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Abstract

Problems related to finding induced subgraphs satisfying given properties form
one of the most studied areas within graph algorithms. However, for many ap-
plications, it is desirable that the found subgraph has as few connections to the
rest of the graph as possible, which gives rise to the Secluded Π-Subgraph
problem. Here, input k is the size of the desired subgraph, and input t is a limit
on the number of neighbors this subgraph has in the rest of the graph. This
problem has been studied from a parameterized perspective, and unfortunately
it turns out to be W[1]-hard for many graph properties Π, even when parame-
terized by k + t. We show that the situation changes when we are looking for
a connected induced subgraph satisfying Π. In particular, we show that the
Connected Secluded Π-Subgraph problem is FPT when parameterized by
just t for many important graph properties Π.
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1. Introduction

Vertex deletion problems are central in parameterized algorithms and com-
plexity, and they have contributed hugely to the development of new algorithmic
methods. The Π-Deletion problem, with input a graph G and an integer ℓ,
asks whether at most ℓ vertices can be deleted from G so that the resulting
graph satisfies graph property Π. Its dual, the Π-Subgraph problem, with in-
put G and k, asks whether G contains an induced subgraph on at least k vertices
satisfying Π. The problems were introduced already in 1980 by Yannakakis and
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Lewis [15], who showed their NP-completeness for almost all interesting graph
properties Π. During the last couple of decades, these problems have been
studied extensively with respect to parameterized complexity and kernelization,
which has resulted in numerous new techniques and methods in these fields
[6, 8].

In many network problems, the size of the boundary between the subgraph
that we are looking for and the rest of the graph makes a difference. A small
boundary limits the exposure of the found subgraph, and notions like isolated
cliques have been studied in this respect [11, 12, 14]. Several measures for the
boundary have been proposed; in this work we use the open neighborhood of
the returned induced subgraph. For a set of vertices U of a graph G and a
nonnegative integer t, we say that U is t-secluded if |NG(U)| ≤ t. Analogously,
an induced subgraphH of G is t-secluded if the vertex set ofH is t-secluded. For
a given graph property Π, we get the following formal definition of the problem
Secluded Π-Subgraph.

Input: A graph G and nonnegative integers k and t.
Task: Decide whether G contains a t-secluded induced subgraph

H on at least k vertices, satisfying Π.

Secluded Π-Subgraph

Lewis and Yannakakis [15] showed that Π-Subgraph is NP-complete for
every hereditary nontrivial graph property Π. This immediately implies that
Secluded Π-Subgraph is NP-complete for every such Π. As a consequence,
the interest has shifted towards the parameterized complexity of the problem,
which has been studied by van Bevern et al. [1] for several classes of properties Π.
Unfortunately, in most cases Secluded Π-Subgraph proves to be W[1]-hard,
even when parameterized by k + t. In particular, it is W[1]-hard to decide
whether a graph G has a t-secluded independent set of size k when the problem
is parameterized by k + t [1]. We show that the situation changes when the
secluded subgraph we are looking for is required to be connected, in which case
we are able to obtain positive results that apply to many properties Π. In fact,
connectivity is central in recently studied variants of secluded subgraphs, like
Secluded Path [4, 13, 17, 2] (see also [21]) and Secluded Steiner Tree [9].
However, in these problems, the measure is the size of the closed neighborhood
of a path or a tree connecting a given set of vertices. The following formal
definition describes the Connected Secluded Π-Subgraph problem that we
study. For generality, we define a weighted problem.

Input: A graph G, a weight function ω : V (G) → Z>0, a nonnega-
tive integer t and a positive integer w.

Task: Decide whether G contains a connected t-secluded induced
subgraph H with ω(V (H)) ≥ w, satisfying Π.

Connected Secluded Π-Subgraph
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Observe that Connected Secluded Π-Subgraph remains NP-complete
for all hereditary graph properties Π such that the property combining Π and
connectivity is nontrivial, following the results of Yannakakis [22]. It can also be
seen that Connected Secluded Π-Subgraph parameterized by w is W[1]-
hard even for unit weights, if it is W[1]-hard with parameter k to decide whether
G has a connected induced subgraph on at least k vertices, satisfying Π (see,
e.g., [8, 20]).

It is thus more interesting to consider parameterization by t, and we show
that Connected Secluded Π-Subgraph is fixed-parameter tractable (FPT)
when parameterized by t for many important graph properties Π. Our main
result is given in Section 4 where we consider Connected Secluded Π-
Subgraph for all graph properties Π that are characterized by finite sets F of
forbidden induced subgraphs and refer to this variant of the problem as Con-
nected Secluded F-Free Subgraph. We show that the problem is FPT
when parameterized by t by proving the following theorem.

Theorem 1. Connected Secluded F-Free Subgraph can be solved in

time 22
2O(t log t)

· nO(1).

We prove the theorem by making use of the recursive understanding tech-
nique introduced by Chitnis et al. [5] for graph problems. This technique is
based on the following idea. Suppose that the input graph has a separator of
bounded size that divides the graph into two sufficiently big parts. Then we
solve the problem recursively for one of the parts and replace this part by an
equivalent graph such that the replacement keeps all essential (partial) solutions
of the original part. By such a replacement we obtain a graph of smaller size
and this allows to use recursion. Otherwise, if there is no separator of bounded
size separating the graph into two big parts, then the graph is said to be un-
breakable and we exploit this property to solve the problem directly. It was
shown by Chitnis et al. [5] that this technique provides a powerful tool for ob-
taining FPT algorithms for cut problems. This technique was further developed
in [7, 16]. In particular, very recently, Lokshtanov et al. [16] showed the meta-
algorithmic theorem that roughly states that if a parameterized problem is FPT
on unbreakable graphs and can be expressed in Counting Monadic Second-Order
Logic (CMSO), then the problem is FPT for general graphs (we refer to [16]
for the precise statements and the definition of CMSO). Nevertheless, it should
be noted that this theorem is nonconstructive and provides only an existential
result. Note also that we still have to go through the unbreakable case to ap-
ply the theorem. Since solving Connected Secluded F-Free Subgraph is
already nontrivial on unbreakable graphs and we believe that it would be inter-
esting to obtain a constructive algorithm with explicit running time, we prefer
to apply the recursive understanding technique directly.

Further, in Section 5 we show that we can get faster algorithms for Con-
nected Secluded Π-Subgraph when Π is the property of being a complete
graph, a star, a d-regular graph, and a path. Finally, in Section 6 we briefly
discuss extensions of our results for some other properties Π and kernelization
for Connected Secluded Π-Subgraph.
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2. Preliminaries

We consider only finite undirected simple graphs. We use n to denote the
number of vertices and m the number of edges of the considered graphs unless
it creates confusion. A graph G is identified by its vertex set V (G) and edge
set E(G). For U ⊆ V (G), we write G[U ] to denote the subgraph of G induced
by U . We write G − U to denote the graph G[V (G) \ U ]; for a single-element
U = {u}, we write G−u. A set of vertices U is connected if G[U ] is a connected
graph. For a vertex v, we denote by NG(v) the (open) neighborhood of v in
G, i.e., the set of vertices that are adjacent to v in G. For a set U ⊆ V (G),
NG(U) = (

⋃
v∈U NG(v)) \ U . We denote by NG[v] = NG(v) ∪ {v} the closed

neighborhood of v; respectively, NG[U ] =
⋃

v∈U NG[v]. The degree of a vertex
v is dG(v) = |NG(v)|. Two vertices u and v of graph G are true twins if
NG[u] = NG[v], and false twins if NG(u) = NG(v). A set of vertices S ⊂ V (G)
of a connected graph G is a (vertex) separator if G−S is disconnected. A vertex
v is a cut vertex if {v} is a separator. For two sets of vertices A,B ⊆ V (G), a
set S ⊆ V (G) is an (A,B)-separator if G−S has no path with one end-vertex in
A and the other in B; S is an (inclusion) minimal separator if there is no proper
subset of S that is an (A,B)-separator. A pair (A,B), where A,B ⊆ V (G) and
A ∪ B = V (G), is a separation of G of order |A ∩ B| if G has no edge uv with
u ∈ A \B and v ∈ B \A, i.e., A ∩B is an (A,B)-separator.

A graph property is hereditary if it is preserved under vertex deletion, or
equivalently, under taking induced subgraphs. A graph property is trivial if
either the set of graphs satisfying it, or the set of graphs that do not satisfy it,
is finite. Let F be a graph. We say that a graph G is F -free if G has no induced
subgraph isomorphic to F . For a set of graphs F , a graph G is F-free if G is
F -free for every F ∈ F . Let Π be the property of being F-free. Then, depending
on whether F is a finite or an infinite set, we say that Π is characterized by a
finite / infinite set of forbidden induced subgraphs.

3. Connected Secluded Π-Subgraph parameterized by k + t

In this section, we consider the special colored variant of Connected Se-
cluded Π-Subgraph and show that the problem is FPT when parameterized
by k + t. We will rely on this result in the subsequent sections, however we
believe that it is also of interest on its own.

We say that a mapping c : V (G) → N is a coloring of G; note that we do
not demand a coloring to be proper. Analogously, we say that Π is a property
of colored graphs if Π is a property on pairs (G, c), where G is a graph and c
is a coloring. Moreover, we allow Π be a property of a subgraph with respect
to a colored graph. Notice that if some vertices of a graph have labels, then we
can assign to each label (or a combination of labels if a vertex can have several
labels) a specific color and assign some color to unlabeled vertices. Then we can
redefine a considered graph property with the conditions imposed by labels as
a property of colored graphs. For a property Π of colored graphs, we define the
following problem.
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Input: A graph G, coloring c : V (G) → N, a weight function
ω : V (G) → Z≥0 and nonnegative integers k, t and w.

Task: Decide whether G contains a connected t-secluded induced
subgraph H such that (H, c′), where c′ = c|V (H), satisfies
Π, |V (H)| = k and ω(V (H)) ≥ w.

Connected Secluded Colored Π-Subgraph of Exact Size

Observe that we allow zero weights. We give two algorithms for Connected
Secluded Colored Π-Subgraph of Exact Size with different running
times. The first algorithm is based on Lemmas 3.1 and 3.2 of Fomin and Vil-
langer [10], which we summarize in Lemma 1 below. The second algorithm uses
Lemma 2 by Chitnis et al. [5], and we are going to use it when k ≫ t.

Lemma 1 ([10]). Let G be a graph. For every v ∈ V (G) and k, t ≥ 0, the
number of connected vertex subsets U ⊆ V (G) such that v ∈ U , |U | = k, and
|NG(U)| = t, is at most

(
k+t
t

)
. Moreover, all such subsets for all v ∈ V (G) can

be enumerated in time O(
(
k+t
t

)
· (n+m) · t · (k + t)).

Lemma 2 ([5]). Given a set U of size n and integers 0 ≤ a, b ≤ n, one can con-
struct in time 2O(min{a,b} log(a+b))n log n a family S of at most
2O(min{a,b} log(a+b)) log n subsets of U such that the following holds: for any sets
A,B ⊆ U , A ∩ B = ∅, |A| ≤ a, |B| ≤ b, there exists a set S ∈ S with A ⊆ S
and B ∩ S = ∅.

Theorem 2. If property Π can be recognized in time f(n), then Connected
Secluded Colored Π-Subgraph of Exact Size can be solved both in time
2k+t · f(k) · nO(1), and in time 2O(min{k,t} log(k+t)) · f(k) · nO(1).

Proof. Let (G, c, ω, k, t, w) be an instance of Connected Secluded Colored
Π-Subgraph of Exact Size.

First, we use Lemma 1 and in time 2k+t · nO(1) enumerate all connected
U ⊆ V (G) with |U | = k and |NG(U)| ≤ t. By Lemma 1, we have at most(
k+t
t

)
tn sets. For every such a set U , we check in time f(k) whether the given

colored induced subgraph H = G[U ] satisfies Π and check in time O(k) whether
ω(U) ≥ w. It is straightforward to see that (G, c, ω, k, t, w) is a yes-instance if
and only if we find U with these properties.

To construct the second algorithm, assume that (G, c, ω, k, t, w) is a yes-
instance. Then there is U ⊆ V (G) such that U is a connected k-vertex set such
that |NG(U)| ≤ t, ω(U) ≥ w and the colored graph H = G[U ] satisfies Π. Using
Lemma 2, we can construct in time 2O(min{k,t} log(k+t)) · nO(1) a family S of at
most 2O(min{k,t} log(k+t)) log n subsets of V (G) such that the following holds: for
any sets A,B ⊆ V (G), A ∩ B = ∅, |A| ≤ k, |B| ≤ t, there exists a set S ∈ S
with A ⊆ S and B∩S = ∅. In particular, we have that there is S ∈ S such that
U ⊆ S and NG(U) ∩ S = ∅. It implies that G[U ] is a component of G[S].

Therefore, (G, c, ω, k, t, w) is a yes-instance if and only if there is S ∈ S
such that a component of G[S] is a solution for the instance. We construct the
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described set S. Then for every S ∈ S, we consider the components of G[S],
and for every component H, we verify in time f(k) +O(k), whether H gives us
a solution.

Theorem 2 immediately gives the following corollary.

Corollary 1. If Π can be recognized in polynomial time, then Connected
Secluded Colored Π-Subgraph of Exact Size can be solved both in time
2k+t · nO(1), and in time 2O(min{k,t} log(k+t)) · nO(1).

4. Connected Secluded Π-Subgraph for properties characterized by
finite sets of forbidden induced subgraphs

In this section we prove Theorem 1 and show that Connected Secluded
Π-Subgraph is FPT parameterized by t when Π is characterized by a finite
set of forbidden induced subgraphs. We refer to this restriction of our problem
as Connected Secluded F-Free Subgraph. Throughout this section, we
assume that we are given a fixed finite set F of graphs.

We apply the recursive understanding technique introduced by Chitnis et
al. [5]. To do this, we introduce some specific notions and obtain auxiliary results
in Subsection 4.1. In particular, we introduce a special version of Connected
Secluded F-Free Subgraph tailored for the recursion and give a high level
overview of our algorithm. Further, in Subsection 4.2, we consider the base of
recursion. Then, in Subsection 4.3, we discuss the main recursive step of our
algorithm.

4.1. Recursive understanding for Connected Secluded F-Free Subgraph

The main idea of the recursive understanding technique [5] is to separate the
input graph into two sufficiently big parts, obtain solutions for one of the parts
and then use this information to reduce the graph and recurse. To apply this
scheme, we first have to formalize the considered separations.

Let G be a graph. Let us remind that a pair (U,W ), where U,W ⊆ V (G)
and U ∪W = V (G), is a separation of G of order |U ∩W | if G has no edge uv
with u ∈ U \W and v ∈ W \ U , i.e., U ∩W is a (U,W )-separator.

Definition 1. Let q and k be nonnegative integers. A graph G is (q, k)-
unbreakable if for every separation (U,W ) of G of order at most k, |U \W | ≤ q
or |W \ U | ≤ q.

Combining Lemmas 19, 20 and 21 of [5], we obtain the following lemma
that allows either to find a separation of a graph or decide that the graph is
unbreakable.

Lemma 3 ([5]). Let q and k be nonnegative integers. There is an algorithm
with running time 2O(min{q,k} log(q+k)) · n3 log n that, for a graph G, either finds
a separation (U,W ) of order at most k such that |U \W | > q and |W \ U | > q,
or correctly reports that G is ((2q + 1)q · 2k, k)-unbreakable.
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In our algorithm, we choose appropriate values of q and k that depend on
the parameter t of the considered instance of Connected Secluded F-Free
Subgraph and verify whether the input graph is unbreakable. Assume that
we obtain a separation (U,W ) of order at most k such that |U \ W | > q and
|W \ U | > q. Then U ∩ W is a separator of G. Our aim is to deal with G[U ]
and G[W ] separately and apply our algorithm recursively. For this, we have to
keep track of the common vertices of G[U ] and G[W ], that is, of the vertices of
U ∩W . These vertices form the boundary of G[U ] and G[W ] and are used to
glue partial solutions. Note that in recursive steps we may cut G[U ] or G[W ]
further and obtain new boundary vertices. Therefore, we have to switch to
considering graphs with given sets of marked boundary vertices.

Definition 2. Let p be a nonnegative integer. A pair (G, x), where G is a
graph and x = (x1, . . . , xp) is a p-tuple of distinct vertices of G, is called a p-
boundaried graph or simply a boundaried graph; x = (x1, . . . , xp) is a bound-
ary. We say that (G, x) is a properly p-boundaried graph if each component of
G has at least one vertex of the boundary.

Note that a boundary is an ordered set. Hence, two p-boundaried graphs
that differ only by the order of the vertices in their boundaries are distinct.
Observe also that a boundary could be empty. When there is no ambiguity, we
may omit the boundary x and say that G is a (p-) boundaried graph assuming
that a boundary is given.

To deal with boundaried graphs, we need the following definitions.

Definition 3. Two p-boundaried graphs (G1, x
(1)) and (G2, x

(2)), where

x(h) = (x
(h)
1 , . . . , x

(h)
p ) for h ∈ {1, 2}, are isomorphic if there is an isomorphism

of G1 to G2 that maps each x
(1)
i to x

(2)
i for each i ∈ {1, . . . , p}.

Definition 4. We say that p-boundaried graphs (G1, x
(1)) and (G2, x

(2)) are
boundary-compatible and denote it (G1, x

(1)) ≃b (G2, x
(2)) if for any distinct

i, j ∈ {1, . . . , p}, x(1)
i x

(1)
j ∈ E(G1) if and only if x

(2)
i x

(2)
j ∈ E(G2).

Definition 5. Let (G1, x
(1)) and (G2, x

(2)) be boundary-compatible p-boundaried

graphs and let x(h) = (x
(h)
1 , . . . , x

(h)
p ) for h ∈ {1, 2}. We define the boundary

sum (G1, x
(1))⊕b (G2, x

(2)) (or simply G1⊕bG2) as the (nonboundaried) graph

obtained by taking disjoint copies of G1 and G2 and identifying x
(1)
i and x

(2)
i

for every i ∈ {1, . . . , p}.

Definition 6. Let G be a graph and let y = (y1, . . . , yp) be a p-tuple of vertices
of G. For an s-boundaried graph (H,x) with x = (x1, . . . , xs) with s ≤ p and a
subtuple y′ = (yi1 , . . . , yis) of y, we say that (H,x) (or simply H) is an induced
boundaried subgraph of (G, y) (or G) with respect to y′ if G contains an induced
subgraph H ′ isomorphic to H with an isomorphism of H to H ′ that maps xj to
yij for all j ∈ {1, . . . , s} and V (H ′) ∩ {y1, . . . , yp} = {yi1 , . . . , yis} (see Fig. 1
for an illustration).
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H ′

y1

y2

y3

y4

y5
G

x1

x2

x3

x1

x2

x3

H

Figure 1: The 3-boundaried graph (H, (x1, x2, x3)) is an induced boundaried subgraph of
(G, (y1, y2, y3, y4)) with respect to (y1, y3, y4). Note that (H′, (x1, x2, x3)) in not an induced
boundaried subgraph of (G, (y1, y2, y3, y4)) with resect to any 3-subtuple of (y1, y2, y3, y4, y5).

Recall that the goal of Connected Secluded F-Free Subgraph is to
find a connected t-secluded induced subgraph H of the input graph that, in
particular, has no induced subgraph from F . When the input graph is separated,
H may become separated as well. This means that to ensure that H is F-free,
we have to verify that the parts of H do not contain induced subgraphs that
together form a forbidden subgraph. To deal with this issue, we have to consider
boundaried subgraphs of the graphs of F .

Definition 7. The set of boundaried graphs Fb is the set of all pairwise non-
isomorphic boundaried graphs of the form (F [A], x) where F ∈ F , (A,B) is
separation of F , and x is a p-tuple of the vertices A ∩B for p = |A ∩B|.

Suppose that (G, x) is a p-boundaried graph that occurs at some step of our
recursion. If H is a solution for the original instance of Connected Secluded
F-Free Subgraph, then H = H1 ⊕b H2 where H1 is the part of the solution
inside G and H2 is the outside part. Note that the outside parts are unknown
to us when we consider (G, x). The idea to deal with this issue is to represent
all possible outside parts by boundaried subgraphs of bounded size that behave
differently with respect to Fb. For this, we introduce the following equivalence
relation on the set of p-boundaried subgraphs.

Definition 8. We say that two properly p-boundaried graphs (G1, x
(1)) and

(G2, x
(2)), where x(h) = (x

(h)
1 , . . . , x

(h)
p ) for h ∈ {1, 2}, are equivalent (with

respect to Fb) and write if

(i) (G1, x
(1)) ≃b (G2, x

(2)),

(ii) for any i, j ∈ {1, . . . , p}, x(1)
i and x

(1)
j are in the same component of G1 if

and only if x
(2)
i and x

(2)
j are in the same component of G2,

(iii) for every nonnegative s ≤ p and all i1, . . . , is ∈ {1, . . . , p} such that
i1 < . . . < is, (G1, x

(1)) and (G2, x
(2)) have the same set of induced s-

boundaried subgraphs in Fb with respect to (x
(1)
i1

, . . . , x
(1)
is

) and

(x
(2)
i1

, . . . , x
(2)
is

) respectively.
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Informally, condition (i) states that the subgraphs induced by the boundaries
are identical, (ii) ensures that the components of G1 and G2 are attached to
the boundary in the same way and this allows to control connectivity, and (iii)
means that G1 and G2 behave in the same way with respect to Fb.

It is straightforward to verify that the introduced relation is indeed an equiv-
alence relation on the set of properly p-boundaried graphs. The following prop-
erty of the equivalence with respect to Fb is crucial for our algorithm. Roughly
speaking, Lemma 4 says that we can pick any boundaried graph from the same
equivalence class to represent the part of a solution that is outside (G, p).

Lemma 4. Let (G, x), (H1, y
(1)) and (H2, y

(2)) be boundary-compatible

p-boundaried graphs, x = (x1, . . . , xp) and y(h) = (y
(h)
1 , . . . , y

(h)
p ) for h ∈ {1, 2}.

If (H1, y
(1)) ≡Fb

(H2, y
(2)), then (G, x) ⊕b (H1, y

(1)) is F-free if and only if
(G, x)⊕b (H2, y

(2)) is F-free.

Proof. By symmetry, it is sufficient to show that if G ⊕b H1 is not F-free,
then the same holds for G ⊕b H2. Suppose that F is an induced subgraph
of G ⊕b H1 isomorphic to a graph of F . If V (F ) ⊆ V (G), then the claim
is trivial. Suppose that this is not the case and V (F ) ∩ V (H1) ̸= ∅. Re-

call that G ⊕b H1 is obtained by identifying each xi and y
(1)
i . Denote the

identified vertices by y
(1)
1 , . . . , y

(1)
p . Let F1 = F [V (F ) ∩ V (H1)] and F ′ =

F [V (F ) ∩ V (G)]; note that F ′ could be empty. Let {y(1)i1
, . . . , y

(1)
is

} = V (F ) ∩
{y(1)1 , . . . , y

(1)
p } for 1 ≤ i1 < . . . < is ≤ p; note that this set could be empty.

Clearly, (F1, (y
(1)
i1

, . . . , y
(1)
is

)) is an s-boundaried subgraph of H1 with respect to

(y
(1)
i1

, . . . , y
(1)
is

). Observe that Fb contains an s-boundaried graph isomorphic to

(F1, (y
(1)
i1

, . . . , y
(1)
is

)). Because (H1, y
(1)) ≡Fb

(H2, y
(2)), there is an induced s-

boundaried subgraph (F2, (y
(2)
i1

, . . . , y
(2)
is

)) of H2 with respect to (y
(2)
i1

, . . . , y
(2)
is

)

isomorphic to (F1, (y
(1)
i1

, . . . , y
(1)
is

)). Then F ′ ⊕b F2 is isomorphic to F , that is,
G⊕b H2 contains F as an induced subgraph.

We can check the equivalence of two boundaried graphs in polynomial time.

Lemma 5. For two properly p-boundaried graphs (G1, x
(1)) and (G2, x

(2)), it
can be checked in time (|V (G1)|+|V (G2)|)O(1) whether (G1, x

(1)) ≡Fb
(G2, x

(2))
in such a way that the constant hidden in the O-notation depends on F only.

Proof. Let (G1, x
(1)) and (G2, x

(2)), where x(h) = (x
(h)
1 , . . . , x

(h)
p ) for h ∈ {1, 2},

be two boundaried graphs. Clearly, conditions (i) and (ii) of the definition of the
equivalence with respect to F can be checked in polynomial time. To verify (iii),
let a = |Fb|, b be the maximum size of the boundary of graphs in Fb and let c be
the maximum number of vertices of a graph in Fb. Clearly, the values of a, b and
c depend on F only. For each s-tuple of indices (i1, . . . , is) where s ≤ b, we check
whether an s-boundaried graph H ∈ Fb is an s-boundaried induced subgraph

of G1 and G2 with respect to (x
(1)
i1

, . . . , x
(1)
is

) and (x
(2)
i1

, . . . , x
(2)
is

) respectively.

Since (1) there are at most bpb s-tuples of indices (i1, . . . , is), (2) at most a
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graphs in Fb, and (3) Gh has at most c|V (Gh)|c induced subgraphs with at
most c vertices for h ∈ {1, 2}, we have that (iii) can be checked in polynomial
time.

Now we show that the number of equivalence classes is bounded and we can
select representatives of bounded size.

Definition 9. For a nonnegative integer p, Gp is the set of properly p-boundaried
graphs obtained by choosing a graph with minimum number of vertices in each
equivalence class of properly p-boundaried graphs.

We show that the size of Gp and the size of each graph in the set Gp is upper
bounded by functions of p, and this set can be constructed in time that depends
only on p assuming that Fb is fixed. We need the following observation made
by Fomin et al. [9].

Lemma 6 ([9]). Let G be a connected graph and S ⊆ V (G). Let F be an
inclusion minimal connected induced subgraph of G such that S ⊆ V (F ) and let
X = {v ∈ V (F ) | dF (v) ≥ 3} ∪ S. Then |X| ≤ 4|S| − 6.

Lemma 7. For every positive integer p, |Gp| = 2O(p2), and for every H ∈ Gp,
|V (H)| = pO(1), where the constants hidden in the O-notations depend on F
only. Moreover, for every p-boundaried graph G, the number of p-boundaried
graphs in Gp that are boundary-compatible with G is 2O(p log p).

Proof. Let a = |Fb|, b be the maximum size of the boundary of graphs in Fb and
let c be the maximum number of vertices of a graph in Fb. Clearly, the values of
a, b, and c depend on F only. We fix some arbitrary boundary x = (x1, . . . , xp).

There are 2(
p
2) possibilities to select a set of edges with both end-vertices

in {x1, . . . , xp}. The number of possible partitions of the boundary into com-
ponents is the Bell number Bp = 2O(p log p). The number of s-subtuples of
(x1, . . . , xp) that could be boundaries of the copies of s-boundaried induced
subgraphs H ∈ Fb is at most bpb. Consequently, the number of distinct equiv-

alence classes is at most 2(
p
2)Bpbp

b2a, that is, |Gp| ≤ 2(
p
2)Bpbp

b2a = 2O(p2).
Let G be a p-boundaried graph in one of the classes with minimum number

of vertices. Observe that G contains at most bpb2a pairwise nonisomorphic
boundaried induced subgraphs H ∈ Fb with respect to pairwise distinct s-
subtuples of (x1, . . . , xp). For each s-subtuple of (x1, . . . , xp), we consider all
pairwise nonisomorphic boundaried induced subgraphs H ∈ Fb that are in
G with respect to the subtuple and mark the vertices of G that are in these
subgraphs. Notice that for each s-subtuple, G can contain several copies of the
same H as an induced subgraph with respect to this s-tuple. In this case, we
pick one of these copies and mark it. Let S be the set of vertices of G that belong
to these marked subgraphs or to the boundary x. We have that |S| ≤ bpb2ac+p.
Let X = {v ∈ V (G) | dG(v) ≥ 3} ∪ S. Since G is a p-boundaried graph with
minimum number of vertices in the considered class, each component Q of G is
an inclusion minimal connected induced subgraph of G containing the vertices
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of V (Q) ∩ S. By applying Lemma 6 to each component of G, we obtain that
|X| ≤ 4|S| − 6.

By the minimality of G, every vertex of degree one is in S. Hence, Y =
V (G) \X contains only vertices of degree two and, therefore, G[Y ] is a union of
disjoint paths. Observe that by the minimality of G, each vertex of Y is a cut
vertex of the component ofG containing it. It implies thatG[Y ] contains at most
|X|−1 paths. Suppose that G[Y ] contains a path P with at least 2c+2 vertices.
Let G′ be the graph obtained from G by the contraction of one edge of P . We
claim that G and G′ are equivalent with respect to Fb. Since the end-vertices
of the contracted edges are not the vertices of the boundary, conditions (i) and
(ii) of the definition of the equivalence are fulfilled. Therefore, it is sufficient
to verify (iii). Let i1, . . . , is ∈ {1, . . . , p} and 1 ≤ i1 < . . . < is ≤ p. Suppose
that G contains an s-boundaried induced subgraph H ∈ Fb with respect to the
s-tuple (xi1 , . . . , xis). Then at least two adjacent vertices of P are not included
in the copy of H in G. It implies that H is an induced subgraph of G′ with
respect to (xi1 , . . . , xis). Suppose that G′ contains an s-boundaried induced
subgraph H ∈ Fb with respect to the s-tuple (xi1 , . . . , xis). Then at least one
vertex of P is not included in the copy of H in G′. Then H is an induced
subgraph of G′ with respect to (xi1 , . . . , xis). But the equivalence of G and G′

contradicts the minimality of G. We conclude that each path in G[Y ] contains
at most 2c + 1 vertices. Then the total number of vertices of G is at most
|X|+ (|X| − 1)(2c+ 1) = pO(1).

To see that for any p-boundaried graph G, the number of graphs in Gp that
are boundary-compatible with G is 2O(p log p), notice that if (H, (x1, . . . , xp))
is in Gp and boundary-compatible with G, then the adjacency between the
vertices of the boundary is defined by G. Then the number of s-subtuples of
(x1, . . . , xp) that could be boundaries of the copies of s-boundaried induced
subgraphs from Fb is at most bpb and for each s-tuple we can have at most
2a s-boundaried induced subgraphs from Fb. Taking into account that there
are 2O(p log p) possibilities for the vertices of the boundary to be partitioned
according to their inclusions in the components, we obtain the claim.

We use the boundaried graphs of Gp to represent the parts of solutions that
are outside the considered boundaried graphs (G, x). We are using similar gad-
get graphs to represent some parts of a (potential) solution in the reduction
rules of the main step of our algorithm. Because of the similarity, we introduce
the set of these boundaried graphs and give its properties here.

Definition 10. Let Cp be the class of p-boundaried graphs such that
a p-boundaried graph (G, (x1, . . . , xp)) ∈ Cp if and only if it holds that for every
component H of G− {x1, . . . , xp}, NG(V (H)) = {x1, . . . , xp}. We consider the
equivalence relation ≡Fb

on Cp and define G′
p as follows. In each equivalence

class, we select a graph (G, (x1, . . . , xp)) ∈ C such that (i) the number of com-
ponents of G−{x1, . . . , xp} is minimum and (ii) the number of vertices of G is
minimum subject to (i), and then include it in G′

p.

The important property of graphs (G, x) of Cp and G′
p that we exploit in
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our algorithm is that each component of G− x has “full boundary”, that is, its
neighborhood is x.

Lemma 8. For every positive integer p, |G′
p| = 2O(p2), and for each H ∈ G′

p,

|V (H)| = pO(1), and the constants hidden in the O-notations depend on F only.
Moreover, for any p-boundaried graph G, the number of p-boundaried graphs in
G′
p that are boundary-compatible with G is pO(1).

Proof. Let a = |Fb|, b be the maximum size of the boundary of graphs in Fb and
let c be the maximum number of vertices of a graph in Fb. Clearly, the values
of a, b and c depend on F only. Assume that the boundary x = (x1, . . . , xp) is
fixed.

There are 2(
p
2) possibilities to select a set of edges with both end-vertices in

{x1, . . . , xp}. The number of s-subtuples of (x1, . . . , xp) that could be bound-
aries of the copies of s-boundaried induced subgraphs H ∈ Fb is at most
bpb. Consequently, the number of distinct equivalence classes of Cp is at most

2(
p
2)bpb2a, that is, |G′

p| ≤ 2(
p
2)bpb2a = 2O(p2).

Let (G, x) be a p-boundaried graph in one of the classes such that the number
of components of G−{x1, . . . , xp} is minimum and the number of vertices of G
is minimum subject to the first condition. Let Q1, . . . , Qr be the components
of G− {x1, . . . , xp}. For i ∈ {1, . . . , r}, let Q′

i = G[V (Qi) ∪ {x1, . . . , xp}].
Let i ∈ {1, . . . , r}. We show that Qi has p

O(1) vertices. Similarly to the proof
of Lemma 7, observe that Q′

i contains at most bpb2a pairwise nonisomorphic
boundaried induced subgraphs H ∈ Fb with respect to pairwise distinct s-
subtuples of (x1, . . . , xp). For each s-subtuple of (x1, . . . , xp), we consider all
pairwise nonisomorphic boundaried induced subgraphs H ∈ Fb that are in
G with respect to the subtuple and mark the vertices of G that are in these
subgraphs. Notice that for each s-subtuple, Q′

i can contain several copies of the
same H as an induced subgraph with respect to this s-tuple. In this case, we
pick one of these copies and mark it. Let S be the set of vertices of S that belong
to these marked subgraphs or to the boundary x. We have that |S| ≤ bpb2ac+p.
Let X = {v ∈ V (Qi) | dQ′

i
(v) ≥ 3} ∪ S. By applying Lemma 6 to the graph

Q′′
i obtained from Q′

i by the deletion of the edges with both end-vertices in the
boundary, we conclude that |X| ≤ 4|S| − 6. To see it, note that since Q′′

i has
no edge with both end-vertices in the boundary, Q′′

i is an inclusion minimal
connected subgraph of Q′

i containing the vertices of X. Then, by the same
arguments as in the proof of Lemma 7, we obtain that Q′′

i and, therefore, Q′
i

has at most |X|+ (|X| − 1)(2c+ 1) = pO(1) vertices. Since V (Qi) ⊆ V (Q′
i), we

have that Qi has p
O(1) vertices.

We proved that each component of G−{x1, . . . , xp} has pO(1) vertices. Now
we show that the number of components is bounded.

Suppose that there are c + 1 pairwise distinct but equivalent
(Q′

j0
, x), . . . , (Q′

jc
, x) for j0, . . . , jc ∈ {1, . . . , r}. Assume that G contains an s-

boundaried induced subgraph H ∈ Fb with respect to an s-tuple (xi1 , . . . , xis)
for some i1, . . . , is ∈ {1, . . . , p} with 1 ≤ i1 < . . . < is ≤ p. Since |V (H)| ≤ c,
there is h ∈ {0, . . . , c} such that V (H) ∩ V (Qjh) = ∅. Because
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(Q′
j0
, x), . . . , (Q′

jc
, x) are equivalent, we obtain that H is an s-boundaried in-

duced subgraph of G − V (Qj0), contradicting the minimality condition of the
choice of G. Therefore, there are at most c pairwise equivalent boundaried
graphs in {Q′

1, . . . , Q
′
r}.

We claim that the number of pairwise nonequivalent graphs in {Q′
1, . . . , Q

′
r}

is pO(1). Notice that the adjacency between the boundary vertices is defined
by G. Then the number of s-subtuples of (x1, . . . , xp) that could be boundaries
of the copies of s-boundaried induced subgraphs from Fb is at most bpb and,
for each s-tuple, we can have at most 2a many s-boundaried induced subgraphs
from Fb. Then the claim follows.

We conclude that r = cpO(1). Since |V (Qi)| = pO(1) for each i ∈ {1, . . . , r},
|V (G)| = pO(1).

To see that for any p-boundaried graph G, the number of graphs in G′
p that

are boundary-compatible with G is pO(1), notice that if (H, (x1, . . . , xp)) is in
Gp and boundary-compatible with G, then the adjacency between the vertices
of the boundary is defined by G. Then the number of s-tuples of vertices of
{x1, . . . , xp} that could be boundaries of the copies of s-boundaried induced
subgraphs from Fb is at most bpb and for each s-tuple we can have at most 2a

s-boundaried induced subgraphs from Fb.

Lemmas 5, 7 and 8 immediately imply that Gp and G′
p can be constructed

by brute force.

Lemma 9. The sets Gp and G′
p can be constructed in time 2p

O(1)

.

Our next aim is to formally define the variant of Connected Secluded
F-Free Subgraph that is tailored for the recursion. Suppose that (G, x) is
a p-boundaried graph that is obtained at some step of our recursion. As G is
constructed by partitioning the original input graph, a (potential) solution of
Connected Secluded F-Free Subgraph is split between G and the outside
part via the boundary. Since the outside parts of solutions are unknown, we
represent them by graphs from Gp. This means that we have to solve our problem
for each graph of Gp. We get a solution (if it exists) for every extension via the
boundary. In this way, we obtain a list of solutions. Hence, we need a variant of
Connected Secluded F-Free Subgraph whose task is to construct such a
list.

We define the problem in two steps. First, we introduce the following auxil-
iary problem called w-Maximum Connected Secluded F-Free Subgraph
that is defined for a given positive integer w. For given properties, we say that a
weighted graph H is w-maximum (with respect to the properties) if the weight
of H is either maximum among all graphs with the required properties or the
weight of H is at least w.
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Input: A graph G, sets I,O,B ⊆ V (G) such that I ∩ O = ∅ and
I ∩ B = ∅, a weight function ω : V (G) → Z≥0 and a non-
negative integer t.

Task: Output a w-maximum t-secluded F-free induced connected
subgraph H of G such that I ⊆ V (H), O ⊆ V (G) \ V (H)
and NG(V (H)) ⊆ B and output ∅ if such a subgraph does
not exist.

w-Maximum Connected Secluded F-Free Subgraph

Note that the input of the problem contains annotations of vertices, because
in the process of the recursion, we make decisions for some vertices. Respec-
tively, the set I is the set of inside vertices that should be in every solution,
the vertices of O are outside vertices that are not included in any solution,
and the neighborhood of H should be in the set of border vertices B. Initially,
I = ∅, O = ∅ and B is the set of vertices of the input graph. Notice also that
w-Maximum Connected Secluded F-Free Subgraph is an optimization
problem and a solution is either an induced subgraph H of maximum weight,
or of weight at least w, or ∅. The value of the parameter w is inherited from the
original considered instance of Connected Secluded F-Free Subgraph.
For technical reasons, it is convenient to have the parameter instead of solving
a maximization problem, as it allows to simplify some reduction rules. The
intuition behind using the parameter is following. If we get a solution of w-
Maximum Connected Secluded F-Free Subgraph of weight at least w,
then we already have a solution that we need and any extension is unneces-
sary. Otherwise, if the weight w′ of a solution of w-Maximum Connected
Secluded F-Free Subgraph is less than w, then we need an extension that
contains additional vertices of weight at least w − w′.

Next, we use w-Maximum Connected Secluded F-Free Subgraph to
introduce the problem for boundaried graphs that we actually solve. For this,
we need additional definitions.

Definition 11. Let (G, I,O,B, ω, t) be an instance of w-Maximum Con-
nected Secluded F-Free Subgraph and let T ⊆ V (G) be a set of boundary
terminals. We say that an instance (G′, I ′, O′, B′, ω′, t′) is obtained by a bound-
ary complementation if there is a partition (X,Y, Z) of T (some sets could be
empty), where X = {x1, . . . , xp}, such that Y = ∅ if X = ∅, I ∩ T ⊆ X,
O ∩ T ⊆ Y ∪ Z and Y ⊆ B, and there is a p-boundaried graph (H, y) ∈ Gp

such that (H, y) and (G, (x1, . . . , xp)) are boundary-compatible, and the follow-
ing holds:

(i) G′ is obtained from (G, (x1, . . . , xp)) ⊕b (H, y) by adding edges joining
every vertex of V (H) with every vertex of Y ,

(ii) I ′ = I ∪ V (H),

(iii) O′ = O ∪ Y ∪ Z,
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(iv) B′ = B \X,

(v) ω′(v) = ω(v) for v ∈ V (G) and ω′(v) = 0 for v ∈ V (H) \X,

(vi) t′ ≤ t.

We also say that (G′, I ′, O′, B′, w′, t′) is a boundary complementation of
(G, I,O,B, ω, t) with respect to (X = {x1, . . . , xp}, Y, Z,H).

In the definition, we keep the notationX = {x1, . . . , xp} for the set of vertices
obtained by the identification in the boundary sum.

We say that (X = {x1, . . . , xp}, Y, Z,H) is feasible for (G, I,O,B, ω, t) if it
holds that Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B, and the
p-boundaried graph H ∈ Gp and (G, (x1, . . . , xp)) are boundary-compatible.

The construction of a boundary complementation is shown in Fig. 2. The
set T forms the boundary of G. Recall that we represent the parts of solutions
of Connected Secluded F-Free Subgraph that are outside G by graphs of
Gp. Respectively, we attach such a graph to a part of the boundary (the set X)
that is included in a solution assuming that the weights of the added vertices is
zero. The remaining vertices of T , that is, the vertices of Y ∪Z are not included
in any solution. We also have to take into account that the vertices of a solution
that are outside G can have neighbors in T , and we use Y to encode this. Note
that if X = ∅, that is, the part of a solution outside G is empty, then Y should
be empty as well.

G

H X

Y

Z

T

Figure 2: Construction of a boundary complementation

Now we define the problem that is actually solved by our algorithm.
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Input: A graph G, sets I,O,B ⊆ V (G) such that I ∩ O = ∅ and
I∩B = ∅, a weight function ω : V (G) → Z≥0, a nonnegative
integer t, and a set T ⊆ V (G) of boundary terminals of size
at most 2t.

Task: For each instance (G′, I ′, O′, B′, w′, t′) of w-Maximum
Connected Secluded F-Free Subgraph that can be
obtained from (G, I,O,B,w, t) by a boundary complemen-
tation, output

� a nonempty solution, if it has weight at least w, and
∅, otherwise, for the boundary complementation with
respect to (∅, ∅, T, ∅),

� a solution for all other boundary complementations.

Boundaried w-Maximum Connected Secluded F-Free Subgraph

Note thatBoundaried w-Maximum Connected Secluded F-Free Sub-
graph is neither a decision nor an optimization problem as its task is to list
connected subgraphs that are solutions of w-Maximum Connected Secluded
F-Free Subgraph for all possible boundary complementations. In some cases
we have no solution of w-Maximum Connected Secluded F-Free Sub-
graph and this is encoded by the inclusion of ∅ for the corresponding boundary
complementation. Slightly abusing notation, we assume that ∅ is also a graph.
Then we have that a solution of an instance of Boundaried w-Maximum
Connected Secluded F-Free Subgraph is a list of connected graphs. Ob-
serve also that the boundary complementation with respect to (∅, ∅, T, ∅) is a
special case as we are looking for a solution that contains no vertex outside
G. Respectively, if we fail to find a solution that is a solution for the original
instance of Connected Secluded F-Free Subgraph, we have no solution
and output ∅ to indicate this. The crucial properties of the list of solutions are
the following:

(i) the part of every solution for the original input instance of Connected
Secluded F-Free Subgraph that is outside G can be extended by a
solution from the list,

(ii) the size of the list is upper-bounded by a function of the parameter t.

This allows us to use the lists obtained by solving instances of Boundaried w-
Maximum Connected Secluded F-Free Subgraph to solve Connected
Secluded F-Free Subgraph for the input instance.

Given an instance of Boundaried w-Maximum Connected Secluded
F-Free Subgraph and its solution, we reduce the size of G. To be able to
perform this reduction, we have to define the safeness for reduction rules. For
this, we need the following definition.
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Definition 12. Two instances (G1, I1, O1, B1, ω1, t, T ) and
(G2, I2, O2, B2, ω2, t, T ) of Boundaried w-Maximum Connected Secluded
F-Free Subgraph (note that the instances agree on t and T ) are said to be
equivalent if

(i) T ∩ I1 = T ∩ I2, T ∩O1 = T ∩O2 and T ∩B1 = T ∩B2,

(ii) for the boundary complementations (G′
1, I

′
1, O

′
1, B

′
1, ω

′
1, t

′) and
(G′

2, I
′
2, O

′
2, B

′
2, ω

′
2, t

′) of the instances (G1, I1, O1, B1, ω1, t) and
(G2, I2, O2, B2, ω2, t) respectively of w-Maximum Connected Secluded
F-Free Subgraph with respect to every feasible
(X = {x1, . . . , xp}, Y, Z,H) and t′ ≤ t, it holds that

(a) if (G′
1, I

′
1, O

′
1, B

′
1, ω

′
1, t

′) has a nonempty solution R1, then
(G′

2, I
′
2, O

′
2, B

′
2, ω

′
2, t

′) has a nonempty solution R2 with
w′

2(V (R2)) ≥ min{ω′
1(V (R1)), w} and, vice versa,

(b) if (G′
2, I

′
2, O

′
2, B

′
2, ω

′
2, t

′) has a nonempty solution R2, then
(G′

1, I
′
1, O

′
1, B

′
1, ω

′
1, t

′) has a nonempty solution R1 with
ω′
1(V (R1)) ≥ min{ω′

2(V (R2)), w}.

We will say that a reduction rule is safe if it produces an equivalent instance.
Note that if (G1, I1, O1, B1, ω1, t, T ) and (G2, I2, O2, B2, ω2, t, T ) are equivalent,
then a solution of the first problem is not necessarily a solution of the second.
Nevertheless, we know that for each boundary complementation, we can re-
place the solution for each instance of w-Maximum Connected Secluded
F-Free Subgraph arising for (G1, I1, O1, B1, ω1, t, T ) by the solution for the
corresponding instance of w-Maximum Connected Secluded F-Free Sub-
graph for (G2, I2, O2, B2, ω2, t, T ) and vice versa. This allows us to not dis-
tinguish equivalent instances of Boundaried w-Maximum Connected Se-
cluded F-Free Subgraph and their solutions.

We conclude this subsection by giving an informal short overview of our
algorithm solving Connected Secluded F-Free Subgraph.

Given an instance (G,ω, t, w), we construct the initial instance of Bound-
aried w-Maximum Connected Secluded F-Free Subgraph for w by set-
ting T = ∅, I = ∅, O = ∅ and B = V (G) and run our algorithm for this
instance. Clearly, (G,ω, t, w) is a yes-instance of Boundaried w-Maximum
Connected Secluded F-Free Subgraph if and only if a solution for the
corresponding instance of Boundaried w-Maximum Connected Secluded
F-Free Subgraph contains a connected subgraph R with ω(V (R)) ≥ w.

To explain the idea of the recursion, we assume that we are given an instance
(G, I,O,B, ω, t, T ) of Boundaried w-Maximum Connected Secluded F-

Free Subgraph. We choose an appropriate value q ∈ 22
O(t log t)

(the choice of
q is tailored to ensure that we obtain an FPT algorithm) and apply Lemma 3
for k = t. If the algorithm from Lemma 3 reports that G is ((2q + 1)q · 2t, t)-
unbreakable, then we solve Boundaried w-Maximum Connected Secluded
F-Free Subgraph for the considered instance directly using the fact that G
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is highly connected. The intuition behind our algorithm for this case is that be-
cause of unbreakability, every instance of w-Maximum Connected Secluded
F-Free Subgraph that arises in Boundaried w-Maximum Connected Se-
cluded F-Free Subgraph has a solution that is either small in the sense that
it has size bounded by some function of t or very big, that is, the size of the part
of the graph that is not included in the solution is bounded by some function of
the parameter. To find small solutions we use Theorem 2 and to deal with large
solutions we use the important separator technique introduced by Marx [18].

Assume from now on that there is a separation (U,W ) of G of order at
most t such that |U \ W | > q and |W \ U | > q. By definition, |T | ≤ 2t.
This implies that either |(U \ W ) ∩ T | ≤ t or |(W \ U) ∩ T | ≤ t. Let us
assume without loss of generality that |(W \ U) ∩ T | ≤ t. Let G̃ = G[W ] and
T̃ = (U ∩W ) ∪ (T ∩B). Note that |T̃ | ≤ 2t. Clearly, |V (G̃)| < |V (G)| − q. We
apply our algorithm for Boundaried w-Maximum Connected Secluded
F-Free Subgraph recursively for G̃ with the set of boundary terminals T̃ ,
where the weights and the annotations of the vertices are inherited from ω
and the annotations of the vertices of G. The algorithm produces the list R
of solutions of the instances of w-Maximum Connected Secluded F-Free
Subgraph arising in Boundaried w-Maximum Connected Secluded F-
Free Subgraph. The crucial property of R is that its elements represent
partial solutions of (G, I,O,B, ω, t, T ) inside G[W ]. As we noted above, the size
of R is bounded by a function of t. A solution from R can have an arbitrary
size, but the size of its neighborhood is upper bounded by t. Let S be the union
of all the neighborhoods. We obtain that |S| ≤ t|R|. We use this property to
modify (G, I,O,B, ω, t, T ). First, we can replace B by B∗ = B ∩ (U ∪ S). Let
S′ = T ′ ∪S. For every component Q of G̃−S′, we have that for every solution,
either Q is completely in the solution or is completely outside it. This allows
us to discard some components. The crucial reduction is that, afterwards, we
can replace the set of components Q of G̃ − S′ with the same neighborhood
in S′ by a single gadget of bounded size using graphs from the families G′

p.
This way, we construct an instance (G∗, I∗, O∗, B∗, ω∗, t, T ) of Boundaried
w-Maximum Connected Secluded F-Free Subgraph that is equivalent
to (G, I,O,B, ω, t, T ) such that the size of G∗ − U is bounded by a function of
t. This means that the size of G∗ is strictly less than the size of G. Then we
recurse on (G∗, I∗, O∗, B∗, ω∗, t, T ∗).

4.2. High connectivity phase

In this section we solve Boundaried w-Maximum Connected Secluded
F-Free Subgraph for (q, t)-unbreakable graphs. For this purpose, we use im-
portant separators defined by Marx [18]. Essentially, we follow the terminology
given by Cygan et al. [6]. Recall that for X,Y ⊆ V (G), a set S ⊆ V (G) is an
(X,Y )-separator if G−S has no path joining a vertex of X \S with a vertex of
Y \ S. An (X,Y )-separator S is minimal if no proper subset of S is an (X,Y )-
separator. For X ⊆ V (G) and v ∈ V (G), it is said that v is reachable from X if
there is an (x, v)-path in G with x ∈ X. A minimal (X,Y )-separator S can be
characterized by the set of vertices reachable from X \ S in G− S.
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Lemma 10 ([6]). If S is a minimal (X,Y )-separator in G, then S = NG(Z)
where Z is the set of vertices reachable from X \ S in G− S.

Definition 13. Let X,Y ⊆ V (G) for a graph G. Let S ⊆ V (G) be an (X,Y )-
separator and let Z be the set of vertices reachable from X \ S in G − S. It is
said that S is an important (X,Y )-separator if

(i) S is minimal, and

(ii) there is no (X,Y )-separator S′ ⊆ V (G) with |S′| ≤ |S| such that Z ⊂ Z ′

where Z ′ is the set of vertices reachable from X \ S′ in G− S′.

Lemma 11 ([6]). Let X,Y ⊆ V (G) for a graph G, let t be a nonnegative integer
and let St be the set of all important (X,Y )-separators of size at most t. Then
|St| ≤ 4t and St can be constructed in time O(|St| · t2 · (n+m)).

The following lemma shows that for every graph R in a solution of Bound-
aried w-Maximum Connected Secluded F-Free Subgraph, it holds that
either |V (R)| or |V (G) \ V (R)| has bounded size.

Lemma 12. Let (G, I,O,B, ω, t, T ) be an instance of
Boundaried w-Maximum Connected Secluded F-Free Subgraph where
G is a (q, t)-unbreakable graph for a positive integer q. Then for each nonempty
graph R in a solution of Boundaried w-Maximum Connected Secluded
F-Free Subgraph, either |V (R) ∩ V (G)| ≤ q or |V (G) \ V (R)| ≤ q + t.

Proof. Let R be a nonempty graph in a solution of Boundaried w-Maximum
Connected Secluded F-Free Subgraph for an instance (G′, I ′, O′, B′, ω′, t′)
of w-Maximum Connected Secluded F-Free Subgraph. Assume that G′

is obtained from (G, (x1, . . . , xp)) ⊕b (H, y) for H ∈ Gp, as explained in Def-
inition 11 (i). Let U = NG′ [V (R) ∩ V (G)] and W = V (G) \ V (R). Clearly,
(U,W ) is a separation of G of order at most t, because U ∩ W = NG′(V (R))
and |NG′(V (R))| ≤ t since R is a t-secluded subgraph of G′. Since G is
(q, t)-unbreakable, either |U \ W | ≤ q or |W \ U | ≤ q. If |U \ W | ≤ q, then
|V (R) ∩ V (G)| ≤ |U \W | ≤ q. If |W \ U | ≤ q, then |V (G) \ V (R)| ≤ q + t.

Now we can prove the following crucial lemma.

Lemma 13. Boundaried w-Maximum Connected Secluded F-Free Sub-
graph for (q, t)-unbreakable graphs can be solved in time 2O(q+t log(q+t)) · nO(1)

if the sets Gp for all p ≤ 2t are given.

Proof. Assume that the sets Gp for all p ≤ 2t are given. We consider all pos-
sible instances (G′, I ′, O′, B′, ω′, t′) of w-Maximum Connected Secluded
F-Free Subgraph obtained from the input instance (G, I,O,B, ω, t, T ) of
Boundaried w-Maximum Connected Secluded F-Free Subgraph by
boundary complementation. To construct each instance, we consider all at
most 32t partitions (X,Y, Z) of T , where X = {x1, . . . , xp}, such that Y = ∅
if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B. Then we consider all
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p-boundaried graphs (H, y) ∈ Gp such that (H, y) ≃b (G, (x1, . . . , xp)). By
Lemma 7, there are 2O(t log t) such boundaried graphs. Consider now a con-
structed instance (G′, I ′, O′, B′, ω′, t′) and assume that G′ is obtained from
(G, (x1, . . . , xp))⊕b (H, y) for (H, y) ∈ Gp as it is explained in Definition 11 (i).
We find a t-secluded F-free induced connected subgraph R of G′ of maximum
weight such that I ′ ⊆ V (R), O′ ⊆ V (G′) \ V (R) and NG′(V (R)) ⊆ B′ if such a
subgraph exists. By Lemma 12, either |V (R) ∩ V (G)| ≤ q or |V (G) \ V (R)| ≤
q + t. Using this property, we separately find a t-secluded F-free induced con-
nected subgraph R of G′ of maximum weight such that |V (R)∩ V (G)| ≤ q and
a t-secluded F-free induced connected subgraph R of G′ of maximum weight
such that |V (G) \ V (R)| ≤ q + t. Then we compare the obtained graphs and
output the graph of maximum weights.

Finding a small solution. First, we find a t-secluded F-free induced connected
subgraph R of G′ with |V (R) ∩ V (G)| ≤ q of maximum weight such that
I ′ ⊆ V (R), O′ ⊆ V (G′)\V (R) and NG′(V (R)) ⊆ B′. If |V (R)∩V (G)| ≤ q, then
|V (R)| ≤ |V (H)|+ |V (R) ∩ V (G)| < |V (H)|+ q. By Lemma 7, |V (H)| = tc for
some constant c ≥ 1. This implies that |V (R)| ≤ tc + q. To find R, we consider
all k ≤ tc + q and find a t-secluded F-free induced connected subgraph R of G′

of maximum weight such that I ′ ⊆ V (R), O′ ⊆ V (G′) \ V (R), NG′(V (R)) ⊆ B′

and |V (R)| = k. Notice that the properties of R can be easily encoded as a
property of an induced subgraph of G′ with vertex colors, where the colors as-
signed to the vertices of G′ distinguish the sets I ′, O′ ∩ B′, O′ \ B′, B′ \ O′,
and V (G′) \ (I ′ ∪O′ ∪B′). Then, by Corollary 1, all these subgraphs R can be
found in time 2O(t log(tc+q+t)) · nO(1).

Finding a large solution. Now we find a t-secluded F-free induced connected
subgraph R of G′ with |V (G) \ V (R)| ≤ q + t of maximum weight such that
I ′ ⊆ V (R), O′ ⊆ V (G′) \ V (R) and NG′(V (R)) ⊆ B′.

Because |V (G) \ V (R)| ≤ q + t, there is a set S such that
O′ ⊆ S ⊆ V (G) \ V (R), |S| ≤ q + t and G′ − S is F-free. We list all such
sets S using the standard branching algorithm for this problem (see, e.g., [6]).
The main idea of the algorithm is that if G′ has an induced subgraph F isomor-
phic to a graph of F , then at least one vertex of F should be in S. Initially we
set S = O′ and set a branching parameter h = q + t − |O′|. If h < 0, we stop
as there is no solution. Assume that this is not the case. We check whether
G′ − S has an induced subgraph F isomorphic to a graph of F . If we have no
such graph, we return S. If V (F ) ⊆ I ′, then we stop. Otherwise, we branch on
the vertices of F . For each v ∈ V (F ) \ I ′, we set S := S ∪ {v}, set h := h − 1
and recurse. It is straightforward to verify the correctness of the algorithm and
see that it runs in time 2O(q+t) · nO(1), because F is fixed and each graph from
this set has a constant size. If the algorithm fails to output any set S, then we
conclude that (G′, I ′, O′, B′, ω′, t′) has no solution R with |V (G)\V (R)| ≤ q+ t
and we return ∅. From now on we assume that this is not the case.

To find a solution R of maximum weight, we consider all possible sets S,
and for each S, we find a solution of maximum weight containing S. Then we
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choose a solution of maximum weight among all constructed solutions. Clearly,
it will give us an optimum solution.

Assume that S is fixed. We set O′ := O′ ∪ S. Now our task is to find a
solution for the modified instance (G′, I ′, O′, B′, ω′, t′).

If I ′ = ∅, we guess a vertex u ∈ V (G′) \ O′ that is included in a solu-
tion. We set I ′ := {u} and B′ := B′ \ {u} and solve the modified instance
(G′, I ′, O′, B′, w′, t′). Then we choose a solution of maximum weight for all
guesses of u. From now on we have I ′ ̸= ∅.

We apply a series of reduction rules for (G′, I ′, O′, B′, ω′, t′). The aim of the
rules is either to find a trivial solution or to simplify the considered instance.
We show that these rules are safe, that is, they either correctly solve the prob-
lem or produce an instance of w-Maximum Connected Secluded F-Free
Subgraph such that every solution for (G′, I ′, O′, B′, ω′, t′) is a solution for the
obtained instance and vice versa. Let initially h = q + t.

Reduction Rule 4.1. If G′ is disconnected and has vertices of I ′ in distinct
components, then return no. Otherwise, let Q be a component of G′ containing
I ′ and set G′ := Q, B′ := B′∩V (Q), O′ := O′∩V (Q) and h := h−|V (G)\V (Q)|.
If h < 0, then return no.

It is straightforward to see that the rule is safe, because a solution is a
connected graph. Notice that from now on we can assume that G′ is connected.

If O′ = ∅, then S = ∅ and G′ is F-free. This means that G′ itself is a
solution, because G′ is connected and NG′(V (G′)) = ∅. This gives the next
rule.

Reduction Rule 4.2. If O′ = ∅, then return G′.

From now on we assume that O′ ̸= ∅. Next, we try to extend annotations I ′

and O′. The following rule is applied for each component Q exactly once.

Reduction Rule 4.3. For a component Q of G′ − B′ do the following in the
given order:

� if V (Q) ∩ I ′ ̸= ∅ and V (Q) ∩O′ ̸= ∅, then return no,

� if V (Q) ∩ I ′ ̸= ∅, then set I ′ := I ′ ∪ V (Q),

� if V (Q) ∩O′ ̸= ∅, then set O′ := O′ ∪NG′ [V (Q)].

Claim 4.1. Reduction Rule 4.3 is safe.

Proof of Claim 4.1. Let Q be a component of G′ − B′. Notice that for any
solution R, either V (Q) ⊆ V (R) or V (Q)∩V (R) = ∅, because NG′(V (R)) ⊆ B′.
Moreover, if V (Q) ∩ V (R) = ∅, then NG′ [V (Q)] ∩ V (R) = ∅. This immediately
implies safeness.

Now our aim is to find all inclusion maximal induced subgraphs R of G′

such that I ′ ⊆ V (R), O′ ∩ V (R) = ∅, NG′(V (R)) ⊆ B′, |NG′(V (R))| ≤ t′ and
all the vertices of R are reachable from I ′. Then, by maximality, a solution is
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such a subgraph R that is connected and, subject to connectivity, has maximum
weight.

We find all these subgraphs R using important (NG′ [I ′], O′)-separators. The
obstacle for the application of the important separator technique of Marx [18] is
the constraint that NG′(V (R)) ⊆ B′. To overcome this obstacle, we modify G′.

Let Q be a component of G′ − B′. By Reduction Rule 4.3, we have that
exactly one of the following holds: either (i) V (Q) ⊆ I ′ or (ii) V (Q) ⊆ O′ or
(iii) V (Q) ∩ I ′ = V (Q) ∩ O′ = ∅. To ensure that NG′(V (R)) ⊆ B′, we have
to ensure that if (iii) is fulfilled, then it holds that either V (Q) ⊆ V (R) or
V (Q)∩V (R) = ∅. To do it, we construct the auxiliary graph G′′ as follows. For
each v ∈ V (G′)\ (I ′∪O′∪B′), we replace v by t+1 true twin vertices v0, . . . , vt
that are adjacent to the same vertices as v in G or to the corresponding true
twins obtained from the neighbors of v. For an induced subgraph R of G′, we
say that the induced subgraph R′ of G′′ is an image of R if R′ is obtained by
the same replacement of the vertices v ∈ V (R) \ (I ′ ∪ O′ ∪ B′) by t + 1 twins.
Respectively, we say that R is a preimage of R′.

We show the following claim.

Claim 4.2.

� If R is an induced subgraph of G′ such that I ′ ⊆ V (R), O′ ∩ V (R) = ∅,
NG′(V (R)) ⊆ B′, |NG′(V (R))| ≤ t′ and all the vertices of R are reachable
from I ′, then its image R′ is an induced subgraph of G′′ such that I ′ ⊆
V (R′), O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all the vertices of R′ are
reachable from I ′.

� If R′ is an inclusion maximal induced subgraph of G′′ such that I ′ ⊆ V (R′),
O′∩V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable
from I ′, then R′ has a preimage R and NG′(V (R)) = NG′′(V (R′)) ⊆ B′.

Proof of Claim. The first part of the claim is straightforward from the defini-
tion. To prove the second part, consider an inclusion maximal induced subgraph
R′ of G′′ such that I ′ ⊆ V (R′), O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all
the vertices of R′ are reachable from I ′. Let v′ ∈ NG′′(R′) and assume that
v′ /∈ B′. Clearly, v′ /∈ I ′. Notice that v′ /∈ O′, because by Reduction Rule 4.3,
we have that for any w ∈ O′ \ B′, NG′ [w] ⊆ O′. Since v′ /∈ B′ ∪ I ′ ∪ O′,
v′ ∈ {v0, . . . , vt} for t+1 true twins constructed for some vertex v ∈ V (G′). Be-
cause |NG′′(V (R′))| ≤ t′, there is an i ∈ {0, . . . , t}, such that vi /∈ NG′′(R′).
As vi and v′ are twins, vi ∈ V (R′). Let R′′ = G′′[V (R′) ∪ {v0, . . . , vt}].
We obtain that I ′ ⊆ V (R′′), O′ ∩ V (R′′) = ∅, |NG′′(V (R′′))| ≤ t′ and all
the vertices of R′′ are reachable from I ′, but V (R′) ⊂ V (R′′), contradict-
ing maximality. Hence, NG′′(V (R′)) ⊆ B′. Then R′ has a preimage R and
NG′(V (R)) = NG′′(V (R′)) ⊆ B′.

By Claim 4.2, we conclude that to find all inclusion maximal induced sub-
graphs R of G′ such that I ′ ⊆ V (R), O′ ∩ V (R) = ∅, NG′(V (R)) ⊆ B′,
|NG′(V (R))| ≤ t′ and all the vertices of R are reachable from I ′, we should
list inclusion maximal induced subgraphs R′ of G′′ such that I ′ ⊆ V (R′),
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O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable
from I ′, and then take preimages of the graphs R′.

To find the maximal induced subgraphs R′ of G′′ such that I ′ ⊆ V (R′),
O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable from
I ′, we use Lemma 11. In time 4t ·nO(1) we construct the set St′ of all important
(NG′′ [I ′], O′)-separators of size at most t′ in G′′. Then for each S ∈ St′ , we find
R′ that is the union of the components of G′′ − S containing the vertices of I ′.

Now we have the set R of all inclusion maximal induced subgraphs R of G′

such that I ′ ⊆ V (R), O′ ∩ V (R) = ∅, NG′(V (R)) ⊆ B′, |NG′(V (R))| ≤ t′ and
all the vertices of R are reachable from I ′. By Lemma 11, |R| ≤ 4t. This set
may contain disconnected graphs that could not be solutions of w-Maximum
Connected Secluded F-Free Subgraph. Therefore, we delete these graphs
from R. Finally, we find a graph R of maximum weight in R and return it.

Since Reduction Rules 4.1–4.3 can be applied in polynomial time and G′′

can be constructed in polynomial time, we have that the total running time is
2O(t+q) · nO(1).

Now we compare the two subgraphs R that we found for the cases |V (R) ∩
V (G)| ≤ q and |V (G) \ V (R)| ≤ q + t and output the subgraph of maximum
weight or the empty set if we failed to find these subgraphs. Taking into account
the time used to construct the instances (G′, I ′, O′, B′, ω′, t′), we obtain that the
total running time is 2O(q+t log(q+t)) · nO(1).

4.3. The FPT algorithm for Connected Secluded F-Free Subgraph

In this section we construct an FPT algorithm for Connected Secluded
F-Free Subgraph parameterized by t. We do this by solving Boundaried
w-Maximum Connected Secluded F-Free Subgraph in FPT-time for the
general case.

Lemma 14. Boundaried w-Maximum Connected Secluded F-Free Sub-

graph can be solved in time 22
2O(t log t)

· nO(1).

Proof. Given F , we construct the set Fb. Then we use Lemma 9 to construct

the sets Gp for all p ∈ {0, . . . , t} in time 2t
O(1)

.
By Lemma 7, there is a constant c ≥ 1 that depends only on F such that

for every nonnegative p and for any p-boundaried graph G, there are at most
2cp log p many p-boundaried graphs in Gp that are boundary-compatible with G
and there are at most pc many p-boundaried graphs in G′

p that are boundary-
compatible with G. This value of c is used throughout the proof. We define

q =2((t+1)t32t2c2t log(2t)+2t) · 2((t+ 1)t32t2c2t log(2t) + 2t)ctc

+ (t+ 1)t32t2c2t log(2t) + 2t. (1)

Notice that q ∈ 22
O(t log t)

. The choice of q is defined according to the general
scheme for the recursive understanding technique [5]. Informally, q should be
sufficiently big to ensure that if we have a separation (U,W ) of order at most t
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such that |U \W | > q and |W \U | > q, then we should be able to compress the
input instance to call our algorithm recursively.

Consider an instance (G, I,O,B, ω, t, T ) of Boundaried w-Maximum Con-
nected Secluded F-Free Subgraph.

We use the algorithm from Lemma 3 for G. This algorithm in time

22
O(t log t) ·nO(1) either finds a separation (U,W ) of G of order at most t such that

|U \ W | > q and |W \ U | > q or correctly reports that G is
((2q + 1)q · 2t, t)-unbreakable. In the latter case we solve the problem using

Lemma 13 in time 22
2O(t log t)

· nO(1). Assume from now on that there is a sepa-
ration (U,W ) of order at most t such that |U \W | > q and |W \ U | > q.

Recall that |T | ≤ 2t. Then |T ∩ (U \W )| ≤ t or |T ∩ (W \ U)| ≤ t. Assume
without loss of generality that |T ∩ (W \ U)| ≤ t. Let G̃ = G[W ], Ĩ = I ∩W ,
Õ = O ∩W , ω̃ is the restriction of ω to W , and define T̃ = (T ∩W )∪ (U ∩W ).
Since |U ∩W | ≤ t, |T̃ | ≤ 2t.

If |W | ≤ (2q+1)q·2t, then we solve Boundaried w-Maximum Connected
Secluded F-Free Subgraph for the instance (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ) by brute

force in time 22
2O(t log t)

trying all possible subsets of W and at most t+1 values
of 0 ≤ t′ ≤ t. Otherwise, we solve (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ) recursively. Let R be the
set of nonempty induced subgraphs R that are included in the obtained solution
for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ).

For R ∈ R, define SR to be the set of vertices of W \V (R) that are adjacent
to the vertices of R in the graph obtained by the boundary complementation
for which R is a solution of the corresponding instance of w-Maximum Con-
nected Secluded F-Free Subgraph. Note that |SR| ≤ t. If R ≠ ∅, then let
S = T̃ ∪ (

⋃
R∈R SR), and S = T̃ if R = ∅. Since w-Maximum Connected

Secluded F-Free Subgraph is solved for at most t + 1 values of t′ ≤ t,
at most 32t three-partitions (X,Y, Z) of T̃ and at most 2c2t log(2t) choices of
a p-boundaried graphH ∈ Fb for p = |X|, we have that |R| ≤ (t+1)32t2c2t log(2t).
Taking into account that |T ′| ≤ 2t,

|S| ≤ (t+ 1)t32t2c2t log(2t) + 2t, (2)

that is, the size of S is upper bounded by a function of the parameter. This
allows us to reduce the size of G.

First, we reduce the set B of the vertices that could be adjacent to solutions.
Let B̂ = B ∩ (U ∪ S). We prove the following claim.

Claim 4.3. The instances (G, I,O,B, ω, t, T ) and (G, I,O, B̂, ω, t, T ) of Bound-
aried w-Maximum Connected Secluded F-Free Subgraph are equiva-
lent.

Proof of Claim 4.3. Recall that by Definition 12, we have to show that

(i) T ∩B = T ∩ B̂,

(ii) for the boundary complementations (G′, I ′, O′, B′, ω′, t′) and
(G′, I ′, O′, B̂′, ω′, t′) of the instances (G, I,O,B, ω, t′) and (G, I,O, B̂, ω, t)
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respectively of w-Maximum Connected Secluded F-Free Subgraph
with respect to every feasible (X = {x1, . . . , xp}, Y,Z,H) and t′ ≤ t,
it holds that if (G′, I ′, O′, B′, ω′, t′) has a nonempty solution R1, then
(G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2 with
ω′(V (R2)) ≥ min{ω′(V (R1)), w} and, vice versa, if (G′, I ′, O′, B̂′, ω′, t′)
has a nonempty solution R2, then (G′, I ′, O′, B′, ω′, t′) has a nonempty
solution R1 with ω′(V (R1)) ≥ min{ω′(V (R2)), w}.

Condition (i) holds by the definition of B̂. Because B̂ ⊆ B, we imme-
diately obtain that if (G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2, then
(G′, I ′, O′, B′, ω′, t′) has a nonempty solution R1 with
ω′(V (R1)) ≥ min{ω′(V (R2)), w}. It remains to prove that for a boundary com-
plementation (G′, I ′, O′, B′, ω′, t′) and (G′, I ′, O′, B̂′, ω′, t′) of (G, I,O,B, ω, t′)
and (G, I,O, B̂, ω, t′) respectively of w-Maximum Connected Secluded F-
Free Subgraph with respect to a feasible (X = {x1, . . . , xp}, Y, Z,H) and
t′ ≤ t, it holds that if (G′, I ′, O′, B′, ω′, t′) has a nonempty solution R1, then
(G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2 with
ω′(V (R2)) ≥ min{ω′(V (R1)), w}.

If V (R1) ∩ V (G) ⊆ U \ W , then NG′(V (R1)) ⊆ B̂′. Therefore, there is a
solution R2 of (G′, I ′, O′, B̂′, ω′, t′) such that ω′(V (R2)) ≥ min{ω′(V (R1)), w}.
Assume that V (R1) ∩W ̸= ∅.

Recall that G̃ = G[W ], Ĩ = I ∩ W , Õ = O ∩ W , ω̃ is the restriction
of ω to W , and T̃ = (T ∩ W ) ∪ (U ∩ W ). Let X̃ = T̃ ∩ (V (R1) ∩ W ) =
{x̃1, . . . , x̃r}, let Ỹ be the set of vertices of T̃ \ V (R1) that are adjacent to
vertices of R1 outside W \ U and Z̃ = T̃ \ (X̃ ∪ Ỹ ). Let (R′

1, (x̃1, . . . , x̃r))
be the r-boundaried graph obtained from R1 by the deletion of the vertices
of W \ U (note that the graph could be empty). We have that Gr contains
an r-boundaried graph H̃ that is equivalent to (R′

1, (x̃1, . . . , x̃r)) with respect
to Fb. Recall that we have a solution of Boundaried w-Maximum Con-
nected Secluded F-Free Subgraph for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ). In particular,
we have a solution R̃ ∈ R for the instance (G̃, Ĩ, Õ, B̃, ω̃, t̃) of w-Maximum
Connected Secluded F-Free Subgraph obtained by the boundary com-
plementation with respect to (X̃ = (x̃1, . . . , x̃r), Ỹ , Z̃, H̃), where t̃ is the num-
ber of neighbors of R1 in W . Recall also that the neighbors of the vertices
of R̃ are in S. Denote by (R̃′, (x̃1, . . . , x̃r)) the r-boundaried subgraph ob-
tained from R̃ by the deletion of the vertices that are outside of W . By
Lemma 4, R2 = (R′

1, (x̃1, . . . , x̃r)) ⊕b (R̃′, (x̃1, . . . , x̃r)) is F-free. Observe also
that ω′(V (R2)) ≥ min{ω′(V (R1)), w}. It implies that (G′, I ′, O′, B̂′, ω′, t′) has
a nonempty solution R2 with ω′(V (R2)) ≥ min{ω′(V (R1)), w}.

Since the instances (G, I,O,B, ω, t, T ) and (G, I,O, B̂, ω, t, T ) of Bound-
aried w-Maximum Connected Secluded F-Free Subgraph are equiva-
lent, we can consider (G, I,O, B̂, ω, t, T ). Now we apply some reduction rules
with the ultimate aim to reduce the size of G. We say that a reduction rule is
safe if it either produces an equivalent instance of Boundaried w-Maximum
Connected Secluded F-Free Subgraph or correctly reports that we have
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no solution. To simplify notation, we keep using (G, I,O, B̂, ω, t, T ) for the
instances obtained by the rules.

The rules exploit the following observation.

Claim 4.4. Let Q be a component of G[W ]− S. For every nonempty graph R
in a solution of (G, I,O, B̂, w, t, T ), either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅.
Moreover, if V (Q) ∩ V (R) = ∅, then NG[W ][V (Q)] ∩ V (R) = ∅, and if v ∈
NG[W ](V (Q)) is a vertex of R, then V (Q) ⊆ V (R).

Proof of Claim 4.4. Recall that for every nonempty R in a solution of
(G, I,O, B̂, w, t, T ), NG[V (R)] ⊆ B̂. Hence, if Q is a component of G[W ] − S,
Q cannot contain two adjacent vertices u and v such that u ∈ V (R) and
v /∈ V (R). Therefore, either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅. Similarly,
if V (Q) ∩ V (R) = ∅, then NG[W ][V (Q)] ∩ V (R) = ∅, and if v ∈ NG[W ](V (Q)) is
a vertex of R, then V (Q) ⊆ V (R).

The following rule is applied for each component Q of G[W ] − S exactly
once. Claim 4.4 immediately implies that the rule is safe.

Reduction Rule 4.4. For a component Q of G[W ]−S do the following in the
given order:

� if NG[W ][V (Q)] ∩ I ̸= ∅ and V (Q) ∩O ̸= ∅, then return ∅ and stop,

� if NG[W ][V (Q)] ∩ I ̸= ∅, then set I := I ∪ V (Q),

� if V (Q) ∩O ̸= ∅, then set O := O ∪NG[W ][V (Q)].

Notice that after application of Reduction Rule 4.4 we have that either
V (Q) ⊆ I or V (Q) ⊆ O or V (Q) ∩ (I ∪ O ∪ B̂) = ∅ for every component Q of
G[W ]− S; the latter property holds since V (Q) ∩ B̂ = ∅.

The next rule is applied for all pairs of components Q1 and Q2 with
NG[W ](V (Q1)) = NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| > t,
and for each pair the rule is applied once.

Reduction Rule 4.5. For components Q1 and Q2 of G[W ] − S such that
NG[W ](V (Q1)) = NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| > t
do the following in the given order:

� if (V (Q1) ∪ V (Q2)) ∩ I ̸= ∅ and (V (Q1) ∪ V (Q2)) ∩O ̸= ∅, then return ∅
and stop,

� if (V (Q1) ∪ V (Q2)) ∩ I ̸= ∅, then set I := I ∪ (V (Q1) ∪ V (Q2)),

� if (V (Q1) ∪ V (Q2)) ∩O ̸= ∅, then set O := O ∪NG[W ][V (Q1) ∪ V (Q2)].

Claim 4.5. Reduction Rule 4.5 is safe.
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Proof of Claim 4.5. Suppose that Q1 and Q2 are components of G[W ]−S such
thatNG[W ](V (Q1)) = NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| >
t. Then if V (Q1) ⊆ V (R) for a nonempty graph R in a solution of
(G, I,O, B̂, ω, t, T ), then at least one vertex of NG[W ](V (Q1)) is in R, as R
has at most t neighbors outside R. Therefore, V (Q2) ⊆ V (R). Hence, V (Q1)
and V (Q2) are either both inside R or both outside R. This immediately implies
safeness.

If V (Q) ⊆ O for a component Q of G[W ] − S, then NG[W ](V (Q)) ⊆ O. It
immediately implies that the vertices of Q are irrelevant and can be removed.
Hence, the following rule is safe.

Reduction Rule 4.6. If there is a component Q of G[W ] − S such that
NG[W ](V (Q)) ⊆ O, then set G := G−V (Q), W := W \V (Q) and O := O\V (Q).

Notice that for each component Q, we have now that either V (Q) ⊆ I or
V (Q) ⊆ W \ (I ∪O ∪ B̂).

To define the remaining rules, we construct the sets G′
p for all p ∈ {0, . . . , |S|}

(see Definition 10) in time 22
O(t log t)

using Lemma 9 and the inequality (2).
We consider inclusion maximal families of components of G[W ]−S that have

the same neighborhood and replace them by gadgets of bounded size. First, we
deal with families whose neighborhoods have size at least t+ 1. We exploit the
property that every graph in the solution of (G, I,O, B̂, ω, t, T ) either contains
all of the members of each family or none.

Reduction Rule 4.7. Let L = {x1, . . . , xp} ⊆ S, p > t, and let x = (x1, . . . , xp).
Let also Q1, . . . , Qr be the components of G[W ] − S with r ≥ 1, and
NG[W ](V (Qi)) = L for all i ∈ {1, . . . , r}. Let Q = G[

⋃r
i=1 NG[W ][V (Qi)]]

and w′ =
∑r

i=1 ω(V (Qi)). Find a p-boundaried graph (H, y) ∈ G′
p such that

(H, y) ≡Fb
(Q, x) and denote by A the set of nonboundary vertices of H. Then

do the following.

� Delete the vertices of V (Q1), . . . , V (Qr) from G and denote the obtained
graph G′.

� Set G := (G′, x)⊕b (H, y) and W := (W \
⋃r

i=1 V (Qi)) ∪A.

� Select arbitrarily u ∈ A and modify ω as follows:

– keep the same weight for every v ∈ V (G′) including the boundary
vertices x1, . . . , xp,

– set ω(v) = 0 for each v ∈ A \ {u},
– set ω(u) = w′.

� If V (Q1) ⊆ I, then set I := I \ (
⋃r

i=1 V (Qi)) ∪A.

Claim 4.6. Reduction Rule 4.7 is safe.
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Proof of Claim 4.6. Denote by (G′, I ′, O′, B̂, ω′, t, T ) the instance of Bound-
aried w-Maximum Connected Secluded F-Free Subgraph obtained by
the application of the rule. Clearly, condition (i) of Definition 12 is fulfilled and
we have to verify (ii). For the forward direction, let R be a nonempty graph
in the solution of (G, I,O, B̂, ω, t, T ) obtained with respect to some boundary
complementation.

If V (R) ∩ V (Q) = ∅, then it is straightforward to see that R is a t-secluded
F-free graph for the instance of w-Maximum Connected Secluded F-Free
Subgraph arising in (G′, I ′, O′, B̂, ω′, t, T ) for the same boundary complemen-
tation. Then condition (a) of Definition 12 (ii) holds.

Suppose that V (R) ∩ V (Q) ̸= ∅. By Claim 4.4, there is i ∈ {1, . . . , r}
such that V (Qi) ⊆ V (R). Since p > t, there is z ∈ NG[W ][V (Qi)]] such
that z ∈ V (R). Then by Claim 4.4, we conclude that V (Qi) ⊆ V (R) for
all i ∈ {1, . . . , r}. Then R = (R′, x)⊕b (Q, x), where R′ = R−

⋃r
i=1 V (Qi). Let

R′′ = (R′, x) ⊕b (H, y). Since at least one vertex of x is in R and H ∈ G′
p,

R′′ is connected. By Lemma 4, R′′ is a t-secluded F-free graph for the in-
stance of w-Maximum Connected Secluded F-Free Subgraph arising in
(G′, I ′, O′, B̂, ω′, t, T ) for the same boundary complementation as for R. Because
ω′(V (R′′)) = ω(R), we obtain that condition (a) of Definition 12 (ii) holds.

For the opposite direction, that is, for the proof that condition (b) of Defi-
nition 12 (ii) is fulfilled, we use the same arguments using symmetry.

The rule is applied exactly once for each inclusion maximal set of components
{Q1, . . . , Qr} having the same neighborhood of size at least t+ 1.

Our next aim is to analyze components Q of G[W ] − S with
|NG[W ](V (Q))| ≤ t. Notice that if we have several components Q1, . . . , Qr of
G[W ]−S with the same neighborhood NG[W ](V (Qi)) and |NG[W ](V (Qi))| ≤ t,
then it can happen that there are i, j ∈ {1, . . . , r} such that V (Qi) ⊆ V (R)
and NG[W ][V (Qj)] ∩ V (R) = ∅ for R in a solution of (G, I,O, B̂, ω, t, T ). But
if NG[W ][V (Qj)] ∩ V (R) = ∅ , then by the connectivity of R and the fact
that G[W ] − S does not contain boundary terminals, we have that R = Qi.
Notice that, in particular, this means that R is a solution for an instance of
w-Maximum Connected Secluded F-Free Subgraph obtained by the
boundary complementation with respect to (∅, ∅, T, ∅). Recall that we output
R in this case only if its weight is at least w.

In our next rule, we consider the case when there is Q with V (Q) ⊆ I.

Reduction Rule 4.8. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp).
Let also Q0, . . . , Qr be the components of G[W ] − S with r ≥ 0 and
NG[W ](V (Qi)) = L for all i ∈ {0, . . . , r} and it holds that V (Q0) ⊆ I. Let
Q′

0 = G[NG[W ][V (Q0)]], Q = G[
⋃r

i=1 NG[W ][V (Qi)]] and w′ =
∑r

i=1 ω(V (Qi)).
Find a p-boundaried graph (H0, y) ∈ G′

p such that (H0, y) ≡Fb
(Q0, x) and de-

note by A0 the set of nonboundary vertices ofH0, and find a p-boundaried graph
(H, y) ∈ G′

p such that (H, y) ≡Fb
(Q, x) and denote by A the set of nonboundary

vertices of H. Then do the following.
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� Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained
graph G′.

� Set G := (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and
W := (W \

⋃r
i=0 V (Qi)) ∪A0 ∪A.

� Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

– keep the same weight for every z ∈ V (G′) including the boundary
vertices x1, . . . , xp,

– set ω(z) = 0 for each z ∈ (A0 \ {u}) ∪ (A \ {v}),
– set ω(u) = ω(V (Q0)) and ω(v) = w′.

� If V (Qi) ⊆ I for some i ∈ {1, . . . , r}, then set I := I \ (
⋃r

i=1 V (Qi)) ∪A.

Claim 4.7. Reduction Rule 4.8 is safe.

Proof of Claim 4.7. The claim is proved similarly to Claim 4.6. Let
(G′, I ′, O′, B̂, ω′, t, T ) be the instance of Boundaried w-Maximum Connected
Secluded F-Free Subgraph obtained by the application of the rule. As con-
dition (i) of Definition 12 is trivial, we have to verify (ii).

For the forward direction, let R be a nonempty graph in the solution of
(G, I,O, B̂, ω, t, T ) obtained with respect to some boundary complementation.

Suppose that L ∩ V (R) = ∅. Then R = Q0 and R is a solution for an
instance of w-Maximum Connected Secluded F-Free Subgraph obtained
by the boundary complementation with respect to (∅, ∅, T, ∅). Let R′ = H0. By
Lemma 4, we have that R′ is F-free, that is, R′ is a t-secluded F-free graph
for the instance of w-Maximum Connected Secluded F-Free Subgraph
arising in (G′, I ′, O′, B̂, ω′, t, T ) for the boundary complementation with respect
to (∅, ∅, T, ∅). Because ω′(V (R′)) = ω(R), condition (a) of Definition 12 (ii)
holds.

Assume now that L ∩ V (R) ̸= ∅. By Claim 4.4, V (Qi) ⊆ V (R) for all
i ∈ {0, . . . , r}. Then we can write that R = ((R′, x) ⊕b (Q′

0, x), x) ⊕b (Q, x),
where R′ = R −

⋃r
i=0 V (Qi). Let R′′ = ((R′, x) ⊕b (H0, y), y) ⊕b (H, y). Then

by the same arguments as in the proof of Claim 4.6, we conclude that R′′ is a t-
secluded F-free graph for the instance of w-Maximum Connected Secluded
F-Free Subgraph arising in (G′, I ′, O′, B̂, ω′, t, T ) for the same boundary com-
plementation as for R. Because ω′(V (R′′)) = ω(R), we obtain that condition
(a) of Definition 12 (ii) holds.

For the opposite direction, that is, for the proof that condition (b) of Def-
inition 12 (ii) is fulfilled, we use the same arguments performing the opposite
replacements in a graph from the solution of (G′, I ′, O′, B̂, ω′, t, T ).

Reduction Rule 4.8 is applied exactly once for each inclusion maximal set of
components {Q1, . . . , Qr} having the same neighborhood of size at most t such
that at least one of the components contains a vertex of I.
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Finally, we consider inclusion maximal families of components of G[W ] −
S that have the same neighborhood of size at most t such that there is no
component in the family whose vertices are in I.

Reduction Rule 4.9. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp).
Let also Q0, . . . , Qr,r ≥ 0, be the components of G[W ] − S with
NG[W ](V (Qi)) = L for all i ∈ {0, . . . , r} such that ω(V (Q0)) ≥ ω(V (Qi)) for ev-
ery i ∈ {1, . . . , r} and the p-boundaried graphs (G[NG[W ][V (Qi)]], (x1, . . . , xp))
are pairwise equivalent with respect to Fb for all i ∈ {0, . . . , r}.
Let Q′

0 = G[NG[W ][V (Q0)]], Q = G[
⋃r

i=1 NG[W ][V (Qi)]], and
w′ = min{w − 1,

∑r
i=1 ω(V (Qi))}. Find a p-boundaried graph (H0, y) ∈ G′

p

such that (H0, y) ≡Fb
(Q0, x) and denote by A0 the set of nonboundary vertices

of H0, and find a p-boundaried graph (H, y) ∈ G′
p such that (H, y) ≡Fb

(Q, x)
and denote by A the set of nonboundary vertices of H. Then do the following.

� Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained
graph G′.

� Set G := (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and
W := (W \

⋃r
i=0 V (Qi)) ∪A0 ∪A.

� Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

– keep the same weight for every z ∈ V (G′) including the boundary
vertices x1, . . . , xp,

– set ω(z) = 0 for each z ∈ (A0 \ {u}) ∪ (A \ {v}),
– set ω(u) = ω(V (Q0)) and ω(v) = w′.

Claim 4.8. Reduction Rule 4.9 is safe.

Proof of Claim 4.8. We use the same approach as in the proofs of Claims 4.6
and 4.7. Let (G′, I ′, O′, B̂, ω′, t, T ) be the instance of Boundaried w-Maximum
Connected Secluded F-Free Subgraph obtained by the application of the
rule. As in the aforementioned claims, it is sufficient to verify condition (ii) of
Definition 12.

For the forward direction, let R be a nonempty graph in the solution of
(G, I,O, B̂, ω, t, T ) obtained with respect to some boundary complementation.

If V (R) ∩ (
⋃r

i=0 V (Qi)) = ∅, then R is a t-secluded F-free graph for the in-
stance of w-Maximum Connected Secluded F-Free Subgraph arising in
(G′, I ′, O′, B̂, ω′, t, T ) for the same boundary complementation. Then condition
(a) of Definition 12 (ii) holds.

Assume that there are i, j ∈ {0, . . . , r} such that V (R) ∩ V (Qi) ̸= ∅ and
V (R) ∩ V (Qj) = ∅. Then R = Qi and R is a solution for an instance of
w-Maximum Connected Secluded F-Free Subgraph obtained by the
boundary complementation with respect to (∅, ∅, T, ∅). Let R′ = H0. Since
(Q′

0, x) ≡Fb
(H0, y), R

′ is F-free by Lemma 4, that is, R′ is a t-secluded F-free
graph for the instance of w-Maximum Connected Secluded F-Free Sub-
graph arising in (G′, I ′, O′, B̂, ω′, t, T ) for the boundary complementation with
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respect to (∅, ∅, T, ∅). Because ω′(V (R′)) = ω(V (Qi)) ≤ ω(V (Q0)) = ω(V (R)),
we obtain that condition (a) of Definition 12 (ii) holds.

Suppose now that V (Qi) ⊆ V (R) for every i ∈ {0, . . . , r}. Note that since
R is connected, L ∩ V (R) ̸= ∅. Then R = ((R′, x) ⊕b (Q0, x), x) ⊕b (Q, x),
where R′ = R −

⋃r
i=0 V (Qi). Let R′′ = ((R′, x) ⊕b (H0, y), y) ⊕b (H, y).

Then we conclude that R′′ is a connected t-secluded F-free graph for the in-
stance of w-Maximum Connected Secluded F-Free Subgraph arising in
(G′, I ′, O′, B̂, ω′, t, T ) for the same boundary complementation as for R. Be-
cause ω′(V (R′′)) ≥ min{w,ω(R)}, we obtain that condition (a) of Definition 12
(ii) holds.

For the opposite direction, that is, for the proof that condition (b) of Def-
inition 12 (ii) is fulfilled, we use similar arguments performing the opposite
replacements in a graph from the solution of (G′, I ′, O′, B̂, ω′, t, T ). The differ-
ence from the proofs of Claims 4.6 and 4.7 is that now we have no complete
symmetry. Let R′ be a nonempty graph in the solution of (G′, I ′, O′, B̂, ω′, t, T )
obtained with respect to some boundary complementation. For the cases when
(A0 ∪A)∩V (R′) = ∅ or A0 ∪A ⊆ V (R′), the arguments are the same. Suppose
that A0 ∪ A contain a vertex of R′ and a vertex that is not in R′. Because
ω′(A) ≤ w − 1, we obtain that R′ = G′[A0] and R′ is a solution for an instance
of w-Maximum Connected Secluded F-Free Subgraph obtained by the
boundary complementation with respect to (∅, ∅, T, ∅). Then we conclude that
R = Q0 is a t-secluded F-free graph for the instance of w-Maximum Con-
nected Secluded F-Free Subgraph arising in (G, I,O, B̂, ω, t, T ) for the
boundary complementation with respect to (∅, ∅, T, ∅).

The Reduction Rule 4.9 is applied for each inclusion maximal set of compo-
nents {Q1, . . ., Qr} satisfying the conditions of the rule.

Our next aim is to upper bound the size of the graph obtained by the re-
ductions. Denote by (G∗, I∗, O∗, B∗, ω∗, t, T ) the instance of Boundaried w-
Maximum Connected Secluded F-Free Subgraph obtained from
(G, I,O, B̂, ω, t, T ) by Reduction Rules 4.4-4.9. Notice that all modifications
were made for G[W ]. Denote by W ∗ the set of vertices of the graph obtained
from the initial G[W ] by the rules.

Claim 4.9.
|W ∗| ≤ 2|S|2|S|ctc + |S|. (3)

Proof of Claim 4.9. Observe that there are at most 2|S| subsets L of S such that
there is a component Q of G[W ] − S with NG[W ](V (Q)) = L. If |L| > t, then
all Q with NG[W ](V (Q)) = L are replaced by one graph by Reduction Rule 4.7
and the number of vertices of this graph is at most |L|c by the choice of the
constant c. If |L| ≤ t, then we either apply Reduction Rule 4.8 for all Q with
NG[W ](V (Q)) = L and replace these components by two graphs with at most
|L|c vertices or we apply Reduction Rule 4.9. For the latter case, observe that
there are at most tc partitions of the components Q with NG[W ](V (Q)) = L
into equivalence classes with respect to Fb by Lemma 7. Then we replace each
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class by two graphs with at most |L|c vertices. Taking into account the vertices
of S, we obtain the bound |W ∗| ≤ 2|S|2|S|ctc + |S|.

By (1) and (2), |W ∗| ≤ q. Recall that |W \ U | > q. Therefore,
|V (G∗)| < |V (G)|. We use it and solve Boundaried w-Maximum Connected
Secluded F-Free Subgraph for (G∗, I∗, O∗, B∗, ω∗, t, T ) recursively.

Our final task is to evaluate the running time. Denote by τ(G, I,O,B, ω, t, T )
the time needed to solve Boundaried w-Maximum Connected Secluded
F-Free Subgraph for (G, I,O,B, ω, t, T ). Lemmas 5 and 7 imply that the
reduction rules are polynomial. The algorithm from Lemma 3 runs in time

22
O(t log t) · nO(1). Notice that the sets Gp and G′

p can be constructed separately
from running the algorithm for Boundaried w-Maximum Connected Se-
cluded F-Free Subgraph. Then we obtain the following recurrence for the
running time:

τ(G, I,O,B, ω, t, T ) ≤τ(G∗, I∗, O∗, B∗, ω∗, t, T )

+τ(G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ) + 22
O(t log t)

· nO(1). (4)

Note that |V (G̃)| > q, because V (G̃) = W and |W \U | > q. Because |W ∗| ≤ q,

|V (G∗)| ≤ |V (G)| − |V (G̃)|+ q. (5)

Recall that if the algorithm of Lemma 3 reports that G is ((2q + 1)q · 2t, t)-
unbreakable or we have that |V (G)| ≤ (2q+1)q · 2t, we do not recurse but solve

the problem directly in time 22
2O(t log t)

· nO(1). Following the general scheme
from [5], we obtain that these conditions together with (4) and (5) imply that

the total running time is 22
2O(t log t)

· nO(1).

We have now all the details in place to be able to prove Theorem 1 that we
restate.

Theorem 1. Connected Secluded F-Free Subgraph can be solved in

time 22
2O(t log t)

· nO(1).

Proof. Let (G,ω, t, w) be an instance of Connected Secluded F-Free Sub-
graph. We set I = ∅, O = ∅, B = V (G) and T = ∅. Then we solve
Boundaried w-Maximum Connected Secluded F-Free Subgraph for

(G, I,O,B,w, t, T ) using Lemma 14 in time 22
2O(t log t)

· nO(1). It remains to
notice that (G,ω, t, w) is a yes-instance of Connected Secluded F-Free
Subgraph if and only if (G, I,O,B, ω, t, T ) has a nonempty graph in a solu-
tion.

5. Algorithms for special cases of Connected Secluded Π-Subgraph

We applied the recursive understanding technique introduced by Chitnis et
al. [5] forConnected Secluded Π-Subgraph when Π is defined by a finite set
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of forbidden subgraphs. The drawback of applying the recursive understanding
technique for this problem is that we got triple-exponential dependence on the
parameter in our FPT algorithms. It is natural to ask whether we can do better
for some properties Π. In this section we show that it can be done if Π is the
property to be a complete graph, a star, to be d-regular or to be a path.

5.1. Secluded Clique

Recall that a clique is a set of pairwise adjacent vertices. We begin with the
Secluded Clique problem, defined as follows.

Input: A graph G, a weight function ω : V (G) → Z>0, a nonnega-
tive integer t and a positive integer w.

Task: Decide whether G contains a t-secluded clique U with
ω(U) ≥ w.

Secluded Clique

We prove that this problem can be solved in time 2O(t2) · nO(1). The result
uses the algorithm of Lemma 2 and the following simple observations.

Lemma 15. Let (G,ω, t, w) be an input of Secluded Clique and let U be
an inclusion maximal solution, that is, a t-secluded clique with ω(U) ≥ w. Let
L be an inclusion maximal set of true twins of G. Then L∩U ̸= ∅ implies that
L ⊆ U .

Proof. Let L be an inclusion maximal set of true twins, and let u, v ∈ L be such
that u ∈ U and v /∈ U . Consider U ′ = G[U ∪ {v}]. Since U is a t-secluded
clique, and u, v are true twins, we have that U ′ is also a t-secluded clique, and
ω(U ′) = ω(U)+ω(v) ≥ w. Therefore U ′ is also a solution of Secluded Clique,
contradicting the maximality of U .

Let L be the family of all maximal sets of true twins in a graph G. Note that
a vertex can not belong to two different maximal sets of true twins, so L induces
a partition of V (G). Consider the graph G̃ obtained from G by contracting each
maximal set of true twins L into a single vertex xL. In other words, G̃ contains
one vertex for each element of L. Two vertices x1 and x2 in G̃ are adjacent if
there is an edge in G with one endpoint in L1 and the other one in L2, where
L1 and L2 are elements of L corresponding to x1 and x2, respectively.

We say that a vertex x ∈ G̃ is a contraction of L ∈ L if x is the vertex of G̃
corresponding to L. We say that a set U ⊆ V (G) is the expansion of Ũ ⊆ V (G̃)
if U =

⋃
x∈Ũ Lx, where x is the contraction of Lx ∈ L. We also say in that case

that Ũ is the contraction of U .

Lemma 16. Let G be a graph, t be a positive integer and let U be an inclusion
maximal t-secluded clique in G. There exists a set Ũ of vertices of V (G̃) such
that:

1) U is the expansion of Ũ ,
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2) Ũ is a t-secluded clique on G̃, and

3) |Ũ | ≤ 2t.

Proof. Let Ũ ⊆ V (G̃) be the set of vertices that are contractions of the maximal
sets of true twins in G intersecting U . We claim that Ũ satisfies the desired
properties.

1) From Lemma 15, we know that if a maximal set of true twins L intersects
U , then L ⊆ U . Therefore Ũ is a contraction of U (so U is an expansion
of Ũ).

2) Let x1 and x2 be two vertices in Ũ that are contractions of L1 and L2,
respectively. Since U is a clique in G, L1 and L2 must contain adja-
cent vertices, so x1 and x2 are adjacent in G̃[Ũ ]. Moreover, |NG̃(Ũ)|
equals the number of maximal sets of true twins intersecting NG(U), so
|NG̃(Ũ)| ≤ |NG(U)| ≤ t. We conclude that Ũ induces a t-secluded clique

in G̃.

3) Let x1 and x2 be two different vertices in Ũ that are contractions of
L1 and L2, respectively. From the definition of maximal sets of true
twins, NG(L1) ̸= NG(L2), so NG̃(x1) ̸= NG̃(x2). Since Ũ is a clique,

necessarily NG̃(x1) ∩ Ũ = NG̃(x2) ∩ Ũ . Therefore, every vertex in Ũ has

a different neighborhood outside Ũ . Since |NG̃(Ũ)| ≤ t, we obtain that

|Ũ | ≤ 2|NG̃(Ũ)| ≤ 2t.

Theorem 3. Secluded Clique can be solved in time 2O(t2) · nO(1).

Proof. The algorithm for Secluded Clique on input (G,ω, t, w) first computes
the family L of all inclusion maximal set of true twins of G, and then computes
G̃. Note that this can be done in linear time (see, e.g., [19]). Then, the algorithm

uses Lemma 2 to compute in time 2O(t2)n log n a family S of at most 2O(t2) log n
subsets of V (G̃) such that: for any sets A,B ⊆ V (G̃), A ∩ B = ∅, |A| ≤ 2t,
|B| ≤ t, there exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

Let U be a set of vertices of G inducing an inclusion maximal solution of
Secluded Clique on instance (G,ω, t, w), and let Ũ be the contraction of U .
From Lemma 16, we know that |NG̃(Ũ)| ≤ t and |Ũ | ≤ 2t. Then, there exists

S ∈ S such that Ũ ⊆ S and NG̃(Ũ) ∩ S = ∅. In other words Ũ is a component

of G̃[S]. Therefore, by checking every S ∈ S and every component C of G̃[S]
we find a secluded clique if it exists.

5.2. Secluded Star

Another example of a particular problem where we have a better running
time is Secluded Star. For a positive integer r, call K1,r the complete bipar-
tite graph with one vertex in one part and r vertices in the other part. A tree
isomorphic to K1,r is called a star.
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Input: A graph G, a weight function ω : V (G) → Z>0, a nonnega-
tive integer t, and a positive integer w.

Task: Decide whether G contains a t-secluded induced star S with
ω(V (S)) ≥ w.

Secluded Star

In this case, a faster FPT algorithm can be deduced via a reduction to the
problem Vertex Cover parameterized by the size of the solution.

For a graph G and x in V (G), we denote by N2
G(x) the set of vertices

at distance 2 from x, i.e., N2
G(x) is the set of vertices u ∈ V (G) such that

u /∈ NG[x] and there exists v ∈ NG(x) such that u ∈ NG(v). We also call N2
G[x]

the set N2
G(x) ∪NG[x]. Let now Fx = (N2

G(x) ∪NG(x), E
′) be the subgraph of

G[N2
G(x) ∪ NG(x)] such that E′ = E(G[N2

G(x) ∪ NG(x)]) \ E(G[N2
G(x)]), i.e.,

Fx is the graph induced by the vertices in N2
G(x) ∪NG(x) after the deletion of

all edges between vertices in N2
G(x). Note that x is not a vertex of Fx.

A vertex x is the center of a star S if x is the vertex of maximum degree in
S. The following lemma relates the center x of a t-secluded star S of a graph
G with a vertex cover of size at most t of Fx.

Lemma 17. Let S be a t-secluded star on a graph G with a center x. Then
NG(V (S)) is a vertex cover of Fx. Moreover, if S is an inclusion maximal t-
secluded star with a center x, then NG(V (S)) is an inclusion minimal vertex
cover of Fx.

Proof. Let u, v be two adjacent vertices of Fx. Since Fx[N
2(x)] is edgeless, we

assume w.l.o.g. that u belongs to NG(x). If u is contained in NG(x) \ V (S),
then u is in N(V (S)) (because x belongs to S, so NG(x) \ V (S) ⊆ NG(V (S))).
If u is in S, then either v is in N2

G(x) or v is in NG(x)\V (S) (because Fx[V (S)]
is edgeless). In both cases v is in NG(V (S)). We conclude that either u or v is
contained in NG(V (S)).

Assume that S is an inclusion maximal t-secluded star with the center x.
Suppose that, contrary to the second claim, NG(V (S)) is not an inclusion
minimal vertex cover of Fx, that is, there is u ∈ NG(V (S)) such that X =
NG(V (S)) \ {u} is a vertex cover of Fx. Because X is a vertex cover of Fx and
X ⊆ NG(V (S)), we have that u ∈ NG(x) and NG(u) \ {x} ⊆ X. It implies that
S′ = G[V (S) ∪ {u}] is a t-secluded star contradicting the maximality of S.

A basic result on parameterized complexity states that one can decide whether
a graph contains a vertex cover of size at most t by branching algorithms. These
algorithms can be adapted to output the list of all inclusion minimal vertex cov-
ers of size at most t within the same running time, and we immediately obtain
the following claim.

Proposition 1 ([6, 8]). There is an algorithm computing the list of all the inclu-
sion minimal vertex covers of size at most t of a graph G in time
O(2t(n+m)).
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Theorem 4. Secluded Star can be solved in time 2t · nO(1).

Proof. Let (G,ω, t, w) be an input of Secluded Star. The algorithm starts
computing, for every x ∈ V (G), the list of all inclusion minimal vertex covers
of size at most t of Fx using Proposition 1. Then, for every vertex cover U of
size at most t of Fx, the algorithm checks if NG[x] \ U induces in G a solution
of the problem. We know from Lemma 17, that if S is a solution of Secluded
Star on input (G,ω, t, w), then NG(V (S)) is an inclusion minimal vertex cover
of size at most t of Fx. Note also that S is an induced star with center x in a
graph G, then V (S) = NG[x] \NG(V (S)).

5.3. Secluded Regular Subgraph

Our next example is Connected Secluded Regular Subgraph. For a
positive integer d, a graph G is d-regular if dG(v) = d for every v ∈ V (G).

Input: A graph G, a weight function ω : V (G) → Z>0, a nonnega-
tive integer t, and positive integers w and d.

Task: Decide whether G contains a connected t-secluded d-regular
induced subgraph H with ω(V (H)) ≥ w.

Connected Secluded Regular Subgraph

Let (G,ω, t, w, d) be an input of Connected Secluded Regular Sub-
graph and let U be a set of vertices of G such thatG[U ] is a solution of the prob-
lem. Note first that any vertex of degree greater than t+d cannot be contained
in U , otherwise G[U ] is not t-secluded. Let W = {x ∈ V (G) | dG(x) ≥ t+d+1}.
If N(U) ⊆ W , then U is a component of G−W . Therefore, our algorithm will
first compute the components of G−W and check if some of them is a solution.
In the following we assume that this is not the case, that is, N(U) \W ̸= ∅.

Let L = N(U) \ W , U1 = N(L) ∩ U , U2 = N(U1) ∩ U and Ũ = U1 ∪ U2

as it is shown in Fig. 3. Note that U1 separates U and L in G −W . Observe
that the sets have bounded size as we have that |L| ≤ t, |U1| ≤ t · (t + d) and
|U2| ≤ dt · (t + d), because U ∩W = ∅. Therefore, |Ũ | ≤ t(d + 1)(t + d). The
main idea of our algorithm is to identify Ũ and L in the input graph.

We need the following definition. A set of vertices C is called good for U if

� C ⊆ U , and

� for all u ∈ C ∩ U1, N(u) ∩ U ⊆ C.

Note that every vertex u in a good set C satisfies |N(u)∩C| ≤ d. Moreover,
if u ∈ U1 ∩ C then |N(u) ∩ C| = d. Note also that if C1 and C2 are good for U
then C1 ∪ C2 is good for U .

Lemma 18. Let S be a set of vertices of G̃ = G − W satisfying Ũ ⊆ S and
S ∩ L = ∅. Let now C be a component of G[S] such that C ∩ U ̸= ∅, then:

1) C is good for U , and
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Figure 3: Structure of the sets U , W , L, U1 and U2.

2) if u ∈ C is such that |NG̃(u) ∩ C| < d, then S′ = S ∪ NG̃(u) satisfies

Ũ ⊆ S′ and S′ ∩ L = ∅.

Proof.

1) Let u ∈ C ∩ U and v ∈ NG̃(u) ∩ (C \ U). Then v is contained in L,
which contradicts the fact that S ∩L = ∅. Therefore C ⊆ U . Moreover, if
u ∈ U1 ∩C then NG̃(u)∩U ⊆ C, because U2 is contained in S and C is a
connected component of G[S]. We conclude that C is good for U .

2) Let u ∈ C be such that |NG̃(u) ∩ C| < d. Since C is good for U we know

that u is not contained in U1, so NG̃(u) ∩ L = ∅. Therefore Ũ ⊆ S ⊆ S′

and S′ ∩ L = ∅.

Theorem 5. Connected Secluded Regular Subgraph can be solved in
time 2O(t log(td)) · nO(1).

Proof. The algorithm for Connected Secluded Regular Subgraph on in-
put (G,ω, t, w, d) first computes the set W = {x ∈ V (G) | dG(x) ≥ d + t + 1}.
Then it computes the connected components of G − W and checks if some of
them is a solution. If a solution is not found this way, the algorithm com-
putes G̃ = G − W . Then, the algorithm uses Lemma 2 to compute in time
2O(t log(td))n log n a family S of at most 2O(t log(td)) log n subsets of V (G̃) such
that: for any sets A,B ⊆ V (G̃), A∩B = ∅, |A| ≤ t(d+ 1)(t+ d), |B| ≤ t, there
exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

For each set S ∈ S, the algorithm marks as candidate every component C
of G̃[S] that satisfies that for all u ∈ C, |NG̃(u) ∩ C| ≤ d. For each candidate
component C, the algorithm looks for a vertex u in C such that |NG̃(u)∩C| < d.
If such vertex is found, the corresponding component is enlarged adding to C all
vertices in NG̃(u). If NG̃(u) intersects other components of G[S], we merge them
into C. We repeat the process on the enlarged component C until it can not
grow any more, or some vertex u in C satisfies |NG̃(u)∩C| > d. In the first case
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we check if the obtained component is a solution of the problem, otherwise the
component is unmarked (is not longer a candidate), and the algorithm continues
with another candidate component of G̃[S] or other set S′ ∈ S.

Let U be a set of vertices such that G[U ] is a solution of Connected
Secluded Regular Subgraph on input (G,ω, t, w, d) with N(U) \ W ̸= ∅.
From the construction of S, we know that there exists some S ∈ S such that
Ũ ⊆ S and S ∩ L = ∅. From Lemma 18 (1), we know that any component of
G̃[S] intersecting U is good for U , so it will be marked as candidate. Finally,
from Lemma 18 (2) we know that when a component that is good for U grows,
the obtained component is also good for U . Indeed, if C is a good component
of G̃[S] containing a vertex u such that |NG̃(u)∩C| < d, then the component of

G̃[S∪NG̃(u)] containing C is also good for U . We conclude that we correctly find

U testing the enlarging process on each component of G̃[S], for each S ∈ S.

5.4. Secluded Heavy Path

The same approach can be used for some other problems. In particular, we
can do it for Secluded Heavy Path, defined as follows.

Input: A graph G, a weight function ω : V (G) → Z>0, a nonnega-
tive integer t, and a positive integer w.

Task: Decide whether G contains a t-secluded induced path P
with ω(V (P )) ≥ w.

Secluded Heavy Path

Corollary 2. Secluded Heavy Path can be solved in time 2O(t log t) · nO(1).

Proof. Observe that a path is an “almost” 2-regular graph as at most two ver-
tices of a path can have degrees one or zero. We can use this and reduce
Secluded Heavy Path to Connected Secluded Regular Subgraph for
d = 2.

Let (G,ω, t, w) be an instance of Secluded Heavy Path.
First, we check whether the instance has a trivial solution, that is, a path

with one vertex. In other words, we check whether there is v ∈ V (G) with
dG(v) ≤ t and ω(v) ≥ w. Clearly, this can be done in polynomial time. From
now we assume that there is no solution of this type.

Let s =
∑

v∈V (G) ω(v) and w′ = w + s. For every two distinct vertices

x, y ∈ V (G), we consider the graph G′
x,y obtained by adding a new vertex u and

making it adjacent to x and y. We define

ω′(z) =

{
ω(z) if z ∈ V (G),

s if z = u.

We claim that (G,ω, t, w) is a yes-instance of Secluded Heavy Path if
and only if there are distinct x, y ∈ V (G) such that (G′

x,y, ω
′, t, w′, 2) is a yes-

instance of Connected Secluded Regular Subgraph.
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Assume that (G,ω, t, w) is a yes-instance of Secluded Heavy Path. Let
P be a solution, that is, P is a t-secluded path in G with ω(V (P )) ≥ w. Recall,
that we assumed that (G,ω, t, w) has no trivial solution. Therefore, P is a path
with at least two vertices. Let x and y be the end-vertices of P . Consider the
cycle C in G′

x,y obtained from P by making u adjacent to x and y. Clearly,
NG′

x,y
(V (C)) = NG(V (P )) and ω′(V (C)) = ω(V (P )) + s ≥ w′. This implies

that (G′
x,y, ω

′, t, w′, 2) is a yes-instance of Connected Secluded Regular
Subgraph.

Suppose that (G′
x,y, ω

′, t, w′, 2) is a yes-instance of Connected Secluded
Regular Subgraph for some x, y ∈ V (G). Let C be a solution, that is, a
t-secluded cycle (a connected 2-regular subgraph) with ω′(V (C)) ≥ w′. By
the definition of s and w′, we obtain that u ∈ V (C). Let x and y be the
neighbors of u in C and define P to be the (x, y)-path in C avoiding u. We have
that NG′

x,y
(V (C)) = NG(V (P )) and ω(V (P )) = ω′(V (C)) − ω′(u) ≥ w′ − s ≥

w. Therefore, P is a solution for (G,ω, t, w) and we have a yes-instance of
Secluded Heavy Path.

Clearly, the constructed Turing reduction of Secluded Heavy Path to
Connected Secluded Regular Subgraph is polynomial. Then, by The-
orem 5, we conclude that Secluded Heavy Path can be solved in time
2O(t log t) · nO(1).

6. Concluding remarks

We proved that when Π is defined by a finite set of forbidden subgraphs, then
Connected Secluded Π-Subgraph (i.e., Connected Secluded F-Free
Subgraph) is FPT when parameterized by t. It is natural to ask whether it is
possible to extend this result for other interesting graph properties.

We observe that the meta-algorithmic results of Lokshtanov et al. [16] allow
to do it for some cases. In particular, they showed the existence of a (noncon-
structive) FPT algorithm for Π defined as follows for an integer constant c and
a CMOS formula φ: a graph G satisfies Π if and only if the treewidth of G is
at most c and G |= φ (we refer to [6] for the treewidth definition). Notice that
the treewidth bound imposes a very strong constraint and it makes the problem
relatively easy for unbreakable graphs. Is it possible to relax it?

Recall that the meta-theorem of Lokshtanov et al. [16] gives only an exis-
tential result. To obtain a constructive algorithm based on the recursive un-
derstanding techniques with an explicit running time, one has to go through
the recursion step. In particular, we did it for the case when Π is the prop-
erty to be acyclic or, in other words, for the Secluded Tree problem, where
the task is to find a t-secluded induced subtree of weight at least w. Using
the scheme similar to the one used in Section 4 for Connected Secluded
F-Free Subgraph, we were able to show that Secluded Tree can be solved

in time 22
O(t log t) · nO(1). Since the general idea of the algorithm is the same

as for Connected Secluded F-Free Subgraph, we omit the proof. Notice
that the running time is double-exponential and recall that the running time
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for Connected Secluded F-Free Subgraph is even worse. Is it possible to
improve these running times or/and establish algorithmic lower bounds showing
that, say, a double-exponential dependence is unavoidable up to some reasonable
complexity assumptions?

Our result for Connected Secluded F-Free Subgraph and the remark
for Secluded Tree also indicate that it could be an interesting and challenging
problem to classify the parameterized complexity for Connected Secluded
Π-Subgraph for hereditary properties that cannot be defined by a finite set of
forbidden induced subgraphs. For example, what can be said aboutConnected
Secluded Chordal Subgraph or Connected Secluded Interval Sub-
graph?

Another interesting question concerns the kernelization for Connected Se-
cluded Π-Subgraph. We refer to [6] for a broader introduction to kerneliza-
tion algorithms. Recall that a kernelization for a parameterized problem is a
polynomial algorithm that maps each instance (x, k) with the input x and the
parameter k to an instance (x′, k′) such that i) (x, k) is a yes-instance if and only
if (x′, k′) is a yes-instance of the problem, and ii) |x′|+k′ is bounded by f(k) for
a computable function f . The output (x′, k′) is called a kernel. The function f
is said to be a size of a kernel. A kernel is polynomial if f is polynomial.

For Connected Secluded Π-Subgraph, we hardly can hope to obtain
polynomial kernels as it could be easily proved by applying the results of Bod-
laender et al. [3] that, unless NP ⊆ coNP /poly, Connected Secluded Π-
Subgraph has no polynomial kernel when parameterized by t if Connected
Secluded Π-Subgraph is NP-complete. Nevertheless, Connected Secluded
Π-Subgraph can have a polynomial Turing kernel, defined as follows.

Let f : N → N. A Turing kernelization of size F for a parameterized problem
is an algorithm that decides whether a given instance (x, k) of the problem,
where x is an input and k is a parameter, is a yes-instance in time polynomial
in |x|+ k, when given the access to an oracle that decides whether an instance
(x′, k′), where |x′|+k′ ≤ f(k), is a yes-instance in a single step. A Turing kernel
is polynomial if f is a polynomial.

We show that Connected Secluded Π-Subgraph has a polynomial Tur-
ing kernel if Π is the property to be a star.

Theorem 6. Secluded Star problem admits a polynomial Turing kerneliza-
ton.

Proof. Let S be a solution of Secluded Star on input (G,ω, t, w). Remember
that for each x ∈ V (G), we called Fx the subgraph of G[NG(x)∪N2

G(x)] obtained
by the deletion of all edges with both endpoints in N2

G(x). From Lemma 17 if
S is a t-secluded star of G with center x, then NG(S) is a vertex cover of
size at most t of Fx. Our kernelization algorithm will first compute, for each
x ∈ V (G), the graph Fx. Then, it performs Buss’s kernelization on each graph
Fx as described below.

For a vertex x ∈ V (G), let Wx the set of vertices of degree greater than t
in Fx. Note that every vertex cover of size at most t of Fx must contain Wx.
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Hence, if |Wx| is greater than t, then x can not be the center of a t-secluded
star.

Suppose now that |Wx| ≤ t and let t′ = t − |Wx|. Note that Fx contains a
vertex cover of size t if and only if Fx − Wx contains a vertex cover of size at
most t′. Since Fx −Wx is a graph of degree at most t, a vertex cover of size t′

can cover at most t · t′ edges. In other words, if Fx − Wx contains more than
2t · t′ non isolated vertices, then x can not be the center of a t-secluded star.

Suppose now that Fx −Wx has at most 2t · t′ non isolated vertices. Let F+
x

be the subgraph of G[N2
G[x]], obtained from Fx −Wx removing all the isolated

vertices, and then adding x with all its incident edges. Note that F+
x contains

at most 2t2 + 1 vertices. Now let Ix be the set of isolated vertices of Fx −Wx

contained in NG(x). Since NG(Ix)\{x} is contained in Wx, and Wx is contained
in NG(S) for every t-secluded star S with center x, we deduce that Ix may be
contained in any such star S. In other words, if S is a star with center x, then
S is a solution of Secluded Star on input (G,ω, t, w) if and only if S− Ix is a
solution of Secluded Star on input (F+

x , ω+, t′, w′), where ω+(v) = ω(v) for
all v ∈ V (F+

x ) and w′ = w − ω(Ix).
Now let F ′

x be the graph obtained from F+
x , attaching to each vertex u in

N2
G(x) ∩ V (F+

x ) a clique Ku of size 2t, where all vertices of Ku are adjacent to
u. Note that F+

x is a graph with at most 4t3 + 1 vertices. Moreover, every t′-
secluded star in F ′

x has center x. Indeed, if the center is some vertex in N(x) or
N2

G(x), then S intersects or has as neighbors more than t vertices in some clique
Ku. Let ω

′ be a function on V (F ′
x) such that ω′(v) = ω(v) if v ∈ V (F ′

x)∩V (G)
and ω′(v) = 1 if v is in one of the cliques adjacent to a vertex of N2

G(x)∩V (F ′
x).

We conclude that (F ′
x, ω

′, t′, w′) is a yes-instance of Secluded Star for
some x ∈ V (G) if and only if (G,ω, t, w) is a yes-instance of Secluded Star.

The kernelization algorithm computes for each x ∈ V (G) the graph Fx and
the set Wx. If Wx ∩N2

G[x] contains more than t vertices the algorithm rejects x
and continues with another vertex of V (G). If |Wx| ≤ t, it computes F+

x deleting
all the isolated vertices of Fx−Wx. If F

+
x contains more than 2t · t1+1 vertices,

the algorithm rejects x and continues with another vertex of V (G). Finally, the
algorithm computes F ′

x, t
′, w′ and calls the oracle on input (F ′

x, ω
′, t′, w′). If the

oracle answers that (F ′
x, ω

′, t′, w′) is a yes-instance, the algorithm decides that
(G,ω, t, w) is a yes-instance. Otherwise the algorithm continues with another
vertex of V (G). The algorithm ends when some oracle accepts, or all vertices
are rejected.

It is a natural question to ask whether a polynomial Turing kernelization for
Connected Secluded Π-Subgraph is possible for other properties Π.

References

[1] van Bevern, R., Fluschnik, T., Mertzios, G.B., Molter, H.,
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