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Outline

• Range reporting
• RAM model
• Van Emde Boas-like solution
• New data structure:

– Solution using suboptimal space
– Reducing space

• Open problems
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Dynamic range reporting in 1-D

• Maintain a set S of points (numbers)
along a line under insertion and
deletion of points

• Answer FindAny queries: Given x,y
return an element from S∩[x;y], or
report than none exists.

• Once a point has been found, further
points in [x;y] can be retrieved in
constant time per point.
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RAM model

• Models the capabilities of a real
computer:
– Numbers are really bit strings, and we can

manipulate these bit strings, use them to
address memory cells, etc.

– Every step of a computation, and every
memory access counts as 1 time unit.

• Contrast e.g. with the comparison
model, where membership searches
take Ω(log n) time. O(1) time solutions
are known on a RAM.
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Approach 1: Predecessor search

• Find predecessor of y in S.
• Elements of S in binary search tree:

– O(log n) time for FindAny(x,y)
– O(log n) time for updates.

• Optimal in comparison-model.

Can the features of the RAM model be
used to improve on this?
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van Emde Boas - basic idea

• Consider integers as bit strings of
length w.

• The integer s ∈ S that has the longest
common prefix with x is either the
predecessor or successor of x.

• Search for length of lcp(x,s) by binary
search in [0;w] - log(w) steps.

• Each prefix of a key in S is stored in a
hash table. If there is a unique key x
having prefix p, we associate x with p.

(1975)
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van Emde Boas - example

• Search for x=10001101:
– Lookup(1000): Nonunique prefix.
– Lookup(100011): Not a prefix.
– Lookup(10001): Unique prefix of 10001010.

• Insert x=10001101:
– Look up every prefix and change:

Not a prefix → Unique prefix of x.
Unique prefix → Nonunique prefix.
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van Emde Boas - analysis

• Predecessor search: O(log w) time.
• Insertion: O(log w) time.
• Space: O(nw) words.

• Space saving trick (Willard 1983):
– Use vEB structure only for every Θ(w)th

element of S (in sorted order)
– Associate with every element of vEB a

search tree of Θ(w) elements from S.

– Improves space to O(n) words.
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Limits to predecessor search

• It is known that Ω(log w/log log w)
time is needed to answer precesessor
queries, using polynomial space.

• But FindAny(x,y) is different from
predecessor search:
– We know both endpoints.
– We are happy with any point in S∩[x;y].

• Useful fact: All points in S∩[x;y] will
have lcp(x,y) as a prefix.
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Approach 2: LCP search

• Store every prefix p of some element in
S in a hash table along with:
– The largest element a in S with prefix p0.
– The smallest element b in S with prefix p1.

• FindAny(x,y):
– Look up lcp(x,y) and retrieve (if ∃) a and b.
– If S∩[x;y] is nonempty, a or b is in [x;y].

• Constant time search!
• Space later improved to O(n) words.

(Alstrup, Brodal, and Rauhe, 2001)

Miltersen et al. (1995)
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New result: Fast and dynamic

• FindAny(x,y):
– Choose your own time bound t in the range

O(1) to O(log log w).
– Update time becomes O(w-2t+log w).
– Space O(n).

• I will concentrate on the end of the
trade-off with:
– FindAny in time O(log log w), and
– Updates in time O(log w)
– ... and not go into details on space usage.
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Tries

• A trie for a set of strings S is a tree with
– labeled edges, where
– the labels of the root-to-leaf paths form (by

concatenation) the strings in S.

• We will consider:
– The binary trie, where labels are in {0,1},

and more generally:
– The trie of order t, with labels from {0,1}2

t
,

for t=0,1,..,log w.
– In the trie of order t we view elements of S

as strings of length w/2t.



Rasmus Pagh

Searching tries

• van Emde Boas search:
– Look up node in trie of order log(w)-1,
– look up node in trie of order log(w)-2,
– ...
– look up node in trie of order 0.

• Our search idea:
– Do binary search on the tries to find the

one ”suitable” for the search.
– Number of steps becomes log log w.
– Updates take constant time per trie.
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Example trie of order 0

• Assume z is an extreme element of a
maximal subtrie
inside [x;y].

• For simplicity
assume it is
the only such
subtrie.

• lcp(x,y) is
a prefix
of z.

x yz

lcp(x,y)



Rasmus Pagh

Example higher order trie

• In some higher order trie, {x,y,z} have
a common lcp.

• We wish to find
the highest
order trie t
where this
is not the
case.

x yz

lcp(x,y)=lcp(x,z)
           =lcp(y,z)
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Answering the query

• In example, the data structure for the
trie t associates
info on z with
the pink node.

• Query looks up
both the red
and the
pink node.

x yz

lcp(x,y)
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Finding the right trie

• Tries of order > t:
– The node where x and y branch is also a

branching node of that trie.

• Tries of order ≤ t:
– The node where x and y branch is not a

branching node of that trie.

• All tries store their branching nodes in
a hash table (at most n per trie).
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Dynamic updates - sketch

• For insertion of an element we:
– Find its position in the 0th order trie, using

vEB search, in O(log w) time.
– Adjust at most one extreme point in each

trie in O(1) time.
– Create at most one new branching node in

each trie in O(1) time.

• Deletions are symmetric to insertions.
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Reducing the space

• Ingredient 1:
”Compressed pointers” of O(log w) bits
enough to represent most nodes in the
tries (Alstrup et al. ’01).

• Ingredient 2:
Dynamic perfect hashing using less
space than the set of keys hashed.
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Conclusion and open questions

• Presented new dynamic range reporting
data structure with very fast queries.

• Application: String prefix search
– ”Find a string with prefix x”

• Are the bounds optimal?
• From a practical point of view, the

query time is a small constant
(log log w<4 in practical situations).

• Better than vEB and search trees in
practice?


