Formalisation: Chain of events-Modular Process Models for the Law

Søren Debois

July 2, 2020

Contents

1 Notation 1
2 Support and projections 2
2.1 Support and projection of words and languages 3
3 Refinement 5
4 Networks 8
4.1 Actions 9
5 Transition semantic 15
theory Notation
imports Main
HOL-Library.LaTeXsugar
HOL-Library.OptionalSugar
HOL-Library.Adhoc_Overloading
begin

1 Notation

Various objects, notably DCR graphs, have an associated notion of wellformedness, e.g., a string is well-formed wrt. some alphabet if every letter in the string is a member of that alphabet. We use the notation wf for all well-formedness predicates
consts wf :: 't
Many objects of interest-DCR markings and relations, labels, strings, languagescan be thought of as being built from underlying objects of some type. E.g., a word or string is built from letters chosen from some alphabet, a DCR marking is built from a set of events. We codify this observation in the
notion of the support support x of some object x . For a particular string, the support of the string will be the set of symbols in the string; for a DCR graph, the set of events mentioned in the graph.
All the supported objects we consider also have a notion of projection $\pi \mathrm{Ex}$, where we derive from x a new object by taking away all the building blocks not in E. Again, for a string, we drop symbols, so π \{1::'b, $2:: ’ \mathrm{~b}\}$ [1::'c, 2::'c, 3::'c] = [1::'a, 2::'a]; for DCR graphs, we remove events and any referencing relations.

We will pose some requirements on the interplay of support and projection and see some concrete examples (partial maps, strings, languages) later. For now, we note just the notation. Note that we generally write projection as π E x rather than the more cumbersome projection E x.

consts

$$
\begin{aligned}
& \text { support } \quad:: \text { 't } \Rightarrow \text { 'a set } \\
& \text { projection }: \text { : 'a set } \Rightarrow \text { ' } \mathrm{t} \Rightarrow \text { ' } \mathrm{t} \text { (} \pi \text {) }
\end{aligned}
$$

We use the following types for words and languages.

```
type_synonym 'a word = 'a list
type_synonym 'a language = 'a word set
```

Note that we cannot use Isabelle's built-in type string, which is an alias for char list, since we will need to work with strings over arbitrary alphabets. However, the string type is nonetheless helpful for examples, so to avoid conflicts, we use the term "word" as opposed to "string".

```
no_notation (latex) Cons (_ ./ _ [66,65] 65)
end
theory Projection
    imports
        Main
        Notation
        HOL-Library.Finite_Map
begin
```


2 Support and projections

We say that a type 't is supported over 'a set when the support and the projection π satisfies that (a) the support of projection at E is contained in E, and (b) the projection at some set E is the identity exactly when E is smaller than the support.

```
locale supported \(=\)
    fixes support : : 't \(\Rightarrow\) 'a set
    and projection : : 'a set \(\Rightarrow\) 't \(\Rightarrow\) 't
```

assumes sound [simp]: support (projection E t) \subseteq E

- The support of projection onto E is contained in E.
and tight[iff]: (support $t \subseteq E) \longleftrightarrow$ (projection $E t=t$)
- Projection is non-trivial iff we are projecting onto a proper subset of the support.
adhoc_overloading support dom
adhoc_overloading projection λ E f . f |' E

2.1 Support and projection of words and languages

Both words and languages are supported: for words, the support is the set of element in it; for languages we lift the support of words pointwise.

```
definition support \(_{w}:\) : 'a word \(\Rightarrow\) 'a set
    where \(\operatorname{support}_{w} \mathrm{w} \equiv\) set w
definition support \({ }_{L}:\) : 'a language \(\Rightarrow\) 'a set
    where \(\operatorname{support}_{\mathrm{L}} \mathrm{L} \equiv \bigcup\left\{\operatorname{support}_{w} \mathrm{w} \mid \mathrm{w} . \mathrm{w} \in \mathrm{L}\right\}\)
adhoc_overloading
    support support \(_{w}\) support \(_{L}\)
definition project \(_{w}:\) : 'a set \(\Rightarrow\) 'a word \(\Rightarrow\) 'a word
    where project \(_{w} \mathrm{Y} \mathrm{w} \equiv\) List.filter ( \(\lambda \mathrm{x} . \mathrm{x} \in \mathrm{Y}\) ) w
definition project \({ }_{L}:\) : 'a set \(\Rightarrow\) 'a language \(\Rightarrow\) 'a language
    where project L Y L \(\equiv\) (project \(_{w}\) (Y :: 'a set)) ' (L :: 'a language)
adhoc_overloading
    projection project \(_{w}\) project \(_{\text {L }}\)
lemmas language_simps =
    support \(_{w_{-}}\)def support \(t_{L_{-}}\)def project \(_{w_{-}}\)def project \(_{L_{-}}\)def
interpretation supp_word: supported
    support \(_{w}\) :: 'a word \(\Rightarrow\) 'a set
    project \(_{w}::\) 'a set \(\Rightarrow\) 'a word \(\Rightarrow\) 'a word
    by (unfold_locales, auto simp add: language_simps filter_id_conv subset_code(1))
interpretation supp_language: supported
    support \(_{\mathrm{L}}::\) 'a language \(\Rightarrow\) 'a set
    project \(_{\mathrm{L}}::\) 'a set \(\Rightarrow\) 'a language \(\Rightarrow\) 'a language
    proof (unfold_locales)
        fix \(\mathrm{E}:\) : 'a set and \(\mathrm{L}:\) : 'a language
```

```
        show support ( }\pi\textrm{E L}\mathrm{ ) }\subseteq\textrm{E by (auto simp add: language_simps)
    next
        note language_simps[simp]
        fix E :: 'a set and L :: 'a language
        show (support L \subseteq E) = ( }\pi\textrm{E L = L) proof
            assume support L \subseteq E
            { fix w assume w \in L
                then have \pi E w = w using support L \subseteq E filter_id_conv by fastforce
}
            thus \pi E L = L by simp
        next
            assume \pi E L = L
            thus support L \subseteqE by force
        qed
    qed
context
    notes language_simps[simp]
    fixes L L1 L2 :: 'a language and E :: 'a set
begin
```

Alternatively, we can use the following more familiar definition of languages.

```
lemma alt_project_lang_def[code_abbrev]:
    shows }\pi\textrm{E L = { \pi E s | s . s f L }
    by auto
    lemma support_word_lang[simp,elim]:
        w }\in\textrm{L}\Longrightarrow\mathrm{ support w }\subseteq\mathrm{ support L
        by auto
    lemma support_lang_empty[simp]:
        \pi E {} = {} by simp
    lemma support_lang_monotone:
        L1 \subseteq L2 \Longrightarrow support L1 \subseteq support L2
        by auto
    lemma support_word_lang_elim[elim]:
        assumes a }\in\mathrm{ support L
        obtains w where w \in L a }\in\mathrm{ support w
        using assms by auto
    lemma project_string_alphabet_weak[iff]:
        | w \in L; support L \subseteq E \ \Longrightarrow E E w = w
        by (meson support_word_lang subset_trans supp_word.supported_axioms
supported_def)
```

end
end

3 Refinement

```
theory Refinement
    imports
        Main
        Projection
begin
definition refines' :: 'a language }=>\mathrm{ ' 'a set }=>\mathrm{ 'a language }=>\mathrm{ bool
    where
        refines' L1 X L2 \equiv }\pi\mathrm{ X L1 }\subseteq\mathrm{ L2
```

Introduced for DCR in [?, Def. 4.9].
definition refines
where
refines L1 L2 \equiv refines' L1 (support L2) L2
lemma refines_subset[intro]:
fixes L1 L2 :: 'a language
assumes $\mathrm{L} 1 \subseteq \mathrm{~L} 2$
shows refines L1 L2
proof -
have support L1 \subseteq support L2 using support_lang_monotone assms by metis
then have
π (support L2) L1 = L1
using assms by auto
then have
refines' L1 (support L2) L2
using assms refines'_def by blast
thus ?thesis
using refines_def by auto
qed
lemma refines_intersection:
shows refines (L1 $\cap \mathrm{L} 2$) L1
by auto
lemma refines_ident[intro,simp]:
shows refines L L
by auto
lemma refines_explicit[iff]:

```
fixes P Q :: 'a language
shows refines P Q \longleftrightarrow(\mp@subsup{project }{L}{\prime}(\mp@subsup{\mathrm{ support }}{L}{}Q)P\subseteqQ)
by (simp add: refines'_def refines_def)
end
theory Transition_System
    imports Main
begin
locale transition_system =
    fixes move :: 'state }=>\mathrm{ 'action }=>\mathrm{ 'state }=>\mathrm{ bool
begin
    definition enabled :: 'state }=>\mathrm{ 'action set where
        enabled s \equiv { a . (\existss' . move s a s') }
inductive run where
    empty[intro!]: run s0 []
| move[intro!]: \llbracket move s1 a s2 ; run s2 r \rrbracket \Longrightarrow run s1 ((a,s2) # r)
inductive_cases run_elim': run s1 ((a, s2) # r)
lemma run_elim[elim!]:
    assumes run s1 (x # r)
    obtains a s2 where move s1 a s2 run s2 r x = (a, s2)
    using assms run_elim'
    by (metis list.inject list.simps(3) run.simps)
abbreviation target s r = (if r = [] then s else snd (List.last r))
lemma run_intro_append_move[intro]:
    assumes run s r move (target s r) a s'
    shows run s (r @ [(a, s')])
    using assms by (induction, auto, smt snd_conv)
lemma run_intro_append_run[intro]:
    assumes run s r run (target s r) t
    shows run s (r @ t)
    using assms by (induction, auto, metis (full_types) snd_conv)
lemma run_elim_append[elim]:
    assumes run s (r @ t)
```

```
        shows run s r
        using assms apply (induction r arbitrary: s)
        apply (simp add: run.empty)
        by (metis append.simps(2) append_is_Nil_conv list.simps(1) run.simps)
    inductive_set reachable for s where
        here[intro!]: s \in reachable s
    | there[intro!]: \llbracket s1 \in reachable s ; move s1 a s2\rrbracket # s2 \in reachable
s
    inductive_cases reachable_elim[elim]: s' \in reachable s
    lemma reachable_intro_append[trans]:
        assumes s1 G reachable s0 s2 \in reachable s1
        shows s2 \in reachable s0
        using assms(2) apply (induction arbitrary: s1)
        using assms reachable.intros by auto
    lemma reachable_intro_rev[intro!]:
        assumes move s1 a s2 s \in reachable s2
        shows s \in reachable s1
        using assms
        by (meson reachable.intros reachable_intro_append)
    lemma reachable_run[iff]:
    (s \in reachable s0) = ( (s = s0) V (\existsr . run s0 r ^ target s0 r =
s))
    proof
        fix s assume A: s : reachable s0
        show (s = s0) V ( }\exists\textrm{r}.\mathrm{ . run s0 r ^ target s0 r = s)
            using A run_intro_append_move by (induction rule:reachable.induct,
auto)
    next
        fix s assume A: (s = s0) V ( }\exists\textrm{r}.\mp@code{run s0 r ^ target s0 r = s)
        then consider
            (here) s = s0
            | (there) r where run s0 r ^ target s0 r = s by auto
        then show s \in reachable s0 proof cases
            case here
            then show ?thesis by auto
        next
            case there
            then show ?thesis proof (induction r arbitrary: s0 s)
            case Nil
            then show ?case by auto
            next
```

```
            case (Cons x r)
            then obtain a s' where x = (a,s') move s0 a s' using run.simps
            by (meson list.inject list.simps(3))
            then have run s' r using Cons.prems by blast
            then have target s' r \in reachable s' using Cons.IH by simp
            then have target s0 (x # r) \in reachable s0
            by (metis move s0 a s' x = (a, s') last_ConsL last_ConsR reachable.here
reachable_intro_rev snd_conv)
            moreover have s = target s0 (x # r) using Cons by auto
            ultimately show ?case by simp
            qed
        qed
    qed
    lemma reachable_by_run:
        (s \in reachable s0) = ( }\exists\textrm{r}.\mp@code{run s0 r ^ ((s = s0) V target s0 r =
s))
    using reachable_run by blast
    abbreviation trace_of r \equiv map fst r
    definition trace[iff]:
        trace s t \equiv\existsr. run s r ^t = trace_of r
    definition lang s = { t . trace s t }
    lemma lang_runs[iff]:
    (lang s) = { trace_of r | r . run s r }
    using lang_def by fastforce
end
end
theory Network
    imports
        Refinement
        HOL-Eisbach.Eisbach
        HOL-Eisbach.Eisbach_Tools
        Transition_System
begin
```


4 Networks

This section formalises Network as introduced in [?]. Networks are mechanisms to compose DCR graphs. The behaviour of a network is defined in terms of the transitions of its constituent graphs at the level of actions. Behaviour is composed by synchronising on actions, somewhat like in CSP.

4.1 Actions

```
datatype 'lab action =
    lim: Lim 'lab
    | unl: Unl 'lab
```

There are two kinds of action. A limited action action. Lim 1 indicates that a network is willing to allow the underlying action 1 , but will not produce it independently. An unlimited action Unlim 1 indicates that a network will produce that action independently.

Both kinds of action has an underlying label. In the paper, the operator to retrieve the underlying label is called @term γ; here, it is convenient to use the alphanumeric name @termlabel.

```
abbreviation label a \equiv(case a of Lim l m l | Unl l m l)
```

For parallel composition of networks, we define an operator which combines two actions 11,12 with the same label. The resulting action 1 is limited if both 11 ad 12 are, unlimited otherwise.

definition

join $111213 \equiv$

```
        label 11 = label 12 ^
        label 12 = label 13 ^
        lim l3 = (lim l1 ^ lim l2)
```

join $11.012 .013 .0 \equiv$ label $11.0=$ label $12.0 \wedge$ label $12.0=$ label 13.0
\wedge action.lim $13.0=$ (action.lim $11.0 \wedge$ action.lim 12.0)

We demonstrate that join means what it should.

```
lemma join_characterisation:
    join x y z =
        (\existse .
            (x = Lim e \ y = Lim e \ z = Lim e) V
            (x = Lim e }\ y = Unl e \ z = Unl e) V
            (x = Unl e }\ y = Lim e \ z = Unl e) V
            (x = Unl e }\ y = Unl e \ z = Unl e))
    by (join_cases x y z) locale Process =
    fixes labels :: 'proc }=>\mathrm{ 'lab set
    and excluded :: 'proc }=>\mathrm{ 'lab set
    and step :: 'proc }=>\mp@subsup{}{}{\prime}lab = 'proc # bool
    assumes
        step_lab: step P l Q \Longrightarrowl \in labels P
    and step_lab_pres: step P1 l P2 \Longrightarrow labels P1 = labels P2
    and step_det: step P l Q1 \Longrightarrow step P l Q2 \Longrightarrow Q1 = Q2
begin
```

Technically, we have restricted ourselves to a single underlying process notation; however, note that if the sets of processes are disjoint, we can always
combine two distinct notations into one simply by forming the union of their ＠termstep relations．

Figure 1

```
datatype ('l,'p) network =
    Proc 'p
    | Link 'l 'l set ('l,'p) network
    | Network ('l,'p) network ('l,'p) network
    | Zero
```

Syntactically，a network is a collection of processes，possibly linked with the Link l ls N construct．

fun alph where

alph（Proc P）＝labels P
｜alph（Link x xs N）＝alph $N-\{x\} \cup x s$
｜alph（Network N1 N2）＝alph N1 \cup alph N2
｜alph Zero＝\｛\}

abbreviation

```
actions (N :: ('lab,'proc) network) \equiv
    { Lim x | x . x f alph N } U { Unl x | x . x \in alph N }
```

Figure 3

```
inductive nt : : ('lab,'proc) network \(\Rightarrow\) 'lab action \(\Rightarrow\) ('lab,'proc) network
\(\Rightarrow\) bool (_ -_ \(\rightarrow\) )
    where
        Excl: \(\llbracket \mathrm{x} \in\) labels \(\mathrm{P} ; \mathrm{x} \in\) excluded \(\mathrm{P} \rrbracket \Longrightarrow\)
                nt (Proc P) (Lim x) (Proc P)
    | Link1: 【nt N (Unl x) N' ; l \(\in\) xs 』 \(\Longrightarrow\)
                nt (Link x xs N) (Lim l) (Link x xs N')
    | Link2: 【nt N l N' ; label l \(\notin\{x\} \cup\) xs \(\rrbracket \Longrightarrow\)
                nt (Link x xs N) l (Link x xs N')
    | Step: 【 step P1 x P2; x \(\notin\) excluded P1 】 \(\Longrightarrow\) nt (Proc P1) (Unl x)
(Proc P2)
    | Sync: 【nt N1 l1 N1' ; nt N2 l2 N2' ; join l1 l2 l】 \(\Longrightarrow\)
                                nt (Network N1 N2) l (Network N1' N2')
    | Pass1: 【 label l \(\notin\) alph N1 ; nt N2 l N2' 】 \(\Longrightarrow\)
                nt (Network N1 N2) l (Network N1 N2')
    | Pass2: 【nt N1 l N1' ; label l \(\notin\) alph N2 』 \(\Longrightarrow\)
                                nt (Network N1 N2) l (Network N1' N2)
```

$$
\begin{aligned}
& \frac{x \in \text { labels } P \wedge x \in \operatorname{excluded} P}{\text { Proc } P \text {-action.Lim } x \rightarrow \text { Proc } P} \\
& \frac{N-U n l x \rightarrow N^{\prime} \wedge l \in \text { xs }}{\text { Link } x \text { xs } N \text {-action.Lim l } \rightarrow \text { Link } x \text { xs } N^{\prime}} \\
& \frac{N-l \rightarrow N^{\prime} \wedge \text { label } l \notin\{x\} \cup x s}{\text { Link x xs } N-l \rightarrow \text { Link } x \text { xs } N^{\prime}} \\
& \frac{\text { step P1.0 x P2.0 } \wedge \mathrm{x} \notin \text { excluded P1.0 }}{\text { Proc P1.0 -Unl x } \rightarrow \text { Proc P2.0 }}
\end{aligned}
$$

$$
\frac{\mathrm{N} 1.0-\mathrm{ll} .0 \rightarrow \mathrm{~N} \prime^{\prime} \wedge \mathrm{N} 2.0-12.0 \rightarrow \mathrm{~N} 2 \prime \wedge \text { join } 11.012 .0 \mathrm{l}}{\mathrm{Network} \mathrm{~N} 1.0 \mathrm{~N} 2.0-1 \rightarrow \text { Network N1' N2' }}
$$

```
inductive_cases nt_network
    [elim, consumes 1, case_names Sync Pass1 Pass2]:
    nt (Network N1 N2) t N'
inductive_cases nt_proc[elim]:
    nt (Proc P) t N,
inductive_cases nt_link[elim]:
    nt (Link x xs N) t N'
method rule_inversion uses nt =
    ( (cases rule: nt_network[ case_names Sync Pass1 Pass2])
        | (cases rule: nt_proc[consumes 1, case_names Excl Step])
        | (cases rule: nt_link[consumes 1, case_names Link1 Link2])
    )
```

lemma nt_action_in_alph[elim]:
assumes t : nt N 1 l N2
shows label $1 \in \operatorname{alph} N 1$
using assms proof (induction N1 arbitrary: N2 l)
case (Proc P)
then show ?case
apply (cases rule: nt_proc)
using step_lab by auto
next
case (Link x xs N)
show ?case using Link(2) proof rule_inversion
case (Link1 l N')
then show ?thesis by simp
next
case (Link2 N')
then show ?thesis using Link.IH by auto
qed
next
case (Network N11 N12)
show ?case using Network(3) proof (rule_inversion)
case (Sync 11 N1' 12 N2')

```
        then show ?thesis
            using Network.IH join_def by (metis Un_iff alph.simps(3))
    next
        case (Pass1 N2')
        then show ?thesis
            using Network.IH(2) by auto
    next
    case (Pass2 N1')
        then show ?thesis
            using Network.IH(1) by auto
    qed
next
    case Zero
    then show ?case using nt.simps by blast
qed
lemma nt_action_not_in_alph[elim]:
    assumes label l }\not\in\mathrm{ alph N1
    shows \neg nt N1 l N2
    using assms nt_action_in_alph by blast
lemma nt_alph_preserved[elim]:
    assumes nt N1 l N2
    shows (e \in alph N1) = (e\in alph N2)
using assms proof (induction N1 arbitrary: l N2)
    case (Proc x1 x2)
    then show ?case using step_lab_pres by auto
next
    case (Link x xs N)
    then show ?case by auto
next
    case (Network N11 N12)
    then show ?case by auto
next
    case Zero
    then show ?case using nt.simps by blast
qed
lemma nt_proc_proc[elim]:
    assumes nt (Proc P) a N
    shows \exists! P' . N = Proc P'
    using assms nt.cases step_det by auto
```

```
lemma weak_preimage_excluded:
    assumes nt (Proc P) (Lim x) Q
    shows x E excluded P and Q = Proc P
    using nt_proc assms by blast+
    lemma nt_proc_action_deterministic[elim]:
    assumes nt (Proc P) l1 N1 nt (Proc P) 12 N2 label l1 = label 12
    shows l1 = l2 \ N1 = N2
    proof -
        from assms show ?thesis proof (cases l1)
        case (Lim x)
        then have *: x \in excluded P using assms by blast
        have 12 = Lim x using assms(2) proof (rule_inversion)
            case (Excl x')
            then have }\textrm{x}=\textrm{x}\mathrm{ ' using assms by (simp add: Lim)
            then show ?thesis by (simp add: local.Excl(1))
        next
            case (Step x' Q)
            then have x = x' using assms by (simp add: Lim)
            then show ?thesis using * Step by simp
        qed
        thus ?thesis using Lim assms by blast
    next
        case (Unl x)
        then have *: x # excluded P using assms by blast
        have l1 = l2 using assms proof (rule_inversion)
            case (Excl x')
            then show ?thesis using * Unl assms by auto
        next
            case (Step x' P2)
            then show ?thesis using Unl assms by auto
        qed
        thus ?thesis using Unl assms
            by (metis action.sel(2) nt_proc step_det weak_preimage_excluded(2))
        qed
qed lemma nt_action_deterministic[elim]:
    assumes nt N x1 N1 nt N x2 N2 label x1 = label x2
    shows N1 = N2
using assms proof (induction N arbitrary: x1 x2 N1 N2)
    case (Proc T M)
        then show ?case
            using Proc.prems(1) Proc.prems(2) Proc.prems(3) nt_proc_action_deterministic
by simp
```

```
    next case (Link l ls N)
    show ?case using nt (Link l ls N) x1 N1 proof (rule_inversion)
            case (Link1 l' N')
            then show ?thesis
                using Link.prems nt_action_in_alph
                using Link.IH Link.prems(2) Link.prems(3) by auto
    next
            case (Link2 N')
            then show ?thesis
                using Link.IH Link.prems by auto
    qed
    next case (Network M1 M2)
    show N1 = N2 using nt (Network M1 M2) x1 N1 proof (rule_inversion)
        case (Sync x11 M11 x12 M12)
        then have
            label x11 = label x1 label x12 = label x1
            by (simp_all add: join_def)
        then have
            eq: label x11 = label x2 label x12 = label x2
            by (simp_all add: Network.prems(3))
        then have N2 = Network M11 M12
            proof (cases rule: nt_network[OF nt (Network M1 M2) x2 N2])
                case (1 x1 N1' x2 N2')
                then show ?thesis using eq Network Sync 1
                    using join_def by smt
            next
                case (2 N2')
                then show ?thesis
                            using Network.prems(3) label x11 = label x1 local.Sync(2)
nt_action_in_alph by fastforce
            next
                case (3 N1')
                then show ?thesis
                    using Network.prems(3) label x12 = label x1 local.Sync(3)
nt_action_in_alph by fastforce
            qed
        thus ?thesis
            by (simp add: local.Sync(1))
    next
        case p1: (Pass1 N2')
        show ?thesis
            using nt (Network M1 M2) x2 N2 proof (cases rule: nt_network)
            case (Sync x1 N1' x2 N2')
```

```
                then show ?thesis
                    using Network.prems join_def nt_action_not_in_alph p1(2) by
smt
            next
                case (Pass1 N2')
                    then show ?thesis using p1
                            using Network.IH(2) Network.prems by blast
            next
            case (Pass2 N1')
            then show ?thesis using p1
                        using Network.prems(3) nt_action_not_in_alph by auto
            qed
        next
        case p2: (Pass2 N1')
        show ?thesis
            using nt (Network M1 M2) x2 N2 proof (cases rule: nt_network)
            case (Sync x1 N1' x2 N2')
            then show ?thesis
                using Network.prems join_def nt_action_not_in_alph p2(3) by
metis
        next
            case (Pass1 N2')
            then show ?thesis using p2
                using Network.prems(3) nt_action_in_alph by auto
        next
            case (Pass2 N1')
            then show ?thesis using p2
                using Network.IH(1) Network.prems by blast
        qed
        qed
    next case Zero
        then show N1 = N2
        using nt.simps by blast
    qed
lemma
    assumes nt (Link l ls N1) x N2
    shows unl x \Longrightarrow label x }\not\in\mathrm{ ls
    using assms by (rule_inversion, auto)
```


5 Transition semantic

```
definition nt_enabled
where
```

```
        nt_enabled e N \equiv \existsN'. nt N e N'
```

```
        nt_enabled e N \equiv \existsN'. nt N e N'
```

```
definition nt_execute
    where
        nt_execute e N \equiv THE N' . nt N e N'
lemma nt_function:
    assumes nt N l N1 nt N l N2
    shows N1 = N2 using assms nt_action_deterministic nt_enabled_def[iff]
by blast
lemma nt_enabled_may_execute:
    assumes nt_enabled e N
    shows \exists! N' . nt N e N'
    using assms nt_enabled_def nt_function nt_enabled_def[iff] by auto
lemma nt_execute_function[iff]:
    assumes nt_enabled e N
    shows (nt_execute e N = N') = nt N e N'
    using nt_enabled_def[iff] assms nt_enabled_may_execute nt_execute_def
theI_unique
    by metis
lemma nt_to_execute[iff]:
    assumes nt N e N'
    shows nt_execute e N = N'
    using assms nt_enabled_def nt_execute_function by blast
interpretation nt: transition_system
    nt .
lemma nt_enabled a N = (a : nt.enabled N)
    by (simp add: nt_enabled_def transition_system.enabled_def) definition
unlimited :: 'lab set }=>\mathrm{ ('lab, 'proc) network }=>\mathrm{ bool where
    unlimited X NO =
        \forallN' a . label a }\in\textrm{X}\wedge ^ N' \in nt.reachable NO ^ a \in nt.enabled N'
                                    unl a
lemma limitation_preservation[intro]:
    assumes unlimited X N1 nt N1 l N2
    shows unlimited X N2
    by (metis assms unlimited_def nt.reachable_intro_rev)
lemma nt_action_in_actions[elim]:
```

```
    assumes nt N1 l N2
    shows l \in actions N1
proof -
    have label l \in alph N1 using assms by auto
    thus ?thesis by (cases l, auto)
qed
lemma action_iff_actions:
    shows (label l G alph N) = (l G actions N)
    using alph.simps by (cases l, simp_all)
lemma nt_trace_in_actions[intro]:
    fixes N :: ('lab,'proc) network
    assumes nt.run N r
    shows set (nt.trace_of r) \subseteq actions N
using assms proof (induction r arbitrary: N rule: list.induct)
    case Nil
    then show ?case by simp
next
    case (Cons x r)
    then obtain N' a where N':
        nt N a N' nt.run N' r x = (a, N') by auto
    then have
        set (nt.trace_of r) \subseteq actions N
        using Cons.IH nt_alph_preserved by blast
    moreover with N' have
        a \in actions N
        using nt_action_in_actions by blast
    ultimately show ?case
        using x = (a, N') by auto
qed
lemma nt_preserves_actions:
    assumes nt N1 l N2
    shows actions N1 = actions N2 using assms
    using nt_alph_preserved by auto
lemma nt_actions:
    support (nt.lang N) \subseteq actions N
proof (rule subsetI)
    fix l assume
        l \in support (nt.lang N)
    then have
            l G support { nt.trace_of r | r . nt.run N r } by simp
```

```
    then obtain t r where
    l set t t \in { nt.trace_of r | t . nt.run N r }
    using support}\mp@subsup{w}{~}{\prime}\mathrm{ def support [_def by (smt Union_iff mem_Collect_eq)
    moreover then have
    nt.run N r by simp
    ultimately show
    l G actions N using nt_trace_in_actions by blast
qed
fun select where
    select f [] = []
    | select f (x # xs) =
            (case f x of
                Some x m x # select f xs
            | None }=>\mathrm{ select f xs)
abbreviation proj1 where
    proj1 X x \equiv
        (case x of
            (a, Network N1 N2) }
                (if a }\in\textrm{X}\mathrm{ then Some (a, N1) else None)
            | _ # None)
abbreviation
\(\Gamma \mathrm{X} \mathrm{t} \equiv\) (select (proj1 X) t)
```


abbreviation

```
    is_network N \(\equiv\)
```

 is_network N \(\equiv\)
 (case N of (Network _ _) \(\Rightarrow\) True | _ \(\Rightarrow\) False)
    ```
        (case N of (Network _ _) \(\Rightarrow\) True | _ \(\Rightarrow\) False)
```

We do not define "trace" independently, going instead directly for the notion of language.

```
definition
    lang (N :: ('lab,'proc) network) \equiv
        { map label t | t . nt.trace N t ^ list_all unl t }
lemma independent_run:
    fixes N1 :: ('lab,'proc) network
    assumes unlimited X N1 alph N2 \cap alph N1 \subseteq X
    assumes nt.run (Network N1 N2) t
    shows nt.run N1 (\Gamma (actions N1) t) ^
        nt.trace_of (\Gamma (actions N1) t) = }\pi\mathrm{ (actions N1) (nt.trace_of
t)
using assms proof (induction t arbitrary: N1 N2)
```

```
    case Nil
    then show ?case
        using nt.empty supp_word.tight
        by (simp add: language_simps(3))
next
    case (Cons x t)
    then obtain N l where t:
        nt (Network N1 N2) l N and [simp]: x = (l,N) and tr: nt.run N t
        by auto
    show ?case using t proof (cases rule: nt_network)
    case (Sync l1 M1 l2 M2)
    then have
        label l1 G alph N1
        using nt_action_in_alph by simp
    then have
        l1 \in actions N1 using action_iff_actions by simp
        from Sync have r:
        nt.run (Network M1 M2) t using Cons.IH
        using tr by blast
    have alph N1 = alph M1 alph N2 = alph M2
        using nt_alph_preserved Sync assms by auto
    moreover then have
        alph M1 \cap alph M2 \subseteq X using Cons by auto
    moreover ultimately have alphs:
        unlimited X M1 alph M1 \cap alph M2 \subseteq X
        using Cons Sync by auto
    then have
        nt.run M1 (\Gamma (actions M1) t) and **:
        nt.trace_of (\Gamma (actions M1) t) = \pi (actions M1) (nt.trace_of t)
        using Cons.IH r by auto
    then have r0:
        nt.run N1 ((l1, M1) # (\Gamma (actions M1) t))
        using nt.run.intros Sync by blast
    have
        actions M1 = actions N1
            using nt N1 l1 M1 nt_preserves_actions by simp
        moreover have
        l1 = l
```

```
    proof -
        have
            label l1 \in alph M2 using Sync
            using alph N2 = alph M2 join_def nt_action_not_in_alph
            by metis
    moreover have
            label l1 G alph M1
            using alph N1 = alph M1 label l1 \in alph N1 by blast
    ultimately have
            label l1 \in X
            using alphs by blast
    with unlimited X N1 Sync(2) have
                unl l1
                using unlimited_def nt.enabled_def assms by auto
            thus
                l1 = l
                using join l1 l2 l by join
        qed
    ultimately have
        nt.run N1 ((l, M1) # (\Gamma (actions N1) t))
        using r0 by auto
    moreover with l1 = l have ***:
        proj1 (actions N1) x = Some (l, M1)
        using Sync nt_action_in_actions by simp
    ultimately have nt.run N1 (\Gamma (actions N1) (x # t))
        by auto
    moreover have
    nt.trace_of (\Gamma (actions N1) (x # t)) = \pi (actions N1) (nt.trace_of
(x # t))
    proof -
        have
            nt.trace_of (\Gamma (actions N1) (x # t)) =
                nt.trace_of ((l, M1) # (\Gamma (actions N1) t))
            using *** by auto
        also have
            ... = l # nt.trace_of (\Gamma (actions N1) t) by simp
            also have
                ... = l # nt.trace_of (\Gamma (actions M1) t) using actions M1 =
actions N1 by auto
        also have
        ... = l # \pi (actions M1) (nt.trace_of t) using ** by auto
        also have
            ... = l # \pi (actions N1) (nt.trace_of t) using actions M1 =
actions N1 by simp
    also have
```

```
    ... = \pi (actions N1) (nt.trace_of (x # t)) using x = (l, N)
l1 G actions N1 l1 = l
                    by (simp add: language_simps)
            finally show ?thesis .
        qed
    ultimately show ?thesis by simp
next
    case (Pass1 M2)
    moreover then have
        label l & alph N1 by blast
    moreover have eq:
        \Gamma (actions N1) (x # t) = \Gamma (actions N1) t
        using Pass1 by auto
    moreover have
        alph M2 \cap alph N1 \subseteq X
        using Cons.prems(2) calculation(3) nt_alph_preserved by auto
    ultimately have *:
        nt.run N1 (\Gamma (actions N1) (x # t)) ^
        nt.trace_of (\Gamma (actions N1) t) = \pi (actions N1) (nt.trace_of t)
        using Cons.IH[of N1 M2] Cons tr by simp
    then have
        l & actions N1 using action_iff_actions label l & alph N1 by simp
{ have
            nt.trace_of (\Gamma (actions N1) (x # t)) =
            nt.trace_of (\Gamma (actions N1) t) using eq by simp
        also have
            ... = \pi (actions N1) (nt.trace_of t) using * by simp
        also have
            ... = \pi (actions N1) (l # nt.trace_of t) using l & actions N1
        by (simp add: language_simps)
        also have
            ... = \pi (actions N1) (nt.trace_of (x # t))
            using l & actions N1 x = (l, N) by simp
        finally have
            nt.trace_of (\Gamma (actions N1) (x # t)) =
            \pi (actions N1) (nt.trace_of (x # t)).
}
with * show
        nt.run N1 (\Gamma (actions N1) (x # t)) ^
```

```
        nt.trace_of (\Gamma (actions N1) (x # t)) = \pi (actions N1) (nt.trace_of
(x # t))
    by auto
next
    case (Pass2 M1)
    then have
        l ( (actions N1)
        using nt_action_in_actions by simp
    then have eq:
        \Gamma (actions N1) (x # t) = (l,M1) # Г (actions N1) t
        using Pass2 tr by auto
    have unlimited X M1
        using Cons.prems local.Pass2 by blast
    then have
        alph N2 \cap alph M1 \subseteqX
        using Cons.prems(2) local.Pass2(2) nt_alph_preserved by auto
    moreover have
        nt.run (Network M1 N2) t
        using local.Pass2(1) tr by blast
    ultimately have *:
        nt.run M1 (\Gamma (actions M1) t) ^
            nt.trace_of (\Gamma (actions M1) t) = \pi (actions M1) (nt.trace_of t)
        using Cons.IH [of M1 N2] unlimited X M1 by blast
    then have **: nt.run N1 ((l,M1) # (\Gamma (actions M1) t))
        using nt N1 l M1 nt_enabled_def nt_to_execute by blast
    moreover have actions M1 = actions N1
        using nt N1 l M1 nt_alph_preserved by simp
    moreover have
        nt.trace_of (\Gamma (actions N1) (x # t)) =
        \pi (actions N1) (nt.trace_of (x # t)) proof -
        have
            nt.trace_of (\Gamma (actions N1) (x # t)) =
            l # nt.trace_of (\Gamma (actions N1) t) using l \in actions N1
            using eq by auto
    also have
        ... = l # nt.trace_of (\Gamma (actions M1) t)
        using actions M1 = actions N1 by auto
    also have
```

```
            ... = l # \pi (actions N1) (nt.trace_of t)
                    using * by (simp add: actions M1 = actions N1)
            also have
                ... = \pi (actions N1) (nt.trace_of (x # t))
                using l G actions N1 by (auto simp add: language_simps)
            finally show ?thesis.
        qed
        ultimately show ?thesis
            using eq ** by force
    qed
qed lemma independent_trace:
    assumes unlimited X N1 alph N2 \cap alph N1 \subseteq X
    assumes nt.trace (Network N1 N2) t
    shows nt.trace N1 ( }\pi\mathrm{ (actions N1) t)
proof -
    obtain r where
        nt.run (Network N1 N2) r and t = nt.trace_of r
        using assms nt.trace by auto
    then have
        nt.run N1 (\Gamma (actions N1) r) ^
            nt.trace_of (\Gamma (actions N1) r) = \pi (actions N1) t
            using independent_run assms by auto
    then show
            nt.trace N1 ( }\pi\mathrm{ (actions N1) t) by auto
qed
lemma independent_string:
    assumes unlimited X N1 alph N2 \cap alph N1\subseteq X
    and s \in lang (Network N1 N2)
    shows }\pi\mathrm{ (alph N1) s G lang N1
proof -
    note language_simps[simp]
    obtain t where *:
        nt.trace (Network N1 N2) t list_all unl t s = map label t
        using assms lang_def by auto
    let ?t = \pi (actions N1) t
    from * have
        nt.trace N1 ?t
        using independent_trace assms by simp
    moreover have list_all unl ?t
        using list_all unl t by ( induction t, auto)
    ultimately have
```

```
    map label ?t \in lang N1
    using lang_def by auto
    have
    map label ( }\pi\mathrm{ (actions N1) t) = }\pi\mathrm{ (alph N1) (map label t)
    proof (induction t)
        case Nil
        then show ?case by simp
    next
        case (Cons a t)
        then show ?case proof (cases a \in actions N1)
            case True
            then show ?thesis
                using Cons.IH by auto
        next
            case False
            then have
                \pi (alph N1) (map label (a # t)) =
                    \pi (alph N1) (label a # map label t)
                by simp
            also have
                ... = \pi (alph N1) (map label t)
                    proof -
                        have label a }\not\in\mathrm{ alph N1
                            using False action_iff_actions by auto
                        thus ?thesis by auto
                qed
            also have
                    ... = map label ( }\pi\mathrm{ (actions N1) t)
                    using Cons.IH by auto
            also have
                    ... = map label ( }\pi\mathrm{ (actions N1) (a # t))
                    using False by auto
            finally show ?thesis ..
        qed
        qed
    with * show }\pi\mathrm{ (alph N1) s G lang N1
        using lang_def map label ?t \in lang N1 by auto
qed theorem refinement:
    fixes T M
    assumes unlimited X P
    assumes alph N \cap alph P}\subseteq
    shows refines' (lang (Network P N)) (alph P) (lang P)
    using refines_def refines'_def
proof -
    have }\pi\mathrm{ (alph P) (lang (Network P N)) }\subseteq\mathrm{ lang P proof
        fix t'
```

```
    assume t' }\in\pi=(alph P) (lang (Network P N)
    then obtain t where *:
        nt.trace (Network P N) t list_all unl t t' = \pi (alph P) (map label
    t)
        using lang_def project__def mem_Collect_eq by (auto simp add: language_simps)
        then have
        map label t \in lang (Network P N) using lang_def by auto
        then have
            \pi (alph P) (map label t) \in lang P
            using independent_string assms by blast
        thus t' }\in\mathrm{ lang P using * by simp
    qed
    thus ?thesis
    using refines'_def by blast
qed
lemma proc_reachable:
    assumes N }\in\mathrm{ nt.reachable (Proc P)
    shows \exists P'. N = Proc P'
    using assms by (induction, simp, fastforce) lemma unlimited_proc:
    fixes r
    assumes \bigwedge N . N \in nt.reachable (Proc P) \Longrightarrow
                        (\Q . N = Proc Q > excluded Q \cap X = {})
    shows unlimited X (Proc P)
proof -
    have }\forallN' a
                label a }\inX\N\mp@subsup{N}{}{\prime}\in\mp@code{nt.reachable (Proc P) ^ a \in nt.enabled N'
                    unl a
    proof -
        {
        fix N a
        assume
            label a }\in
            and re: N \in nt.reachable (Proc P)
            and a }\in\mathrm{ nt.enabled N
            then obtain P' N' where
                nt: nt (Proc P') a N' and eq: N = Proc P'
                using a \in nt.enabled N nt.enabled_def
                by (smt mem_Collect_eq proc_reachable)
            then have *: label a & excluded P'
                using label a }\inX\mathrm{ X assms re by blast
```

```
    have unl a
        using nt (Proc P') a N' by (rule_inversion; cases a; insert *; auto)
        }
        thus ?thesis by blast
    qed
    thus ?thesis using unlimited_def by simp
qed
end
end
```

