
Construction of Minimum-Weight Spanners

Mikkel Sigurd and Martin Zachariasen

Department of Computer Science, University of Copenhagen
DK-2100 Copenhagen Ø, Denmark

{sigurd,martinz}@diku.dk.

Abstract. Spanners are sparse subgraphs that preserve distances up to
a given factor in the underlying graph. Recently spanners have found
important practical applications in metric space searching and message
distribution in networks. These applications use some variant of the so-
called greedy algorithm for constructing the spanner — an algorithm that
mimics Kruskal’s minimum spanning tree algorithm. Greedy spanners
have nice theoretical properties, but their practical performance with
respect to total weight is unknown. In this paper we give an exact al-
gorithm for constructing minimum-weight spanners in arbitrary graphs.
By using the solutions (and lower bounds) from this algorithm, we ex-
perimentally evaluate the performance of the greedy algorithm for a set
of realistic problem instances.

1 Introduction

Let G = (V,E) be an undirected and edge-weighted graph. A t-spanner in G is
a subgraph G′ = (V,E′) of G such that the shortest path between any pair of
nodes u, v ∈ V is at most t times longer in G′ than in G (where t > 1) [22].
The NP-hard minimum-weight t-spanner problem (MWSP) is to construct a
t-spanner with minimum total weight [3].

Spanners — and algorithms for their construction — form important building
blocks in the design of efficient algorithms for geometric problems [10, 14, 19, 23].
Also, low-weight spanners have recently found interesting practical applications
in areas such as metric space searching [21] and broadcasting in communication
networks [11]. A spanner can be used as a compact data structure for holding
information about (approximate) distances between pairs of objects in a large
metric space, say, a collection of electronic documents; by using a spanner instead
of a full distance matrix, significant space reductions can be obtained when using
search algorithms like AESA [21]. For message distribution in networks, spanners
can simultaneously offer both low cost and low delay when compared to existing
alternatives such as minimum spanning trees (MSTs) and shortest path trees.
Experiments with constructing spanners for realistic communication networks
show that spanners can achieve a cost that is close to the cost of a MST while
significantly reducing delay (or shortest paths between pairs of nodes) [11].

The classical algorithm for constructing a low-weight t-spanner for a graph
G = (V,E) is the greedy algorithm [1]. All practical applications of spanners use

S. Albers and T. Radzik (Eds.): ESA 2004, LNCS 3221, pp. 797–808, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

798 M. Sigurd and M. Zachariasen

some variant of this algorithm. The greedy algorithm first constructs a graph
G′ = (V,E′) where E′ = ∅. Then the set of edges E is sorted by non-decreasing
weight and the edges are processed one by one. An edge e = (u, v) is appended
to E′ if the weight of a shortest path in G′ between u and v exceeds t · ce,
where ce is the weight of edge e. (Note that the greedy algorithm is clearly a
polynomial-time algorithm; for large values of t the algorithm is identical to
Kruskal’s algorithm for constructing MSTs.)

The output of the greedy algorithm is a so-called greedy spanner. A greedy
spanner has several nice theoretical properties, which are summarized in Sec-
tion 2. However, it is not known how well the greedy algorithm actually performs
in practice, i.e., how well the greedy spanner approximates the minimum-weight
spanner for realistic problem instances.

In this paper we present the first exact algorithm for MWSP. We give an
integer programming formulation based on column generation (Section 3). The
problem decomposes into a master problem which becomes a set covering like
problem and a number of subproblems which are constrained shortest path prob-
lems. The integer program is solved by branch-and-bound with lower bounds
obtained by linear programming relaxations.

We have performed experiments with the new exact algorithm on a range of
problem instances (Section 4). Our focus has been on comparing greedy span-
ners with minimum-weight spanners (or lower bounds on their weights). The
results show that the greedy spanner is a surprisingly good approximation to a
minimum-weight spanner — on average within 5% from optimum for the set of
problem instances considered. Our conclusions and suggestions for further work
are given in Section 5.

2 Greedy Spanner Algorithm

Let n = |V | and m = |E| for our given graph G = (V,E). For general graphs
it is hard to approximate MWSP within a factor of Ω(log n) [9]. However, for
special types of graphs much better approximations can be obtained. Most of
these are obtained by (variants of) the greedy algorithm.

The performance of the greedy algorithm depends on the weight function on
the edges of G. For general graphs, Althöfer et al. [1] showed that the greedy
algorithm produces a graph with O(n1+2/(t−1)) edges; Chandra et al. [5] showed
that the weight is bounded by n(2+ε)/(t−1) times that of a minimum spanning
tree (MST) for G (for any ε > 0). These bounds improve to n(1+O(1/t)) and 1+
O(1/t), respectively, whenG is planar. When the nodes ofG correspond to points
in some fixed dimensional space (and edge weights are equal to the Euclidean
distance between the nodes), the number of edges in the greedy spanner is O(n)
and the weight O(1) times that of a MST; the constant implicit in the O-notation
depends on t and the dimension of the space [6, 7].

Although the bounds for the greedy algorithm are promising for planar and
geometric graphs, to the best of our knowledge, little is known about the tight-

Construction of Minimum-Weight Spanners 799

ness of these bounds and on the practical performance of the greedy algorithm
on realistic problem instances.

A naive implementation of the greedy algorithm runs in O(n3 log n) time.
Significant improvements have been made, both from the theoretical and practi-
cal side, on this running time. Gudmundsson et al. [13] gave a O(n log n) variant
of the greedy algorithm for points in fixed dimension. Navarro and Paredes [20]
gave several practical variants of the greedy algorithm for general graphs with
running times down to O(nm logm). They were able to compute approximative
greedy spanners for graphs with several thousand nodes in a few minutes.

Finally, we note that a greedy spanner will always contain a MST for G [22].
On the contrary, a minimum-weight spanner need not contain a MST for the
graph. An example is shown in Figure 1.

(a) Original complete graph (edges
omitted)

(b) MST of original graph

(c) Minimum weight spanner
(t = 2.5)

(d) MST of minimum weight
spanner

Fig. 1. An example showing that a minimum-weight spanner need not contain a MST
of the original graph.

800 M. Sigurd and M. Zachariasen

3 Column Generation Approach

In the new exact algorithm we consider the following generalization of MWSP.
We are given a connected undirected graph G = (V,E) with edge weights ce,
e ∈ E, a set of node pairs K = {(ui, vi)}, i = 1, . . . , k, and a stretch factor t > 1.
Let puivi denote a shortest path in G between ui and vi, (ui, vi) ∈ K, and let
c(puivi

) denote the length of puivi
. The (generalized) minimum-weight spanner

problem (MWSP) consists of finding a minimum cost subset of edges E′ ⊆ E
such that the shortest paths p′

uivi
, i = 1, . . . , k, in the new graph G′ = (V,E′)

are no longer than t · c(puivi
). Note that this problem reduces to the normal

MWSP when K = V × V .
Obviously, if t is sufficiently large, an optimal solution to the MWSP will

be a minimal spanning forest. On the other hand, if t is close to 1, an optimal
solution will include all edges on the shortest paths puivi

of G.
Our exact algorithm for solving MWSP is based on modeling the problem as

an integer program, and solving this integer program by branch and bound using
bounds from linear programming relaxations. MWSP can be modeled in several
different ways, but the shortest path constraints are particularly difficult to
model efficiently. Therefore, we have chosen a model in which paths are decision
variables.

Given an instance of the MWSP, let Puv denote the set of paths between
u and v with length smaller than or equal to t · c(puv), ∀(u, v) ∈ K, and let
P =

⋃
(u,v)∈K Puv. Furthermore, let the indicator variables δe

p be defined as
follows: δe

p = 1, if edge e ∈ E is on path p ∈ P and δe
p = 0 otherwise. Let

the decision variables xe, e ∈ E, equal 1 if edge e is part of the solution and 0
otherwise, and let decision variables yp, p ∈ Puv, equal 1 if path p connects u and
v in the solution and 0 otherwise, ∀(u, v) ∈ K. Then MWSP can be formulated
as follows:

minimize
∑

e∈E

cexe (1.1)

subject to
∑

p∈Puv

ypδ
e
p ≤ xe ∀e ∈ E,∀(u, v) ∈ K (1.2)

∑

p∈Puv

yp ≥ 1 ∀(u, v) ∈ K (1.3)

xe ∈ {0, 1} ∀e ∈ E (1.4)
yp ∈ {0, 1} ∀p ∈ P (1.5)

The objective function (1.1) minimizes the total cost of the edges in the spanner.
Constraints (1.2) require that for given a pair of nodes (u, v), all edges on the
selected path connecting u and v must be part of the spanner. Constraints (1.3)
say that every pair of nodes must be connected by at least one path.

We will solve the model with a branch and bound algorithm using the linear
relaxation lower bound, which is obtained from (1.1)–(1.5) by relaxing the con-
straints (1.4) and (1.5). This model contains |E|+ |P | variables and (|E|+1)|K|

Construction of Minimum-Weight Spanners 801

constraints. Since the number of variables may be exponential in the input size,
we will not solve the relaxation of (1.1)–(1.5) directly, in fact we will not even
write up the model. Instead, we will solve the restricted master problem (RMP):

minimize
∑

e∈E

cexe

subject to
∑

p∈P ′
uv

ypδ
e
p ≤ xe ∀e ∈ E,∀(u, v) ∈ K

∑

p∈P ′
uv

yp ≥ 1 ∀(u, v) ∈ K

xe ≥ 0 ∀e ∈ E
yp ≥ 0 ∀p ∈ P ′

(2)

where P ′
uv ⊆ Puv, P

′
uv �= ∅, ∀(u, v) ∈ K and P ′ =

⋃
(u,v)∈K P

′
uv. To begin with, it

is sufficient that P ′
uv contains only one path for every (u, v) ∈ K. Iteratively, we

will add paths to P ′, extending the RMP. This procedure is known as delayed
column generation. We use the Simplex method to solve the RMP in every
iteration of the delayed column generation, which provides us with an optimal
dual vector of the RMP. Now, consider the dual linear program of the full primal
problem with dual variables πuv

e and σuv, ∀(u, v) ∈ K, ∀e ∈ E:

maximize
∑

(u,v)∈K

σuv

subject to
∑

(u,v)∈K

πuv
e ≤ ce ∀e ∈ E

−
∑

e∈E

δe
pπ

uv
e + σuv ≤ 0 ∀p ∈ Puv,∀(u, v) ∈ K

πuv
e ≥ 0 ∀e ∈ E,∀(u, v) ∈ K
σuv ≥ 0 ∀(u, v) ∈ K

(3)

If the dual values obtained by solving the RMP constitute a feasible solution
to (3), the weak duality theorem tells us that dual solution is an optimal solution
to (3), which implies that the optimal solution to the RMP is also an optimal
solution to the full problem. Otherwise the dual solution to the RMP violates
one of the constraints −∑

e∈E δ
e
pπ

uv
e + σuv ≤ 0 of (3) for some p ∈ P . The

amount of violation is called the reduced cost of p ∈ P with respect to π and σ,
denoted cπ,σ

p :

cπ,σ
p =

∑

e∈E

δe
pπ

uv
e − σuv, ∀p ∈ Puv, ∀(u, v) ∈ K. (4)

If cπ,σ
p ≥ 0, ∀p ∈ P the dual vector constitutes a feasible solution to (3), which

in turn means that the current primal solution to the RMP is an optimal solu-

802 M. Sigurd and M. Zachariasen

tion for the full master problem. In this case we may stop the delayed column
generation procedure. Otherwise we add a path p with cπ,σ

p < 0 to the RMP,
which corresponds to adding a violated dual constraint to the dual of the RMP.
Hence, in every iteration of the delayed column generation procedure we solve
problem minp∈P c

π,σ
p = minp∈P

∑
e∈E δ

e
pπ

uv
e − σuv, which is called the pricing

problem. For a given (u, v) ∈ K, σuv is a constant and hence the pricing problem
is the problem of finding a shortest path p ∈ Puv between u and v with edge
weights πuv

e . This problem is recognized as the constrained shortest path problem
(CSPP), since we require that p ∈ Puv, i.e., that the length of p is no longer
than t times the length of the shortest path between u and v with respect to the
original edge costs.

3.1 Constrained Shortest Path Problem

The (resource) constrained shortest path problem (CSPP) is a generalization
of the classic shortest path problem, where we impose a number of additional
resource constraints. Even in the case of a single resource constraint the problem
is weakly NP-complete [12]. The problem is formally stated as follows: Given a
graph G = (V,E) with a weight we ≥ 0 and a cost ce ≥ 0 on every edge e ∈ E,
a source s ∈ V and a target d ∈ V and a resource limit B, find a shortest path
from s to d with respect to the cost of the edges, satisfying that the sum of the
weights on the path is at most B.

Several algorithms have been proposed for its solution (see e.g. [28] for a
survey). Algorithms based on dynamic programming were presented in [2, 17].
A labelling algorithm that exploits the dominance relation between paths (i.e.
path p dominates path q if it has cost cp ≤ cq and weight wp ≤ wq) was proposed
in Desrochers and Soumis [8]. Lagrangean relaxation has been used successfully
to move the difficult resource constraint into the objective function in a two phase
method, first solving the Lagrangean relaxation problem and then closing the
duality gap [15, 28]. The CSPP can be approximated to any degree by polynomial
algorithms by the fully polynomial time approximation scheme (FPTAS) given
by Warburton [26].

We use a labelling algorithm similar to Desrochers and Soumis [8] with the
addition of a method of early termination of infeasible paths. Our algorithm
grows paths starting from the source s until we reach the target d. In the algo-
rithm we represent a path pi by a label (pi, ni, wi, ci), stating that the path pi

ending in node ni has total weight wi and total cost ci. If two paths p1, p2 end
in the same node, p1 dominates p2 if w1 ≤ w2 and c1 ≤ c2. We may discard all
dominated labels since they cannot be extended to optimal paths.

In our algorithm, we store the labels (paths) in a heap H ordered by the cost
of the path. Iteratively, we pick the cheapest path from the heap and extend it
along all edges incident to its endpoint. If the extended path does not violate
the maximum weight constraint, we create a new label for this path. We remove
all dominated labels, both labels generated earlier that are dominated by the
new labels and new labels which are dominated by labels generated earlier. This
is done efficiently by maintaining a sorted list for every node n consisting of all

Construction of Minimum-Weight Spanners 803

labels for node n. When creating a new label, we only need to run through this
list to remove dominated labels. When we reach the target node d, we know we
have created the cheapest path satisfying the maximum weight constraint since
we pick the cheapest label in every iteration.

The algorithm above is the standard labelling algorithm. Before we start the
labelling algorithm we do two shortest path computations, creating a shortest
path tree T c from d with respect to edge costs ce and a shortest path tree Tw

from d with respect to edge weights we. Whenever we extend a path to a node n,
we check if the new label (p, n, w, c) satisfies w+Tw(n) ≤ B and c+T c(n) ≤M ,
where M is the maximum cost constraint imposed on the problem (note that
we are only interested in finding paths with reduced cost cπ,σ

p ≤ 0). If one of the
inequalities is not satisfied we can discard this path, since it will not be able to
reach d within the maximum weight and cost limits. The algorithm is sketched
below.

CSPP(G, w, c, B, M , s, d)

1. Compute shortest path trees Tw and T c.
2. H ← ({}, s, 0, 0)
3. Pick a cheapest label (p, n, w, c) in H. If n = d then we are done, p is the

cheapest path satisfying the maximum weight constraint.
4. For all nodes ni adjacent to n by edge ei, extend the path and create new

labels (p ∪ {ei}, ni, w + wei
, c + cei

). Discard new labels where w + wei
+

Tw(ni) > B or c+ cei
+ T c(ni) > M . Discard dominated labels. Goto 3.

In every iteration of the column generation procedure, we run the CSPP
algorithm for every pair of nodes (u, v) with edge costs πuv

e and edges weights
ce, maximum cost limit M = σuv and maximum weight limit B = t · c(puv).
Note that it is not possible to run an “all constrained shortest path” algorithm,
since the edge costs πuv

e differ for every pair of nodes.

3.2 Implementation Details

Delayed column generation allows us to work on a LP which only contains a small
number of variables. However, our restricted master problem (2) still contains a
large number of constraints (for complete graphs there will beO(n4) constraints).
The constraints are all needed to ensure primal feasibility of the model, but in
practice only a small number of the constraints will be active. We will remove
the constraints of the form

∑
p∈Puv

ypδ
e
p ≤ xe from the RMP to reduce the size

of the master LP. This will allow infeasible solutions, but we will check if any
violated constraints exist and add these constraints to the model.

Checking whether a constraint is violated is straightforward: for all node
pairs (u, v) ∈ K and all edges e ∈ E, we compute the sum

∑
p∈Puv

ypδ
e
p and

check whether this quantity is greater than xe. If so, we add the constraint∑
p∈Puv

ypδ
e
p ≤ xe to the model. Computational experiments show that we only

need to add a small fraction of the constraints to the model. This greatly speeds
up the Simplex iterations in the algorithm.

804 M. Sigurd and M. Zachariasen

Branching is done by selecting an edge variable xe with maximum value in
the fractional solution and demanding xe = 1 on one branch and xe = 0 on
the other. On the xe = 0 branch the pricing problem changes a little bit, since
edge e is not allowed in any of the paths generated. This can be handled very
efficiently by deleting the edge from the graph on which the pricing algorithm
runs. The xe = 1 branch does not change the pricing problem. We evaluate the
branch and bound nodes in depth-first order.

We have used the general branch-and-cut framework ABACUS [25] with
CPLEX [16] in the implementation of our algorithm.

4 Experimental Results

One of the main contributions of this paper is to evaluate the quality of the
greedy spanner algorithm on a set of relevant problem instances. We have created
two types of graphs, denoted Euclidean graphs and realistic graphs, respectively.

The Euclidean graphs are generated as follows. The vertices correspond to
points that are randomly and uniformly distributed in a k-dimensional hy-
percube. Then a complete Euclidean graph is constructed from the set of
points. Graphs classes for all combinations of dimensions k = 5, 10, 20, 25 and
n = 20, 30, 40, 50 have been generated. For every class of graphs, we have created
50 instances, which we have solved by both the greedy spanner algorithm and
our exact method with stretch factor t = 1.2, 1.4, 1.6, 1.8. (Note that this type
of graphs is identical to the type of graphs analyzed in [4]).

The realistic graphs originate from the application in broadcasting and mul-
ticasting in communications networks, where spanners may be used to reduce
the cost of sending data while preserving low delay. We have created a set of
instances following the design proposed in [11, 27]. For n = 16, 32, 64 we place
n nodes uniformly random in a square. We add edges according to one of two
different schemes:

1. Place edges completely at random where the probability of adding an edge
is the same for all pairs of nodes.

2. Favour local edges so that the probability of adding an edge between u and
v is αe−d/βL, where d is the distance between u and v and L is the diameter
of the square.

By varying the probability in method 1, and α and β in method 2, we generate
graphs with average node degree D = 4 and D = 8, respectively. To model
realistic networks, we keep β = 0.14 fixed and set α to get the desired average
node degree for n = 16, 32, 64 [11].

We assign a cost to every edge in the graph according to one of three methods:

1. Unit cost. All edges have cost 1.
2. Euclidean distance. All edges have cost equal to the Euclidean distance be-

tween the endpoints.
3. Random cost. Edge cost is assigned at random from the set {1, 2, 4, 8, 16}.

Construction of Minimum-Weight Spanners 805

Table 1. Average excess from optimum of greedy spanner (in percent) for Euclidean
graphs.

Nodes 20 30 40 50

Dimension 5 10 20 25 5 10 20 25 5 10 20 25 5 10 20 25

t = 1.2 0.90 0.00 0.00 0.00 1.63 0.00 0.00 0.00 2.50 0.01 0.00 0.00 3.10 0.01 0.00 0.00

t = 1.4 7.61 0.83 0.00 0.00 10.88 1.20 0.01 0.00 13.00 1.43 0.00 0.00 13.59 1.75 0.01 0.00

t = 1.6 16.22 9.55 0.62 0.31 20.11 13.36 1.00 0.29 - 15.39 1.38 0.40 - 18.44 1.50 0.41

t = 1.8 21.99 33.03 18.45 13.68 - 47.93 32.97 17.97 - - - - - - - -

Table 2. Average excess from optimum of greedy spanner (in percent) for realistic
graphs. Results for ÷ locality and + locality refer to graphs where edges are added
according to edge addition scheme 1 and 2, respectively, as explained in the text.

Edge cost Unit Euclidean Random

Avg. degree 4 8 4 8 4 8

Nodes 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

t = 1.1

÷ locality 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.02 0.57 0.23 0.14 0.00 0.00 0.00 0.00 0.00 0.00

+ locality 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.12 0.09 1.43 1.40 1.00 0.00 0.00 0.00 0.00 0.00 0.00

t = 2.0

÷ locality 7.63 5.35 - - - - 3.25 2.22 1.29 4.71 8.48 4.35 2.76 1.17 2.46 4.22 3.29 3.33

+ locality 16.84 15.30 - - - - 3.84 2.73 2.32 4.85 - - 1.74 0.90 1.67 5.74 4.34 3.71

t = 4.0

÷ locality 13.45 - - - - - 1.31 6.29 - 2.10 - - 0.64 4.72 - 2.64 - -

+ locality 9.66 - - - - - 1.43 - - - - - 0.00 - - 3.95 - -

For every class of graphs, we have created 50 instances, which we have solved
by both the greedy spanner algorithm and our exact method with stretch factor
t = 1.1, 2.0, 4.0. The tests have been carried out on a 933 MHz Intel Pentium III
computer, allowing each instance 30 minutes of CPU time.

In Tables 1 and 2 we show the greedy spanner’s average excess from optimum
(in percent). Note the slightly different layout of these two tables, in particular
with respect to the number of nodes. For some instances we have compared the
greedy spanner with a lower bound on the minimum weight spanner, since we
did not obtain the optimal value within the CPU time limit. This means that the
true average excess from optimum may be a bit lower than stated in the table;
the results for these test classes are written in italics. Some of the problem classes
have not been solved since the exact method was too time consuming.

The greedy algorithm performs significantly worse on Euclidean graphs than
on realistic graphs. Also, the performance of the greedy algorithm decreases as
the stretch factor increases. Interestingly, the greedy spanner does not necessarily
become worse for larger problem instances; for almost all test classes considered,
the average excess from optimum decreases as the problem instance increases.
When local edges are favored in the realistic problem instances, the quality of
the greedy spanner decreases slightly for unit and Euclidean costs.

806 M. Sigurd and M. Zachariasen

The running times depend on the size of the problem, the edge cost function
and the stretch factor. Naturally, the spanner problem becomes harder to solve
for larger problem instances. It turns out that spanner problems with unit edge
costs are considerably harder to solve by our exact method than spanner prob-
lems with Euclidean or random costs. The difficulties for problem instances with
unit cost are caused by the large number of paths of equal cost, which makes it
hard for the branch and bound algorithm to choose the best path. Thus, we need
to evaluate more branch and bound nodes to solve unit cost problem instances.

We experienced that our solution times increased when the stretch factor
increased. This is because the set of feasible paths between any two nodes in-
creases, potentially increasing the number of columns in our master problem.
On 75% of the test instances the lower bound provided in the root node was
optimal. On the remaining 25% of the test instances, the lower bound in the
root node was 6.4% from the optimum on average. This shows the quality of the
proposed integer programming formulation.

5 Conclusions

In this paper we presented a first exact algorithm for the MWSP. Experiments
on a set of realistic problem instances from applications in message distribution
in networks were reported. Problem instances with up to 64 nodes have been
solved to optimality. The results show that the total weight of a spanner con-
structed by the greedy spanner algorithm is typically within a few percent from
optimum for the set of realistic problem instances considered. Thus the greedy
spanner algorithm appears to be an excellent choice for constructing approxi-
mate minimum-weight spanners in practice.

5.1 Generalizations of the MWSP

The minimum-weight spanner problem may be seen as a special case of a larger
class of network problems with shortest path constraints. This class of problems
is normally hard to model due to the difficult shortest path constraints.

The exact method we present in this paper can easily be modified to solve this
larger class of network problems with shortest path constraints. Here we describe
how our method can be applied to several generalizations of the MWSP.

MWSP with variable stretch factor. Consider the MWSP as defined
above, but with variable stretch factor for every pair of nodes. This is a
generalization of the MWSP. Our method can easily be modified to solve
this problem, since we already generate different variables for every pair of
nodes satisfying the maximum cost constraint. Thus, it is possible to allow
different cost constraints for every pair of nodes.

MWSP with selected shortest path constraints. Consider the MWSP
where we do not have maximum length constraints on all pairs of nodes.
The solution to this problem may be a disconnected graph consisting of sev-
eral smaller spanners. This generalization can also be used to model problems

Construction of Minimum-Weight Spanners 807

where there are maximum cost constraints between a root node and all other
nodes [18]. Our method can be modified to solve this problem by removing
the covering constraints (1.3) for pairs of nodes (u, v) which have no shortest
path constraints imposed.

5.2 Future Work

The main focus in this paper has been to evaluate the quality of the greedy algo-
rithm, and to present a framework for a promising exact algorithm. It would be
interesting to evaluate our algorithm on a wider set of problem instances, and to
examine the practical performance of other heuristic spanner algorithms, includ-
ing variants of the greedy algorithm (e.g., in which simple local improvements are
made in the greedy spanner), Θ-graphs and well-separated pair decompositions.

Clearly, there is still room for improvements on the exact algorithm. Provid-
ing our exact method with a good upper bound computed by, e.g., the greedy
algorithm will probably help to prune the branch and bound tree. By adding
more variables in each column generation iteration the procedure may be ac-
celerated. Finally, column generation stabilization [24] will most likely have an
accelerating effect.

References

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On Sparse Spanners of
Weighted Graphs. Discrete and Computational Geometry, 9:81–100, 1993.

[2] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. Shortest Chain Subject to Side
Constraints. Networks, 13:295–302, 1983.

[3] L. Cai. NP-Completeness of Minimum Spanner Problem. Discrete Applied Math-
ematics, 48:187–194, 1994.

[4] B. Chandra. Constructing Sparse Spanners for Most Graphs in Higher Dimension.
Information Processing Letters, 51:289–294, 1994.

[5] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New Sparseness Results on
Graph Spanners. International Journal of Computational Geometry and Applica-
tions, 5:125–144, 1995.

[6] G. Das and G. Narasimhan. A Fast Algorithm for Constructing Sparse Euclidean
Spanners. Int. J. Comput. Geometry Appl., 7(4):297–315, 1997.

[7] G. Das, G. Narasimhan, and J.S. Salowe. A New Way to Weigh Malnourished
Euclidean Graphs. In Proceedings of the 6th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 215–222, 1995.

[8] M. Desrochers and F. Soumis. A Generalized Permanent Labelling Algorithm for
the Shortest Path Problem with Time Windows. INFOR, 26:191–211, 1988.

[9] Y. Dodis and S. Khanna. Design Networks with Bounded Pairwise Distance. In
Proceedings of the 31th Annual ACM Symposium on Theory of Computing, pages
750–759, 1999.

[10] D. Eppstein. Spanning Trees and Spanners. In Handbook of Computational Ge-
ometry, pages 425–461, 1999.

[11] A. M. Farley, D. Zappala A. Proskurowski, and K. Windisch. Spanners and Mes-
sage Distribution in Networks. Discrete Applied Mathematics, 137:159–171, 2004.

808 M. Sigurd and M. Zachariasen

[12] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H.Freeman and
Co., San Francisco, 1979.

[13] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast Greedy Algorithms
for Constructing Sparse Geometric Spanners. SIAM Journal on Computing, 31
(5):1479–1500, 2002.

[14] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate
Distance Oracles for Geometric Graphs. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 828–837, 2002.

[15] G. Y. Handler and I. Zang. A Dual Algorithm for the Constrained Shortest Path
Problem. Networks, 10:293–310, 1980.

[16] ILOG. ILOG CPLEX 7.0, Reference Manual. ILOG, S.A., France, 2000.
[17] H.C. Joksch. The Shortest Route Problem with Constraints. J. Math. Anal. Appl.,

14:191–197, 1966.
[18] S. Khuller, B. Raghavachari, and N. Young. Balancing Minimum Spanning and

Shortest-Path Trees. Algorithmica, 14(4):305–321, 1995.
[19] G. Narasimhan and M. Zachariasen. Geometric Minimum Spanning Trees via

Well-Separated Pair Decompositions. ACM Journal of Experimental Algorithmics,
6, 2001.

[20] G. Navarro and R. Paredes. Practical Construction of Metric t-Spanners. In
Proceedings of the 5th Workshop on Algorithm Engineering and Experiments
(ALENEX’03), 2003.

[21] G. Navarro, R. Paredes, and E. Chavez. t-Spanners as a Data Structure for
Metric Space Searching. In International Symposium on String Processing and
Information Retrieval, SPIRE, LNCS 2476, pages 298–309, 2002.

[22] D. Peleg and A. Schaffer. Graph Spanners. Journal of Graph Theory, 13(1):
99–116, 1989.

[23] S. B. Rao and W. D. Smith. Improved Approximation Schemes for Geometri-
cal Graphs via ”Spanners” and ”Banyans”. In Proceedings 30th Annual ACM
Symposium on Theory of Computing, pages 540–550, 1998.

[24] M. Sigurd and D. Ryan. Stabilized Column Generation for Set Partitioning Op-
timization. In preparation, 2003.

[25] S. Thienel. ABACUS — A Branch-And-CUt System. PhD thesis, Universität zu
Köln, Germany, 1995.

[26] A. Warburton. Approximation of Pareto Optima in Multiple–Objective, Shortest
Path Problems. Operations Research, 35:70–79, 1987.

[27] B. M. Waxman. Routing of Multipoint Connections. IEEE Journal on Selected
Areas in Communications, 6(9):1617–22, 1988.

[28] M. Ziegelmann. Constrained Shortest Paths and Related Problems. PhD thesis,
Universität des Saarlandes, Saarbrücken, Germany, 2001.

	Introduction
	Greedy Spanner Algorithm
	Column Generation Approach
	Constrained Shortest Path Problem
	Implementation Details

	Experimental Results
	Conclusions
	Generalizations of the MWSP
	Future Work

