Construction of
Minimum-Weight Spanners

Mikkel Sigurd

Martin Zachariasen

University of Copenhagen

Outline

Motivation and Background

Minimum-Weight Spanner Problem

Greedy Spanner Algorithm

Exact Algorithm: Column Generation Approach
Exact Algorithm: Constrained Shortest Paths
Implementation Details

Experimental Results

Conclusions and Future Work

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

In original (dense) networks.

Application examples:

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

In original (dense) networks.

Application examples:

e Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

In original (dense) networks.

Application examples:

e Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

e Message distribution in networks. Construction of a network that has

both low cost and low delay.

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

In original (dense) networks.

Application examples:

e Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

e Message distribution in networks. Construction of a network that has

both low cost and low delay.

e Faster approximation algorithms for geometric problems. Replacing
dense graphs by sparse graphs may speed up approximation algo-

rithms for several geometric optimization problems (e.g., TSP).

Minimum-Weight Spanner Problem (MWSP)

Given an undirected and edge-weighted graph G = (V, F).

t-spanner: Subgraph G' = (V, E’) of G such that the shortest path
between any pair of nodes is at most ¢ times longer in G’ than in GG

(where t > 1 is a fixed constant).

Minimum-weight ¢-spanner problem (MWSP): Construct a t-spanner in

(with minimum total edge-weight.

Minimum-Weight Spanner Example

"2‘,,,‘\
§‘> S
2N

— \! - /

e NS NN
N -:a/,,\ |
S NS \
=l =\

Complete Euclidean graph with 15 nodes

Minimum-Weight Spanner Example

Minimum weight t-spanner for t = 1.2

Minimum-Weight Spanner Example

Minimum weight ¢-spanner for t = 1.4

Minimum-Weight Spanner Example

Minimum weight ¢-spanner for t = 1.7

Minimum-Weight Spanner Example

Minimum weight t-spanner for t = 2

Minimum-Weight Spanner Example

Minimum weight ¢-spanner for t = 3

Minimum-Weight Spanner Example

Minimum spanning tree (or minimum weight ¢-spanner for t = ©0)

Minimum-Weight Spanner Problem (MWSP)

Known to be an NP-hard problem

Minimum-Weight Spanner Problem (MWSP)

Known to be an NP-hard problem

Several approximation algorithms exist, in particular for the geometric

versions of the problem; the greedy algorithm is particularly well studied.

All practical applications use some variant of the greedy algorithm.

Minimum-Weight Spanner Problem (MWSP)

Known to be an NP-hard problem

Several approximation algorithms exist, in particular for the geometric

versions of the problem; the greedy algorithm is particularly well studied.

All practical applications use some variant of the greedy algorithm.

No (non-trivial) exact algorithm is known.

Greedy Spanner Algorithm

1. SetG' = (V, E') where B’ = ().
2. Sort edges in G = (V, /) by non-decreasing weight.
3. Process edges e € E in sorted order:

e Let ¢, be the weight of edge e = (u, v).

e |f the shortest path between u and v in G’ exceeds ¢ - ¢, then

append e = (u,v) to £,

Greedy Spanner Algorithm

1. SetG' = (V, E') where B’ = ().
2. Sort edges in G = (V, /) by non-decreasing weight.
3. Process edges e € E in sorted order:

e Let ¢, be the weight of edge e = (u, v).

e |f the shortest path between u and v in G’ exceeds ¢ - ¢, then

append e = (u,v) to £,

Resulting t-spanner denoted greedy spanner; known to have weight O(l)

times that of a MST for points in fixed dimensional space.

New Exact Algorithm for MWSP

Model a generalization of MWSP as an integer program.

New Exact Algorithm for MWSP

Model a generalization of MWSP as an integer program.

o K ={(us,v;)|li =1,...,k}: Node pairs with length constraints.
e P, : Set of paths between 1 and v satisfying length constraint.

o P = U(u’v) cK P,,: Set of all paths satisfying length constraint.

e o) = lifedgee € Fisonpathp € P.

e 1. — 1 if edge e is part of the solution.

e 1y, = lif path p is part of the solution.

Integer Programming (IP) Formulation

minimize) g Cee (1.1)
subjectto), .p Yp0, <z, Ve€ E,V(u,v) €K (1.2
> pepy, Yo 2> 1 V(u,v) € K (1.3)
z. € {0,1} Vee E (1.4)

y, € {0,1} Vp e P (1.5)

Properties of the IP Model

e Proposed model contains an exponential number of variables

(no useful polynomial sized model is known).
e Model provides a good LP-relaxation lower bound.
e LP-relaxation can be solved by delayed column generation.

e |nteger solutions obtained by embedding lower bound computations

In branch and bound.

IP Column Generation

e \Work on a restricted linear program with fewer variables.

e Add variables iteratively according to Dantzig’s pricing rule:

Add variable with minimum reduced cost ¢,*°

e Given dual variables 7/ and o, solve the pricing problem

— € __uv
min ¢” min g 0pTe — Ouy

peP p pEPuv V(u U)GK

e The pricing problem is a constrained shortest path problem between

u and v on the graph with edge costs 7. and weights c..

Constrained Shortest Path Problem (CSPP)

e Find a shortest path from u to v with respect to the cost of edges

such that the total weight is below a given threshold.

e NP-hard problem, but has a FPTAS

Constrained Shortest Path Problem (CSPP)

e Find a shortest path from u to v with respect to the cost of edges

such that the total weight is below a given threshold.
e NP-hard problem, but has a FPTAS

e We solve CSPP by a labeling algorithm:

— Enumerate all paths from u to v discarding dominated and

Infeasible paths.

— Domination and infeasibility can be checked quickly by precom-
puting shortest path trees from v w.r.t. edge costs and weights,

respectively.

Implementation Detalils

Used ABACUS branch and price framework
LP models solved by CPLEX 7.0.
Computer: Pentium IV 3.0 GHz, 2GB memory

Master LP contains O(n4) constraints. We solve master problem

with fewer constraints, generating violated constraints iteratively.
Branching on binary edge variables x..

Each instance allowed 30 minutes of CPU time.

Two Types of Test Instances

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on n vertices randomly drawn

from a k-dimensional hypercube.
n = 20,30,40,50 / kK =5,10,20,25 / t=1.2,1.4,1.6,1.8

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on n vertices randomly drawn

from a k-dimensional hypercube.
n = 20,30,40,50 / kK =5,10,20,25 / t=1.2,1.4,1.6,1.8

Realistic: Similar to networks appearing in communication network
applications: 1 nodes randomly distributed in a square, edges added
according to/not according to locality, and edge costs random or Eu-

clidean. Average degree D fixed.
n=16,32,64 /| D=4,8 | t=1.1,2.0,4.0

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on n vertices randomly drawn

from a k-dimensional hypercube.
n = 20,30,40,50 / kK =5,10,20,25 / t=1.2,1.4,1.6,1.8

Realistic: Similar to networks appearing in communication network
applications: 1 nodes randomly distributed in a square, edges added
according to/not according to locality, and edge costs random or Eu-

clidean. Average degree D fixed.
n=16,32,64 /| D=4,8 | t=1.1,2.0,4.0

50 instances for every class/size of graphs.

Realistic Graph Examples

J
P

Nt

V

3!

X

o'.‘
(X
AR

AN

<
AV

4

Z
X

/‘ 2 <

) ‘\é} 4"\'
P
[
e

_A
="
7
& l~v’A}‘,,
5
q

Y N

\/ o8 i NS
TR

MR NG

%is e O NN

‘\ ’
<<
n‘,?.v’/‘ ,"?w; X A‘\‘
4/4_%_,”%&‘\%", /AAA ’/I,’A\\ "’/' N~
X
<7

X

n = 64, D = 4, no locality of edges

Realistic Graph Examples

S SN
'.” 47\'AAV X

N

¥
\\/
/

N4

A\
A\
A7
“
y

AT “\»' _ l//’//////(
sy s =8 ///// \
= “\\\\A e\ /// \ '
e

X

N

AN N

N

L \
N

e = DAV,

S A AR
ﬁg 7 KU,

/| 7

N

\V4

n = 64, D = 8, no locality of edges

Realistic Graph Examples

AN

n = 64, D = 4, with locality of edges

Realistic Graph Examples

%
J
J

!
i
AN
\

!‘\
3
%
A
z
7 X
4 ‘%\\‘!- AX

/
0

Q
l; ,
L
%
e "&\

\
\ N
w//‘!/‘ll";‘%“
I
[

\V‘ N = i

\NRL > (’,
PR A

‘ ,'f,',t"‘@?;i

)

|

7

|

- =—

Vg
/

/.l

n = 64, D = &, with locality of edges

Computational Results: Euclidean Graphs

Nodes 20 30

Dimension 5 10 20 25 5 10 20 25
t=1.2 0.90 0.00 0.00 0.00 1.63 0.00 0.00 0.00
t=1.4 7.61 0.83 0.00 0.00 | 10.88 1.20 0.01 0.00
t=1.6 16.22 9.55 0.62 0.31 20.11 13.36 1.00 0.29
t=1.8 2199 33.03 1845 13.68 - 4793 3297 17.97
Nodes 40 50

Dimension 5 10 20 25 5 10 20 25
t=1.2 2.50 0.01 0.00 0.00 3.10 0.01 0.00 0.00
t=14 13.00 1.43 0.00 0.00 | 13.59 1.75 0.01 0.00
t=1.6 - 15.39 1.38 0.40 - 18.44 1.50 0.41
t=1.8 - - - - - - - -

Average excess from optimum of greedy spanner (in percent).

Computational Results: Realistic Graphs

Edge cost Euclidean Random

Avg. deg. 4 8 4 8

Nodes 16 32 64 16 32 64 16 32 64 16 32 64
t=1.1

—~ locality | 0.05 0.02 0.02 0.57 0.23 0.14 | 0.00 0.00 0.00 0.00 0.00 0.00
—+ locality | 0.41 0.12 0.09 1.43 1.40 1.00 0.00 0.00 0.00 0.00 0.00 0.00
t=2.0
—~ locality | 3.25 2.22 1.29 | 471 8.48 4.35 2.76 1.17 246 | 4.22 3.29 3.33

-+ locality 3.84 2.73 2.32 4.85 - - 1.74 0.90 1.67 5.74 4.34 3.71
t=14.0

+— locality | 1.31 6.29 - | 2.10 - - | 064 472 - | 2.64 - -
-+ locality | 1.43 - - - - - | 0.00 - - | 3.95 - -

Average excess from optimum of greedy spanner (in percent).

Generalizations handled by Exact Algorithm

MWSP with variable stretch factor. Allow different stretch factors for ev-
ery pair of nodes. Easily handled by changing the definition of the

feasible set of paths P, for a pair of nodes u and v.

MWSP with selected shortest path constraints. Only a subset of all
pairs have maximum length constraints. As an example, only paths
iInvolving one particular node (the root) have maximum length con-
straints. Has applications in, e.g., VLSI design, where trees with

both low cost and low delay are wanted.

Conclusions and Future Work

e Total weight of a greedy spanner is within a few percent from opti-
mum for the set of realistic instances; for Euclidean graphs and large
stretch factors the quality of the greedy spanner deteriorates signifi-

cantly.

e |t would be interesting to test the exact algorithm and the greedy
spanner algorithm on a larger set of problem instances. Also, im-
provements to the greedy spanner algorithm would be worthwhile to

Investigate.

