
The Tree Inclusion Problem:
In Optimal Space and Faster

Philip Bi!"
Inge Li Gørt$

Basic setup
Trees are labeled, rooted, and ordered.

Rooted: A specific node is designated as the
root of the tree.

Labeled: Each node is assigned a label from
some alphabet .

Ordered: There is a left-to-right order among
siblings.

We compare trees by deleting nodes.

Σ

Delete a node

acc b

a

a b

a

a

c b

b

b

b

b

a

Delete a node

acc b

a

a b

a

a

c b

b

b

b

a

Delete a node

acc b

a

a b

a

a

c b

b

b

b

a

Tree Inclusion

P is included in T if P can be obtained from T
by deleting nodes in T.

P is minima!y included in T if P is not included
in any subtree of T.

The tree inclusion problem is to decide if P is
included in T, and if so, compute all subtrees
of T which minimally includes P.

Example

acc b

a

a b

a

c

c b

b

b

b

b

aa

b

a

[KM92]

[Che98]

This
paper

O(lP nT)

O(nP lT log log nT)

O(
nP nT

log nT

)

O(nP nT)O(nP nT)

O(lP nT) O(lP min(dT , lT))

O(nP + nT)

Time Space Reference

Results

XML example
catalog

book

chapterauthor

John

book

title

Databases

chapter

name section

XML

title

Queries

book

Query: “Find all books written by John with a chapter
that has something to do with XML”.

book

chapterauthor

John XML

Practical implications

Space reduction from quadratic to linear:

Possible to query significantly larger XML
databases.

Faster query time since more computation
can be kept in main memory.

Embeddings

label(v) = label(f(v)),

v is ancestor of w iff f(v) is an ancestor of f(w),

v is to the left of w iff f(v) is to the left of f(w).

An injective function from the nodes of P to T is
an embedding if:

P is included in T iff there is an embedding from
P to T.

A simple case: P is a path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

=Active set =Root of min. subtree including

Complexity

At each step of the algorithm the active set
“moves up”.

Each parent pointer in T is traversed a
constant number of times.

Using a simple data structure and exploiting
the ordering of the nodes we get a total
running time of . O(nT)

When P is not a path:

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Complexity

Let ∆ denote the set of all leaf-to-root paths in
P.

Running time is by bounded by the time used
to solve the tree inclusion problem on each
path in ∆. In total:

Space is .O(nP + nT)

∑

δ∈∆

O(nT) = O(lP nT)

Alternative algorithm.

Reconsider the case when P is path:

Let firstlabel(v,l) denote the nearest ancestor
of the node v in T with label l.

At each step we “essentially” compute
firstlabel(v, l) for each v in the active set.

Idea: Use a fast data structure supporting
firstlabel queries. Known as the tree color
problem.

Lemma [Dietz89] For any tree T there is a
data structure using space,
expected preprocessing time which supports
firstlabel(v,l) in time.

Alternative algorithm

O(nT) O(nT)

O(log log nT)

For each node in P there is an active set and
for each node in this active set we have to
compute a firstlabel query.

Size of active set is at most . Total time:

Space is still .

Complexity

O(nP lT log log nT)

O(nP + nT)

lT

Improving the worst-case
Divide T into micro trees of
size which overlap in at most 2
nodes using a clustering technique from
[AHT97].

Each micro tree is represented by a constant
number of nodes in a macro tree and connected
according to the overlap in the micro trees.

Essentially we do a “four russian” technique to
get the speedup.

O(nT / log nT)
O(log nT)

Clustering example

The Macro Tree

Properties of macro trees

Each node x in the macro tree induces a
micro tree (or forest) denoted I(x).

The label of x is the set of labels in I(x).

Macro Tree

MM-node sets

To a represent a node set V in T we represent
for each node x in the macro tree the subset
of V in I(x).

Each such subset is represent by a bitstring
using a constant number of words.

V is represented in space.O(nT / log nT)

Firstlabel on mm-node set

How can we compute firstlabel(M, l) for a mm-
node set M?

Use preprocessing to compute firstlabel on
the micro trees fast.

Combine the results using the macro tree to
get solution.

Handling micro trees fast
Compute firstlabel(S,X, l) for a set of nodes X
in a micro tree S. S and X are represented
compactly in bitstrings.

For a! possible S and X precompute the
following:

ancestor(S, X): All ancestors of X in S.

deep(S,X): Subset of X obtained by
removing nodes that are ancestors of
another node in X.

Handling micro trees fast

Since S and X are of logarithmic size ancestor
and deep can be computed (using dynamic
programming) in linear time and space.

Tabulating all inputs gives linear time lookup.

Handling micro trees fast

For each micro tree S in T compute and store
a dictionary (indexed by labels) containing:

mask(l): The set of nodes in S with label l.

With perfect hashing this gives total linear
space, linear expected preprocessing time, and
constant lookup time.

firstlabel(S,X,b)

b

b a

b

b

b a

b

a

aa a b

Firstlabel not in S?

General solution

 Compute firstlabel on each of the micro trees
in M.

This gives a firstlabel query on the macro tree
which is solved in linear time on the macro
tree.

Complexity

Time for firstlabel becomes .

Similar bound for all other needed
manipulation of node sets.

Total time becomes .

Space is still .

O(
nP nT

log nT

)

O(nP + nT)

O(nT / log nT)

Conclusion

Theorem 1 For tree P and T the tree inclusion
problem can be solved in time

and space .

O(min(lP nT , nP lT log log nT ,
nP nT

log nT

))

O(nP + nT)

International Society for Computer Assisted
Orthopaedic Surgery.

Club of Amateurs in Optical Spectroscopy.

Collective for Alternative Organisation
Studies.

 Coastal Alaskan Observing System.

Community Assembled Operating System.

Code for Adaptive Optics Systems.

