
Formalisation: Chain of events—Modular Process

Models for the Law

Søren Debois

July 2, 2020

Contents

1 Notation 1

2 Support and projections 2
2.1 Support and projection of words and languages 3

3 Refinement 5

4 Networks 8
4.1 Actions . 9

5 Transition semantic 15

theory Notation

imports Main

HOL-Library.LaTeXsugar

HOL-Library.OptionalSugar

HOL-Library.Adhoc_Overloading

begin

1 Notation

Various objects, notably DCR graphs, have an associated notion of well-
formedness, e.g., a string is well-formed wrt. some alphabet if every letter
in the string is a member of that alphabet. We use the notation wf for all
well-formedness predicates

consts wf :: ’t

Many objects of interest—DCR markings and relations, labels, strings, languages—
can be thought of as being built from underlying objects of some type. E.g.,
a word or string is built from letters chosen from some alphabet, a DCR
marking is built from a set of events. We codify this observation in the

1

notion of the support support x of some object x. For a particular string,
the support of the string will be the set of symbols in the string; for a DCR
graph, the set of events mentioned in the graph.

All the supported objects we consider also have a notion of projection π E x,
where we derive from x a new object by taking away all the building blocks
not in E. Again, for a string, we drop symbols, so π {1::’b, 2::’b} [1::’c,

2::’c, 3::’c] = [1::’a, 2::’a]; for DCR graphs, we remove events and
any referencing relations.

We will pose some requirements on the interplay of support and projection
and see some concrete examples (partial maps, strings, languages) later. For
now, we note just the notation. Note that we generally write projection as
π E x rather than the more cumbersome projection E x.

consts
support :: ’t ⇒ ’a set

projection :: ’a set ⇒ ’t ⇒ ’t (π)

We use the following types for words and languages.

type synonym ’a word = ’a list

type synonym ’a language = ’a word set

Note that we cannot use Isabelle’s built-in type string, which is an alias for
char list, since we will need to work with strings over arbitrary alphabets.
However, the string type is nonetheless helpful for examples, so to avoid
conflicts, we use the term ”word” as opposed to ”string”.

no notation (latex) Cons (_ ·/ _ [66,65] 65)

end
theory Projection

imports
Main

Notation

HOL-Library.Finite_Map

begin

2 Support and projections

We say that a type ’t is supported over ’a set when the support and the
projection π satisfies that (a) the support of projection at E is contained
in E, and (b) the projection at some set E is the identity exactly when E is
smaller than the support.

locale supported =

fixes support :: ’t ⇒ ’a set

and projection :: ’a set ⇒ ’t ⇒ ’t

2

assumes sound[simp]: support (projection E t) ⊆ E

— The support of projection onto E is contained in E.

and tight[iff]: (support t ⊆ E) ←→ (projection E t = t)

— Projection is non-trivial iff we are projecting onto a proper subset of the
support.

adhoc overloading support dom

adhoc overloading projection λ E f . f |‘ E

2.1 Support and projection of words and languages

Both words and languages are supported: for words, the support is the set
of element in it; for languages we lift the support of words pointwise.

definition supportw :: ’a word ⇒ ’a set

where supportw w ≡ set w

definition supportL :: ’a language ⇒ ’a set

where supportL L ≡
⋃

{ supportw w | w . w ∈ L }

adhoc overloading
support supportw supportL

definition projectw :: ’a set ⇒ ’a word ⇒ ’a word

where projectw Y w ≡ List.filter (λx . x ∈ Y) w

definition projectL :: ’a set ⇒ ’a language ⇒ ’a language

where projectL Y L ≡ (projectw (Y :: ’a set)) ‘ (L :: ’a language)

adhoc overloading
projection projectw projectL

lemmas language_simps =

supportw_def supportL_def projectw_def projectL_def

interpretation supp_word: supported

supportw :: ’a word ⇒ ’a set

projectw :: ’a set ⇒ ’a word ⇒ ’a word

by (unfold_locales, auto simp add: language_simps filter_id_conv subset_code(1))

interpretation supp_language: supported

supportL :: ’a language ⇒ ’a set

projectL :: ’a set ⇒ ’a language ⇒ ’a language

proof (unfold_locales)

fix E :: ’a set and L :: ’a language

3

show support (π E L) ⊆ E by (auto simp add: language_simps)

next
note language_simps[simp]

fix E :: ’a set and L :: ’a language

show (support L ⊆ E) = (π E L = L) proof
assume support L ⊆ E

{ fix w assume w ∈ L

then have π E w = w using support L ⊆ E filter_id_conv by fastforce

}
thus π E L = L by simp

next
assume π E L = L

thus support L ⊆ E by force

qed
qed

context
notes language_simps[simp]

fixes L L1 L2 :: ’a language and E :: ’a set

begin

Alternatively, we can use the following more familiar definition of languages.

lemma alt_project_lang_def[code_abbrev]:

shows π E L = { π E s | s . s ∈ L }

by auto

lemma support_word_lang[simp,elim]:

w ∈ L =⇒ support w ⊆ support L

by auto

lemma support_lang_empty[simp]:

π E {} = {} by simp

lemma support_lang_monotone:

L1 ⊆ L2 =⇒ support L1 ⊆ support L2

by auto

lemma support_word_lang_elim[elim]:

assumes a ∈ support L

obtains w where w ∈ L a ∈ support w

using assms by auto

lemma project_string_alphabet_weak[iff]:

[[w ∈ L; support L ⊆ E]] =⇒ π E w = w

by (meson support_word_lang subset_trans supp_word.supported_axioms

supported_def)

4

end

end

3 Refinement

theory Refinement

imports
Main

Projection

begin

definition refines’ :: ’a language ⇒ ’a set ⇒ ’a language ⇒ bool

where
refines’ L1 X L2 ≡ π X L1 ⊆ L2

Introduced for DCR in [?, Def. 4.9].

Definition 8

definition refines

where
refines L1 L2 ≡ refines’ L1 (support L2) L2

lemma refines_subset[intro]:

fixes L1 L2 :: ’a language

assumes L1 ⊆ L2

shows refines L1 L2

proof -

have support L1 ⊆ support L2 using support_lang_monotone assms by metis

then have
π (support L2) L1 = L1

using assms by auto

then have
refines’ L1 (support L2) L2

using assms refines’_def by blast

thus ?thesis

using refines_def by auto

qed

lemma refines_intersection:

shows refines (L1 ∩ L2) L1

by auto

lemma refines_ident[intro,simp]:

shows refines L L

by auto

lemma refines_explicit[iff]:

5

fixes P Q :: ’a language

shows refines P Q ←→ (projectL (supportL Q) P ⊆ Q)

by (simp add: refines’_def refines_def)

end
theory Transition_System

imports Main

begin

locale transition_system =

fixes move :: ’state ⇒ ’action ⇒ ’state ⇒ bool

begin

definition enabled :: ’state ⇒ ’action set where
enabled s ≡ { a . (∃ s’ . move s a s’) }

inductive run where
empty[intro!]: run s0 []

| move[intro!]: [[move s1 a s2 ; run s2 r]] =⇒ run s1 ((a,s2) # r)

inductive cases run_elim’: run s1 ((a, s2) # r)

lemma run_elim[elim!]:

assumes run s1 (x # r)

obtains a s2 where move s1 a s2 run s2 r x = (a, s2)

using assms run_elim’

by (metis list.inject list.simps(3) run.simps)

abbreviation target s r ≡ (if r = [] then s else snd (List.last r))

lemma run_intro_append_move[intro]:

assumes run s r move (target s r) a s’

shows run s (r @ [(a, s’)])

using assms by (induction, auto, smt snd_conv)

lemma run_intro_append_run[intro]:

assumes run s r run (target s r) t

shows run s (r @ t)

using assms by (induction, auto, metis (full_types) snd_conv)

lemma run_elim_append[elim]:

assumes run s (r @ t)

6

shows run s r

using assms apply (induction r arbitrary: s)

apply (simp add: run.empty)

by (metis append.simps(2) append_is_Nil_conv list.simps(1) run.simps)

inductive set reachable for s where
here[intro!]: s ∈ reachable s

| there[intro!]: [[s1 ∈ reachable s ; move s1 a s2]] =⇒ s2 ∈ reachable

s

inductive cases reachable_elim[elim]: s’ ∈ reachable s

lemma reachable_intro_append[trans]:

assumes s1 ∈ reachable s0 s2 ∈ reachable s1

shows s2 ∈ reachable s0

using assms(2) apply (induction arbitrary: s1)

using assms reachable.intros by auto

lemma reachable_intro_rev[intro!]:

assumes move s1 a s2 s ∈ reachable s2

shows s ∈ reachable s1

using assms

by (meson reachable.intros reachable_intro_append)

lemma reachable_run[iff]:

(s ∈ reachable s0) = ((s = s0) ∨ (∃ r . run s0 r ∧ target s0 r =

s))

proof
fix s assume A: s : reachable s0

show (s = s0) ∨ (∃ r . run s0 r ∧ target s0 r = s)

using A run_intro_append_move by (induction rule:reachable.induct,

auto)

next
fix s assume A: (s = s0) ∨ (∃ r . run s0 r ∧ target s0 r = s)

then consider
(here) s = s0

| (there) r where run s0 r ∧ target s0 r = s by auto

then show s ∈ reachable s0 proof cases

case here

then show ?thesis by auto

next
case there

then show ?thesis proof (induction r arbitrary: s0 s)

case Nil

then show ?case by auto

next

7

case (Cons x r)

then obtain a s’ where x = (a,s’) move s0 a s’ using run.simps

by (meson list.inject list.simps(3))

then have run s’ r using Cons.prems by blast

then have target s’ r ∈ reachable s’ using Cons.IH by simp

then have target s0 (x # r) ∈ reachable s0

by (metis move s0 a s’ x = (a, s’) last_ConsL last_ConsR reachable.here

reachable_intro_rev snd_conv)

moreover have s = target s0 (x # r) using Cons by auto

ultimately show ?case by simp

qed
qed

qed

lemma reachable_by_run:

(s ∈ reachable s0) = (∃ r . run s0 r ∧ ((s = s0) ∨ target s0 r =

s))

using reachable_run by blast

abbreviation trace_of r ≡ map fst r

definition trace[iff]:

trace s t ≡ ∃ r. run s r ∧ t = trace_of r

definition lang s = { t . trace s t }

lemma lang_runs[iff]:

(lang s) = { trace_of r | r . run s r }

using lang_def by fastforce

end

end
theory Network

imports
Refinement

HOL-Eisbach.Eisbach

HOL-Eisbach.Eisbach_Tools

Transition_System

begin

4 Networks

This section formalises Network as introduced in [?]. Networks are mech-
anisms to compose DCR graphs. The behaviour of a network is defined
in terms of the transitions of its constituent graphs at the level of actions.
Behaviour is composed by synchronising on actions, somewhat like in CSP.

8

4.1 Actions

datatype ’lab action =

lim: Lim ’lab

| unl: Unl ’lab

There are two kinds of action. A limited action action.Lim l indicates that
a network is willing to allow the underlying action l, but will not produce
it independently. An unlimited action Unlim l indicates that a network will
produce that action independently.

Both kinds of action has an underlying label. In the paper, the operator to
retrieve the underlying label is called @termγ; here, it is convenient to use
the alphanumeric name @termlabel.

abbreviation label a ≡ (case a of Lim l ⇒ l | Unl l ⇒ l)

For parallel composition of networks, we define an operator which combines
two actions l1, l2 with the same label. The resulting action l is limited if
both l1 ad l2 are, unlimited otherwise.

definition
join l1 l2 l3 ≡

label l1 = label l2 ∧

label l2 = label l3 ∧

lim l3 = (lim l1 ∧ lim l2)

join l1.0 l2.0 l3.0 ≡ label l1.0 = label l2.0 ∧ label l2.0 = label l3.0

∧ action.lim l3.0 = (action.lim l1.0 ∧ action.lim l2.0)

We demonstrate that join means what it should.

lemma join_characterisation:

join x y z =

(∃ e .

(x = Lim e ∧ y = Lim e ∧ z = Lim e) ∨

(x = Lim e ∧ y = Unl e ∧ z = Unl e) ∨

(x = Unl e ∧ y = Lim e ∧ z = Unl e) ∨

(x = Unl e ∧ y = Unl e ∧ z = Unl e))

by (join_cases x y z)

Definition 5

locale Process =

fixes labels :: ’proc ⇒ ’lab set

and excluded :: ’proc ⇒ ’lab set

and step :: ’proc ⇒ ’lab ⇒ ’proc ⇒ bool

assumes
step_lab: step P l Q =⇒ l ∈ labels P

and step_lab_pres: step P1 l P2 =⇒ labels P1 = labels P2

and step_det: step P l Q1 =⇒ step P l Q2 =⇒ Q1 = Q2

begin

Technically, we have restricted ourselves to a single underlying process no-
tation; however, note that if the sets of processes are disjoint, we can always

9

combine two distinct notations into one simply by forming the union of their
@termstep relations.

Figure 1
datatype (’l,’p) network =

Proc ’p

| Link ’l ’l set (’l,’p) network

| Network (’l,’p) network (’l,’p) network

| Zero

Syntactically, a network is a collection of processes, possibly linked with the
Link l ls N construct.

Figure 2
fun alph where

alph (Proc P) = labels P

| alph (Link x xs N) = alph N - {x} ∪ xs

| alph (Network N1 N2) = alph N1 ∪ alph N2

| alph Zero = {}

abbreviation
actions (N :: (’lab,’proc) network) ≡

{ Lim x | x . x ∈ alph N } ∪ { Unl x | x . x ∈ alph N }

Figure 3 inductive nt :: (’lab,’proc) network ⇒ ’lab action ⇒ (’lab,’proc) network⇒ bool (_ −_→ _)

where
Excl: [[x ∈ labels P ; x ∈ excluded P]] =⇒

nt (Proc P) (Lim x) (Proc P)

| Link1: [[nt N (Unl x) N’ ; l ∈ xs]] =⇒
nt (Link x xs N) (Lim l) (Link x xs N’)

| Link2: [[nt N l N’ ; label l /∈ {x} ∪ xs]] =⇒
nt (Link x xs N) l (Link x xs N’)

| Step: [[step P1 x P2; x /∈ excluded P1]] =⇒ nt (Proc P1) (Unl x)

(Proc P2)

| Sync: [[nt N1 l1 N1’ ; nt N2 l2 N2’ ; join l1 l2 l]] =⇒
nt (Network N1 N2) l (Network N1’ N2’)

| Pass1: [[label l /∈ alph N1 ; nt N2 l N2’]] =⇒
nt (Network N1 N2) l (Network N1 N2’)

| Pass2: [[nt N1 l N1’ ; label l /∈ alph N2]] =⇒
nt (Network N1 N2) l (Network N1’ N2)

x ∈ labels P ∧ x ∈ excluded P

Proc P −action.Lim x→ Proc P

N −Unl x→ N’ ∧ l ∈ xs

Link x xs N −action.Lim l→ Link x xs N’

N −l→ N’ ∧ label l /∈ {x} ∪ xs

Link x xs N −l→ Link x xs N’

step P1.0 x P2.0 ∧ x /∈ excluded P1.0

Proc P1.0 −Unl x→ Proc P2.0

10

N1.0 −l1.0→ N1’ ∧ N2.0 −l2.0→ N2’ ∧ join l1.0 l2.0 l

Network N1.0 N2.0 −l→ Network N1’ N2’

label l /∈ alph N1.0 ∧ N2.0 −l→ N2’

Network N1.0 N2.0 −l→ Network N1.0 N2’

N1.0 −l→ N1’ ∧ label l /∈ alph N2.0

Network N1.0 N2.0 −l→ Network N1’ N2.0

inductive cases nt_network

[elim, consumes 1, case_names Sync Pass1 Pass2]:

nt (Network N1 N2) t N’

inductive cases nt_proc[elim]:

nt (Proc P) t N’

inductive cases nt_link[elim]:

nt (Link x xs N) t N’

method rule_inversion uses nt =

((cases rule: nt_network[case_names Sync Pass1 Pass2])

| (cases rule: nt_proc[consumes 1, case_names Excl Step])

| (cases rule: nt_link[consumes 1, case_names Link1 Link2])

)

lemma nt_action_in_alph[elim]:

assumes t: nt N1 l N2

shows label l ∈ alph N1

using assms proof (induction N1 arbitrary: N2 l)

case (Proc P)

then show ?case

apply (cases rule: nt_proc)

using step_lab by auto

next
case (Link x xs N)

show ?case using Link(2) proof rule_inversion

case (Link1 l N’)

then show ?thesis by simp

next
case (Link2 N’)

then show ?thesis using Link.IH by auto

qed

next
case (Network N11 N12)

show ?case using Network(3) proof (rule_inversion)

case (Sync l1 N1’ l2 N2’)

11

then show ?thesis

using Network.IH join_def by (metis Un_iff alph.simps(3))

next
case (Pass1 N2’)

then show ?thesis

using Network.IH(2) by auto

next
case (Pass2 N1’)

then show ?thesis

using Network.IH(1) by auto

qed

next
case Zero

then show ?case using nt.simps by blast

qed

lemma nt_action_not_in_alph[elim]:

assumes label l /∈ alph N1

shows ¬ nt N1 l N2

using assms nt_action_in_alph by blast

lemma nt_alph_preserved[elim]:

assumes nt N1 l N2

shows (e ∈ alph N1) = (e ∈ alph N2)

using assms proof (induction N1 arbitrary: l N2)

case (Proc x1 x2)

then show ?case using step_lab_pres by auto

next
case (Link x xs N)

then show ?case by auto

next
case (Network N11 N12)

then show ?case by auto

next
case Zero

then show ?case using nt.simps by blast

qed

lemma nt_proc_proc[elim]:

assumes nt (Proc P) a N

shows ∃ ! P’ . N = Proc P’

using assms nt.cases step_det by auto

12

lemma weak_preimage_excluded:

assumes nt (Proc P) (Lim x) Q

shows x ∈ excluded P and Q = Proc P

using nt_proc assms by blast+

lemma nt_proc_action_deterministic[elim]:

assumes nt (Proc P) l1 N1 nt (Proc P) l2 N2 label l1 = label l2

shows l1 = l2 ∧ N1 = N2

proof -

from assms show ?thesis proof (cases l1)

case (Lim x)

then have *: x ∈ excluded P using assms by blast

have l2 = Lim x using assms(2) proof (rule_inversion)

case (Excl x’)

then have x = x’ using assms by (simp add: Lim)

then show ?thesis by (simp add: local.Excl(1))

next
case (Step x’ Q)

then have x = x’ using assms by (simp add: Lim)

then show ?thesis using * Step by simp

qed

thus ?thesis using Lim assms by blast

next
case (Unl x)

then have *: x /∈ excluded P using assms by blast

have l1 = l2 using assms proof (rule_inversion)

case (Excl x’)

then show ?thesis using * Unl assms by auto

next
case (Step x’ P2)

then show ?thesis using Unl assms by auto

qed
thus ?thesis using Unl assms

by (metis action.sel(2) nt_proc step_det weak_preimage_excluded(2))

qed
qed

Lemma 11
lemma nt_action_deterministic[elim]:

assumes nt N x1 N1 nt N x2 N2 label x1 = label x2

shows N1 = N2

using assms proof (induction N arbitrary: x1 x2 N1 N2)

case (Proc T M)

then show ?case

using Proc.prems(1) Proc.prems(2) Proc.prems(3) nt_proc_action_deterministic

by simp

13

next case (Link l ls N)

show ?case using nt (Link l ls N) x1 N1 proof (rule_inversion)

case (Link1 l’ N’)

then show ?thesis

using Link.prems nt_action_in_alph

using Link.IH Link.prems(2) Link.prems(3) by auto

next
case (Link2 N’)

then show ?thesis

using Link.IH Link.prems by auto

qed

next case (Network M1 M2)

show N1 = N2 using nt (Network M1 M2) x1 N1 proof (rule_inversion)

case (Sync x11 M11 x12 M12)

then have
label x11 = label x1 label x12 = label x1

by (simp_all add: join_def)

then have
eq: label x11 = label x2 label x12 = label x2

by (simp_all add: Network.prems(3))

then have N2 = Network M11 M12

proof (cases rule: nt_network[OF nt (Network M1 M2) x2 N2])

case (1 x1 N1’ x2 N2’)

then show ?thesis using eq Network Sync 1

using join_def by smt

next
case (2 N2’)

then show ?thesis

using Network.prems(3) label x11 = label x1 local.Sync(2)

nt_action_in_alph by fastforce

next
case (3 N1’)

then show ?thesis

using Network.prems(3) label x12 = label x1 local.Sync(3)

nt_action_in_alph by fastforce

qed

thus ?thesis

by (simp add: local.Sync(1))

next
case p1: (Pass1 N2’)

show ?thesis

using nt (Network M1 M2) x2 N2 proof (cases rule: nt_network)

case (Sync x1 N1’ x2 N2’)

14

then show ?thesis

using Network.prems join_def nt_action_not_in_alph p1(2) by
smt

next
case (Pass1 N2’)

then show ?thesis using p1

using Network.IH(2) Network.prems by blast

next
case (Pass2 N1’)

then show ?thesis using p1

using Network.prems(3) nt_action_not_in_alph by auto

qed

next
case p2: (Pass2 N1’)

show ?thesis

using nt (Network M1 M2) x2 N2 proof (cases rule: nt_network)

case (Sync x1 N1’ x2 N2’)

then show ?thesis

using Network.prems join_def nt_action_not_in_alph p2(3) by
metis

next
case (Pass1 N2’)

then show ?thesis using p2

using Network.prems(3) nt_action_in_alph by auto

next
case (Pass2 N1’)

then show ?thesis using p2

using Network.IH(1) Network.prems by blast

qed
qed

next case Zero

then show N1 = N2

using nt.simps by blast

qed

lemma
assumes nt (Link l ls N1) x N2

shows unl x =⇒ label x /∈ ls

using assms by (rule_inversion, auto)

5 Transition semantic

definition nt_enabled

where
nt_enabled e N ≡ ∃ N’. nt N e N’

15

definition nt_execute

where
nt_execute e N ≡ THE N’ . nt N e N’

lemma nt_function:

assumes nt N l N1 nt N l N2

shows N1 = N2 using assms nt_action_deterministic nt_enabled_def[iff]

by blast

lemma nt_enabled_may_execute:

assumes nt_enabled e N

shows ∃ ! N’ . nt N e N’

using assms nt_enabled_def nt_function nt_enabled_def[iff] by auto

lemma nt_execute_function[iff]:

assumes nt_enabled e N

shows (nt_execute e N = N’) = nt N e N’

using nt_enabled_def[iff] assms nt_enabled_may_execute nt_execute_def

theI_unique

by metis

lemma nt_to_execute[iff]:

assumes nt N e N’

shows nt_execute e N = N’

using assms nt_enabled_def nt_execute_function by blast

interpretation nt: transition_system

nt .

lemma nt_enabled a N = (a : nt.enabled N)

by (simp add: nt_enabled_def transition_system.enabled_def)

Definition 9

definition
unlimited :: ’lab set ⇒ (’lab, ’proc) network ⇒ bool where
unlimited X N0 ≡
∀ N’ a . label a ∈ X ∧ N’ ∈ nt.reachable N0 ∧ a ∈ nt.enabled N’

−→ unl a

lemma limitation_preservation[intro]:

assumes unlimited X N1 nt N1 l N2

shows unlimited X N2

by (metis assms unlimited_def nt.reachable_intro_rev)

lemma nt_action_in_actions[elim]:

16

assumes nt N1 l N2

shows l ∈ actions N1

proof -

have label l ∈ alph N1 using assms by auto

thus ?thesis by (cases l, auto)

qed

lemma action_iff_actions:

shows (label l ∈ alph N) = (l ∈ actions N)

using alph.simps by (cases l, simp_all)

lemma nt_trace_in_actions[intro]:

fixes N :: (’lab,’proc) network

assumes nt.run N r

shows set (nt.trace_of r) ⊆ actions N

using assms proof (induction r arbitrary: N rule: list.induct)

case Nil

then show ?case by simp

next
case (Cons x r)

then obtain N’ a where N’:

nt N a N’ nt.run N’ r x = (a, N’) by auto

then have
set (nt.trace_of r) ⊆ actions N

using Cons.IH nt_alph_preserved by blast

moreover with N’ have
a ∈ actions N

using nt_action_in_actions by blast

ultimately show ?case

using x = (a, N’) by auto

qed

lemma nt_preserves_actions:

assumes nt N1 l N2

shows actions N1 = actions N2 using assms

using nt_alph_preserved by auto

lemma nt_actions:

support (nt.lang N) ⊆ actions N

proof (rule subsetI)

fix l assume
l ∈ support (nt.lang N)

then have
l ∈ support { nt.trace_of r | r . nt.run N r } by simp

17

then obtain t r where
l ∈ set t t ∈ { nt.trace_of r | t . nt.run N r }

using supportw_def supportL_def by (smt Union_iff mem_Collect_eq)

moreover then have
nt.run N r by simp

ultimately show
l ∈ actions N using nt_trace_in_actions by blast

qed

fun select where
select f [] = []

| select f (x # xs) =

(case f x of

Some x ⇒ x # select f xs

| None ⇒ select f xs)

abbreviation proj1 where
proj1 X x ≡
(case x of

(a, Network N1 N2) ⇒
(if a ∈ X then Some (a, N1) else None)

| _ ⇒ None)

abbreviation
Γ X t ≡ (select (proj1 X) t)

abbreviation
is_network N ≡
(case N of (Network _ _) ⇒ True | _ ⇒ False)

We do not define ”trace” independently, going instead directly for the notion
of language.

Definition 7

definition
lang (N :: (’lab,’proc) network) ≡
{ map label t | t . nt.trace N t ∧ list_all unl t }

lemma independent_run:

fixes N1 :: (’lab,’proc) network

assumes unlimited X N1 alph N2 ∩ alph N1 ⊆ X

assumes nt.run (Network N1 N2) t

shows nt.run N1 (Γ (actions N1) t) ∧

nt.trace_of (Γ (actions N1) t) = π (actions N1) (nt.trace_of

t)

using assms proof (induction t arbitrary: N1 N2)

18

case Nil

then show ?case

using nt.empty supp_word.tight

by (simp add: language_simps(3))

next
case (Cons x t)

then obtain N l where t:

nt (Network N1 N2) l N and [simp]: x = (l,N) and tr: nt.run N t

by auto

show ?case using t proof (cases rule: nt_network)

case (Sync l1 M1 l2 M2)

then have
label l1 ∈ alph N1

using nt_action_in_alph by simp

then have
l1 ∈ actions N1 using action_iff_actions by simp

from Sync have r:

nt.run (Network M1 M2) t using Cons.IH

using tr by blast

have alph N1 = alph M1 alph N2 = alph M2

using nt_alph_preserved Sync assms by auto

moreover then have
alph M1 ∩ alph M2 ⊆ X using Cons by auto

moreover ultimately have alphs:

unlimited X M1 alph M1 ∩ alph M2 ⊆ X

using Cons Sync by auto

then have
nt.run M1 (Γ (actions M1) t) and **:

nt.trace_of (Γ (actions M1) t) = π (actions M1) (nt.trace_of t)

using Cons.IH r by auto

then have r0:

nt.run N1 ((l1, M1) # (Γ (actions M1) t))

using nt.run.intros Sync by blast

have
actions M1 = actions N1

using nt N1 l1 M1 nt_preserves_actions by simp

moreover have
l1 = l

19

proof -

have
label l1 ∈ alph M2 using Sync

using alph N2 = alph M2 join_def nt_action_not_in_alph

by metis

moreover have
label l1 ∈ alph M1

using alph N1 = alph M1 label l1 ∈ alph N1 by blast

ultimately have
label l1 ∈ X

using alphs by blast

with unlimited X N1 Sync(2) have
unl l1

using unlimited_def nt.enabled_def assms by auto

thus
l1 = l

using join l1 l2 l by join

qed

ultimately have
nt.run N1 ((l, M1) # (Γ (actions N1) t))

using r0 by auto

moreover with l1 = l have ***:

proj1 (actions N1) x = Some (l, M1)

using Sync nt_action_in_actions by simp

ultimately have nt.run N1 (Γ (actions N1) (x # t))

by auto

moreover have
nt.trace_of (Γ (actions N1) (x # t)) = π (actions N1) (nt.trace_of

(x # t))

proof -

have
nt.trace_of (Γ (actions N1) (x # t)) =

nt.trace_of ((l, M1) # (Γ (actions N1) t))

using *** by auto

also have
... = l # nt.trace_of (Γ (actions N1) t) by simp

also have
... = l # nt.trace_of (Γ (actions M1) t) using actions M1 =

actions N1 by auto

also have
... = l # π (actions M1) (nt.trace_of t) using ** by auto

also have
... = l # π (actions N1) (nt.trace_of t) using actions M1 =

actions N1 by simp

also have

20

... = π (actions N1) (nt.trace_of (x # t)) using x = (l, N)

l1 ∈ actions N1 l1 = l

by (simp add: language_simps)

finally show ?thesis .
qed

ultimately show ?thesis by simp

next
case (Pass1 M2)

moreover then have
label l /∈ alph N1 by blast

moreover have eq:

Γ (actions N1) (x # t) = Γ (actions N1) t

using Pass1 by auto

moreover have
alph M2 ∩ alph N1 ⊆ X

using Cons.prems(2) calculation(3) nt_alph_preserved by auto

ultimately have *:

nt.run N1 (Γ (actions N1) (x # t)) ∧

nt.trace_of (Γ (actions N1) t) = π (actions N1) (nt.trace_of t)

using Cons.IH[of N1 M2] Cons tr by simp

then have
l /∈ actions N1 using action_iff_actions label l /∈ alph N1 by simp

{ have
nt.trace_of (Γ (actions N1) (x # t)) =

nt.trace_of (Γ (actions N1) t) using eq by simp

also have
. . . = π (actions N1) (nt.trace_of t) using * by simp

also have
. . . = π (actions N1) (l # nt.trace_of t) using l /∈ actions N1

by (simp add: language_simps)

also have
. . . = π (actions N1) (nt.trace_of (x # t))

using l /∈ actions N1 x = (l, N) by simp

finally have
nt.trace_of (Γ (actions N1) (x # t)) =

π (actions N1) (nt.trace_of (x # t)) .
}
with * show
nt.run N1 (Γ (actions N1) (x # t)) ∧

21

nt.trace_of (Γ (actions N1) (x # t)) = π (actions N1) (nt.trace_of

(x # t))

by auto

next
case (Pass2 M1)

then have
l ∈ (actions N1)

using nt_action_in_actions by simp

then have eq:

Γ (actions N1) (x # t) = (l,M1) # Γ (actions N1) t

using Pass2 tr by auto

have unlimited X M1

using Cons.prems local.Pass2 by blast

then have
alph N2 ∩ alph M1 ⊆ X

using Cons.prems(2) local.Pass2(2) nt_alph_preserved by auto

moreover have
nt.run (Network M1 N2) t

using local.Pass2(1) tr by blast

ultimately have *:

nt.run M1 (Γ (actions M1) t) ∧

nt.trace_of (Γ (actions M1) t) = π (actions M1) (nt.trace_of t)

using Cons.IH [of M1 N2] unlimited X M1 by blast

then have **: nt.run N1 ((l,M1) # (Γ (actions M1) t))

using nt N1 l M1 nt_enabled_def nt_to_execute by blast

moreover have actions M1 = actions N1

using nt N1 l M1 nt_alph_preserved by simp

moreover have
nt.trace_of (Γ (actions N1) (x # t)) =

π (actions N1) (nt.trace_of (x # t)) proof -

have
nt.trace_of (Γ (actions N1) (x # t)) =

l # nt.trace_of (Γ (actions N1) t) using l ∈ actions N1

using eq by auto

also have
. . . = l # nt.trace_of (Γ (actions M1) t)

using actions M1 = actions N1 by auto

also have

22

. . . = l # π (actions N1) (nt.trace_of t)

using * by (simp add: actions M1 = actions N1)

also have
. . . = π (actions N1) (nt.trace_of (x # t))

using l ∈ actions N1 by (auto simp add: language_simps)

finally show ?thesis .
qed

ultimately show ?thesis

using eq ** by force

qed
qed

Lemma 12
lemma independent_trace:

assumes unlimited X N1 alph N2 ∩ alph N1 ⊆ X

assumes nt.trace (Network N1 N2) t

shows nt.trace N1 (π (actions N1) t)

proof -

obtain r where
nt.run (Network N1 N2) r and t = nt.trace_of r

using assms nt.trace by auto

then have
nt.run N1 (Γ (actions N1) r) ∧

nt.trace_of (Γ (actions N1) r) = π (actions N1) t

using independent_run assms by auto

then show
nt.trace N1 (π (actions N1) t) by auto

qed

lemma independent_string:

assumes unlimited X N1 alph N2 ∩ alph N1 ⊆ X

and s ∈ lang (Network N1 N2)

shows π (alph N1) s ∈ lang N1

proof -

note language_simps[simp]

obtain t where *:

nt.trace (Network N1 N2) t list_all unl t s = map label t

using assms lang_def by auto

let ?t = π (actions N1) t

from * have
nt.trace N1 ?t

using independent_trace assms by simp

moreover have list_all unl ?t

using list_all unl t by (induction t, auto)

ultimately have

23

map label ?t ∈ lang N1

using lang_def by auto

have
map label (π (actions N1) t) = π (alph N1) (map label t)

proof (induction t)

case Nil

then show ?case by simp

next
case (Cons a t)

then show ?case proof (cases a ∈ actions N1)

case True

then show ?thesis

using Cons.IH by auto

next
case False

then have
π (alph N1) (map label (a # t)) =

π (alph N1) (label a # map label t)

by simp

also have
. . . = π (alph N1) (map label t)

proof -

have label a /∈ alph N1

using False action_iff_actions by auto

thus ?thesis by auto

qed
also have
. . . = map label (π (actions N1) t)

using Cons.IH by auto

also have
. . . = map label (π (actions N1) (a # t))

using False by auto

finally show ?thesis ..
qed

qed

with * show π (alph N1) s ∈ lang N1

using lang_def map label ?t ∈ lang N1 by auto

qed
Theorem 13

theorem refinement:

fixes T M

assumes unlimited X P

assumes alph N ∩ alph P ⊆ X

shows refines’ (lang (Network P N)) (alph P) (lang P)

using refines_def refines’_def

proof -

have π (alph P) (lang (Network P N)) ⊆ lang P proof
fix t’

24

assume t’ ∈ π (alph P) (lang (Network P N))

then obtain t where *:

nt.trace (Network P N) t list_all unl t t’ = π (alph P) (map label

t)

using lang_def projectL_def mem_Collect_eq by (auto simp add: language_simps)

then have
map label t ∈ lang (Network P N) using lang_def by auto

then have
π (alph P) (map label t) ∈ lang P

using independent_string assms by blast

thus t’ ∈ lang P using * by simp

qed

thus ?thesis

using refines’_def by blast

qed

lemma proc_reachable:

assumes N ∈ nt.reachable (Proc P)

shows ∃ P’. N = Proc P’

using assms by (induction, simp, fastforce)
Lemma 10

lemma unlimited_proc:

fixes r

assumes
∧

N . N ∈ nt.reachable (Proc P) =⇒
(
∧
Q . N = Proc Q =⇒ excluded Q ∩ X = {})

shows unlimited X (Proc P)

proof -

have ∀ N’ a.

label a ∈ X ∧ N’ ∈ nt.reachable (Proc P) ∧ a ∈ nt.enabled N’

−→ unl a

proof -

{
fix N a

assume
label a ∈ X

and re: N ∈ nt.reachable (Proc P)

and a ∈ nt.enabled N

then obtain P’ N’ where
nt: nt (Proc P’) a N’ and eq: N = Proc P’

using a ∈ nt.enabled N nt.enabled_def

by (smt mem_Collect_eq proc_reachable)

then have *: label a /∈ excluded P’

using label a ∈ X assms re by blast

25

have unl a

using nt (Proc P’) a N’ by (rule_inversion; cases a; insert *; auto)

}
thus ?thesis by blast

qed
thus ?thesis using unlimited_def by simp

qed

end

end

26

	Notation
	Support and projections
	Support and projection of words and languages

	Refinement
	Networks
	Actions

	Transition semantic

