CAOS seminar series, February 3, 2005

Dynamic range reporting in
one dimension on a RAM
(to appear at STOC 2005)

Rasmus Pagh

Dept. of Theoretical Computer Science, ITU
Joint work with Chr. W. Mortensen and Mihai Patrascu

&> IT University of Copenhagen Rasmus Pagh



e Range reporting
e RAM model
e \/an Emde Boas-like solution

e New data structure:
— Solution using suboptimal space
— Reducing space

e Open problems

& 1T University of Copenhagen



e Maintain a set S of points (hnumbers)
along a line under insertion and
deletion of points

e Answer FindAny queries: Given X,y
return an element from SN[x;y], or

report than none exists.

e Once a point has been found, further
points in [X;y] can be retrieved in
constant time per point.

& 1T University of Copenhagen



e Models the capabilities of a real
computer:

— Numbers are really bit strings, and we can
manipulate these bit strings, use them to
address memory cells, etc.

— Every step of a computation, and every
memory access counts as 1 time unit.

e Contrast e.g. with the comparison
model, where membership searches
take Q(log n) time. O(1) time solutions
are known on a RAM.

& 1T University of Copenhagen



e Find predecessor of y in S.

e Elements of S in binary search tree:
- O(log n) time for FindAny(x,y)
- O(log n) time for updates.

e Optimal in comparison-model.

Can the features of the RAM model be
used to improve on this?

& 1T University of Copenhagen



(1975)

e Consider integers as bit strings of
length w.

e The integer s € S that has the longest
common prefix with X is either the
predecessor or successor of X.

e Search for length of Icp(x,s) by binary
search in [O;w] - log(w) steps.
e Each prefix of a key in S is stored in a

hash table. If there is a unique key x
having prefix p, we associate x with p.

& 1T University of Copenhagen



e Search for x=10001101:
— Lookup(1000): Nonunique prefix.
— Lookup(100011): Not a prefix.
— Lookup(10001): Unique prefix of 10001010.

e Insert x=10001101:

- Look up every prefix and change:
Not a prefix — Unique prefix of x.

Unique prefix — Nonunique prefix.

& 1T University of Copenhagen



e Predecessor search: O(log w) time.
e Insertion: O(log w) time.
e Space: O(nw) words.

e Space saving trick (Willard 1983):

— Use VvEB structure only for every 0(w)th
element of S (in sorted order)

— Associate with every element of vEB a
search tree of ®(w) elements from S.

— Improves space to O(n) words.

& 1T University of Copenhagen



e It is known that Q(log w/log log w)
time is needed to answer precesessor
queries, using polynomial space.

e But FindAny(X,y) is different from
predecessor search:
- We know both endpoints.
— We are happy with any point in SN[X;y].
o Useful fact: All points in SN[x;y] will
have Icp(X,y) as a prefix.

& 1T University of Copenhagen



Miltersen et al. (1995)

e Store every prefix p of some element in
S in a hash table along with:

- The largest element a in S with prefix pO.

— The smallest element b in S with prefix p1.
o FindAny(X,y):

- Look up lcp(x,y) and retrieve (if 3) a and b.

- If SN[Xx;y] is nonempty, a or bisin [X;Yy].
e Constant time search!

e Space later improved to O(n) words.
(Alstrup, Brodal, and Rauhe, 2001)

& 1T University of Copenhagen



o FindAny(X,y):
— Choose your own time bound t in the range
O(1) to O(log log w).
- Update time becomes O(w-2"+log w).
— Space O(n).
e I will concentrate on the end of the
trade-off with:
- FindAny in time O(log log w), and
- Updates in time O(log w)
- ... and not go into details on space usage.

& 1T University of Copenhagen



e A trie for a set of strings S is a tree with
- labeled edges, where
- the labels of the root-to-leaf paths form (by
concatenation) the strings in S.
e We will consider:

— The binary trie, where labels are in {0,1},
and more generally

- The trie of order t, with labels from {0, 1} ,
for t=0,1,..,lo0g w.

— In the trie of order t we view elements of S
as strings of length w/2".

& 1T University of Copenhagen



e van Emde Boas search:
- Look up node in trie of order log(w)-1,
- look up node in trie of order log(w)-2,

— look up node in trie of order O.

e OQur search idea:

— Do binary search on the tries to find the
one “suitable” for the search.

— Number of steps becomes log log w.
— Updates take constant time per trie.

& 1T University of Copenhagen



Example trie of order O

e Assume z is an extreme element of a
maximal subtrie N
inside [X;vy].
e For simplicity
assume it is
the only such
subtrie.

e lcp(x,y) is
a prefix
of z.

> lep(x,y)

é IT University of Copenhagen Rasmus Pagh



Example higher order trie

e In some higher order trie, {X,y,z} have

a common lcp. N
e \We wish to find
the highest
order trie t > lep(x,y)=lcp(x,z)
where this =lcp(y,z)

IS not the
case.

é IT University of Copenhagen Rasmus Pagh



Answering the query

e In example, the data structure for the
trie t associates N
info on z with
the pink node.

e Query looks up
both the red
and the
pink node.

> lep(x,y)

é IT University of Copenhagen Rasmus Pagh



e Tries of order > t:

— The node where x and y branch is also a
branching node of that trie.

e Tries of order < t:

— The node where x and y branch is not a
branching node of that trie.

e All tries store their branching nodes in
a hash table (at most n per trie).

& 1T University of Copenhagen



e For insertion of an element we:

— Find its position in the Oth order trie, using
VEB search, in O(log w) time.

— Adjust at most one extreme point in each
trie in O(1) time.

— Create at most one new branching node in
each trie in O(1) time.

e Deletions are symmetric to insertions.

& 1T University of Copenhagen



e Ingredient 1:
"Compressed pointers” of O(log w) bits
enough to represent most nodes in the
tries (Alstrup et al. '01).

e Ingredient 2:
Dynamic perfect hashing using less
space than the set of keys hashed.

& 1T University of Copenhagen



e Presented new dynamic range reporting
data structure with very fast queries.

o Application: String prefix search
- "Find a string with prefix x”

e Are the bounds optimal?

e From a practical point of view, the
query time is a small constant
(log log w<4 in practical situations).

e Better than VEB and search trees in
practice?

& 1T University of Copenhagen



