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Abstract. A graph is H-free if it does not contain an induced subgraph isomorphic to H. For every
integer k and every graph H, we determine the computational complexity of k-Edge Colouring for
H-free graphs.

1 Introduction

A graph G = (V,E) is k-edge colourable for some integer k if there exists a mapping c : E → {1, . . . , k} such
that c(e) 6= c(f) for any two edges e and f of G that have a common end-vertex. The chromatic index of G
is the smallest integer k such that G is k-edge colourable. Vizing proved the following classical result.

Theorem 1 ([27]). The chromatic index of a graph G with maximum degree ∆ is either ∆ or ∆+ 1.

The Edge Colouring problem is to decide if a given graph G is k-edge colourable for some given
integer k. Note that (G, k) is a yes-instance if G has maximum degree at most k− 1 by Theorem 1 and that
(G, k) is a no-instance if G has maximum degree at least k+1. If k is fixed, that is, k is not part of the input,
then we denote the problem by k-Edge Colouring. It is trivial to solve this problem for k = 2. However,
the problem is NP-complete if k ≥ 3, as shown by Holyer for k = 3 and by Leven and Galil for k ≥ 4.

Theorem 2 ([14, 20]). For k ≥ 3, k-Edge Colouring is NP-complete even for k-regular graphs.

Due to the above hardness results we may wish to restrict the input to some special graph class. A natural
property of a graph class is to be closed under vertex deletion. Such graph classes are called hereditary and
they form the focus of our paper. To give an example, bipartite graphs form a hereditary graph class, and
it is well-known that they have chromatic index ∆. Hence, Edge Colouring is polynomial-time solvable
for bipartite graphs, which are perfect and triangle-free. In contrast, Cai and Ellis [4] proved that for every
k ≥ 3, k-Edge Colouring is NP-complete for k-regular comparability graphs, which are also perfect. They
also proved the following two results, the first one of which shows that Edge Colouring is NP-complete
for triangle-free graphs (the graph Cs denotes the cycle on s vertices).

Theorem 3 ([4]). Let k ≥ 3 and s ≥ 3. Then k-Edge Colouring is NP-complete for k-regular Cs-free
graphs.

Theorem 4 ([4]). Let k ≥ 3 be an odd integer. Then k-Edge Colouring is NP-complete for k-regular
line graphs of bipartite graphs.

It is also known that Edge Colouring is polynomial-time solvable for chordless graphs [22], series-
parallel graphs [16], split-indifference graphs [26] and for graphs of treewidth at most k for any constant k [1].

It is not difficult to see that a graph class G is hereditary if and only if it can be characterized by
a set FG of forbidden induced subgraphs (see, for example, [17]). Malyshev determined the complexity of
3-Edge Colouring for every hereditary graph class G, for which FG consists of graphs that each have
at most five vertices, except perhaps two graphs that may contain six vertices [23]. Malyshev performed a
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similar complexity study for Edge Colouring for graph classes defined by a family of forbidden (but not
necessarily induced) graphs with at most seven vertices and at most six edges [24].

We focus on the case where FG consists of a single graph H. A graph G is H-free if G does not contain
an induced subgraph isomorphic to H. We obtain the following dichotomy for H-free graphs.

Theorem 5. Let k ≥ 3 be an integer and H be a graph. If H is a linear forest, then k-Edge Colouring is
polynomial-time solvable for H-free graphs. Otherwise k-Edge Colouring is NP-complete even for k-regular
H-free graphs.

We obtain Theorem 5 by combining Theorems 3 and 4 with two new results. In particular, we will prove a
hardness result for k-regular claw-free graphs for even integers k (as Theorem 4 is only valid when k is odd).

2 Preliminaries

The graphs Cn, Pn and Kn denote the path, cycle and complete graph on n vertices, respectively. A set I is
an independent set of a graph G if all vertices of I are pairwise nonadjacent in G. A graph G is bipartite if
its vertex set can be partitioned into two independent sets A and B. If there exists an edge between every
vertex of A and every vertex of B, then G is complete bipartite. The claw K1,3 is the complete bipartite
graph with |A| = 1 and |B| = 3.

Let G1 and G2 be two vertex-disjoint graphs. The join operation × adds an edge between every vertex
of G1 and every vertex of G2. The disjoint union operation + merges G1 and G2 into one graph without
adding any new edges, that is, G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We write rG to denote the
disjoint union of r copies of a graph G.

A forest is a graph with no cycles. A linear forest is a forest of maximum degree at most 2, or equivalently,
a disjoint union of one or more paths. A graph G is a cograph if G can be generated from K1 by a sequence
of join and disjoint union operations. A graph is a cograph if and only if it is P4-free (see, for example, [3]).
The following well-known lemma follows from this equivalence and the definition of a cograph.

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning complete bipartite subgraph.

Let G = (V,E) be a graph. For a subset S ⊆ V , the graph G[S] = (S, {uv ∈ E | u, v ∈ S}) denotes the
subgraph of G induced by S. We say that S is connected if G[S] is connected. Recall that a graph G is H-free
for some graph H if G does not contain H as an induced subgraph. A subset D ⊂ V (G) is dominating if
every vertex of V (G) \D is adjacent to least one vertex of D. We will need the following result of Camby
and Schaudt.

Theorem 6 ([5]). Let t ≥ 4 and G be a connected Pt-free graph. Let X be any minimum connected domi-
nating set of G. Then G[X] is either Pt−2-free or isomorphic to Pt−2.

Let G = (V,E) be some graph. The degree of a vertex u ∈ V is equal to the size of its neighbourhood
N(u) = {v | uv ∈ E}. The graph G is r-regular if every vertex of G has degree r. The line graph of G is the
graph L(G), which has vertex set E and an edge between two distinct vertices e and f if and only if e and f
have a common end-vertex in G.

3 The Proof of Theorem 5

To prove our dichtomy, we first consider the case where the forbidden induced subgraph H is a claw. As
line graphs are claw-free, we only need to deal with the case where the number of colours k is even due to
Theorem 4. For proving this case we need another result of Cai and Ellis, which we will use as a lemma. Let
c be a k-edge colouring of a graph G = (V,E). Then a vertex u ∈ V misses colour i if none of the edges
incident to u is coloured i.
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Lemma 2 ([4]). For even k ≥ 2, the complete graph Kk has a k-edge colouring with the property that V (Kk)
can be partitioned into sets {ui, u′i} (1 ≤ i ≤ k

2 ), such that for i = 1, . . . , k2 , vertices ui and u
′
i miss the same

colour, which is not missed by any of the other vertices.

We use Lemma 2 to prove the following result, which solves the case where k is even and H = K1,3.

Lemma 3. Let k ≥ 4 be an even integer. Then k-Edge Colouring is NP-complete for k-regular claw-free
graphs.

Proof. Recall that k-Edge Colouring for k-regular graphs is NP-complete for every integer k ≥ 4 due
to Theorem 2. Consider an instance (G, k) of k-Edge Colouring, where G is k-regular for some even
integer k = 2` ≥ 4. From G we construct a graph G′ as follows. First we replace every vertex v in G by the
gadget H(v) shown in Figure 1. Next we connect the different gadgets in the following way. Every gadget
H(v) has exactly k pendant edges, which are incident with vertices v1, . . . , v`, v`+1, . . . , v2`, respectively. As
G is k-regular, every vertex has k neighbours in G. Hence, we can identify each edge uv of G with a unique
edge uhvi in G′, which is a pendant edge of both H(u) and H(v). It is readily seen that G′ is k-regular and
claw-free.

v

v′1 v′2

v′`v1

v`v`−1

v2

K1(v)
w

v`+1
v`+2

v2`

v′`+1

v′2`v′2`−1

v2`−1

K2(v)

Fig. 1. The gadget H(v) where Ki(v) is a complete graph of size 2` for i = 1, 2. Note that edges inside K1(v) and
K2(v) are not drawn.

First suppose that G is k-edge colourable. Let c be a k-edge colouring of G. Consider a vertex v ∈ V (G).
For every neighbour u of v in G, we colour the pendant edge in H(v) corresponding to the edge uv with
colour c(uv). As c assigned different colours to the edges incident to v, the 2` pendant edges of H(v) will
receive pairwise distinct colours, which we denote by x1, . . . , x`, y1, . . . , y`. By Lemma 2, we can colour the
edges of K1(v) in such a way that for i = 1, . . . , `, vi and v′i miss colour xi. For i = 1, . . . , `, we can therefore
assign colour xi to edge v′iw. Similarly, we may assume that for i = 1, . . . , `, v`+i and v′`+i miss colour yi.
For i = 1, . . . , `, we can therefore assign colour yi to edge v′`+iw. Recall that the colours x1, . . . , x`, y1, . . . , y`
are all different. Hence, doing this procedure for each vertex of G yields a k-edge colouring c′ of G′.

Now suppose that G′ is k-edge colourable. Let c′ be a k-edge colouring of G′. Consider some v ∈ V (G).
Denote the pendant edges of H(v) by ei for i = 1, . . . , 2`, where ei is incident to vi (and to some vertex uh
in a gadget H(u) for each neighbour u of v in G). Suppose that c′ gave colour x to an edge wv′i for some
1 ≤ i ≤ `, say to wv′1, but not to any edge ei for i = 1, . . . , `. Note that wv′2, . . . , wv′` cannot be coloured x.
As every vertex of G′ has degree k = 2`, every vi with 1 ≤ i ≤ ` and every v′j with 2 ≤ j ≤ ` is incident to
some edge coloured x. As x is neither the colour of e1, . . . , e` nor the colour of wv′2, . . . , wv′`, the complete
graph K1(v) − v′1 contains a perfect matching all of whose edges have colour x. However, K1(v) − v′1 has
odd size 2` − 1. Hence, this is not possible. We conclude that each of the (pairwise distinct) colours of
wv′1, . . . , wv

′
`, which we denote by x1, . . . , x`, is the colour of an edge ei for some 1 ≤ i ≤ `.
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Let y1, . . . , y` be the (pairwise distinct) colours of wv′`+1, . . . , wv
′
2`, respectively. By the same arguments

as above, we find that each of those colours is also the colour of a pendant edge of H(v) that is incident to
a vertex v`+i for some 1 ≤ i ≤ `. Note that x1, . . . , x`, y1, . . . , y` are 2` pairwise distinct colours, as they are
colours of edges incident to the same vertex, namely vertex w. Hence, we can define a k-colouring c of G by
setting c(uv) = c′(uhvi) for every edge uv ∈ E(G) with corresponding edge uhvi ∈ E(G′). ut

We note that the graph G′ in the proof of Lemma 3 is not a line graph, as the gadget H(v) is not a line
graph: the vertices v′1, v′2, v1, w form a diamond and by adding the pendant edge incident to v1 and the edge
wv′`+1 we obtain an induced subgraph of H(v) that is not a line graph.

To handle the case where the forbidden induced subgraph H is a path, we make the following observation.

Observation 1 If a graph G of maximum degree k has a dominating set of size at most p, then G has at
most p(k + 1) vertices.

We use Observation 1 to prove the following lemma.

Lemma 4. Let k ≥ 0 and t ≥ 1. Every connected Pt-free graph of maximum degree k has at most f(k, t)
vertices for some function f that only depends on k and t.

Proof. Let G be a connected Pt-free graph of maximum degree at most k. We use induction on t.
First suppose t = 4 (and observe that if the claim holds for t = 4, it also holds for t ≤ 3). As G is

connected, G has a dominating set of size 2 due to Lemma 1. Hence, by Observation 1, we find that G has
at most f(k, 2) = 2(k + 1) vertices.

Now suppose t ≥ 5. Let X be an arbitrary minimum connected dominating set of G. By Theorem 6,
G[X] is either Pt−2-free or isomorphic to Pt−2. In the first case we use the induction hypothesis to conclude
that G[X] has at most f(k, t− 2) vertices. Hence, G has at most f(k, t− 2)(k+1) vertices by Observation 1.
In the second case, we find that G has at most (t− 2)(k + 1) vertices. We set f(k, t) = max{f(k, t− 2)(k +
1), (t− 2)(k + 1)}. ut

We use Lemma 4 to prove our next lemma.

Lemma 5. Let k ≥ 3 and t ≥ 1. Then k-Edge Colouring is linear-time solvable for Pt-free graphs.

Proof. Let G be a Pt-free graph. We compute the set of connected components of G in linear time. For each
connected component D of G we do as follows. We first compute in linear time the maximum degree ∆D

of D. If ∆D ≤ k − 1, then D is k-edge colourable by Theorem 1. If ∆D ≥ k + 1, then D is not k-edge
colourable. Hence, we may assume that ∆D = k. By Lemma 4, D has at most f(k, t) vertices for some
function f that only depends on k and t. As we assume that k and t are constants, this means that we can
now check in constant time if D is k-edge colourable. Note that G is k-edge colourable if and only if every
connected component of G is k-edge colourable. Hence, by using the above procedure, deciding if G is k-edge
colourable takes linear time. ut

We are now ready to prove Theorem 5, which we restate below.

Theorem 5. (restated) Let k ≥ 3 be an integer and H be a graph. If H is a linear forest, then k-Edge
Colouring is linear-time solvable for H-free graphs. Otherwise k-Edge Colouring is NP-complete even
for k-regular H-free graphs.

Proof. First suppose that H contains a cycle Cs for some s ≥ 3. Then the class of H-free graphs is a
superclass of the class of Cs-free graphs. This means that we can apply Theorem 3. From now on assume
that H contains no cycle, so H is a forest. Suppose that H contains a vertex of degree at least 3. Then the
class of H-free graphs is a superclass of the class of K1,3-free graphs, which in turn forms a superclass of the
class of line graphs. Hence, if k is odd, then we apply Theorem 4, and if k is even, then we apply Lemma 3.
From now on assume that H contains no cycle and no vertex of degree at least 3. Then H is a linear forest,
say with ` connected components. Let t = `|V (H)|. Then the class of H-free graphs is contained in the class
of Pt-free graphs. Hence we may apply Lemma 5. This completes the proof of Theorem 5. ut
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4 Conclusions

We gave a complete complexity classification of k-Edge Colouring for H-free graphs, showing a dichotomy
between linear-time solvable cases and NP-complete cases. We saw that this depends on H being a linear
forest or not. It would be interesting to prove a dichotomy result for Edge Colouring restricted to H-free
graphs. Note that due to Theorem 5 we only need to consider the case where H is a linear forest. However,
even determining the complexity for small linear forests H, such as the cases where H = 2P2 and H = P4,
turns out to be a difficult problem. In fact, the computational complexity of Edge Colouring for split
graphs, or equivalently, (2P2, C4, C5)-free graphs [10] and for P4-free graphs has yet to be settled, despite
the efforts towards solving the problem for these graph classes [6, 8, 21].

On a side note, a graph is k-edge colourable if and only if its line graph is k-vertex colourable. In contrast
to the situation for Edge Colouring, the computational complexity of Vertex Colouring has been fully
classified forH-free graphs [19]. However, the computational complexity for k-Vertex Colouring restricted
to H-free graphs has not been fully classified. It is known that for every k ≥ 3, k-Vertex Colouring on
H-free graphs is NP-complete if H contains a cycle [9] or an induced claw [14, 20], but the case where H is
a linear forest has not been settled yet. The complexity status of k-Vertex Colouring is even still open
for Pt-free graphs. More precisely, it is known that the cases k ≤ 2, t ≥ 1 (trivial), k ≥ 3, t ≤ 5 [13], k = 3,
6 ≤ t ≤ 7 [2] and k = 4, t = 6 [7] are polynomial-time solvable and that the cases k = 4, t ≥ 7 [15] and k ≥ 5,
t ≥ 6 [15] are NP-complete. However, the remaining cases, that is, the cases where k = 3 and t ≥ 8 are still
open. We refer to the survey [11] or some recent papers [12, 18, 25] for further background information.
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