
Rasmus Pagh

Dynamic range reporting in
one dimension on a RAM

(to appear at STOC 2005)

Rasmus Pagh

Dept. of Theoretical Computer Science, ITU
Joint work with Chr. W. Mortensen and Mihai Patrascu

CAOS seminar series, February 3, 2005

Rasmus Pagh

Outline

• Range reporting
• RAM model
• Van Emde Boas-like solution
• New data structure:

– Solution using suboptimal space
– Reducing space

• Open problems

Rasmus Pagh

Dynamic range reporting in 1-D

• Maintain a set S of points (numbers)
along a line under insertion and
deletion of points

• Answer FindAny queries: Given x,y
return an element from S∩[x;y], or
report than none exists.

• Once a point has been found, further
points in [x;y] can be retrieved in
constant time per point.

Rasmus Pagh

RAM model

• Models the capabilities of a real
computer:
– Numbers are really bit strings, and we can

manipulate these bit strings, use them to
address memory cells, etc.

– Every step of a computation, and every
memory access counts as 1 time unit.

• Contrast e.g. with the comparison
model, where membership searches
take Ω(log n) time. O(1) time solutions
are known on a RAM.

Rasmus Pagh

Approach 1: Predecessor search

• Find predecessor of y in S.
• Elements of S in binary search tree:

– O(log n) time for FindAny(x,y)
– O(log n) time for updates.

• Optimal in comparison-model.

Can the features of the RAM model be
used to improve on this?

Rasmus Pagh

van Emde Boas - basic idea

• Consider integers as bit strings of
length w.

• The integer s ∈ S that has the longest
common prefix with x is either the
predecessor or successor of x.

• Search for length of lcp(x,s) by binary
search in [0;w] - log(w) steps.

• Each prefix of a key in S is stored in a
hash table. If there is a unique key x
having prefix p, we associate x with p.

(1975)

Rasmus Pagh

van Emde Boas - example

• Search for x=10001101:
– Lookup(1000): Nonunique prefix.
– Lookup(100011): Not a prefix.
– Lookup(10001): Unique prefix of 10001010.

• Insert x=10001101:
– Look up every prefix and change:

Not a prefix → Unique prefix of x.
Unique prefix → Nonunique prefix.

Rasmus Pagh

van Emde Boas - analysis

• Predecessor search: O(log w) time.
• Insertion: O(log w) time.
• Space: O(nw) words.

• Space saving trick (Willard 1983):
– Use vEB structure only for every Θ(w)th

element of S (in sorted order)
– Associate with every element of vEB a

search tree of Θ(w) elements from S.

– Improves space to O(n) words.

Rasmus Pagh

Limits to predecessor search

• It is known that Ω(log w/log log w)
time is needed to answer precesessor
queries, using polynomial space.

• But FindAny(x,y) is different from
predecessor search:
– We know both endpoints.
– We are happy with any point in S∩[x;y].

• Useful fact: All points in S∩[x;y] will
have lcp(x,y) as a prefix.

Rasmus Pagh

Approach 2: LCP search

• Store every prefix p of some element in
S in a hash table along with:
– The largest element a in S with prefix p0.
– The smallest element b in S with prefix p1.

• FindAny(x,y):
– Look up lcp(x,y) and retrieve (if ∃) a and b.
– If S∩[x;y] is nonempty, a or b is in [x;y].

• Constant time search!
• Space later improved to O(n) words.

(Alstrup, Brodal, and Rauhe, 2001)

Miltersen et al. (1995)

Rasmus Pagh

New result: Fast and dynamic

• FindAny(x,y):
– Choose your own time bound t in the range

O(1) to O(log log w).
– Update time becomes O(w-2t+log w).
– Space O(n).

• I will concentrate on the end of the
trade-off with:
– FindAny in time O(log log w), and
– Updates in time O(log w)
– ... and not go into details on space usage.

Rasmus Pagh

Tries

• A trie for a set of strings S is a tree with
– labeled edges, where
– the labels of the root-to-leaf paths form (by

concatenation) the strings in S.

• We will consider:
– The binary trie, where labels are in {0,1},

and more generally:
– The trie of order t, with labels from {0,1}2

t
,

for t=0,1,..,log w.
– In the trie of order t we view elements of S

as strings of length w/2t.

Rasmus Pagh

Searching tries

• van Emde Boas search:
– Look up node in trie of order log(w)-1,
– look up node in trie of order log(w)-2,
– ...
– look up node in trie of order 0.

• Our search idea:
– Do binary search on the tries to find the

one ”suitable” for the search.
– Number of steps becomes log log w.
– Updates take constant time per trie.

Rasmus Pagh

Example trie of order 0

• Assume z is an extreme element of a
maximal subtrie
inside [x;y].

• For simplicity
assume it is
the only such
subtrie.

• lcp(x,y) is
a prefix
of z.

x yz

lcp(x,y)

Rasmus Pagh

Example higher order trie

• In some higher order trie, {x,y,z} have
a common lcp.

• We wish to find
the highest
order trie t
where this
is not the
case.

x yz

lcp(x,y)=lcp(x,z)
 =lcp(y,z)

Rasmus Pagh

Answering the query

• In example, the data structure for the
trie t associates
info on z with
the pink node.

• Query looks up
both the red
and the
pink node.

x yz

lcp(x,y)

Rasmus Pagh

Finding the right trie

• Tries of order > t:
– The node where x and y branch is also a

branching node of that trie.

• Tries of order ≤ t:
– The node where x and y branch is not a

branching node of that trie.

• All tries store their branching nodes in
a hash table (at most n per trie).

Rasmus Pagh

Dynamic updates - sketch

• For insertion of an element we:
– Find its position in the 0th order trie, using

vEB search, in O(log w) time.
– Adjust at most one extreme point in each

trie in O(1) time.
– Create at most one new branching node in

each trie in O(1) time.

• Deletions are symmetric to insertions.

Rasmus Pagh

Reducing the space

• Ingredient 1:
”Compressed pointers” of O(log w) bits
enough to represent most nodes in the
tries (Alstrup et al. ’01).

• Ingredient 2:
Dynamic perfect hashing using less
space than the set of keys hashed.

Rasmus Pagh

Conclusion and open questions

• Presented new dynamic range reporting
data structure with very fast queries.

• Application: String prefix search
– ”Find a string with prefix x”

• Are the bounds optimal?
• From a practical point of view, the

query time is a small constant
(log log w<4 in practical situations).

• Better than vEB and search trees in
practice?

