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Basic setup
Trees are labeled, rooted, and ordered.

Rooted: A specific node is designated as the 
root of the tree.

Labeled: Each node is assigned a label from 
some alphabet    . 

Ordered: There is a left-to-right order among 
siblings.

We compare trees by deleting nodes. 
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Tree Inclusion

P is included in T if P can be obtained from T 
by deleting nodes in T. 

P is minima!y included in T if P is not included 
in any subtree of T.

The tree inclusion problem is to decide if P is 
included in T, and if so, compute all subtrees 
of T which minimally includes P.
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XML example
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Query: “Find all books written by John with a chapter 
that has something to do with XML”.
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Practical implications

Space reduction from quadratic to linear:

Possible to query significantly larger XML 
databases.

Faster query time since more computation 
can be kept in main memory.



Embeddings

label(v) = label(f(v)),

v is ancestor of w iff f(v) is an ancestor of f(w),

v is to the left of w iff f(v) is to the left of f(w).

An injective function from the nodes of P to T is
an embedding if:

P is included in T iff there is an embedding from 
P to T.



A simple case: P is a path
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Complexity

At each step of the algorithm the active set 
“moves up”. 

Each parent pointer in T is traversed a 
constant number of times.

Using a simple data structure and exploiting 
the ordering of the nodes we get a total 
running time of           .  O(nT )



When P is not a path:
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Complexity

Let ∆ denote the set of all leaf-to-root paths in 
P.

Running time is by bounded by the time used  
to solve the tree inclusion problem on each 
path in ∆. In total: 

Space is                       .O(nP + nT )

∑

δ∈∆

O(nT ) = O(lP nT )



Alternative algorithm.

Reconsider the case when P is path:

Let firstlabel(v,l) denote the nearest ancestor 
of the node v in T with label l. 

At each step we “essentially” compute 
firstlabel(v, l) for each v in the active set.



Idea: Use a fast data structure supporting 
firstlabel queries. Known as the tree color 
problem.

Lemma [Dietz89] For any tree T there is a 
data structure using            space,           
expected preprocessing time which supports 
firstlabel(v,l) in                       time. 

Alternative algorithm

O(nT ) O(nT )

O(log log nT )



For each node in P there is an active set and 
for each node in this active set we have to 
compute a firstlabel query.

Size of active set is at most     . Total time:  

Space is still                       .

Complexity

O(nP lT log log nT )

O(nP + nT )

lT



Improving the worst-case
Divide T into                             micro trees of 
size                    which overlap in at most 2 
nodes using a clustering technique from 
[AHT97]. 

Each micro tree is represented by a constant 
number of nodes in a macro tree and connected 
according to the overlap in the micro trees.

Essentially we do a “four russian” technique to 
get the speedup.  

O(nT / log nT )
O(log nT )



Clustering example



The Macro Tree



Properties of macro trees

Each node x in the macro tree induces a 
micro tree (or forest) denoted I(x). 

The label of x is the set of labels in I(x).



Macro Tree



MM-node sets

To a represent a node set V in T we represent 
for each node x in the macro tree the subset 
of  V in I(x).      

Each such subset is represent by a bitstring 
using a constant number of words.

V is represented in                             space.O(nT / log nT )



Firstlabel on mm-node set

How can we compute firstlabel(M, l) for a mm-
node set M?

Use preprocessing to compute firstlabel on 
the micro trees fast. 

Combine the results using the macro tree to 
get solution.  



Handling micro trees fast
Compute firstlabel(S,X, l) for a set of nodes X 
in a micro tree S. S and X are represented 
compactly in bitstrings.

For a! possible S and X precompute the 
following: 

ancestor(S, X): All ancestors of X in S.  

deep(S,X): Subset of X obtained by 
removing nodes that are ancestors of 
another node in X. 



Handling micro trees fast

Since S and X are of logarithmic size ancestor 
and deep can be computed (using dynamic 
programming) in linear time and space.

Tabulating all inputs gives linear time lookup.



Handling micro trees fast

For each micro tree S in T compute and store 
a dictionary (indexed by labels) containing: 

mask(l): The set of nodes in S with label l.

With perfect hashing this gives total linear 
space, linear expected preprocessing time, and  
constant lookup time.



firstlabel(S,X,b)

b

b a

b

b

b a

b

a

aa a b



Firstlabel not in S?



General solution

 Compute firstlabel on each of the micro trees  
in M. 

This gives a firstlabel query on the macro tree 
which is solved in linear time on the macro 
tree.



Complexity

Time for firstlabel becomes                            . 

Similar bound for all other needed 
manipulation of node sets. 

Total time becomes                     .  

Space is still                       . 
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nP nT
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)
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Conclusion

Theorem 1 For tree P and T the tree inclusion 
problem can be solved in time

and space                        . 

O(min(lP nT , nP lT log log nT ,
nP nT

log nT

))

O(nP + nT )



International Society for Computer Assisted 
Orthopaedic Surgery.

Club of Amateurs in Optical Spectroscopy.

Collective for Alternative Organisation 
Studies.

 Coastal Alaskan Observing System.

Community Assembled Operating System.

Code for Adaptive Optics Systems.


