
On the maximum number of edges in chordal graphs of bounded degree
and matching number

Jean R. S. Blair · Pinar Heggernes · Paloma T. Lima · Daniel Lokshtanov

Abstract We determine the maximum number of edges that a chordal graph G can have if its degree,
∆(G), and its matching number, ν(G), are bounded. To do so, we show that for every d,ν ∈N, there
exists a chordal graph G with ∆(G) < d and ν(G) < ν whose number of edges matches the upper
bound, while having a simple structure: G is a disjoint union of cliques and stars.
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1 Introduction

A problem that dates back to 1960 is to determine the maximum number of edges that a graph can
have if its maximum degree and matching number are each bounded. It is important to note that this
problem does not impose any constraint on the number of vertices of the graph. Because of that,
in general, if one of the two parameters is not bounded, there is no upper bound on the number
of edges that a graph can have. One can simply construct graphs formed by stars (trees that have
only a single vertex of degree greater than one) or single edges. A star with unbounded number of
leaves has matching number one but unbounded degree, while a graph that is a disjoint union of
an unbounded number of edges has bounded degree but unbounded matching number. By Vizing’s
Theorem, every graph can have its edge set partitioned into a family of at most ∆(G)+1 matchings,
where ∆(G) denotes the degree of the graph G. Thus, bounding both the maximum degree and the
matching number is actually enough to bound the number of edges that a graph can have. Chvátal
and Hanson [7] gave a tight upper bound on this value, in the case where no further restrictions are
imposed to the graphs considered. Later on, Balachandran and Khare [1] gave a constructive proof
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of the same result, which made it possible to identify the structure of the graphs achieving the given
bound on the number of edges. Such graphs are called edge-extremal graphs. In some cases, they
contain induced subgraphs isomorphic to stars, as well as to cycles of length four.

An interesting problem that arises from these results is to investigate how the number of edges
in the edge-extremal graphs is affected if we impose some additional structural property on the
graphs considered. More specifically, what happens if we restrict the question to graph classes in
which cycles of length four or stars are forbidden induced subgraphs? Natural candidates for such
graph classes are chordal graphs, that is, graphs without induced cycles of length at least four, and
claw-free graphs. In the past few years, bounds for this problem have indeed been established for
claw-free graphs in the work of Dibek et al. [8]. Furthermore, the problem has been resolved on other
graph classes, such as bipartite graphs, split graphs, disjoint unions of split graphs and unit interval
graphs in the work of Måland [14]. However, on chordal graphs, the problem had so far remained
unresolved. Chordal graphs form an extremely well-studied graph class, both from a structural and
from an algorithmic point of view, with many and various applications.

In this work, we determine the maximum number of edges that a chordal graph can have,
given the constraints on its maximum degree and matching number. Given d,ν ∈ N, we denote by
Mchordal(d,ν) the set of chordal graphs such that ∆(G)< d and ν(G)< ν . A graph in Mchordal(d,ν)
achieving this maximum number of edges is called an edge-extremal graph. In order to establish the
upper bound on the number of edges of an edge-extremal graph in Mchordal(d,ν) we show that,
among them, there is one that has a very simple structure: it is a disjoint union of cliques and stars
of a given size.

Theorem 1 There exists an edge-extremal graph in Mchordal(d,ν) that is a disjoint union of cliques
and stars.

Section 3 is entirely devoted to the proof of Theorem 1. Once the structure of this special edge-
extremal graph is known, we are able to establish the following upper bound on the number of edges
of a graph in Mchordal(d,ν).

Theorem 2 Given d,ν ∈N, the maximum number of edges of a graph in Mchordal(d,ν) is given by:

{
(d−1)(ν−1), if d is even
(d−1)(ν−1)+ b d−1

2 cb
ν−1
d d−1

2 e
e, if d is odd

Moreover, a graph achieving this number of edges is

{
(ν−1)K1,d−1, if d is even
rK1,d−1 +qKd , if d is odd,

where ν−1 = qd d−1
2 e+ r, with r ≥ 0.

We also show that this result is tight in the sense that the same bound does not hold for any
superclass of chordal graphs that is defined by a finite collection of forbidden induced cycles. It is
worth mentioning that this problem is related to the famous problem of computing Ramsey numbers,
the general case being equivalent to determining Ramsey numbers for line graphs [2]. A preliminary
version of this work appeared in the proceedings of LATIN 2020 [3].
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2 Preliminaries

The graphs considered are simple and undirected. We denote by VG and EG the vertex set and edge
set of G, respectively. Given x ∈ VG, we denote by NG(x) the neighborhood of x, that is, the set of
vertices that are adjacent to x. Two vertices x,y ∈ VG are true twins if NG(x)∪{x} = NG(y)∪{y}.
Given x ∈ VG and X ⊆ VG \{x}, we say x is universal to X if X ⊆ NG(x). For a set X ⊂ VG, NG(X)
denotes the set of vertices in VG \X that have at least one neighbor in X . The degree of x is denoted
by degG(x) and is defined as |NG(x)|. The degree of a graph G is the maximum degree of a vertex in
G and it is denoted by ∆(G). A vertex x is a leaf of G if degG(x) = 1.

Given S ⊆ VG, the subgraph induced by S is denoted by G[S], and has S as its vertex set and
{uv | u,v ∈ S and uv ∈ EG} as its edge set. A clique is a set K ⊆ VG such that G[K] is a complete
graph. A clique is maximal if it is not properly contained in another clique. An independent set is a
set S such that G[S] has no edges. A vertex v ∈ VG is a simplicial vertex if NG(v) is a clique. Given
a set S ⊆ VG, we denote the graph G[VG \ S] by G \ S. If S = {v}, we denote the graph G[VG \ {v}]
simply by G\ v. The set S is a separator if G\S has a larger number of connected components than
G. Given a set F ⊆ EG, the subgraph induced by F is denoted by G[F ], and has the endpoints of the
edges in F as its vertex set and F as its edge set.

A set M ⊆ EG is a matching if no two edges in M share a common vertex and M is a perfect
matching if every vertex of VG is the endpoint of an edge in M. The matching number of G, denoted
by ν(G), is the largest size of a matching in G. A graph G is a factor-critical graph if for every
v ∈VG, G\ v has a perfect matching.

Given a family H of graphs, we say that G is an H -free graph if G does not contain an induced
subgraph that is isomorphic to a graph in H . If H = {H}, we say G is an H-free graph. A tree is
a connected acyclic graph. A star is a tree with at most one vertex that is not a leaf, and for k ∈ N,
a k-star, denoted by K1,k, is a star with k leaves. A graph is a complete graph on n vertices, denoted
by Kn, if there is an edge between every pair of its vertices. Given two graphs G and H, the disjoint
union of G and H, denoted by G+H is the graph with vertex set VG∪VH and edge set EG∪EH . We
denote by rH the graph that is the disjoint union of r copies of a graph H. A graph G is a bipartite
graph if VG can be partitioned into two independent sets. A bipartite graph with bipartition (A,B) is a
chain graph if there exists an ordering v1v2 . . .vr of the vertices of A such that NG(vr)⊆ . . .⊆NG(v1).
This property of the vertices of A is called the nested neighborhood property. Bipartite chain graphs
are also known to be the bipartite 2K2-free graphs.

A graph is a chordal graph if it has no induced cycle of length at least four. Chordal graphs
constitute a widely studied graph class, with many different characterisations. Given a graph G, a
clique tree of G is a tree T such that every vertex of T is a maximal clique of G and for every
v ∈V (G), Tv = {A ∈VT | v ∈ A} induces a subtree of T . The vertices of T are referred to as bags
and denoted with capital letters. For simplicity, we denote the set of vertices of G associated with
a vertex of T with the same capital letter. A characterisation of chordal graphs due to Gavril [11]
states that a graph is chordal if and only if it has a clique tree. One important property of clique trees
is that, if T is a clique tree of a chordal graph G and AB ∈ ET , then A∩B is a separator for the
graph G. Another important characterisation of chordal graphs is concerned with vertex orderings
and simplicial vertices. An ordering v1v2 . . .vn of the vertices of G is a perfect elimination ordering
for G if for every i, the vertex vi is simplicial in the graph G[{vi+1, . . . ,vn}]. A characterisation of
chordal graphs due to Fulkerson and Gross [10] states that a graph is chordal if and only if it has a
perfect elimination ordering. See [4] for an overview of the properties of chordal graphs and clique
trees.

Given two integers d and ν and a graph class C , we denote by MC (d,ν) the set of all graphs
G in C such that ∆(G) < d and ν(G) < ν . A graph in MC (d,ν) that has the maximum number of
edges is called an edge-extremal graph. When the graph class considered is the class of all graphs,
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we write simply M (d,ν). The following lemma establishes a connection between edge-extremal
graphs and factor-critical graphs in some graph classes. Even though the statement we present here
is different from the one stated in [1], the proof in [1] suffices to prove the result as stated below.

Lemma 1 ([1]) Let C be a graph class that is closed under vertex deletion and closed under taking
disjoint union with stars. Let G be an edge-extremal graph in MC (d,ν) with maximum number of
connected components that are (d− 1)-stars. Then every connected component of G that is not a
(d−1)-star is factor-critical.

The following statement gives a summary of the results obtained by Balachandran and Khare [1].

Theorem 3 ([1]) Given d,ν ∈ N, the maximum number of edges of a graph in M (d,ν) is given by
(d−1)(ν−1)+ b d−1

2 cb
ν−1
d d−1

2 e
e. Moreover, a graph achieving this number of edges is{

rK1,d−1 +qK′d , if d is even
rK1,d−1 +qKd , if d is odd,

where ν−1 = qd d−1
2 e+ r, with r ≥ 0, and K′d is the graph obtained from Kd by the removal of the

edges of a perfect matching and addition of a new vertex adjacent to d−1 vertices.

In Section 3, we show the corresponding bounds for Mchordal(d,ν) and obtain graphs that
achieve these bounds. We remark that, in Theorem 3, the graph rK1,d−1 + qKd , obtained when d
is odd, is already a chordal graph. Thus, for odd d, the edge-extremal chordal graphs have the same
number of edges as the edge-extremal general graphs. Our proof, however, does not rely on this fact
and has a unified approach, that works regardless of the parity of d.

3 Chordal graphs

In this section we present our main result. The strategy to determine the maximum number of
edges that a graph in Mchordal(d,ν) can have is to show that among the edge-extremal graphs in
Mchordal(d,ν), there is one that has a very simple structure: it is a disjoint union of cliques and stars
of a given size.

Theorem 1 (restated) There exists an edge-extremal graph in Mchordal(d,ν) that is a disjoint union
of cliques and stars.

Overview of the proof. The proof is by contradiction. We start with an edge-extremal graph of
Mchordal(d,ν) that is, in some sense, closest to being a disjoint union of cliques and stars. From
that, we will perform a series of modifications in the graph in order to obtain another graph of
Mchordal(d,ν) that has at least as many edges as the one we started with, but that is closer to being a
disjoint union of cliques and stars, which will be a contradiction with our initial choice. To perform
the modifications, we will consider a specific clique tree of our edge-extremal graph and exploit the
structure of this graph around one of its cliques, given by a carefully chosen node of the tree. A
crucial part of the proof is to ensure that, after each modification, the obtained graph still belongs
to Mchordal(d,ν). In this vein, Lemmas 3 and 4 will precisely show that the two modifications we
describe can indeed be performed without disrupting membership in Mchordal(d,ν). In this way,
we obtain a new edge-extremal graph that, as a result, has several structural properties that will be
exploited to conclude the proof.
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Proof of Theorem 1 Assume for a contradiction that there is no edge-extremal graph in Mchordal(d,ν)
that is a disjoint union of cliques and stars. Let W be an edge-extremal graph in Mchordal(d,ν) with
maximum number of (d−1)-stars and subject to that, with maximum number of connected compo-
nents. Let W ′ be a connected component of W that is not a clique nor a star and let ν1 = ν(W ′)+1. By
Lemma 1, W ′ is a factor-critical graph and therefore |VW ′ |= 2ν1−1. Note that W ′ ∈Mchordal(d,ν1)
and, in fact, W ′ is edge-extremal in Mchordal(d,ν1). Indeed, if this was not the case, we would be
able to obtain a graph in Mchordal(d,ν) with more edges than W by replacing the connected com-
ponent W ′ by an edge-extremal graph of Mchordal(d,ν1). Among all the edge-extremal graphs in
Mchordal(d,ν1) with 2ν1−1 vertices, let G be the one that has a clique tree with minimum number
of leaves. Note that, in particular, G is connected, by the maximality of the number of connected
components of the graph W .

Let T be a clique tree of G achieving the minimum number of leaves. We consider T rooted in
an arbitrary bag R. Let X be a node of T . We denote by TX the subtree of T rooted at the node X .
We define a subgraph GX associated with each node X of T in the following way. If X = R, then
GX = G. Otherwise, let S be the separator of G given by the intersection between X and its parent
in T and let VTX be the set of vertices appearing in the bags of TX . The subgraph GX associated
with the node X is given by G[VTX \ S]. Observe that if X is a leaf of T , then GX is a complete
graph. Let B be a bottommost bag in T such that GB is not a complete graph. Note that such a node
indeed exists since G is not a complete graph itself. Let B1, . . . , Bk be the children of B in T and
let Si = B∩Bi. Note that, by our choice of B, the graph GBi = G[VTBi

\ Si] is a complete graph for
every i. For simplicity, from now on we denote Ci =VTBi

\Si and hence GBi = G[Ci].
We start with the following two observations stating how the vertices of Ci are connected to those

of B and what is the structure of the tree TBi .

Observation 1 For every i, the subgraph of G induced by the edges Ei = {xy | x ∈ Si and y ∈Ci} is
a chain graph.

Proof. Note that (Si,Ci) constitutes a partition of VTBi
, thus G[Ei] is a bipartite graph. Suppose for a

contradiction that there exists an induced 2K2 in G[Ei] with vertex set {x1,y1,x2,y2}, with x1,x2 ∈ Si
and y1,y2 ∈Ci. Since Si and Ci are cliques in G, the vertices x1, y1, x2 and y2 would form an induced
C4 in G, a contradiction with the fact that G is chordal. Therefore G[Ei] is indeed bipartite and
2K2-free, that is, a chain graph. y

Observation 2 For every i, the subtree TBi is a path.

Proof. Since G[VTBi
] is a chordal graph, by Observation 1, the bipartite graph obtained from G[VTBi

]
by deleting the edges inside Si and Ci is a chain graph. Because of the nested neighborhood property
of chain graphs, G[VTBi

] has a clique tree that is a path. Since T was chosen with minimum number
of leaves, the subtree TBi is a path, for every i. y

In what follows, we want to modify the graph G in such a way to obtain a graph that is still
chordal, has the same number of vertices as G and belongs to Mchordal(d,ν1), but either has more
edges than G, or is disconnected, or has a clique tree with fewer leaves. Either one of these outcomes
will contradict the choice of G. The modifications to be performed in G will consist in the addition
and removal of edges, as well as of vertices. After each modification, one crucial part of the proof
is to ensure that the matching number of the obtained graph is still strictly less than ν1. This will
follow from the fact that G has 2ν1−1 vertices. Therefore, the addition of edges to G does not lead
to a graph with matching number greater or equal to ν1. Moreover, for any k ∈ N, the same holds
for the simultaneous removal of k vertices from such a graph followed by simultaneous addition of
k new vertices. We formalize this in the following observation for later reference.
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Observation 3 Let H be any graph on 2ν1− 1 vertices. Then any modification that preserves the
number of vertices of H cannot lead to a graph with matching number at least ν1.

For every v∈ B, let fG(v, i) denote the number of neighbors that vertex v has in the clique Ci, that
is, fG(v, i) = |NG(v)∩Ci|. Note that if fG(v, i)> 0, then v∈ Si. Let ui,1, . . . ,ui,|Ci| be an ordering of the
vertices of Ci such that degG(ui,1)≥ degG(ui,2)≥ . . .≥ degG(ui,|Ci|). Since G[Ei] is a chain graph by
Observation 1, we may assume that for every v∈B with fG(v, i)> 0, NG(v)∩Ci = {ui,1, . . . ,ui, fG(v,i)}.

We first state and prove the following lemma that can be understood as the converse of Observa-
tion 1 and that will be useful throughout the paper to show that a graph is chordal.

Lemma 2 Let H be any graph and B,C1, . . . ,Ck be cliques of H such that

– NH(Ci)⊆ B, for every 1≤ i≤ k;
– H[VH \ (∪k

i=1Ci)] is a chordal graph.

If the subgraph Gi of H induced by the edges Ei = {xy | x ∈ B and y ∈Ci} is a chain graph for every
1≤ i≤ k, then H is a chordal graph.

Proof. Since Gi is a chain graph and degG(ui,1)≥ degG(ui,2)≥ . . .≥ degG(ui,|Ci|), we conclude that
NGi(ui,|Ci|)⊆NGi(ui,|Ci|−1)⊆ . . .⊆NGi(ui,1). We will show how to construct a perfect elimination or-
dering for the graph H. Note that for every 1≤ i≤ k, the vertex ui,|Ci| is simplicial in H. Moreover, for
every i≤ k and every j≤ |Ci|, the vertex ui, j is simplicial in H[VH \{ui, j+1, . . . ,ui,|Ci|}]. Indeed, since
Ei is a chain graph, the set {ui,1, . . . ,ui, j}∪ (B∩NH(ui, j)) is a clique. Finally, since H[VH \ (∪k

i=1Ci)]
is a chordal graph, it has a perfect elimination ordering σ ′ of its vertices. Let σi = ui,|Ci| . . .ui,1. Then
σ1σ2 . . .σkσ ′ is a perfect elimination ordering for H, which concludes the proof that H is chordal. y

We are now ready to state the two modifications that will be used repeatedly throughout the proof
of Theorem 1.

Modification 1 Let B,C1, . . . ,Ck be subsets of the vertex set of the chordal graph G as previously
described and let v ∈ B. For 1≤ i≤ k, if 0 < fG(v, i)< |Ci| and v has a neighbor that does not belong
to G[VTB ], we do the following (see Figure 1a):

(i) Add an edge between v and the vertex ui, fG(v,i)+1;
(ii) Delete the edge from v to one of its neighbors outside G[VTB ]. This neighbor is chosen in the

following way: consider the subtree Tv of T formed by the bags that contain the vertex v. Let
L be a leaf of Tv that is not in the subtree rooted in B. Such a leaf exists since v has a neighbor
outside G[VTB ]. Let L′ be the bag that is adjacent to L in Tv. Since L * L′, there exists u ∈ L\L′.
Let u be the chosen neighbor of v and delete the edge uv.

Lemma 3 Modification 1 preserves both membership in Mchordal(d,ν1) and number of edges.

Proof. Let G′ be the graph obtained with the application of Modification 1. First, note that since
the edges between B and Ci induce a chain graph, v ∈ NG(ui, fG(v,i)) and v /∈ NG(ui, fG(v,i)+1), we have
that NG(ui, fG(v,i)+1)⊂NG(ui, fG(v,i)). Therefore, in G′ we have NG′(ui, fG(v,i)+1)⊆NG′(ui, fG(v,i)), which
implies that the addition of the edge vui, fG(v,i)+1 preserves the nested neighborhood property in the
bipartite graph induced by the edges between B and Ci. Thus, by Lemma 2 and since G is chordal,
the addition of this edge does not disrupt membership in the class of chordal graphs. Therefore,
to show that G′ is chordal it suffices to show that the removal of the edge uv preserves chordality.
We do so by providing a clique tree to G− uv. This clique tree is obtained from T as follows. Let
L′′ = L \ {u}. If L′′ 6= L′, add L′′ between L and L′ in the tree T and delete v from L. If L′′ = L′,
just delete v from L in T . Also, note that this operation does not change the number of leaves
in T . Hence, we obtain that the graph G′ is chordal. Note that the degree of v does not change
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VG \ VTB

u

B

Ci

v

ui,fG(v,i)+1

VG \ VTB

u

B

Ci

v

ui,fG(v,i)+1

(a) Modification 1

B

Ci Cj

v

uj,fG(v,j)ui,fG(v,i)+1

B

Ci Cj

v

uj,fG(v,j)ui,fG(v,i)+1

(b) Modification 2

Fig. 1: The dotted lines between two vertices indicate non-edges.

with this modification. The only vertex whose degree was increased by Modification 1 is ui, fG(v,i)+1.
However, note that since NG′(ui, fG(v,i)+1)⊂ NG′(ui, fG(v,i)) and degG′(ui, fG(v,i)) = degG(ui, fG(v,i))< d,
we have that degG′(ui, fG(v,i)+1)< d. This shows that Modification 1 does not increase the maximum
degree of the graph. Since Modification 1 preserves the number of vertices and |VG| = 2ν1− 1, by
Observation 3, it does not lead to a graph with matching number greater or equal to ν1. We conclude
the proof by observing that |EG′ | = |EG|, since exactly one edge was deleted and exactly one edge
was added by this modification. y

Modification 2 Let B,C1, . . . ,Ck be subsets of the vertex set of the chordal graph G as previously
described and let v ∈ B. For 1 ≤ i ≤ k, if 0 < fG(v, i) < |Ci| and fG(v, j) > 0 for some j > i, we do
the following (see Figure 1b):

(i) Delete the edge vu j, fG(v, j);
(ii) Add the edge vui, fG(v,i)+1.

Lemma 4 Modification 2 preserves both membership in Mchordal(d,ν1) and number of edges.

Proof. Let G′ be the graph obtained after the application of Modification 2. The only vertex that
had its degree increased by this modification is ui, fG(v,i)+1. However, as in the proof of Lemma 3,
since vui, fG(v,i) ∈ EG and vui, fG(v,i)+1 /∈ EG, we have that degG(ui, fG(v,i)+1) < degG(ui, fG(v,i)). Thus,
degG′(ui, fG(v,i)+1)≤ degG′(ui, fG(v,i))= degG(ui, fG(v,i))< d, implying that ∆(G′)< d. Moreover, again
since Modification 2 preserves the number of vertices and |VG|= 2ν1−1, by Observation 3, it does
not lead to a graph with matching number greater or equal to ν1. It is also easy to see that |EG′ | =
|EG|, since exactly one edge was deleted in step (i) and exactly one edge was added to the graph
in step (ii). It remains to show that the obtained graph is still chordal. Indeed, note that the deletion
of the edge vu j, fG(v, j) (resp. addition of the edge vui, fG(v,i)+1) preserves the nested neighborhood
property in the bipartite graph induced by the edges between B and C j (resp. Ci). Thus, by Lemma 2,
the graph G′ is a chordal graph. y

Recall that our graph G is an edge-extremal graph in Mchordal(d,ν1), and that the graph ob-
tained from W by replacing the connected component W ′ by G is also an edge-extremal graph in
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Mchordal(d,ν) with maximum number of connected components. For simplicity of notation, we call
this graph W again. Let G∗ be the graph obtained from G by exhaustive applications of Modifica-
tion 2 followed by exhaustive applications of Modification 1. It follows immediately from Lemmas 3
and 4 that G∗ ∈Mchordal(d,ν1) and that G∗ is edge-extremal in this set. Moreover, if the graph ob-
tained after the application of any modification is disconnected, we reach a contradiction with the
maximality of the number of components of W . Therefore, we can assume G∗ is connected. The fol-
lowing lemma describes the major structural property of G∗ that will be exploited in the remainder
of the proof.

Lemma 5 Let G∗ be the graph obtained from G by exhaustive applications of Modification 2 fol-
lowed by exhaustive applications of Modification 1. Then, for every v ∈VG∗ ∩B and every i, if v has
at least one neighbor in Ci, one of the following conditions hold:

(a) Ci ⊆ NG∗(v);
(b) degG∗(v) = ∆(G∗) and NG∗(v)⊆ B∪C1∪ . . .∪Ci.

Proof. First, let G′ be the graph obtained from G by exhaustive applications of Modification 2. Since
this modification can no longer be applied, then for every v∈ B and every i such that fG′(v, i)> 0, we
have that either fG′(v, i) = |Ci| or fG′(v, j) = 0 for every j > i. Thus, for every v ∈ B, there exists at
most one index ` such that 0 < fG′(v, `)< |C`|. Now we apply Modification 1 exhaustively to G′ and
obtain the graph G∗. Recall that fG′(v, i) = |NG′(v)∩Ci|. Observe that, for every v∈B, if fG′(v, i) = 0,
then fG∗(v, i) = 0 and if fG′(v, i) = |Ci|, then fG∗(v, i) = |Ci|. Indeed, Modification 1 is only applied
to a vertex v ∈ B and index i if 0 < fG′(v, i) < |Ci| and, when applied, it does not change fG′(v, j)
for j 6= i. Furthermore, since Modification 1 can no longer be applied, if a vertex v is such that
0 < fG∗(v, i)< |Ci|, then v has no neighbors outside B∪C1∪ . . .∪Ci. That is, if condition (a) does not
hold, then NG∗(v)⊆ B∪C1∪ . . .∪Ci. It remains to show that, in this case, degG∗(v) = ∆(G∗). To see
this, first note that by Lemmas 3 and 4, we have that |EG∗ |= |EG| and that G∗ ∈Mchordal(d,ν1), thus
G∗ is an edge-extremal graph in Mchordal(d,ν1). If degG∗(v) < ∆(G∗), we can add to G∗ the edge
vui, fG∗ (v,i)+1. The addition of this edge does not change the maximum degree of G∗ since degG∗(v)<
∆(G∗) by assumption, and dG∗(ui, fG∗ (v,i)+1)≤ dG∗(ui, fG∗ (v,i))< ∆(G∗). Moreover, by Lemma 2, the
addition of this edge preserves chordality, and together with Observation 3, we conclude that it
preserves membership in Mchordal(d,ν1). However, the obtained graph has more edges than G∗, a
contradiction. This shows that degG∗(v) = ∆(G∗) and concludes the proof of Lemma 5. y

Since the graph G∗ is such that ∆(G∗)< d and |EG∗ |= |EG|, we can replace the connected com-
ponent G in our edge-extremal graph W by G∗. This replacement will be convenient since Lemma 5
provides useful information on the structure of G∗. More concretely, in the rest of the proof we shall
assume that B,C1, . . . ,Ck satisfy the conclusion of Lemma 5.

Let b be the size of the clique B, let ∆ = ∆(G∗) and recall that Si is the separator between the
bag Bi and B and S is the separator between the bag B and its parent in T . We are now going to
conclude the proof of Theorem 1 with a case analysis.

Case 1: There exists i such that |Ci|+b≤ ∆ +1.
Case 1.1: k ≥ 2.
We may assume, without loss of generality, that |C1| ≤ |C2| ≤ . . .≤ |Ck|. In particular, this implies

that |C1|+ b ≤ ∆ + 1. We will show that, in this case, all the vertices of C1 are adjacent to all the
vertices of S1∪ . . .∪Sk. This will lead to a contradiction with the number of leaves of the clique tree
of G. Suppose for a contradiction that there exists v ∈ S1 ∪ . . .∪ Sk that is not universal to C1. This
implies that fG∗(v,1)< |C1|.

We will show that the graph G∗ can be modified in order to obtain another edge-extremal graph,
also in Mchordal(d,ν1), in which v is adjacent to every vertex of C1.
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B

S ∪ S1 ∪ . . . ∪ Sk

S ∪ S1 ∪ . . . ∪ Sk

B

S1 ∪ . . . ∪ Sk ∪ C1

S2

B2 Bk

Sk

S2

B2 Bk

SkS1

B1

Fig. 2: To the left, the clique tree T and to the right, a clique tree of the updated graph G∗ that has
fewer leaves than T .

First, note that it cannot be the case that fG∗(v,1)> 0, since by Lemma 5, if 0 < fG∗(v,1)< |C1|,
then v has maximum degree and has no neighbors outside B∪C1. However, this is a contradiction,
since |C1|+b≤ ∆ +1. Thus, we conclude that fG∗(v,1) = 0.

In what follows, we will modify the graph G∗ and the deletion of some edges might disrupt the
membership in the class of chordal graphs. In these cases, we will use the following modification in
order to restore it.

Modification 3 Let H be any graph satisfying the conditions of Lemma 2. We do the following:

(i) Delete from H all the edges xy such that x ∈ B and y ∈Ci for some i;
(ii) For each v ∈ B and each 1 ≤ i ≤ k, if fH(v, i) > 0, add the edges between v and the vertices

ui,1, . . . ,ui, fH (v,i).

Lemma 6 Modification 3 preserves membership in the class of chordal graphs and number of edges.

Proof. Let H ′ be the graph obtained from H by Modification 3. We show that, for every 1 ≤ i ≤ k,
H ′[Ei] is a chain graph, where Ei = {xy | x ∈ B and y ∈Ci}. It will then follow from Lemma 2 that
H ′ is chordal. Suppose this is not the case, and let v,w ∈ B and ui, j,ui,` ∈ Ci, with j < `, be such
that {v,w,ui, j,ui,`} induces a 2K2 in H ′[Ei] with edges vui, j and wui,`. However, since j < `, the edge
wui, j was also added in step (ii), a contradiction. Finally, it is easy to see that |EH ′ |= |EH |, since the
degrees of the vertices in B remain unchanged. y

We now modify G∗ as follows. Let j be the largest index for which fG∗(v, j) > 0. If fG∗(v, j) =
|C j|, since |C1| ≤ |C j|, we can delete |C1| edges between v and C j and add all the edges between v and
C1. We then apply Modification 3 to the obtained graph in order to obtain a graph that, by Lemma 6,
is chordal. Note that the only vertices whose degree has increased are the ones in C1. However, since
|C1|+b≤ ∆ +1, we conclude that the maximum degree of G∗ did not increase.

If fG∗(v, j) < |C j|, then, by Lemma 5, v has maximum degree and has no neighbors outside
B∪C1∪ . . .∪C j. Furthermore, recall that fG∗(v,1) = 0, which means that v has no neighbors in C1.
Since |B| = b and v ∈ B, we have that v has exactly ∆ −b+1 neighbors in C2∪ . . .∪C j. Therefore
∑

j
`=2 fG∗(v, `) =∆−b+1. Since |C1| ≤∆−b+1 by assumption, we can delete |C1| edges between v

and vertices of C2∪ . . .∪C j and add all the edges between v and C1. We then apply Modification 3 to
the obtained graph in order to obtain a graph that, by Lemma 6, is chordal. Again, the only vertices
whose degree has increased in this process are the ones from C1, thus we conclude the obtained
graph still has degree at most ∆ .

Finally note that in both cases, the modifications do not change the number of edges of G∗, since
∑

k
`=1 fG∗(v, `) remains the same. They also preserve the number of vertices of G∗, which has 2ν1−1
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C1 C2 Ck

S

S1 S2 Sk

y1 y2 yk

∆− b + 1 ∆− b + 1 ∆− b + 1

→
←NG∗ (Si) ∩ Ci

simplicial

vertices of Ci

Fig. 3: Graph G∗ in case 2. Thick lines indicate all possible edges between the sets. Gray text indi-
cates the cardinality of the vertex set. Note that every vertex of Ci that does not belong to NG∗(Si) is
a simplicial vertex of G∗.

vertices. Thus by Observation 3, the modifications lead to a graph with matching number still strictly
smaller than ν1. Moreover, in this obtained graph, v is adjacent to all the vertices of C1. We perform
this change for every v∈ S1∪ . . .∪Sk such that fG∗(v,1)> 0 and obtain a new edge-extremal graph in
Mchordal(d,ν1) such that all the vertices of C1 are adjacent to all the vertices of S1∪ . . .∪Sk. Recall
that among all the edge-extremal graphs in Mchordal(d,ν1) with 2ν1−1 vertices, G was the one that
had a clique tree with minimum number of leaves. This new graph, however, has a clique tree that
has fewer leaves than the clique tree T of G. This is because the clique C1∪S1∪ . . .∪Sk is contained
in B and contains the intersection between B and each child of B (see Figure 2). This contradicts the
minimality of the number of leaves of T .

Case 1.2: k = 1.

Since GB is not a clique by assumption, there exists v ∈VGB \S that is not universal to C1 in G∗.
If fG∗(v,1) > 0 then v ∈ S1. In this case, by Lemma 5, v has maximum degree and no neighbors
outside B∪C1. Hence, degG∗(v) ≤ b− 1+ |C1|− 1, which implies that ∆ ≤ b+ |C1|− 2. This is a
contradiction with the assumption of Case 1 that |C1|+b≤ ∆ +1.

If fG∗(v,1) = 0, then v is a simplicial vertex in G∗. Since v ∈ B, degG∗(v) = b− 1. By the as-
sumption of Case 1, b− 1+ |C1| ≤ ∆ . Thus, we can add all the edges between v and the vertices
of C1 and obtain a graph whose maximum degree is still at most ∆ . Moreover, by Observation 3
the matching number of the obtained graph is still less than ν1. Finally, since v is now adjacent to
all vertices of C1, the bipartite graph induced by the edges between B and C1 is a chain graph, and
hence, by Lemma 2, the obtained graph is chordal. Thus, this graph belongs to Mchordal(d,ν1) and
has more edges than G∗, a contradiction.

Case 2: For every i, |Ci|+b > ∆ +1.

Let v ∈ S1 ∪ . . .∪ Sk. Let av be the smallest index such that fG∗(v,av) > 0. Note that v cannot
be universal to Cav in G∗, since by assumption |Cav |+ b > ∆ + 1. By Lemma 5, degG∗(v) = ∆ and
NG∗(v) ⊆ B∪Cav . This implies that for every v ∈ S1 ∪ . . .∪ Sk, there exists a unique index av such
that fG∗(v,av) > 0. That is, for any j 6= av, fG∗(v, j) = 0, and thus Si ∩ S j = /0 if i 6= j. Also, since
NG∗(v) ⊆ B∪Cav and v has degree ∆ , we have that fG∗(v,av) = ∆ −b+1. That is, if av = au, then
u and v are true twins in G∗. Moreover, for any 1 ≤ i < j ≤ k, |NG∗(Si)∩Ci| = |NG∗(S j)∩C j|. Let
S be the separator between B and its parent in the clique tree T . Since for every v ∈ S1 ∪ . . .∪ Sk,
NG∗(v)⊆ B∪Cav , we know that S∩Si = /0, for every i. Also, since the graph G∗ is connected, S 6= /0.
See Figure 3.
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Let u∈NG∗(Si)∩Ci. Suppose for a contradiction that degG∗(u)<∆ . Let G1 be the graph obtained
from G∗ by the deletion of one vertex of S and addition of a new vertex w in Si, such that NG1 [w] =
B∪ (N(Si)∩Ci).

Claim 1 G1 is chordal, |EG1 | ≥ |EG∗ | and ∆(G1) = ∆(G∗).

Proof. Note that w is a true twin of the vertices in Si, and since the vertices of Si have maximum
degree, it holds that degG1

(w) = ∆ and hence the graph G1 has at least as many edges as G∗. The
only vertices whose degree has increased after this modification are those belonging to NG1(Si)∩
Ci. However, note that if x ∈ NG1(Si)∩Ci, then degG1

(x) = degG∗(x)+ 1. Since degG∗(x) < ∆ by
assumption, we have that degG1

(x) ≤ ∆(G∗) and thus ∆(G1) = ∆(G). To see that G1 is chordal,
it suffices to notice that the class of chordal graphs is closed under vertex deletion and under the
addition of true twins. y

If G1 is disconnected or has more edges than G∗, we have a contradiction. We repeat the above
modification until either the graph obtained is disconnected, that is, until S = /0, or until for every i,
the degree of the vertices in NG1(Si)∩Ci is ∆ . Let G2 be the graph obtained after exhaustive applica-
tion of the above modification. If G2 is disconnected, we have a contradiction with the maximality of
the number of connected components of our initial edge-extremal graph. Otherwise, by Claim 1, we
have that G2 is chordal, |EG2 | ≥ |EG∗ | and ∆(G2)=∆(G∗). Moreover, by Observation 3, ν(G2)< ν1.
Therefore, we can now replace G∗ by G2 in our edge-extremal graph W . Note that G2 is such that:

1. For every 1≤ i < j ≤ k, Si∩S j = /0;
2. For every 1 ≤ i ≤ k, the vertices of Si and of NG2(Si)∩Ci have degree ∆ and |NG2(Si)∩Ci| =

∆ −b+1.

Case 2.1: k ≥ 2.
Let yi be the number of simplicial vertices in the clique Ci. Assume without loss of generality that

y1 ≥ y2. We perform the following modifications in the graph G2: deletion of one simplicial vertex
from C2 and one vertex from S1 and addition of one vertex to S2 and one simplicial vertex to C1. Note
that, after this modification, the only vertices that had their degree changed are the simplicial vertices
from C1 and C2. Since these simplicial vertices did not have maximum degree before, the degree of
the obtained graph does not exceed the degree of G2. Note that y2− 1+∆ − b+ 1+∆ edges were
removed by the deletion of the two vertices and y1+∆−b+1+∆ were added by the addition of the
other two vertices. However, since y1 ≥ y2, we have that the obtained graph has strictly more edges
than G2, which is a contradiction.

Case 2.2: k = 1.
Since all vertices in S1 and in NG2(S1)∩C1 have maximum degree, we can perform the following

modification in G2: delete all vertices of S1 and add |S1| vertices to NG2(S1)∩C1. The graph obtained
after this modification has the same number of edges as G2, since |S1| vertices of degree ∆ were
removed and the same amount of vertices with the same degree was added. However, the obtained
graph is disconnected, which is a contradiction with the maximality of the number of connected
components of the edge-extremal graph W .

This concludes the proof of Theorem 1. ut

By Theorem 1, we know that there is an edge-extremal graph in Mchordal(d,ν) that is a disjoint
union of cliques and stars. The next lemma gives a tight upper bound on the number of edges of such
an edge-extremal graph when d is even.

Lemma 7 Let G be a graph in Mchordal(d,ν) that is a disjoint union of cliques and stars. If d is
even, then |EG| ≤ (d−1)(ν−1).
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Proof. Let G be a graph such that ∆(G) ≤ d − 1 and ν(G) ≤ ν − 1 and that is a disjoint union
of cliques and stars. We proceed by induction in k, the number of connected components of G.
If k = 1 and G is a star, then ∆(G) ≤ d − 1 and |EG| ≤ d − 1. If G is a clique, then |VG| ≤ d.
If |VG| = d, then ∆(G) = d − 1 and ν(G) = d

2 , since G is even. Then |EG| =
(|VG|

2

)
= d(d−1)

2 =

∆(G)ν(G)≤ (d−1)(ν−1). Now assume |VG| ≤ d−1. Since G is a clique, ν(G)≥ |VG|−1
2 . Hence,

|EG|= |VG|(|VG|−1)
2 ≤ (d−1)ν(G)≤ (d−1)(ν−1).

Let G be a disjoint union of cliques and stars with k > 1 connected components. Let H be a
component of G and G′ be the graph obtained from G by the removal of the vertices of H. Then
∆(G′) ≤ ∆(G) and by the induction hypothesis, |EG′ | ≤ ∆(G′)ν(G′). If H is a star, then ν(G′) =
ν(G)−1 and |EG| ≤ |EG′ |+∆(G), which implies that |EG| ≤ ∆(G)ν(G)≤ (d−1)(ν−1).

If H is a clique, we have that |EG| = |EG′ |+
(|VH |

2

)
≤ ∆(G′)ν(G′) +

(|VH |
2

)
. If |VH | = d, then

ν(H) = d
2 , since d is even, and ν(G′) = ν(G)− d

2 . Hence, |EG| ≤ ∆(G)(ν(G)− d
2 )+

(d
2

)
≤ (d−

1)(ν − 1). Now assume that |VH | ≤ d− 1. Since G is a clique, ν(H) ≥ |VH |−1
2 and thus ν(G′) ≤

ν(G)− |VH |−1
2 . Hence |EG| ≤∆(G′)ν(G′)+

(|VH |
2

)
≤∆(G)(ν(G)− |VH |−1

2 )+
(|VH |

2

)
. And since |VH | ≤

d−1, we conclude that |EG| ≤ (d−1)(ν−1). y

By Theorem 3, we already know the maximum number of edges that a graph that is a disjoint
union of cliques and stars can have when d is odd. From Theorem 1 and Lemma 7, we obtain our
main result, Theorem 2 (see page 2), which establishes the upper bound on the number of edges that
a chordal graph of Mchordal(d,ν) can have and shows that the obtained bound is tight.

4 Final remarks and open problems

In this work, we determined the maximum number of edges that a chordal graph can have if its
maximum degree and matching number are bounded. We also exhibit examples of graphs achieving
this bound.

An interesting question that remains open comes from the fact that the graph K′i used in Theo-
rem 3 has an induced C4. For each d and ν , what is the maximum number of edges of a graph in
MC4- f ree(d,ν)? We point out that the bound on the number of edges for chordal graphs does not
hold for C4-free graphs, as can be seen by the graph P, obtained from the famous Petersen graph by
the subdivision of one edge (see Figure 4). We have that ∆(P) = 3, ν(P) = 5 and |EP| = 16. The
bound given by Theorem 1 when d = 4 and ν = 6 is 15. This idea can be further generalized to
create examples in the class of H -free graphs, where H is any finite collection of cycles. Indeed,
let r be the size of a largest cycle of H . A result due to Kochol [13] about snarks implies that for
any r ≥ 5 there exists an infinite family of 3-regular graphs of girth r that have a perfect matching.
Let G be one such graph and let H be the graph obtained from G by the subdivision of one edge. The
graph H is clearly H -free and is such that ∆(H) = 3, ν(H) = ν(G) and |EH | = 3ν(H)+ 1, while
the bound given by Theorem 1 when d = 4 and ν = ν(H)+1 is 3ν(H).

Another related open problem mentioned in [8] is to determine the maximum number of edges
that an arbitrary connected graph can have if its degree and matching number are bounded. We
remark that the problem is open even for connected chordal graphs. In this case, we observe that the
edge-extremal graph described in Theorem 1 can be turned into a connected graph by identifying
two leaves of distinct components. This shows that the maximum number of edges does not change
when the connectivity contraint is imposed to chordal graphs and d is even. However, this is not the
case when d is odd. In particular, as shown in [1], if ν − 1 divides d−1

2 , the edge-extremal graphs
described in Theorem 3 are unique and thus, the connectivity contraint will definitely result in a
decrease in the maximum number of edges.
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Fig. 4: A C4-free graph with ∆ = 3, ν = 5 and |E|= 16.

It is also interesting to point out that, as briefly hinted in the introduction, the problem of deter-
mining the maximum number of edges a graph can have under constraints on its degree and matching
number is related to that of edge coloring graphs. An edge coloring of a graph is a partition of its
edge set into disjoint matchings (also referred to as color classes). By Vizing’s Theorem, a graph
can always be edge colored with ∆(G)+1 colors. However, the problem of deciding whether ∆(G)
colors suffice is NP-complete [12]. There are very few known sufficient conditions to guarantee a
graph cannot be edge colored with ∆(G) colors. The most famous (and simple) of them is to test
whether the graph has too many edges, that is, if |EG|>∆(G)b |VG|

2 c. A graph whose number of edges
satisfy this inequality is called overfull. In particular, if a graph has a vertex v of maximum degree
such that G[NG[v]] is overfull, then this graph is called neighborhood overfull and cannot be edge
colored with ∆(G) colors either. The complexity of the edge coloring problem restricted to chordal
graphs has remained open for many years, despite numerous efforts towards a solution (see, e.g.,
[5,6,9]). In particular, Figueiredo et al. [9] conjectured that a chordal graph is edge colorable with
∆(G) colors if and only if it is not subgraph overfull. The bound on the number of edges we provide
in Theorem 1 implies that no chordal graph of odd maximum degree is subgraph overfull. Hence, if
the conjecture of Figueiredo et al. holds, every such graph can be edge colored with ∆(G) colors.
So far, this has only been confirmed for split graphs of odd maximum degree [6]. The same question
for chordal graphs remains an interesting open problem to be solved.
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