ments separated by ;.

Goals G ::= > | P
Clauses D ::= G ⊃ D | ∀x : A.D | P
Predicates P ::= Pf (N1, . . . ,Nn; M1, . . . ,Mm)
Programs F ::= · | F ,D

Often we find it convenient to reverse the direction of
G ⊃ D and useD ⊂ G instead.⊂ is left-associative.

Definition 2.1 For a clause D or a goal G, we define
head(D) andhead(G) as given below

head(Pf (·; ·)) = Pf

head(∀x : A.D) = head(D)



Goals:

F → >
g True D ∈ F F → D � P

F → P
g Atom

Clauses:

F → P� P
c Atom

F → [ι/x]D � P
F → ∀x : A.D � P

c Exists
F → D � P F → G
F → G ⊃ D � P

c Imp

Figure 1. Proof search semantics for the Horn
fragment

head(G ⊃ D) = head(D)

Proof search in any logic programming language isgoal-
oriented if every compound goal is immediately decom-
posed and the program is accessed only after the goal has
been reduced to an atomic formula. The proof search is
focusedif every time a program clauseD is considered, it
is processed up-to the atoms it defines without the need to
access any other program clause. Logic programming lan-
guages whose proof search satisfies these two properties are
called Abstract Logic Programming Languages (ALPLs).
We have given the proof search semantics of the Horn frag-
ment in Figure 1. It is not hard to verify that this language is
an ALPL. Whenever a variablex is replaced by a logic vari-
able, we denote it byι. In reality, we replace the variable by
the actual proof term which is guessed appropriately.

The interpreter succeeds on the goalG, given a program
F if and only if there is a uniform proof of the judgment
F → G. In the ruleg Atom an appropriate clause corre-
sponding to the goalG is selected. There is a proof of the
judgmentF → D � P if and only if head ofD unifies with
P.

For example, the logic program correspond-
ing to the Fibonacci function is given by
F = {∀N. + (z,N; N),∀N1N2M. + (N1,M; N2) ⊃

+(sN1,M; sN2), fib(z; s z), fib(s z; s z),∀M1M2N. +

(M1,M2; M) ⊃ fib(N; M1) ⊃ fib(sN; M2) ⊃ fib(s sN; M)},
where the constantsz, s, andfib are appropriately defined.
In this remainder of this paper, we shall omit the universal
quantifiers whenever there is no confusion.

For a logic programF , we denote a proof search deriva-
tion for a goalG by D :: F → G and measure the size
of this derivation as the number of inference rules in the
derivation. Later in Section 5, we shall show that every rule
can be implemented on a RAM machine in a constant num-
ber of steps.

Definition 2.2 Given a logic programF and a proof search
derivationD :: F → G, we define the size ofD, sz(D), as
the number of proof search inference rules inD.

3. SufficientConditions for polynomial and su-
perpolynomial complexity classes

In this section, we shall describe criteria for classifying
recursive functions into polynomial and superpolynomial
complexity classes. These criteria are decidable and can be
checked in time depending only on the size of the logic pro-
gram corresponding to the function. These criteria are suf-
ficient criteria and there will be logic programs that would
belong in a complexity class but will not satisfy our criteria.
Thus, a checker implementing these criteria can only have
two responsesyesanddon’t know.

First, we shall present a general theorem on integer val-
ued recursive functions given by

T(x) =
∑m

i=1 T(xi) + f (x) if x ≥ K
T(x) = b if 1 ≤ x ≤ K

(1)

where x, xi ∈ Z
+ and there exists functionsgi(·) (not de-

pending onT(·)) such thatxi = gi(x) for all i = 1, . . . ,m
such thatxi < x, eachf (x) is an integer valued function de-
fined onZ+ (not depending onT(·)), b andK are positive
integers; andm is an positive integer constant.

Theorem 3.1 ([20]) Given a recursive function T(x) de-
fined in equation 1. If f(x) is a monotonically increasing
function such that f(x) ≥ d > 0 for all 1 ≤ x ≤ K, and
x ≥

∑m
i=1 xi , then there exists a constant c≥ 1 such that

T(x) ≤ cx2 f (x) for all x ≥ 1.

For example, if f (x) = f (bx/3c) + f (bx/4c) + x, then
f (x) = O(x3) as x ≥ bx/3c + bx/4c. On the other hand,
we know thatf (x) = f (x − 1) + f (x − 2) + 1 whenx ≥ 2
and f (0) = f (1) = 1 is not a polynomial. In this case,
x 6≥ (x− 1)+ (x− 2).

In fact, the theorem can be generalized to a set of func-
tionsT = {T1(·),T2(·), . . . ,Tk(·)}where eachTi(·) is defined
as

Ti(x) =
∑mi

j=1 Tl j (xi j ) + fi(x) if x ≥ Ki

Ti(x) = bi if 1 ≤ x ≤ Ki
(2)

wheremi ,Ki andbi are positive integer constants, eachl j ∈

{1, . . . , k}, every fi(x) is an integer-valued function defined
onZ+ (not depending onT(·)), x, xi j ∈ Z

+ andxi j ’s depend
only onx.

Theorem 3.2 Given a set of recursive functionsT =

{T1(·),T2(·), . . . ,Tk(·)} such that each function is given by
equation 2. If for all i= 1, . . . , k:

1. fi(·) are monotonically increasing functions such that
fi(x) ≥ di > 0 for all 1 ≤ x ≤ Ki .

2. x≥
∑mi

j=1 xi j



Goals:
szu(>) = 0

Clauses:
szu(G ⊃ D) = szu(D)

szu(∀x : A.D) = szu(D)
Predicates:

szi(P(N1, . . . ,Nn; ·)) =
∑n

i=1 #(Ni)
szo(P(·; M1, . . . ,Mm)) =

∑m
i=1 #(Mi)

Figure 2. Size function for goals G and
clauses D (u = i or u = o)

then there exists a constant c≥ 1 and a monotonically
increasing function F(·) such that Ti(x) ≤ cx2F(x) for all
x ≥ 1.

For the remainder of the paper, we shall assume thatf (x)
and fi(x) are polynomials. In this case, the functionsT(x)
andTi(x) are bounded by polynomials as well. In general,
f (x) or fi(x) could be any set of monotonically increasing
superpolynomial functions closed under composition and
all the results in this paper still hold.

We present our result in two stages. In Section 3.1 we
present the first stage as a simplified version of our general
criterion that only applies to functions whose recursively
computed values can only be returned from a computation
but never passed on to subsequent computations in form of
auxiliary function calls. In Section 3.2, we describe the cri-
terion in its most general form.

3.1 Restricted Auxiliary Function Calls

We generalize Theorems 3.1 and 3.2 to functions on ar-
bitrary simply-typedλ-terms. First, we shall begin by defin-
ing an appropriate size function for terms which ensures that
the terms can be represented on a RAM machine in space
proportional to the size of the terms. (See section 5). The
size function # for simply typedλ-terms counts the number
of variables and constants in the term. Similarly, the size of
a LF goalG or a clauseD is defined usingszi(·) andszo(·)
depending on whether we wish to compute the size ofinput
or outputarguments.szi(G) computes the sum of #-sizes of
all the input arguments in the goalG andszi(D) computes
the sum of #-sizes of all theinput arguments in predicateP
in the clauseD. It is shown in Figure 2.

#(x) = #(c) = 1

#(RN) = #(R) + #(N)

#(λx.N) = #(N)

Programs:

`S · poly1
pp empty

head(D) < S `S F poly1

`S F ,D poly1
pp clause1

head(D) ∈ S `S ·/D poly1 `S F poly1

`S F ,D poly1
pp clause2

Clauses:

`S ∆/P poly1
pc Atom

〈∑
G∈∆

head(G)∈S
szi(G) ≤ szi(P)

〉
`S ∆,G/D poly1 head(G) ∈ S

`S ∆/G ⊃ D poly1
pc Imp1〈szi(G) < szi(D)〉

`S ∆,G/D poly1 head(G) < S `T F poly1

`S ∆/G ⊃ D poly1
pc Imp2〈szi(G) < fG(szi(D))〉

(wherehead(D) ∈ T and fG(·) is a polynomial)

`S ∆/D poly1

`S ∆/∀x : A.D poly1
pc Forall

Figure 3. Sufficient conditions for polynomial
time predicate (Stage 1)

Definition 3.1 (goals) Given a clause D, we define the set
goals(D) as given below.

goals(P) = φ
goals(G ⊃ D) = {G} ∪ goals(D)

goals(∀x : A.D) = goals(D)

Definition 3.2 (Mutually recursive predicates) Given a
logic programF , a set S of predicates is said to be mutu-
ally recursive if and only if for any predicates Pf ,Pg ∈ S
there exist clauses D1,D2 ∈ F such thathead(D1) = Pf ,
head(D2) = Pg and there exist a goals G1 ∈ goals(D1)
and G2 ∈ goals(D2) such that head(G1) = Pg and
head(G2) = Pf .

Figure 3 shows a deductive system for identifying logic
programs corresponding to polynomial time functions. The
rulespp empty, pp clause1 andpp clause2 simply check
that all clauses which compute the function we are inter-
ested in satisfy the criteria. The rulespc Atom, pc Imp1
andpc Imp2 have a side condition that needs to be proved.
We have omitted the proofs of those conditions in our for-
mal system, but it could be implemented in standard theo-
rem provers using, say, an implementation of Peano’s arith-
metic. If any of those conditions contain output variables
from other goals, then we will need additional properties of
the predicate whose output variable is used. For example, if
the predicate is of the formf (c X; Z) ⊂ g(X; Y) ⊂ f (Y; Z),
then we need to show that #(Y) < #(c) + #(X). However,
unless we can find a relation between #(Y) and #(X) we
are unable prove that result. For example, if we know that
#(Y) ≤ #(X) for all inputsX, i.e g is a non-size increasing
function, we can immediately prove this result. In general,
we could use any property of the auxiliary functions that



can assist us in proving the required condition. These prop-
erties could be provided either by the user or implemented
in the polynomial time checker.

For every clause, the rulepc Atom guarantees that the
sum of the sizes of the recursive calls does not increase.
This condition is based on Theorems 3.1 and 3.2. The rule
pc Imp1 ensures that the size of the argument to a recursive
call is strictly less than the original input. Finally, we re-
quire that input to the auxiliary functions is a polynomial in
the original input in the rulepc Imp2.

The main result of this paper is shown in the lemmas and
theorems below. We have already definegoals(D) as the set
of all subgoalsG in a clauseD. Now,GOALS(D) as the set
of all immediate subgoal derivationsDG :: F → G in D.
The difference lies in the fact that goalsG ∈ goals(D) have
free variables while those goalsG ∈ GOALS(D) have no
free variables.

Definition 3.3 (GOALS) Given a clause D and a predicate
P such thathead(D) = head(P) and a derivationD :: F →
D � P, we define the setGOALS(D) as given below.

GOALS
(
F → P� P

)
= φ

GOALS

 D1

F → D � P
D2

F → G
F → G ⊃ D � P

 = {D2} ∪ GOALS(D1)

GOALS

 D′

F → [ι/x]D � P
F → ∀x : A.D � P

 = GOALS(D′)

Lemma 3.1 Given a logic programF and a set S of mutu-
ally recursive predicates fromF . Given a predicate P and
a clause D∈ F such thathead(P) = head(D) ∈ S , ifD ::
F → D � P, thensz(D) =

∑
DG∈GOALS(D) sz(DG) + CD

where CD is a constant depending only on the structure of
D and not its input terms.

Lemma 3.2 (Stage 1)Given a logic programF and a set
S of mutually recursive predicates fromF . Given a predi-
cate P and a clause D∈ F such thathead(P) = head(D) ∈
S andE ::`S ∆/D poly1, if D :: F → D � P, then

1. For all DG :: F → G ∈ GOALS(D), if head(G) ∈ S
thenszi(G) < szi(P) and if head(G) ∈ T , S , then
`T F poly1 andszi(G) ≤ fG(szi(P)).

2.
∑
DG::F→G∈GOALS(D)

head(G)∈S
szi(G) +

∑
G∈∆ szi(G) ≤ szi(P).

Lemma 3.3 Given a logic programF and a set S of mu-
tually recursive predicates fromF such that`S F poly1.
Given a predicate P and a goal G , ifD :: F → G, then
there exists a clause D∈ F such thathead(D) = head(P) ∈
S and a sub-derivationD′ :: F → D � P such that
sz(D) = sz(D′) + CG where CG is a constant depending
only on the structure of G and not on its input terms. Also,
szi(P) = szi(G) andszo(P) = szo(G).

Theorem 3.3 (Stage 1)Given a programF and a set S of
mutually recursive predicates fromF such that̀ S F poly1.
Given a goal G such thathead(G) ∈ S , ifD :: F → G,
then there exists a monotonically increasing polynomial p(·)
(not depending on the ground input terms of G) such that
sz(D) ≤ p(szi(G)).

Example 3.1 (Combinators) The combinators c::= S |
K | MP c1 c2 that are prevalent in programming lan-
guage theory are represented as constructors of typecomb.
We study the complexity of the bracket abstraction algo-
rithm ba, which converts a parametric combinator M (a
representation-level function of typecomb → comb) into
a combinator with one less parameter (of typecomb) to
which we refer as M′. The bracket abstraction algorithm
is expressed by a predicate relating M and M′. For any N,
combinator, it holds thatMP M′ N corresponds to M[N/x]
in combinator logic. LetF be defined as the following pro-
gram.

ba (λx : comb. x; MP (MP S K) K)

ba (λx : comb.K; MP K K)

ba (λx : comb.S; MP K S)

ba (λx : comb.MP (C1 x) (C2 x); MP (MP S D1) D2)
⊂ ba (λx : comb.C1 x; D1)
⊂ ba (λx : comb.C2 x; D2)

It is easy to see that
∑2

i=1 #(λx : comb.Ci x) <
#(λx : comb.MP (C1 x) (C2 x)), and hencè ba F poly.
�

3.2 General Auxiliary Function Calls

The second stage of our criterion allows us to rea-
son about the complexity of functions, where recursively
computed values may be passed to auxiliary functions as
well. We require that such auxiliary functions are non-
size-increasing. We say that a predicatePf is non-size-
increasing if and only if, the sum of the sizes of the out-
put arguments is never greater than the sizes of its in-
put arguments (within an additive constant, i.e.szo(G) ≤
szi(G)+C, whereC is independent of the input variables of
G). The concept of multiplicity defined below will be used
in building a formal deductive system to identify non-size-
increasing predicates.

Definition 3.4 (Multiplicity) Given a clause D, a goal G∈
goals(D) the α and βG multiplicities of D are defined as
follows. Letpred(D) be defined as

pred(P) = P

pred(G ⊃ D) = pred(D)

pred(∀x : A.D) = pred(D)



1. α(D) is defined as the maximum number of times any
input variable inpred(D) appears in the output posi-
tions ofpred(D).

2. βG(D) is defined as the maximum number of times any
output variable in G appears in the output positions of
pred(D).

For example the values ofα(∀N1N2M. + (N1,M; N2) ⊃
+(sN1,M; sN2)) andβ+(N1,M;N2)(∀N1N2M. + (N1,M; N2) ⊃
+(sN1,M; sN2)) corresponding to the second declaration of
addition+ operation are 0 and 1 respectively. Similarly, for
a clause of the formP(N; cNN), α(P(N; cNN)) is given by
2.

The judgment corresponding to the non-size-increasing
property is written as̀ S F nsi and the corresponding de-
ductive system is given in Figure 4. The first three rules
examine the non-size increasing property for every clause
defining a function inS, and the following four rules for
each type constructor. For a clauseD, the contribution to the
size of the outputszo(D) due to the outputs from the sub-
goals ofD (stored in∆) is given by

∑
G∈∆

head(G)∈S
βG(P)szi(G)+∑

G∈∆
head(G)<S

βG(P)szo(G) and due to the the original inputs of

D isα(D)szi(D). The rulensi Atom ensures that the sum of
these two contributions is always less than the total original
input szi(D). It will be shown in Theorem 3.4 that this con-
dition is sufficient to ensure that the predicate corresponding
to the clauseD is non-size-increasing.

Definition 3.5 Given a clause D, and goals G and H in
the clause, Hfm G iff variables of G in output positions
appear in input positions of H and no variable of G appears
more than m times in H.

Definition 3.6 (Dependence Path)Given a clause D and
goals H = G0,G1, . . . ,Gn = G ∈ goals(D), a de-
pendence path from G to H oflength n denoted by
H f G is a sequence of goal and positive integer pairs
(G1,m1), . . . , (Gn = G,mn) such that for each pair of goals
Gi ,Gi+1 for i = 0, . . . ,n − 1, Gi fmi+1 Gi+1. Thewidth of
this dependence path is defined asΠn

i=1mi .

For example, consider the example of Fibonacci numbers
shown below. In this case, there are two dependence paths
each of length 1 fromfib(N;X) to +(X,Y;Z) and fromfib(s
N; Y) to +(X,Y;Z).

fib(z; s z) ⊂ >

fib(s z; s z) ⊂ >

fib(s (s N); Z) ⊂ fib(N;X)

⊂ fib(s N;Y)

⊂ +(X,Y;Z)

`S H / D
`S H / ∀x : A.D

dp Forall
`S H / D
`S H /G ⊃ D

dp Imp1〈H 6f G〉

head(G) ∈ S
`S H /G ⊃ D

dp Imp2〈H f G〉

head(G) < S `S G / D
`S H /G ⊃ D

dp Imp3/1〈H f G〉

head(G) < S `S H / D
`S H /G ⊃ D

dp Imp3/2〈H f G〉

`S H 6 D
`S H 6 ∀x : A.D

ndp Forall
`S H 6 D
`S H 6 G ⊃ D

ndp Imp1〈H 6f G〉

head(G) < S `S G 6 D `S H 6 D
`S H 6 G ⊃ D

ndp Imp2〈H f G〉

Figure 5. Proving existence and non-
existence of dependence paths

It is worth noting that dependence paths are structural
property of a logic programF and hence identifying de-
pendence paths is independent of any of the inputs to the
program.

Definition 3.7 (Set of Dependence Paths)Given a clause
D and two goals G,H ∈ goals(D), H /∗ G is the set of all
dependence paths from G to H

For a clauseD and a goalH, we define a judgment̀S H /
D which is provable if and only if there exists a goalG ∈
goals(D) such thathead(G) ∈ S and there is a dependence
path fromG to H. Similarly, we define the judgment`S H 6
D. Figure 5 gives the deductive systems corresponding to
these judgments.

Now we can define an extended version of the conditions
given in Figure 3. These conditions are given in Figure 6
below and they generalize the conditions given earlier. In
this case,̀ S F poly{1,2} means that either̀S F poly1 or
`S F poly2 is true. According to these conditions, if out-
put of a recursive call (output variables ofG ∈ goals(D)
such thathead(G) ∈ S) appear in input positions of an
auxiliary function (input positions ofH ∈ goals(D) such
that head(H) < S) then we require the auxiliary func-
tion to be non-size-increasing. This condition is ensured
through the rulepp Imp2/1. As we will show later, these
conditions actually ensure that the size of the output of the
logic programs which satisfy these criteria is polynomially
bounded in their input. Thus, condition given in the rule
pp Atom is similar to the conditionpc Atom of Figure 3.
In the rulepc Atom we require that the sum of all the in-
puts to the recursive calls is not larger than the original
input. In this case, we require a similar condition, except
that we count the inputs to those recursive calls whose out-



Programs:

`S · nsi
nsi empty

head(D) < S `S F nsi
`S F ,D nsi

nsi clause1
head(D) ∈ S `S ·/D nsi `S F nsi

`S F ,D nsi
nsi clause2

Clauses:

`S ∆/P nsi
nsi Atom

〈 ∑
G∈∆

head(G)∈S

βG(P)szi(G) +
∑
G∈∆

head(G)<S

βG(P)szo(G) ≤ (1− α(P))szi(P)

〉

`S ∆,G/D nsi head(G) ∈ S
`S ∆/G ⊃ D nsi

nsi Imp1〈szi(G) < szi(D)〉

`S ∆,G/D nsi head(G) < S `T F nsi
`S ∆/G ⊃ D nsi

pc Imp2

(whereT is a set of mutually recursive predicates such thathead(G) ∈ T)

`S ∆/D nsi
`S ∆/∀x : A.D nsi

nsi Forall

Figure 4. Sufficientconditions for non-size-increasing predicates

puts have been used either as input to other predicates or in
the final output (with appropriate multiplicities). Thus, the
sum
∑

G∈∆
head(G)∈S

βG(P)szi(G) accounts for the first case and∑
H∈∆

head(H)<S

∑
G∈∆

head(G)∈S
p∈HC∗G

βH(P)szi(G)width(p) for the second.

This ensures that the input arguments to goalH are poly-
nomial in the original input arguments of the clauseD.
Hence, the conditionpc Imp2 given in Figure 3 (stage 1)
is satisfied.

Lemma 3.4 Given a programF and a set S of mutually
recursive predicates fromF . Given a predicate P and a
clause D∈ F such thathead(P) = head(D) ∈ S . IfD ::
F → D � P, then

szo(P) ≤ α(D)szi(P) +
∑

DH ::F→H∈GOALS(D)

βG(D)szo(H) +C

where C is a constant depending only on the structure of D
and not its ground input terms.

Lemma 3.5 (Stage 2)Given a logic programF and a set
S of mutually recursive predicates fromF . Given a predi-
cate P and a clause D∈ F such thathead(P) = head(D) ∈
S and̀ S ∆/D poly2.

If D :: F → D � P, then

• For all DG :: F → G ∈ GOALS(D), if head(G) ∈ S ,
thenszi(G) < szi(P).

• For all DG :: F → G ∈ GOALS(D), if head(G) ∈
T , S andE ::` G / D, then there exists a polynomial
fG(·) such that

szi(G) ≤ fG(szi(P)) +
∑

DH ::F→H∈GOALS(D)
head(H)∈S
p∈GC∗H

szo(H)width(p)

and`T F nsi.

• For all DG :: F → G ∈ GOALS(D), if head(G) ∈
T , S andE ::` G 6 D, then there exists a polynomial
fG(·) such thatszi(G) ≤ fG(szi(D)) and`S F poly2.

•


∑
H∈∆′

head(H)<S

∑
G∈∆′

head(G)∈S
p∈HC∗G

βH(D)szi(G)width(p)

 +


∑
G∈∆′

head(G)∈S

βG(D)szi(G)

 ≤ szi(P) where

∆′ = ∆ ∪ {G|DG :: F → G ∈ GOALS(D)}.

Lemma 3.6 Given a logic programF and a set S of mutu-
ally recursive predicates fromF . Given a predicate P and
a clause D∈ F such thathead(P) = head(D) ∈ S and
`S ∆/D nsi. If D :: F → D � P, then

• For all DG ∈ GOALS(D), if head(D) ∈ S then
szi(G) < szi(P).

• For all DG ∈ GOALS(D), if head(D) < S then`T
F nsi.

•
∑

G∈∆′

head(G)∈S
βG(D)szi(G) +

∑
G∈∆′

head(G)<S
βG(D)szo(G) ≤

(1−α(D))szi(P) where∆′ = ∆∪{G|DG ∈ GOALS(D)}.

Theorem 3.4 (Non-size-increasing functions)Given
a logic programF and a set S of mutually recursive
predicates fromF such that̀ S F nsi. If D :: F → G, then
szo(G) ≤ szi(G) + C where C is a constant depending on
the logic programF .



Programs:

`S · poly2
pp empty

head(D) ∈ S `S ·/D poly2 `S F poly2

`S F , c : D poly1
pp clause1

head(D) < S `S F poly2

`S F , c : D poly2
pp clause2

Clauses:

`S ∆/P poly2

pp Atom

〈 ∑
G∈∆

head(G)∈S

βG(P)szi(G) +
∑
H∈∆

head(H)<S

∑
G∈∆

head(G)∈S
p∈HC∗G

βH(P)szi(G)width(p) ≤ szi(P)

〉

`S ∆/D poly2

`S ∆/∀x : A.D poly2
pp Forall

`S ∆,G/D poly2 head(G) ∈ S
`S ∆/G ⊃ D poly2

pp Imp1〈szi(G) < szi(D)〉

`S ∆,G/D poly2 head(G) < S `S G C D `T F nsi `T F poly{1,2}
`S ∆/G ⊃ D poly2

pp Imp2/1

(whereT is a set of mutually recursive predicates such thathead(G) ∈ T)

`S ∆,G/D poly2 head(G) < S `S G 6 D `T F poly{1,2}
`S ∆/G ⊃ D poly2

pp Imp2/2

(whereT is a set of mutually recursive predicates such thathead(G) ∈ T)

Figure 6. Sufficientconditions for polynomial time predicate (Stage 2)

Theorem 3.5 (Stage 2)Given a programF and a set S of
mutually recursive predicates fromF such that̀ S F poly2.
Given a goal G such thathead(G) ∈ S , ifD :: F → G,
then there exists monotonically increasing polynomials p(·)
and p′(·) (not depending on the ground input terms of G)
such thatszo(G) ≤ p(szi(G)) andsz(D) ≤ p′(szi(G)).

Example 3.2 (Merge Sort) Consider a representation of a
list using the constantsnil andcons. The logic programF
corresponding to merge sort is given below.

mergesort(nil; nil)
mergesort(cons x xs; w)

⊂ split(cons x xs; y, z)
⊂ mergesort(y; y1)
⊂ mergesort(z; z1)
⊂ merge(y1, z1; w)

split(nil; nil, nil)
split(cons x nil; cons x nil, nil)
split(cons x (cons y xs); cons x x1, cons y y1)
⊂ split(xs; x1, y1)

merge(nil,w; w)
merge(w, nil; w)
merge(cons x xs, cons y ys; cons u z)
⊂ compare(x, y; t)
⊂ merge′(t, cons x xs, cons y ys; u, v,w)
⊂ merge(v,w; z)

merge′(true, cons x xs, cons y ys; x, xs, cons y ys)
merge′(false, cons x xs, cons y ys; y, cons x xs, ys)

In the example given abovecompare(x, y; t), t is true if x <

y and t isfalse otherwise (clauses omitted for brevity). It is
not hard to see that̀compare F poly1

It is also clear that `split F poly1 as #(xs) ≤

#(cons (cons y xs)) for the third declaration ofsplit. The
predicatemerge′ is also in polynomial time as it is not re-
cursive. We can also check that`merge′ F nsi. In this case,
the side condition ofnsi Atom is satisfied becauseα(·) = 1
andβG(·) = 0 for both declarations ofmerge′. In fact, we
can show thatszo(merge′(G)) = szi(merge′(G)) − 2 when
given some input through a goal G1.

We can also show that̀merge F poly1. For this we need
to show that#(v) + #(w) ≤ #(cons x xs) + #(cons y ys). It
is true becausemerge′ is non-size-increasing and we know
that1+#(cons x xs)+#(cons y ys)−2 = #(u)+#(v)+#(w).
We can also show thatmerge is non-size increasing. Here
α(merge′(·)) = α(merge(·)) = 1 and we need to show
that #(cons) + #(u) + #(v) + #(w) ≤ #(cons x xs) +
#(cons y ys). This follows from the fact thatmerge′ is
non-size-increasing.

Finally, it needs to be shown that`mergesort F poly2 as
the outputs y1 and z1 of mergesort are given as inputs to the
predicatemerge. In this case,βmergesort(·) = 0 for both the
mergesort subgoals andβmerge(·) = 1 for the second decla-
ration of mergesort. There are also two dependence paths
of length = 1 from mergesort to merge. Thus, this condi-
tions in Figure 6 require thatmerge is non-size-increasing
and#(y) + #(z) ≤ #(cons x xs). This follows from the fact
thesplit is non-size-increasing.

1This is not shown in the formal system given in Figure 4 for the sake
of clarity, but is easy to incorporate in it.



Goals:

F → >
g True D ∈ F F → D � P

F → P
g Atom

F ,D→ G
F → D ⊃ G

g Imp
c new F → [c/x]G
F → ∀x : A.G

g Forall

Clauses:

F → P� P
c Atom

F → [ι/x]D � P
F → ∀x : A.D � P

c Exists
F → D � P F → G
F → G ⊃ D � P

c Imp

Figure 7. Proof search semantics for the
Hereditary Harrop formulas

4. Extending to Hereditary Harrop Formulas

The results presented so far are quite general and even
apply to logic programming languages with dependent
types, higher-order terms, and embedded implication. Let
us consider Hereditary Harrop formulas [10, 16] which al-
low embedded implications by extending Horn goalsG as
shown below.

Goals G ::= > | P | ∀x : A.G | D ⊃ G
Clauses D ::= G ⊃ D | ∀x : A.D | P

The proof search semantics are extended as shown be-
low. The embedded implication is operationally interpreted
as extending the logic program dynamically during proof-
search.

Thus, a logic program with Hereditary Harrop formu-
las is polynomial time if we can ensure that all embedded
implications satisfy the polynomial time conditions that we
have presented so far.

Example 4.1 (β-redexes) Since the arguments to predi-
cates P have to be in canonical form, it is not possible to
represent functions such aseval which simplify a term in
lambda-calculus to itsβ-normal form.

eval (lam E) (lam E) ⊂ >

eval (app E1 E2) V ⊂ eval E1 (lam E′1)

⊂ eval E2 V2

⊂ eval (E′1 V2) V

However, such predicates can be represented by defining a
predicatesubstA,B : (A → B) → A → B which performs
the substitution explicitly and computes the canonical form.

For example, if A= B = exp thensubstexp,exp is given by

substexp,exp(λx.x,V; V) ⊂ >.
substexp,exp(λx.app(E1x)(E2x),V; (app(E′1)(E′2)))
⊂ substexp,exp(λx.(E1x); E′1)
⊂ substexp,exp(λx.(E2x); E′2).

substexp,exp(λx.lam (λy.(E x y))),V; lam (λy.(E′y)))
⊂ (∀y : exp.substexp,exp(λx.y,V; y)
⊃ substexp,exp(λx.(E x y),V; (E′ y)))

In this case, we observe that for logic programF
corresponding tosubstexp,exp, `substexp,exp F poly1 because
the first declaration is non-recursive,

∑2
i=1 #(λx.(Ei x)) <

#(λx.app (E1x) (E2x)) in the second declaration, and
the embedded implication in the third declaration in non-
recursive.

On the other hand, when A= exp→ exp and B= exp
thensubstexp→exp,exp is given by

substexp→exp,exp(λ f . f ,V; V)
substexp→exp,exp(λ f .(app (E1 f ) (E2 f )),V; app E′1 E′2)
⊂ substexp→exp,exp(λ f .(E1 f ),V; E′1)
⊂ substexp→exp,exp(λ f .(E2 f ),V; E′2)

substexp→exp,exp(λ f .lam λy.(E f y),V; lam λy.(E′ y))
⊂ (∀y : exp.substexp→exp,exp(λ f .y,V; y)
⊃ substexp→exp,exp(λ f .(E f y),V; (E′ y))

substexp→exp,exp(λ f . f (E f),V; E′′)
substexp→exp,exp(λ f .E f,V; E′)
substexp,exp(λx.Vx,E′; E′′)

In this case, the first three declarations satisfy the poly-
nomial time conditions we have described so far. In the
fourth declaration, output term E′ from the recursive call
substexp→exp,exp is provided as input tosubstexp,exp. It is
easy to see that Stage 1 conditions do not hold for this
case because, it is not possible to determine the run time
of substexp,exp as we do not know the size of its input E′.
Stage 2 conditions do not hold either because,substexp,exp

is a size-increasing function.
Now theeval (app E1 E2) V is changed to

eval (app E1 E2) V ⊂ eval E1 (lam E′1)

⊂ eval E2 V2

⊂ substA,exp(E′1,V2; E′′1 )

⊂ eval (E′′1 V)

where an appropriatesubstA,exp is chosen.
Therefore, when A= exp we know thatβ-reduction

is a polynomial time operation, but when A is a higher-
order type, our conditions can no longer guarantee thatβ-
reduction is in polynomial time.

Example 4.2 (Combinators cont’d) Recall the bracket
abstraction algorithm from Example 3.1 that is used in the



conversion fromλ-expressions into combinators. We follow
standard practice and define a new typeexp together with
the two constructorsapp of typeexp → exp → exp and
lam of type(exp → exp) → exp. Using our syntax, extend
the programF from Example 3.1 to a programF ′ by the
following new declarations.

convert(app E1 E2; MP C1 C2)
⊂ convert(E1; C1)
⊂ convert(E2; C2)

convert(lam E); D)
⊂ (∀x : exp.∀y : comb. ba(λz : comb. y; MP K y)
⊃ convert(y; z) ⊃ convert (E x; C y))

⊂ ba (λy : comb.C y; D)

We observe that̀convert F
′ poly2 because the first declara-

tion satisfies that
∑2

i=1 #(Ei) < #(app E1 E2), and each em-
bedded implication in the second is non-recursive. Further-
more#(E x) < #(lam E) because E is applied to a paramter
x (and not an arbitrary term). In addition,̀ba F

′ nsi by
rule nsi Atom where we chooseα(·) = 0 andβba(·) = 1 for
the two recursive calls, and hence the dynamic extension of
the bracket abstraction algorithmba is non-size increasing.
�

5. Translation to a RAM Machine

In this section, we shall show that the proof search shown
in Figure 1 can be implemented on a RAM machine in time
proportional to the number of proof search rules in the proof
search derivation.

We will show that every rule can be implemented on a
RAM machine in a constant number of steps. Since, the
logic program actually implements a function, every proof
search where the input arguments are ground returns with
its output arguments ground or simply fails. Moreover, the
proof search is deterministic (no backtracking) as there is
a unique clause corresponding to every function compu-
tation where the inputs are ground terms. We do not al-
low patterns in the output positions of any subgoals and
always store a single copy of a variable in a clause even
when it appears multiple times in a clause. Thus, clauses
like P(x, y) ⊂ Q(x, c y) are not allowed and in the clause
P(x, c u1 u2) ⊂ Q(x, z) ⊂ R1(z,u1) ⊂ R2(z,u2) a single copy
of the variablez is shared byR1 andR2. Finally, as we have
mentioned before, we only allowhigher-order patternsand
disallow multiple occurrences of the same variable in input
positions. This ensures that unification is decidable and is
done in time proportional to the size of the program.

Theorem 5.1 Given a logic programF satisfying the con-
ditions given above and a goal G. If there exists a derivation
D :: F → G, then

• The goal G can be represented on a RAM machine in
size proportional toszi(G).

• The corresponding proof search can be implemented
in time proportional tosz(D).

6. Conclusions

The polynomial time criteria that we have developed in
this paper while not complete are able to identify a suffi-
ciently large class of functions. Further, we are not limited
to functions on integers or lists but can apply these criteria
to a function which range over first-order, higher-order or
even dependently-typed domains.

These criteria are not specific to a particular program-
ming language but can be extended to any logic or func-
tional programming language as long as unification and
substitution can be implemented in constant time. Cur-
rently, we are working on a implementing these criteria for
Twelf [19].

In our presentation, we distinguish predicates based on
whether they do or do not receive input from a output of
a recursive call. By making this distinction at the level of
input arguments instead of predicates, we can further refine
our criteria to identify a larger class of polynomial time
functions.
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Appendix

A. Proofs of Recursive Functions

Theorem A.1 ([20]) Given a recursive function T(x) de-
fined in equation 1. If f(x) is a monotonically increasing
function such that f(x) ≥ d > 0 for all 1 ≤ x ≤ K, and

x ≥
∑m

i=1 xi , then there exists a constant c≥ 1 such that
T(x) ≤ cx2 f (x) for all x ≥ 1.

Proof:2 Choosec = max{1,b/d}. We shall prove by
induction3.

Base case:When 1 ≤ x ≤ K, T(x) = b = (b/d)d ≤
c f(x) ≤ cx2 f (x).

Induction case:Whenx > K,

T(x) =

m∑
i=1

T(xi) + f (x)

≤

m∑
i=1

cx2
i f (xi) + f (x)

(Using Induction Hypothesis onxi @ x:

T(xi) ≤ cx2
i f (xi))

≤

m∑
i=1

cx2
i f (x) + c f(x)

(∵ xi ≤ x⇒ f (xi) ≤ f (x) andc ≥ 1)

= c f(x)(
m∑

i=1

x2
i + 1)

≤ c f(x)(
m∑

i=1

xi)
2

(∵
∑m

i=1 x2
i + 1 ≤ (

∑m
i=1 xi)2)

≤ cx2 f (x)

(∵ x ≥
∑m

i=1 xi)

Theorem A.2 Given a set of recursive functionsT =

{T1(·),T2(·), . . . ,Tk(·)} such that each function is given by
equation 2. If for all i= 1, . . . , k:

1. fi(·) are monotonically increasing functions such that
fi(x) ≥ di > 0 for all 1 ≤ x ≤ Ki .

2. x≥
∑mi

j=1 xi j

then there exists a constant c≥ 1 and a monotonically
increasing function F(·) such that Ti(x) ≤ cx2F(x) for all
x ≥ 1.

Proof: Choosec = max{1,b1/d1, . . . ,bk/dk} andF(x) =
max{ f1(x), . . . , fk(x)}. We shall prove this theorem using
the induction hypothesis:∀i = 1, . . . , k.y @ x ⇒ Ti(y) ≤
cy2F(y)

Base Case:For any i = 1, . . . , k: When 1 ≤ x ≤ Ki ,
Ti(x) = bi = (bi/di)di ≤ c fi(x) ≤ cx2F(x).

2This version of the proof is due to Adam Poswolsky and Valery Tri-
fonov.

3We shall assume the partial ordering@ as : . . . @ gi (gi (x)) @ gi (x) @ x
and use the principle of Noetherian Induction [21]



Induction Case:For anyi = 1, . . . , k: Whenx ≥ K,

Ti(x) =

mi∑
j=1

Tl i (xi j ) + fi(x)

≤

mi∑
j=1

cx2
i j F(xi j ) + fi(x)

(Using Induction Hypothesis onxi j @ x:

Tl i (xi j ) ≤ cx2
i j F(xi j ))

≤

mi∑
j=1

cx2
i j F(xi j ) + F(x)

(∵ ∀i = 1, . . . , k.F(x) ≥ fi(x))

≤

mi∑
j=1

cx2
i j F(x) + cF(x)

(∵ xi ≤ x⇒ F(xi) ≤ F(x) andc ≥ 1)

≤ cF(x)(
mi∑
j=1

x2
i j + 1)

≤ cF(x)(
mi∑
j=1

xi j )
2

(∵
∑m

j=1 x2
i j + 1 ≤ (

∑m
j=1 xi j )2)

≤ cx2F(x)

(∵ x ≥
∑m

j=1 xi j )

B. Proofs of Stage 1

Lemma B.1 Given a logic programF and a set S of mutu-
ally recursive predicates fromF . Given a predicate P and
a clause D∈ F such thathead(P) = head(D) ∈ S , ifD ::
F → D � P, thensz(D) =

∑
DG∈GOALS(D) sz(DG) + CD

where CD is a constant depending only on the structure of
D and not its input terms.

Proof: We shall prove by induction on the size of deriva-
tionD.

(Base) Case:When the derivationD is given by

F → P� P
c Atom

,

sz(D) = 1 and hence the theorem is true.

Case: When the derivationD is given by

D1

F → D � P
D2

F → H
F → H ⊃ D � P

c Imp

By induction hypothesis,

sz(D1) =
∑

DG∈GOALS(D1)

sz(DG) +CD.

Hence,

sz(D) = sz(D1) + sz(D2) + 1

sz(D) =
∑

DG∈GOALS(D1)

sz(DG) +CD + sz(D2) + 1

sz(D) =
∑

DG∈GOALS(D)

sz(DG) +CH⊃D

(whereCH⊃D = CD + 1)

Case: When the derivationD is given by

D′

F → [ι/x]D � P
F → ∀x : A.D � P

c Exists

The proof of this case is also similar to the above cases,
if we defineC∀x:A.D = C[ι/x]D + 1.

Lemma B.2 (Stage 1)Given a logic programF and a set
S of mutually recursive predicates fromF . Given a predi-
cate P and a clause D∈ F such thathead(P) = head(D) ∈
S andE ::`S ∆/D poly1, if D :: F → D � P, then

1. For all DG :: F → G ∈ GOALS(D), if head(G) ∈ S
thenszi(G) < szi(P) and if head(G) ∈ T , S , then
`T F poly1 andszi(G) ≤ fG(szi(P)).

2.
∑
DG::F→G∈GOALS(D)

head(G)∈S
szi(G) +

∑
G∈∆ szi(G) ≤ szi(P).

Proof:
SinceE ::`S ∆/D poly1, it is easy to show by induction

that

• For all G ∈ goals(D), if head(G) ∈ S thenszi(G) <
szi(D) and if head(G) ∈ T , S, then`T F poly1 and
szi(G) ≤ fG(szi(D)).

•
∑
DG::F→G∈GOALS(D)

head(G)∈S
szi(G) +

∑
G∈∆ szi(G) ≤ szi(D)

These properties are mathematical side conditions that
are proved using additional properties of the predicates, if
necessary. Thus, if a goalG ∈ goals(D) or the clauseD
contain any free variables then, the mathematical side con-
ditions are true for any substitution of variables by ground
terms for the variables inG and D. We only need to en-
sure that this substitution is generated by a successful proof
search.



Lemma B.3 Given a logic programF and a set S of mu-
tually recursive predicates fromF such that`S F poly1.
Given a predicate P and a goal G , ifD :: F → G, then
there exists a clause D∈ F such thathead(D) = head(P) ∈
S and a sub-derivationD′ :: F → D � P such that
sz(D) = sz(D′) + CG where CG is a constant depending
only on the structure of G and not on its input terms. Also,
szi(P) = szi(G) andszo(P) = szo(G).

Proof: (Sketch) Given a goalG, identifying the right
clauseD corresponding to that goalis independent of the
input arguments to the goals. The proof follows from the
proof search semantics of Figure 1.

Theorem B.1 (Stage 1)Given a programF and a set S of
mutually recursive predicates fromF such that̀ S F poly1.
Given a goal G such thathead(G) ∈ S , ifD :: F → G,
then there exists a monotonically increasing polynomial p(·)
(not depending on the ground input terms of G) such that
sz(D) ≤ p(szi(G)).

Proof: Using Lemma B.3, we know that there exists a
derivationD′ :: F → D � P such that

sz(D) = sz(D′) +CG.

Using Lemma B.1, we know that

sz(D′) =
∑

DG∈GOALS(D′)

sz(DG) +CD.

Hence,

sz(D) =
∑

DH ::F→H∈GOALS(D′)

sz(DH) +CD +CG

=
∑

DH ::F→H∈GOALS(D′ )

head(H)∈S

sz(DH) +CD +CG

+
∑

DH ::F→H∈GOALS(D′ )

head(H)<S

sz(DH)

By Lemma B.2, for goalsH such thathead(H) ∈ TH , S,
`TH F poly1. Hence, by induction,

sz(D) ≤
∑

DH ::F→H∈GOALS(D′ )

head(H)∈S

sz(DH) +CD +CG

+
∑

DH ::F→H∈GOALS(D′)

head(H)<S

fTH (szi(H))

≤
∑

DH ::F→H∈GOALS(D′ )

head(H)∈S

sz(DH) +CD +CG

+
∑

DH ::F→H∈GOALS(D′)

head(H)<S

fTH ( fH(szi(G)))

(Using Lemma B.2,szi(H) ≤ fH(szi(P))

≤ fH(szi(G)) whenhead(H) < S))

Let us define

F(szi(H)) =
∑

DH ::F→H∈GOALS(D′ )

head(H)<S

fTH ( fH(szi(H))) +CG +Cmax
D

whereCmax
D = max{CD|D ∈ F }.

We shall prove by induction onszi(G) that the polyno-
mial p(x) = x2F(x). The theorem follows by applying The-
orems A.2.

C. Proofs of Stage 2

Lemma C.1 Given a programF and a set S of mutually
recursive predicates fromF . Given a predicate P and a
clause D∈ F such thathead(P) = head(D) ∈ S . IfD ::
F → D � P, then

szo(P) ≤ α(D)szi(P) +
∑

DH ::F→H∈GOALS(D)

βG(D)szo(H) +C

where C is a constant depending only on the structure of D
and not its ground input terms.

Proof: (Sketch) The size of output of a clauseD given
by szo(D) consists of three kinds of terms: a fixed number
of term constants, the input variables ofD and the output
variables of the subgoalsG of D (G ∈ goals(D)). By taking
into account theα andβG multiplicities of the variables and
the fact that the output terms ofP are unified with the output
variables ofD the theorem follows.

Lemma C.2 (Stage 2)Given a logic programF and a set
S of mutually recursive predicates fromF . Given a predi-
cate P and a clause D∈ F such thathead(P) = head(D) ∈
S and̀ S ∆/D poly2.

If D :: F → D � P, then

• For all DG :: F → G ∈ GOALS(D), if head(G) ∈ S ,
thenszi(G) < szi(P).

• For all DG :: F → G ∈ GOALS(D), if head(G) ∈
T , S andE ::` G / D, then there exists a polynomial
fG(·) such that

szi(G) ≤ fG(szi(P)) +
∑

DH ::F→H∈GOALS(D)
head(H)∈S
p∈GC∗H

szo(H)width(p)

and`T F nsi.

• For all DG :: F → G ∈ GOALS(D), if head(G) ∈
T , S andE ::` G 6 D, then there exists a polynomial
fG(·) such thatszi(G) ≤ fG(szi(D)) and`S F poly2.



•


∑
H∈∆′

head(H)<S

∑
G∈∆′

head(G)∈S
p∈HC∗G

βH(D)szi(G)width(p)

 +


∑
G∈∆′

head(G)∈S

βG(D)szi(G)

 ≤ szi(P) where

∆′ = ∆ ∪ {G|DG :: F → G ∈ GOALS(D)}.

Proof: (Sketch)
Let∆′′ = {G|DG :: F → G ∈ GOALS(D)}.
For G ∈ ∆′′, if head(G) ∈ T andE ::`S G 6 D, then

all terms that appear in input positions inG are either the
terms from input positions ofD or from output positions
of goalsH such thatE′ ::`S H 6 D. We can show by
induction that for such goalsszo(H) ≤ p(szi(D)) for some
polynomialp(·). Hence there exists a polynomialfG(·) such
thatszi(G) ≤ fG(szi(D)).

For G ∈ ∆′′, if head(G) ∈ T andE ::`S G C D, then
all terms that appear in input positions inG are either from
input positions ofD, output positions of goalsH such that
E′ ::`S H 6 D or form output positions of goalsH such that
E′ :`S H C D.

For the first two cases, we have already shown that there
exists a polynomialf ′G(·) that bounds the total contribution
to szi(G) due to the terms that satisfy the conditions of these
two cases. Thus,

szi(G) ≤ f ′G(szi(D)) +
∑
H∈∆′′
`SHCD
GfmH

mszo(H).

We shall bound the contribution due to the third case us-
ing induction on the length of dependence paths ending in a
goal I such thathead(I ) ∈ S. For the base case (length of
dependence paths is 1), we have,

szi(G) ≤ f ′G(szi(D)) +
∑
H∈∆′′
`SHCD
GfmH

mszo(H)

≤ f ′G(szi(D)) +
∑
H∈∆′′

head(H)∈S
`SHCD∧GfmH

mszo(H) +

∑
H∈∆′′

head(H)<S
`SHCD∧GfmH

mszo(H)

≤ f ′G(szi(D)) +
∑
H∈∆′′

head(H)∈S
`SHCD∧GfmH

mszo(H) + 0

(As all dependence paths have length 1)

≤ f ′G(szi(D)) +
∑
H∈∆′′

head(H)∈S
p∈GC∗H

width(p)szo(H)

In this casefG(·) = f ′G(·).
For the induction case,

szi(G) ≤ f ′G(szi(D)) +
∑
H∈∆′′
`SHCD
GfmH

mszo(H)

≤ f ′G(szi(D)) +
∑
H∈∆′′

head(H)<S
`SHCD∧GfmH

m(szi(H) +C)

+
∑
H∈∆′′

head(H)∈S
`SHCD∧GfmH

mszo(H)

(For head(H) ∈ U and`S H C D, `U F nsi

and using Theorem C.1.) (3)

By induction hypothesis,

szi(H) ≤ f ′H(szi(D)) +
∑
I∈∆′′

head(I )∈S
q∈HC∗ I

szo(I )width(q) (4)

where f ′H(·) is a polynomial.
By substituting right side of equation 4 forszi(H) in

equation 3 we get,

szi(G) ≤ fG(szi(D)) +
∑
H∈∆′′

head(H)∈S
`SHCD∧GfmH

mszo(H)

+
∑
H∈∆′′

head(H)<S
`SHCD∧GfmH

∑
I∈∆′′

head(I )∈S
q∈HC∗ I

mwidth(q)szo(I )

≤ fG(szi(D)) +
∑
H∈∆′′

head(H)∈S
`SHCD∧GfmH

mszo(H)

+
∑
I∈∆′′

head(I )∈S
r∈GC∗ I∧length(r)>1

width(r)szo(I )

≤ fG(szi(D)) +
∑
I∈∆′′

head(I )∈S
r∈GC∗ I

width(r)szo(I )

where fG(szi(D)) is a polynomial and is given by

f ′G(szi(D)) +
∑
H∈∆′′

head(H)<S
`SHCD∧GfmH

m
(
f ′H(szi(D)) +C

)
.

The remaining cases of the proof is by induction on the
size of the derivationD is quite similar to the proof of
Lemma B.2.

Lemma C.3 Given a logic programF and a set S of mutu-
ally recursive predicates fromF . Given a predicate P and
a clause D∈ F such thathead(P) = head(D) ∈ S and
`S ∆/D nsi. If D :: F → D � P, then



• For all DG ∈ GOALS(D), if head(D) ∈ S then
szi(G) < szi(P).

• For all DG ∈ GOALS(D), if head(D) < S then`T
F nsi.

•
∑

G∈∆′

head(G)∈S
βG(D)szi(G) +

∑
G∈∆′

head(G)<S
βG(D)szo(G) ≤

(1−α(D))szi(P) where∆′ = ∆∪{G|DG ∈ GOALS(D)}.

Proof: The proof is by induction on the size of the
derivationD and is similar to the proof of Lemma B.2.

Theorem C.1 (Non-size-increasing functions)Given
a logic programF and a set S of mutually recursive
predicates fromF such that̀ S F nsi. If D :: F → G, then
szo(G) ≤ szi(G) + C where C is a constant depending on
the logic programF .

Proof: (Sketch)We shall prove by induction on the size
of the derivation.

Using Lemma B.3, we know that there exists a derivation
D′ :: F → D � P such thatszi(G) = szi(P) andszo(G) =
szo(P).

From Lemma C.1, we know thatszo(G) ≤ α(D)szi(G)+∑
DH ::F→H∈GOALS(D) βH(D)szo(H) +C.
Whenhead(H) ∈ S, szo(H) ≤ szi(H) by induction hy-

pothesis. Hence,

szo(G) ≤ α(D)szi(G) +
∑

DH ::F→H∈GOALS(D)

head(H)∈S

βH(D)szi(H)

∑
DH ::F→H∈GOALS(D)

head(H)<S

βH(D)szo(H) +C

≤ szi(G) +C

This is because,
∑

DH ::F→H∈GOALS(D)

head(H)∈S

βH(D)szi(H) +

∑
DH ::F→H∈GOALS(D)

head(H)∈S

βH(D)szo(H) ≤ (1 − α(D))szi(G) is im-

plied by`S F nsi andszi(G) = szi(P).

Theorem C.2 (Stage 2)Given a programF and a set S of
mutually recursive predicates fromF such that̀ S F poly2.
Given a goal G such thathead(G) ∈ S , ifD :: F → G, then
there exists monotonically increasing polynomials p(·) and
p′(·)(not depending on the ground input terms of G) such
that szo(G) ≤ p(szi(G)) andsz(D) ≤ p′(szi(G)).

Proof: Let the derivationD be given by

D ∈ F
D′

F → D � P
F → P

and
∆′ = {H|DH :: F → H ∈ GOALS(D)}

By Lemma B.3 and Lemma C.1, we know that,

szo(G) ≤ α(D)szi(G) +
∑
H∈∆′
βH(D)szo(H) +C

≤ α(D)szi(G) +
∑
H∈∆′

head(H)∈S

βH(D)szo(H)

+
∑
H∈∆′

head(H)<S

βHszo(H) +C

≤ α(D)szi(D) +
∑
H∈∆′

head(H)∈S

βH(D)szo(H)

+
∑
H∈∆′

head(H)<S
Γ′`SHCD

βH(D)szo(H) +
∑
H∈∆′

head(H)<S
Γ′`SH6D

βH(D)szo(H)

+Cm

In this case,C is the total size of the term constants ap-
pearing in output positions ofD. Clearly, it is a constant
(depending only onF ). LetCm be the maximum among all
such constants.

By Lemma C.2, for goalsH ∈ ∆′ such thathead(H) ∈ T,
`T F nsi if `S H C D and`T F poly2 if `S H 6 D.

By theorem C.1,szo(H) ≤ szi(H) in the former case. In
the latter case, we can show by induction on the call graph
of F rooted atS thatszo(H) ≤ pT(szi(H)) wherepT(·) is a
polynomial. Hence,

szo(G) ≤ α(D)szi(P) +
∑
H∈∆′

head(H)∈S

βH(D)szo(H)

+
∑
H∈∆′

head(H)<S
`SHCD

βH(D)szi(H) +
∑
H∈∆′

head(H)<S
`SH6D

βH(D)pT(szi(H))

+Cm

≤ α(D)szi(G) +
∑
H∈∆′

head(H)∈S

βH(D)szo(H)

+
∑
H∈∆′

head(H)<S
`SHCD

βH(D)szi(H)

+
∑
H∈∆′

head(H)<S
`SH6D

βH(D)pT( fH(szi(G))) +Cm

(By Lemma C.2,szi(H) ≤ fH(szi(P)) ≤ fH(szi(G)))

≤ F1(szi(G)) +
∑
H∈∆′

head(H)<S
`SHCD

βH(D)szi(H)

+
∑
H∈∆′

head(H)∈S

βH(D)szo(H) (5)



(whereF1(szi(G)) = α(D)szi(G) +Cm

+
∑

H∈∆′
head(H)<S
`SH6D

βH(D)pT( fH(szi(G))))

By Lemma C.2, we have

szi(H) ≤ f ′H(szi(P)) +
∑
I∈∆′

head(I )∈S
p∈HC∗ I

szo(I )width(p)

where f ′H(·) is a polynomial.
Substituting in equation 5, we get,

szo(G) ≤ F1(szi(G)) +
∑
H∈∆′

head(H)∈S

βH(D)szo(H)

+
∑
H∈∆′

head(H)<S
`SHCD

βH(D) f ′H(szi(D))

+
∑
H∈∆′

head(H)<S
`SHCD

βH(D)


∑
I∈∆′

head(I )∈S
p∈HC∗ I

szo(I )width(p)


≤ F(szi(G)) +

∑
H∈∆′

head(H)∈S

βH(D)szo(H)

+
∑
H∈∆′

head(H)<S
`SHCD

∑
I∈∆′

head(I )∈S
p∈HC∗ I

βH(D)szo(I )width(p)

(whereF(szi(D)) = F1(szi(D)

+
∑

H∈∆′
head(H)<S
`SHCD

βH(D) f ′H(szi(D)))

Now, by Lemma C.2, we know that,

∑
G∈∆

head(G)∈S

αGszi(G)

+

∑
H∈∆

head(H)<S

∑
G∈∆

head(G)∈S
p∈HC∗G

αHszi(G)width(p)


≤szi(P)

The polynomialp(x) = x2F(x) and the remainder of the
proof follows by induction onszo(G). It is similar to the
proofs of Theorem A.1 and A.2.

To prove thatsz(D) ≤ p′(szi(G)), we shall first need
to show that for allH ∈ ∆′ such thathead(H) < S,
szi(H) ≤ fH(szi(P)) for some polynomialfH(·). All terms
that appear in input positions ofH are either sub-terms of
the terms in input positions ofD or from output positions of
other goalsH. Whenhead(H) ∈ S, we have already proved
that szo(H) ≤ p1(szi(G)) and whenhead(H) ∈ T , S,
we know that̀ T F poly2 and henceszo(H) ≤ p2(szi(G))
for some monotonically increasing polynomialsp1(·) and
p2(·). Hence,szi(H) ≤ fH(szi(P)) for some polynomial
fH(·). Now it is possible to show that the conditions given
in Figure 3 are satisfied. The conditionpc Atom is always
true if pp Atom is true and the conditionpc Imp2 is true as
szi(H) ≤ fH(szi(P)).

D. Proof of RAM Machine Translation

Theorem D.1 Given a logic programF satisfying the con-
ditions given above and a goal G. If there exists a derivation
D :: F → G, then

• The goal G can be represented on a RAM machine in
size proportional toszi(G).

• The corresponding proof search can be implemented
in time proportional tosz(D).

Proof: The goalG can be represented on RAM machine
by simply storing the ground terms in the input positions of
the goalG. The total size of this input is bound byszi(G).

We shall now show that every rule in Figure 1 can be
implemented in a constant number of steps.

For the rules,g True andc Imp, it is clear that the imple-
mentation can be done in constant number of steps. Imple-
mentingg Atom involves selecting the correct clause based
on the inputs to the goalG. This selection is done by match-
ing the inputs of the goalG with the input patterns in the
clauses inF . Since the programF is fixed, the maximal
depth of the patterns is known and it is possible to design
a hash function which maps every unique pattern to a hash
value4, thus providing a constant time implementation for
pattern matching.

During the implementation ofc Exists, we substitute the
universally quantified variables by a logic variables which
are unified with the ground terms in the rulec Atom. Since,
the logic program is mode correct, all logic variables are
guaranteed to be ground when the proof search completes.
Unification is guaranteed to be decidable since we only al-
low higher order patterns. Moreover, since the program
is mode correct and no variable appears more than once in
an input position, unification is simply a series of pattern
matching operations and hence it runs in time polynomial
in the size of the pattern (a constant). The number of such
operations per inference rule is bounded by the total num-
ber of input positions which is a constant depending only
on the logic programF .

4A simple implementation would assign a unique prime number to ev-
ery type family. In this case, the hash value of the pattern would be product
of the prime numbers corresponding to the constituent type familes in the
pattern.


