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Abstract9

This paper reconsiders common benchmarking approaches to nearest neighbor search. It is shown10

that the concepts of local intrinsic dimensionality (LID), local relative contrast (RC), and query11

expansion allow to choose query sets of a wide range of difficulty for real-world datasets. Moreover,12

the effect of the distribution of these dimensionality measures on the running time performance of13

implementations is empirically studied. To this end, different visualization concepts are introduced14

that allow to get a more fine-grained overview of the inner workings of nearest neighbor search15

principles. Interactive visualizations are available on the companion website1. The paper closes with16

remarks about the diversity of datasets commonly used for nearest neighbor search benchmarking.17

It is shown that such real-world datasets are not diverse: results on a single dataset predict results18

on all other datasets well.19

2012 ACM Subject Classification Theory of computation → Nearest neighbor algorithms; Comput-20

ing methodologies → Simulation evaluation; Theory of computation → Computational geometry21

Keywords and phrases Nearest neighbor search; Benchmarking22

1 Introduction23

Nearest neighbor (NN) search is a key primitive in many computer science applications, such24

as data mining, machine learning and image processing. For example, Spring and Shrivastava25

very recently showed in [30] how nearest neighbor search methods can yield large speed-ups26

when training neural network models. In this paper, we study the classical k-NN problem.27

Given a dataset S ⊆ Rd, the task is to build an index on S to support the following type28

of query: For a query point x ∈ Rd, return the k closest points in S under some distance29

measure D.30

In many practical settings, a dataset consists of points represented as high-dimensional31

vectors. For example, word representations generated by the glove algorithm [28] associate32

with each word in a corpus a d-dimensional real-valued vector. Common choices for d are33

between 50 and 300 dimensions. Finding the true nearest neighbors in such a high-dimensional34

space is difficult, a phenomenon often referred to as the “curse of dimensionality” [11]. In35

practice, it means that finding the true nearest neighbors, in general, cannot be solved much36

more efficiently than by a linear scan through the dataset (requiring time O(n) for n data37

points) or in space that is exponential in the dimensionality d, which is impractical for large38

values of d.39

While we cannot avoid these general hardness results [2], most datasets that are used in40

applications are not truly high-dimensional. This means that the dataset can be embedded41

onto a lower-dimensional space without too much distortion. Intuitively, the intrinsic42

1 https://cecca.github.io/role-of-dimensionality-site/
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dimensionality (ID) of the dataset is the minimum number of dimensions that allows for43

such a representation [16]. There exist many explicit ways of finding good embeddings for44

a given dataset. For example, the Johnson-Lindenstrauss transformation [21] allows us to45

embed n data points in Rd into Θ((log n)/ε2) dimensions such that all pairwise distances are46

preserved up to a (1 + ε) factor with high probability. Another classical embedding often47

employed in practice is given by principal component analysis (PCA), see [22].48

In this paper, we put our focus on local measures of dimensionality. In particular, we49

consider “local intrinsic dimensionality” (LID), a measure introduced by Houle in [16], an50

adapted version of “query expansion”, a measure introduced by Ahle et al. in [1], and a local51

version of the “relative contrast” of the dataset introduced by He et al. in [15]. We defer a52

detailed discussion of these measures to Section 2. Intuitively, the LID of a data point x at a53

distance threshold r > 0 measures how difficult it is to distinguish between points at distance54

r and distance (1 + ε)r in a dataset. The Expansion of a data point x and a parameter k > 055

is the ratio of the distance of its 2k-th nearest neighbor and its k-th nearest neighbor. The56

relative contrast (RC) of a data point x is the ratio between the mean distance of x to the57

points in the dataset and the distance to its nearest neighbor. The relative contrast of a58

dataset is then the average RC over all data points. Most importantly, all three measures59

are local measures that can be associated with a single query. It was stated in [17] that the60

LID might serve as a characterization of the difficulty of k-NN queries. One purpose of this61

paper is to shed light on this statement, as well as to compare it with the other measures.62

A focus of this paper is an empirical study of how these local measures influence the63

performance of NN algorithms. To be precise, we will benchmark five different implementa-64

tions [23] which employ different approaches to NN search. Four of them (HNSW [26], IVF [20],65

Annoy [8]), and ONNG [18] stood out as most performant in the empirical study conducted by66

Aumüller et al. in [5]. Finally, we included the very recent LSH-based approach (PUFFINN)67

from Aumüller et al. [7] that promises to give recall guarantees with an adaptive query68

algorithm.69

Our experiments are based on the ann-benchmarks system from [5]. We describe their70

benchmarking approach and the changes we made to their system in Section 3. We analyze71

the distribution of local dimensionality measures of real-world datasets in Section 4. For all72

measures, we will see that there is a substantial difference between these distributions among73

datasets. We will then conduct two sets of experiments: First, we fix a dataset and choose74

as query set the set of points with smallest, medium, and largest estimated dimensionality75

measure, for each one of LID, RC, and query expansion. In addition, we choose a set of76

“diverse” query points w.r.t. their estimated dimensionality measure. As we will see, there is77

a clear tendency such that the larger the LID (resp. the smaller the RC and Expansion),78

the more difficult the query for all implementations. Among the three measures, the LID79

is the one for which this effect is most pronounced. Next, we will study how the different80

dimensionality distributions between datasets influence the running time distribution. In a81

nutshell, it cannot be concluded that any of the three dimensionality measures by itself is a82

good indicator for the relative performance of a fixed implementation over datasets.83

In the first part of our evaluation, we work in the “classical evaluation setting of nearest84

neighbor search”. This means that we relate a performance measure (such as the achieved85

throughput measured in queries per second) to a quality measure (such as the average fraction86

of true nearest neighbors found over all queries). While this is the most commonly employed87

evaluation method, we reason that this way of representing results in fact hides interesting88

details about the inner workings of an implementation. Using non-traditional visualization89

techniques provide new insights into their query behavior on real-world datasets. As one90
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example, we see that reporting average recall on the graph-based approaches from [26, 18]91

hides an important detail: For a given query, they either find all true nearest neighbors or92

not a single one. This behavior is not shared by the three other approaches that we consider;93

all yield a continuous transition from “finding no nearest neighbors” to “finding all of them”.94

As a final point, we want, ideally, to benchmark on a collection of “interesting” datasets95

that show the strengths and weaknesses of individual approaches [29]. We will conclude96

that there is little diversity among the considered real-world datasets: While the individual97

performance observations change from dataset to dataset, the relative performance between98

implementations stays the same.99

Our Contributions. The main contributions of this paper are100

a detailed evaluation of the distribution of local dimensionality measures of many real-101

world datasets used in benchmarking frameworks,102

a systematic way to create query workloads of a wide range of difficulty for nearest103

neighbor search,104

an evaluation of the influence of these different dimensionality measures on the performance105

of NN search implementations,106

considerations about the result diversity, and107

an exploration of different visualization techniques that shed light on individual properties108

of certain implementation principles.109

We hope that our approach and the tools developed will find use in future benchmarking110

studies. In particular, the way to choose query workloads with varying difficulties results in111

interesting testbeds to benchmark implementations.112

Related Work on Benchmarking Frameworks for NN. We use the benchmarking system113

described in [5] as the starting point for our study. Different approaches to benchmarking114

nearest neighbor search are described in [12, 13, 25]. We refer to [5] for a detailed comparison115

between the frameworks.116

Related Work on the Meaningfulness of Nearest Neighbor Search. Beyer et al. [9] and117

Francois et al. [14] showed that under certain randomness assumptions and in the limit118

d→∞, nearest neighbor search queries become “meaningless”, an effect usually referred to119

as the “concentration of distances”. This means that the nearest and furthest neighbor of a120

data point become nearly indistinguishable. As mentioned in [15], these observations hold121

only asymptotically and usually do not occur in real-world datasets.122

Relation to Conference Version. This paper is an extended version of the SISAP 2019123

paper [6], which focused mainly on LID as a measure of local dimensionality. To have a better124

understanding of how much our observations generalized, this version includes two other125

measures (query expansion and relative contrast) and features a new NN implementation126

based on LSH (PUFFINN).127

2 Local Dimensionality Measures128

2.1 Local Intrinsic Dimensionality129

We consider a distance-space (Rd, D) with a distance function D : Rd×Rd → R. As described130

in [3], we consider the distribution of distances within this space with respect to a reference131
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point x. Such a distribution is induced by sampling n points from the space Rd under a132

certain probability distribution. We let F : R→ [0, 1] be the cumulative distribution function133

of distances to the reference point x.134

I Definition 1 ([16]). The local continuous intrinsic dimension of F at distance r is given135

by136

IDF (r) = lim
ε→0

ln(F ((1 + ε)r)/F (r))
ln((1 + ε)r/r) ,137

whenever this limit exists.138

The measure relates the increase in distance to the increase in probability mass (the fraction139

of points that are within the ball of radius r and (1 + ε)r around the query point). Intuitively,140

the larger the LID, the more difficult it is to distinguish true nearest neighbors at distance r141

from the rest of the dataset. As described in [17], in the context of k-NN search we set r as142

the distance of the k-th nearest neighbor to the reference point x.143

Estimating LID We use the Maximum-Likelihood estimator (MLE) described in [24, 3] to144

estimate the LID of x at distance r. Let r1 ≤ . . . ≤ rk be the sequence of distances of the145

k-NN of x. The MLE ˆIDx is then146

ˆIDx = −
(

1
k

k∑
i=1

ln ri

rk

)−1

. (1)147

Amsaleg et al. showed in [3] that MLE estimates the LID well. We remark that in very148

recent work, Amsaleg et al. proposed in [4] a new MLE-based estimator that works with149

smaller k values than (1).150

2.2 Query Expansion151

The concept of the Expansion around a query point at a distance threshold r > 0 was152

introduced by Ahle et al. in [1]. In their work, the query expansion c∗x is the largest c∗x > 0153

such that the number of points within distance c∗xr is at most twice the number of points at154

distance r. They use this concept to show that an LSH approach can adapt to the query155

expansion. More precisely, the larger the query expansion, the less work is conducted by156

their adaptive query algorithm in expectation.157

For our use case in k-NN search, we adapt the notion of query expansion as follows.158

I Definition 2. Given a data set S, an integer k > 0, and a data point x, the Expansion of x159

at k is dist(x, x2k)/dist(x, xk), where xi is the i-th nearest neighbor of x in S for 1 ≤ i ≤ |S|.160

2.3 Relative Contrast161

The concept of relative contrast (RC) was introduced by He et al. in [15]. Here, we concentrate162

on the following local variant.163

I Definition 3. Given a data set S, an integer k > 0, and a data point x, let dmean be164

the average distance of x to the points in S. The local relative contrast of x in S is then165

dmean/dist(x, x∗k), where x∗k is the k-th nearest neighbor of x in S.166
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The relative contrast of the dataset S is the average local relative contrast over all167

points in a query set. It was shown in [15] that—if the relative contrast of the dataset is168

known—there is a way to choose LSH parameters to adapt to the RC. In the same way as169

query expansion, higher contrast means lower running time.170

While both Expansion and RC relate the distance of a nearest neighbor to distances of171

other data points, RC has a much more global view on the dataset while Expansion considers172

distances between close points.173

3 Overview over the Benchmarking Framework174

We use the ann-benchmarks system described in [5] to conduct our experimental study.175

Ann-benchmarks is a framework for benchmarking NN search algorithms. It covers dataset176

creation, performing the actual experiment, and storing the results of these experiments in a177

transparent and easy-to-share way. Moreover, results can be explored through various plotting178

functionalities, e.g., by creating a website containing interactive plots for all experimental179

runs.180

Ann-benchmarks interfaces with a NN search implementation by calling its preprocess181

(index building) and search (query) methods with certain parameter choices. Implementations182

are tested on a large set of parameters usually provided by the original authors of an183

implementation. The answers to queries are recorded as the indices of the points returned.184

Ann-benchmarks stores these parameters together with further statistics such as individual185

query times, index size, and auxiliary information provided by the implementation. See [5]186

for more details.187

Compared to the system described in [5], we added tools to estimate the LID based on188

Equation (1), to estimate the query Expansion based on Definition 2, to estimate the RC189

based on Definition 3, pick “challenging query sets” according to the LID, query expansion,190

and RC of individual points, and added new datasets and implementations. Moreover, we191

implemented a mechanism that allows an implementation to provide further query statistics192

after answering a query. To showcase this feature, all implementations in this study report193

the number of distance computations performed to answer a query.2194

4 Algorithms and Datasets195

4.1 Algorithms196

Nearest neighbor search algorithms for high dimensions are usually graph-, tree-, or hashing-197

based. We refer the reader to [5] for an overview over these principles and available198

implementations. In this study, we concentrate on the three implementations considered199

most performant in [5], namely HNSW [26], Annoy [8] and FAISS-IVF [20] (IVF from now on).200

We consider the very recent graph-based approach ONNG [18], and the recent LSH-based201

approach PUFFINN [7] in this study as well.202

HNSW and ONNG are graph-based approaches. This means that they build a k-NN graph203

during the preprocessing step. In this graph, each vertex is a data point and a directed edge204

(u, v) means that the data point associated with v is “close” to the data point associated205

with u in the dataset. At query time, the graph is traversed to generate candidate points.206

2 We thank the authors of the implementations for their help and responsiveness in adding this feature to
their library.
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LID EXP RC

Dataset Data Points Dim. avg median avg median avg median Metric

SIFT [19] 1 000 000 128 19.4 19.0 1.042 1.035 2.6 2.4 Euclidean
MNIST 65 000 784 13.9 13.1 1.057 1.053 2.2 2.0 Euclidean
Fashion-MNIST [31] 65 000 784 15.4 13.8 1.052 1.046 2.8 2.7 Euclidean
GLOVE [28] 1 183 514 100 17.9 17.6 1.054 1.041 2.3 2.1 Cosine
GLOVE-2M [28] 2 196 018 300 25.8 23.2 1.055 1.032 2.2 1.7 Cosine
GNEWS [27] 3 000 000 300 20.9 19.9 1.044 1.034 2.6 2.3 Cosine
Table 1 Datasets under consideration with their average local intrinsic dimensionality (LID),

their query expansion (EXP), and their local relative contrast (RC). LID is computed by MLE [3]
from the 100-NN of all the data points, EXP is computed by the fraction of distances to the 10-th
NN and 20-th NN, and RC is computed relating the distance of the 10-th NN to the average distance
computed from a random sample of 10 000 data points.

Algorithms differ in details of the graph construction, how they build a navigation structure207

on top of the graph, and how the graph is traversed.208

Annoy is an implementation of a random projection forest, which is a collection of random209

projection trees. Each node in a tree is associated with a set of data points. It splits these210

points into two subsets according to a chosen hyperplane. If the dataset in a node is small211

enough, it is stored directly and the node is a leaf. Annoy employs a data-dependent splitting212

mechanism in which a splitting hyperplane is chosen as the one splitting two “average points”213

by repeatedly sampling dataset points. In the query phase, trees are traversed using a priority214

queue until a predefined number of points is found.215

IVF builds an inverted file based on clustering the dataset around a predefined number of216

centroids. It splits the dataset based on these centroids by associating each point with its217

closest centroid. During query it finds the closest centroids and checks points in the dataset218

associated with those.219

PUFFINN uses an adaptive trie-like multi-layer LSH data structure to guide the search.220

Using the probabilistic nature of LSH, it exploits adaptive termination criteria to give221

guaranteed recall [7] without the need of parameter tuning as in the other approaches. We222

note that PUFFINN does not support Euclidean distance and is thus missing in some plots.223

We remark we used both IVF and HNSW implementations from FAISS3.224

4.2 Datasets225

Table 1 presents an overview over the datasets that we consider in this study. We restrict our226

attention to datasets that are usually employed in connection with Euclidean distance and227

Angular/Cosine distance. For each dataset, we compute the LID distribution with respect to228

the 100-NN as discussed in Section 2, in order to get a stable estimate. Furthermore, we229

compute the Expansion using, for each point, the distance of its 10-th nearest neighbor as a230

threshold, as discussed in Section 2. The RC is estimated by computing the distance of each231

point to a sample of 3000 points. SIFT, MNIST, and GLOVE are among the most-widely used232

datasets for benchmarking nearest neighbor search algorithms. Fashion-MNIST is considered233

as a replacement for MNIST, which is usually considered too easy for machine learning234

tasks [31].235

3 https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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Figure 1 Dimensionality measures for each
dataset. Lines within each distribution curve
correspond to the 25, 50 and 75 percentiles.
The red line marks the 10 000 largest esti-
mated LID and the 10 000 smallest RC/Ex-
pansion, which we use as a threshold value
to define hard query sets. To compensate the
skew of values and improve the readability,
the Expansion plot reports in log scale, omit-
ting the few values larger than 1.5. Datasets
are sorted by median LID (decreasing), RC
(increasing), and Expansion (increasing), re-
spectively.

Figure 1 provides a visual representation of the estimated distributions of LID, RC,236

and Expansion of each dataset, for k = 100. While the datasets differ widely in their237

original dimensionality, the median LID ranges from around 13 for MNIST to about 23 for238

GLOVE-2M. The distribution of LID values is asymmetric and shows a long tail behavior.239

MNIST, Fashion-MNIST, SIFT, and GNEWS are much more concentrated around the median240

compared to the two GLOVE-based datasets. Considering the RC measure, also its distribution241

is asymmetric and long tailed, with mean and median values pretty close to each other.242

Nonetheless, the distributions differ in their shape and the length of the tail. As for the243

Expansion, the values are very concentrated towards 1 (the minimum value), with extremely244

long tails which have been cut out of the figure for the sake of readability.245

5 Evaluation246

This section reports on the results of our experiments. Due to space constraints, we247

only present some selected results. More results can be explored via interactive plots at248

https://cecca.github.io/role-of-dimensionality-site/, which also contains a link249

to the source code repository. For a fixed implementation, the plots presented here consider250

the Pareto frontier over all parameter choices [5]. Tested parameter choices and the associated251

plots are available on the website.252

https://cecca.github.io/role-of-dimensionality-site/
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Table 2 Pearson correlation of between the three different measures for each dataset. The
correlations, although mild, are all statistically significant.

dataset LID/Expansion LID/RC Expansion/RC

Fashion-MNIST -0.621 -0.645 0.530
GLOVE -0.571 -0.527 0.551
GLOVE-2M -0.363 -0.253 0.325
GNEWS -0.452 -0.321 0.312
MNIST -0.569 -0.583 0.518
SIFT -0.550 -0.527 0.400

Figure 2 Scatterplots relating LID, Expansion, and RC for the GLOVE dataset for a sample of
10 000 data points. All the scales are logarithmic.

Experimental Setup Experiments were run on 2x 14-core Intel Xeon E5-2690v4 (2.60GHz)253

with 512GB RAM using Ubuntu 16.10 (kernel 4.4.0). Index building was multi-threaded,254

queries where answered in a single thread.255

Quality and Performance Metrics As quality metric we measure the individual recall of256

each query, i.e., the fraction of points reported by the implementation that are among the257

true k-NN. As performance metric, we record individual query times and the total number258

of distance computations needed to answer all queries. We usually report on the throughput,259

i.e. the average number of queries that can be answered in one second, in the plots denoted260

as QPS for queries per second.261

Objectives of the Experiments Our experiments are tailored to answer the following262

questions:263

(Q1) How do LID, Expansion, and RC correlate with each other? (Section 5.1)264

(Q2) How do the LID, Expansion, and RC of a query set influence performance of an imple-265

mentation? (Section 5.2 and 5.3)266

(Q3) How well does the number of distance computations reflect the relative running time267

performance of the tested implementations? (Section 5.4)268

(Q4) How diverse are measurements obtained on datasets? Do relative differences between269

the performance of different implementations stay the same over multiple datasets?270

(Section 5.4)271

(Q5) How concentrated are quality and performance measures around their mean for the tested272

implementations? (Section 5.5)273
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Figure 3 Recall-QPS (1/s) tradeoff – up and to the right is better – for queries selected according
to LID, solved using different algorithms. Three datasets are considered here: GLOVE, GLOVE-2M
and SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to take into account
the scale of the data.

Choosing Query Sets For each dataset, we select eight different query sets:274

easy the 10 000 points with the lowest estimated LID (resp. the highest Expansion/RC)275

medium the 10 000 points around the data point with median estimated LID (resp. Expan-276

sion/RC)277

hard the 10 000 points with the highest estimated LID (resp. lowest Expansion/RC)278

diverse 5 000 points chosen so to span the entire range of LID values (resp. Expansion/RC279

values). For the LID, we split all data points up into buckets, according to their rank by280

LID. For each query, we pick a non-empty bucket uniformly at random, and inside the281

bucket we pick a random point (with repetition). For Expansion and RC, we pick the282

1 500 points with smallest and largest values, and add 2 000 points picked uniformly at283

random from the remaining points (with repetition).284

Figure 1 marks with a red line the LID used as a threshold to build the hard queryset.285

Main takeaways The following experimental evaluation presents a lot of results, giving286

the following main insights. First, we can use local dimensionality measures to build287

benchmark query sets of varying difficulty. Second, among these measures, the Local Intrinsic288

Dimensionality is the single most effective one at selecting queries of the desired accuracy.289

Then, the diverse query set is a good general benchmark, in that it includes queries of a wide290

range of difficulties. Finally, average performance measures are convenient but often hide291

interesting behaviour, which is best studied by looking at their distribution.292

5.1 How Well do the Local Dimensionality Measures Correlate?293

Figure 2 visualizes the correlation between the three different local dimensionality measures.294

As our working hypothesis, a higher LID score is associated with a higher difficulty for a295
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Figure 4 Recall-QPS (1/s) tradeoff – up and to the right is better – for algorithm Annoy solving
queries selected according to LID, RC, and Expansion. Three datasets are considered here: GLOVE,
GLOVE-2M and SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to
take into account the scale of the data.

query, as is a low Expansion or RC score. The plot shows some correlation between the296

scores: points with a high LID also have a low Expansion and RC, and vice versa. The effect297

is particularly marked for very easy points: points with a LID ≤ 5 also have a markedly298

high Expansion and RC, which are otherwise very concentrated around the mean. If we299

compute the Pearson correlation between the different measures (reported in Table 2) we300

can see that they are mildly correlated. We notice that for both Expansion and RC there301

exist some outliers: that is points with low LID, i.e., that are classified as easy queries, which302

have very small Expansion/RC, i.e., are categorized as a difficult query. Similarly, for the303

relation of Expansion and RC, we see a general correlation with a few unstructured outliers.304

It will be interesting to see how these correlations are reflected in the performance of an305

implementation.306

5.2 Influence of Dimensionality Measures on Performance307

Figure 3 reports the performance of different configurations of all the algorithms we consider308

on the GLOVE, GLOVE-2M, and SIFT datasets, drawing queries according to the LID.309

In these plots, the best performance is attained in the upper right corner: high recall and310

high throughput.311

We observe a clear influence of the LID of the query set on the performance: the more312

difficult the query set, i.e., the larger the LID, the more down and to the left the graphs313

move, for all algorithms. This means that for higher LID it is more expensive, in terms of314

time, to answer queries with good recall.315

For all datasets except GLOVE-2M (and GNEWS with the difficult query set), almost316

all implementations were still able to achieve close to perfect recall with the parameters set.317

This means that even for queries with large LID there are points in the dataset that can be318
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difficulty of the dataset changes. The colored labels report the slowdown factor of the hard queryset
compared with the easy one.

efficiently separated from the others.319

We now turn our focus on the relationship of the three dimensionality measures with320

the performance of the algorithm. Figure 4 considers the same setup as before showing the321

results for Annoy for LID, Expansion, and RC. First of all, we observe that easy, middle, and322

hard query sets show the same behaviour we observed in Figure 3: selecting queries with323

lower Expansion/RC (or higher LID) makes them more difficult to solve for the algorithm.324

Furthermore, we note that, among the three dimensionality measures, the Expansion yields325

easier query sets with respect to the other two (i.e. the red line is always more up and to the326

right). At the same time, LID and RC yield query sets of comparable difficulty.327

To better investigate the influence that dimensionality measures have for all datasets328

and implementations, consider Figure 5, which reports the change in performance of the329

fastest configuration attaining recall at least 0.9, for each algorithm. Clearly, all measures330

allow to select query sets which are progressively more difficulty to solve accurately for all331

algorithms. However, as shown by the labels in each plot, the LID allows to select easy and332

hard querysets that have a wider performance gap than the ones selected by Expansion or333

RC, also for the datasets in which all implementations achieve high recall on the hard query334

set.335

5.3 Predictive Quality of Dimensionality Measures336

In the previous two subsections, we found evidence that all dimensionality measures allow to337

pick query sets of various difficulties. Fixing the implementation and considering all datasets,338

how well does a dimensionality measure work between two different datasets? Figure 6339

reports the queries per second of Annoy for a certain choice of datasets, with queries chosen340

from the middle, hard, and diverse query set.341

Comparing results to the dimensionality measurements depicted in Figure 1, we first342
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Figure 6 Recall-QPS (1/s) tradeoff – up and to the right is better – for Annoy on GLOVE,
SIFT, Fashion-MNIST, and MNIST with queries selected according to LID. Dashed lines are hard
query sets, solid lines are diverse query sets, dotted lines are middle query sets.

observe that the estimated median LID, RC and Expansion all give a good estimate on the343

relative performance of the algorithms on the data sets: recall that in Figure 1 the datasets344

are sorted by median score. (The plot is missing lines for GNEWS and GLOVE-2M, which are345

considerably more challenging according to Table 5.) As an exception, SIFT (middle) is much346

easier than predicted by its LID and Expansion distribution, but the RC measure predicts347

this, ranking SIFT lower than GLOVE. In particular, the hard SIFT instance (orange solid348

line) is as challenging as the medium GLOVE version (green dotted line). On the other hand,349

RC classifies MNIST as rather difficult to index, in particular compared to Fashion-MNIST.350

The plot on the right in Figure 6 clearly indicates that this is not true, and instead the351

two datasets are basically equivalent. From this, we cannot conclude that the considered352

local dimensionality measures as a single indicator explain performance differences of an353

implementation across different datasets.354

It can also be seen from the plot that the diverse query set is more difficult than the355

medium query set. In particular, at high recall it generally becomes nearly as difficult as the356

difficult dataset. For many implementations, the reason for this behaviour is that they cannot357

adapt to the difficulty of a query. They only achieve high average recall when they can solve358

sufficiently many queries with high LID or low Expansion. The parameter settings that allow359

for such guarantees slow down answering the easy queries by a lot. This manifests in running360

times that are indistinguishable from those on the hard dataset, while only roughly 30% of361

the queries are characterized as difficult ones. As we shall see in Section 5.5, some algorithms362

are indeed able to adapt to the difficulty of the query. We believe that the “diverse” query363

sets thus allow for challenging benchmarking datasets for adaptive query algorithms.364

As a side note, we remark that Fashion-MNIST is as difficult to solve as MNIST for all365

implementations, and is by far the easiest dataset for all implementations. Thus, while there366

is a big difference in the difficulty of solving the classification task [31], there is no measurable367

difference between these two datasets in the context of NN search.368

5.4 Diversity of Results369

Figure 7 gives an overview over how algorithms compare to each other among all “medium370

difficulty” querysets, selected according to the LID. Results for Expansion- and RC-based371

querysets are similar. We consider two metrics, namely the number of queries per second372

(top plot), and the number of distance computations (bottom plot). For two different average373
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Figure 7 Ranking of algorithm on five different datasets, according to recall ≥ 0.75 and ≥ 0.9,
and according to two different performance measures: number of queries per second (top) and
number of distance computations (bottom). Both plots report the ratio with the best performing
algorithm on each dataset, higher is better. Note that the scale is logarithmic.

recall thresholds (0.75 and 0.9) we then select, for each algorithm, the best performing374

parameter configuration that attains at least that recall. For each dataset, the plots report375

the ratio with the best performing algorithm on that dataset, therefore the best performer is376

reported with ratio 1. Considering different dataset, we see that there is little variation in377

the ranking of the algorithms. Only the two graph-based approaches trade ranks, all other378

rankings are stable. Annoy makes fewer distance computations (hence ranks higher in the379

figure) but is consistently outperformed by IVF.4380

Comparing the number of distance computations to running time performance, we see381

that an increase in the number of distance computations is not reflected in a proportional382

decrease in the number of queries per second. This means that the candidate set generation383

is in general more expensive for graph-based approaches, but the resulting candidate set is384

of much higher quality and fewer distance computations have to be carried out. Generally,385

both graph-based algorithms are within a factor 2 from each other, whereas the other two386

need much larger candidate lists to achieve a certain recall. The relative difference usually387

ranges from 5x to 30x more distance computations for the non-graph based approaches, in388

particular at high recall. This translates well into the performance differences we see in389

this setting: consider for instance Figure 3, where the lines corresponding to HNSW and ONNG390

upper bound the lines relative to the other algorithms.391
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Figure 8 Distribution of performance for queries on the GLOVE-2M (medium difficulty) dataset.
Looking just at the average performance can hide interesting behaviour.

0.00

0.25

0.50

0.75

1.00

0 25 50 75
lid

re
ca
ll

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
lrc

re
ca
ll

0.00

0.25

0.50

0.75

1.00

1.0001.0251.0501.0751.100
expansion

re
ca
ll

Figure 9 Distribution of Recall vs. LID, RC, and Expansion plot on the GLOVE-2M dataset,
using Annoy. Intensity reflects number of queries that achieve a combination of recall vs. LID (or
RC or Expansion). The RC plot reports only queries with RC below 5. The Expansion plot reports
only queries with Expansion below 1.1, which are the majority.
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Figure 10 Average correlation between recall and dimensionality measure (across parameter
configurations) for dataset/algorithm pairs, for each type of dimensionality measure. Note how LID
correlates more strongly with recall. Furthermore, note that some algorithms (Annoy, IVF) are more
sensitive than others to the dimensionality of the queries.

5.5 Reporting the Distribution of Performance392

In the previous sections, we made extensive use of recall/queries per second plots, where each393

configuration of each algorithm results in a single point, namely the average recall and the394

inverse of the average query time. As we shall see in this section, concentrating on averages395

can hide interesting information in the context of k-NN queries. In fact, not all queries are396

equally difficult to answer. Consider the plots in Figure 8, which report the performance of397

the five algorithms on the GLOVE-2M dataset, with medium and diverse difficulty queries398

selected according to LID. The top 2x5 plots report the recall versus the number of queries399

per second for middle (top) and diverse (bottom) query sets, and black dots correspond to400

the averages. Additionally, for each configuration, we report the distribution of the recall401

scores: the baseline of each recall curve is positioned at the corresponding queries per second402

performance. Similarly, the bottom plots report on the inverse of the individual query times403

(the average of these is the QPS in the left plot) against the average recall. In both plots,404

the best performance is achieved towards the top-right corner.405

Plotting the distributions, instead of just reporting the averages, uncovers some interesting406

behavior that might otherwise go unnoticed, in particular with respect to the recall. The407

average recall gradually shifts towards the right as the effect of more and more queries408

achieving good recalls. Perhaps surprisingly, for graph-based algorithms this shift is very409

sudden: most queries go from having recall 0 to having recall 1, taking no intermediate410

values, even for the query set that have very similar LID values. Taking the average recall as411

a performance metric is convenient in that it is a single number to compare algorithms with.412

However, the same average recall can be attained with very different distributions: looking413

at such distributions can provide more insight.414

4 We note that IVF counts the initial comparisons to find the closest centroids as distance computations,
whereas Annoy did not count the inner product computations during tree traversal.
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For the bottom plots and the middle query set, we observe that individual query times415

of all the algorithms are well concentrated around their mean. For the diverse dataset,416

algorithms might be able to adapt to the query difficulty. We observe that this is not true for417

Annoy and IVF. Both of them have a single peak in their query time, which means that they418

spend about the same time per query. On the other hand, PUFFINN, HNSW, and ONNG have419

two peaks in their performance distribution when they approach high recall. This means420

that they adapt to the presence of easy queries (where both ONNG and PUFFINN report with421

the same performance, and HNSW becomes slower for higher recall). It is surprising to see422

that all adaptive algorithms have two peaks, while the diverse query set is a mix of three423

different difficulties.424

Figure 9 gives another distributional view on the achieved result quality. The plots show425

a run of Annoy on the GLOVE-2M dataset with diverse queries. On the top margin we see426

the distribution of estimated LID values (left plot), RC values (middle plot), and Expansion427

values (right plot) for the diverse query set, on the right margin we see the distribution of428

recall values achieved by the implementation. Each of the queries corresponds to a single429

data point in the recall/LID plot and data points are summarized through squares, where430

the color intensity of a square indicates the number of data points falling into this region.431

The plots show that the higher the LID of a query, there is a clear tendency for the query to432

achieve lower recall. Expansion and RC, instead, are less predictive in this setting: we can433

still observe that low Expansion (i.e. difficult) queries have low recall, but the relationship is434

less marked.435

To further investigate the relationship between the dimensionality measures and the436

recall, we compute the correlation between each measure and the recall, reporting it in437

Figure 10. We observe that, as expected, the LID is is negatively correlated with the recall438

(i.e. the higher the LID, the harder it is to answer the query accurately), whereas the RC439

and Expansion are positively correlated. Looking at the magnitude of the correlation, we440

can clearly see that for any pair of dataset and algorithm, the recall correlates more strongly441

with the LID. Therefore, if we have to pick queries according to a single local dimensionality442

measure, the LID is the best predictor for the difficulty. Obviously, our observation that no443

single dimensionality measure is a perfect predictor for the difficulty of queries still holds.444

Interestingly, the choice of Expansion as a cost measure to which an LSH query algorithm445

may adapt to in [1] seems well-motivated: As the only out of five implementation, LSH-based446

PUFFINN shows the strongest correlation to Expansion and not to LID.447

For space reasons, we do not report other parameter configurations and datasets, which448

nonetheless show similar behaviors. All of them can be accessed at the website.449

6 Summary450

In this paper we studied the influence of LID, RC, and Expansion to the performance of451

nearest neighbor search algorithms. We showed that all three measures allow to choose query452

sets of a wide range of difficulty from a given dataset. We also showed how different LID,453

RC, and Expansion distributions influence the running time performance of the algorithms.454

In this respect, we found that LID is a better predictor of performance than the other two.455

In any case, we could not conclude that the any of the three scores alone can predict running456

time differences well. In particular, SIFT is usually easier than GLOVE for the algorithms:457

while GLOVE’s LID distribution would predict the opposite, the RC distribution correctly458

predicts this relationship between the datasets. However, the RC distribution does not459

predict differences correctly, either.460
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With regard to challenging query workloads, we described a way to choose diverse query461

sets. They have the property that for most implementations it is easy to perform well462

for most of the query points, but they contain many more easy and difficult queries than463

query workloads chosen randomly from the dataset. We believe this is a very interesting464

benchmarking workload for approaches that try to adapt to the difficulty of an individual465

query.466

We introduced novel visualization techniques to show the uncertainty within the answer467

to a set of queries, which made it possible to show a clear difference between the graph-based468

algorithms and the other approaches. Furthermore, these visualizations allow to see whether469

a particular algorithm is able to adapt to the difficulty of the queries.470

We hope that this study initiates the search for more diverse datasets, or for theoretical471

reasoning why certain algorithmic principles are generally better suited for nearest neighbor472

search. On a more practical side, Casanova et al. showed in [10] how dimensionality testing473

can be used to speed up reverse k-NN queries. We would be interested in seeing whether the474

LID can be used at other places in the design of NN algorithms to guide the search process475

or the parameter selection.476

Acknowledgements477

The authors would like to thank the anonymous reviewers of the conference version of this478

paper, who helped to improve the presentation of the paper. The research leading to these479

results has received funding from the European Research Council under the European Union’s480

7th Framework Programme (FP7/2007-2013) / ERC grant agreement no. 614331.481

References482

1 Ahle, T.D., Aumüller, M., Pagh, R.: Parameter-free locality sensitive hashing for spherical483

range reporting. In: SODA. pp. 239–256. SIAM (2017)484

2 Alman, J., Williams, R.: Probabilistic polynomials and hamming nearest neighbors. In:485

FOCS’15. pp. 136–150486

3 Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K.I., Nett, M.:487

Estimating local intrinsic dimensionality. In: KDD’15. pp. 29–38. ACM (2015)488

4 Amsaleg, L., Chelly, O., Houle, M.E., Kawarabayashi, K.i., Radovanović, M., Treeratanajaru,489

W.: Intrinsic dimensionality estimation within tight localities. In: Proceedings of the 2019490

SIAM International Conference on Data Mining. pp. 181–189. SIAM (2019)491

5 Aumüller, M., Bernhardsson, E., Faithfull, A.J.: Ann-benchmarks: A benchmark-492

ing tool for approximate nearest neighbor algorithms. Inf. Syst. 87 (2020), see493

https://arxiv.org/abs/1807.05614 for an open access version.494

6 Aumüller, M., Ceccarello, M.: The role of local intrinsic dimensionality in benchmarking495

nearest neighbor search. In: SISAP. Lecture Notes in Computer Science, vol. 11807, pp.496

113–127. Springer (2019)497

7 Aumüller, M., Christiani, T., Pagh, R., Vesterli, M.: PUFFINN: parameterless and universally498

fast finding of nearest neighbors. In: ESA. LIPIcs, vol. 144, pp. 10:1–10:16. Schloss Dagstuhl -499

Leibniz-Zentrum für Informatik (2019)500

8 Bernhardsson, E.: Annoy, https://github.com/spotify/annoy501

9 Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is ”nearest neighbor” mean-502

ingful? In: ICDT. Lecture Notes in Computer Science, vol. 1540, pp. 217–235. Springer503

(1999)504

10 Casanova, G., Englmeier, E., Houle, M.E., Kröger, P., Nett, M., Schubert, E., Zimek, A.:505

Dimensional testing for reverse k-nearest neighbor search. PVLDB 10(7), 769–780 (2017)506

https://github.com/spotify/annoy


18 The Role of Local Dimensionality Measures in Benchmarking Nearest Neighbor Search

11 Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM507

Comput. Surv. 33(3), 273–321 (Sep 2001). https://doi.org/10.1145/502807.502808508

12 Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray, A.G.:509

MLPACK: A scalable C++ machine learning library. J. of Machine Learning Research 14,510

801–805 (2013)511

13 Edel, M., Soni, A., Curtin, R.R.: An automatic benchmarking system. In: NIPS 2014 Workshop512

on Software Engineering for Machine Learning (2014)513

14 François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE Trans.514

Knowl. Data Eng. 19(7), 873–886 (2007)515

15 He, J., Kumar, S., Chang, S.: On the difficulty of nearest neighbor search. In: ICML. icml.cc516

/ Omnipress (2012)517

16 Houle, M.E.: Dimensionality, discriminability, density and distance distributions. In: Data518

Mining Workshops (ICDMW). pp. 468–473. IEEE (2013)519

17 Houle, M.E., Schubert, E., Zimek, A.: On the correlation between local intrinsic dimensionality520

and outlierness. In: SISAP’18. pp. 177–191 (2018). https://doi.org/10.1007/978-3-030-02224-521

2_14522

18 Iwasaki, M., Miyazaki, D.: Optimization of Indexing Based on k-Nearest Neighbor Graph for523

Proximity Search in High-dimensional Data. ArXiv e-prints (Oct 2018)524

19 Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neigh-525

bor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011).526

https://doi.org/10.1109/TPAMI.2010.57527

20 Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. CoRR528

abs/1702.08734 (2017)529

21 Johnson, W.B., Lindenstrauss, J., Schechtman, G.: Extensions of Lipschitz maps into Banach530

spaces. Israel Journal of Mathematics 54(2), 129–138 (1986)531

22 Jolliffe, I.: Principal component analysis. Springer (2011)532

23 Kriegel, H., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: Are we comparing533

algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378 (2017)534

24 Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: NIPS’15.535

pp. 777–784 (2005)536

25 Li, W., Zhang, Y., Sun, Y., Wang, W., Zhang, W., Lin, X.: Approximate nearest neighbor537

search on high dimensional data - experiments, analyses, and improvement (v1.0). CoRR538

abs/1610.02455 (2016)539

26 Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using540

Hierarchical Navigable Small World graphs. ArXiv e-prints (Mar 2016)541

27 Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in542

vector space. CoRR abs/1301.3781 (2013)543

28 Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In:544

Empirical Methods in Natural Language Processing (EMNLP). pp. 1532–1543 (2014)545

29 Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures of algorithm546

performance across instance space. Computers & Operations Research 45, 12 – 24 (2014)547

30 Spring, R., Shrivastava, A.: Scalable and sustainable deep learning via randomized hashing.548

In: KDD’17. pp. 445–454 (2017). https://doi.org/10.1145/3097983.3098035549

31 Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking550

machine learning algorithms. CoRR abs/1708.07747 (2017)551

A Additional experiments552

A.1 How Well is Running Time Reflected in Distance Computations553

Figures 11 and 12 present the same setup as in subsection 5.2, but this time relating recall554

to the number of distance computations required to achieve that recall. This cost measure555
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Figure 11 Recall-Distance computations tradeoff – down and to the right is better – for queries
selected according to their LID. Three datasets are considered here: GLOVE, GLOVE-2M and
SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to take into account the
scale of the data.

is more robust to implementation details and gives a more general view on how well an556

approach is able to efficiently index the data set.557

Let us consider Figure 11. For the recall vs. distance computations trade-off, we aim558

for all curves to be down and to the right, which reflects high recall with a small number of559

distance computations. In general, the trend observed in the running time study continues560

for distance computations: the easy, middle, and hard query sets are progressively more561

difficult to answer. Graph-based approaches compute considerably fewer distances, and there562

is little difference in these two approaches. With regard to the other approaches, Annoy563

computes fewest distances, but turns out to be the slowest implementation on most of the564

data and query sets combinations.565

Figure 12 shows the influence of the three different dimensionality measures for Annoy.566

First, we notice that there is remarkably little difference between the three different dimen-567

sionality measures in terms of distance computations, in particular for SIFT. For the difficult568

query set, we see that Expansion provides the easier-to-index queries, whereas RC provides569

considerably more difficult queries than the two others considering the easy queryset. LID570

provides the best of both worlds.571
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Figure 12 Recall-Distance computations tradeoff – down and to the right is better – for queries
solved with Annoy. Three datasets are considered here: GLOVE, GLOVE-2M and SIFT. The scale
is logarithmic on the y axis and exponential on the x axis, to take into account the scale of the data.
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