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Abstract

We consider a new hierarchization algorithm for sparse grids of high
dimension and low level. The algorithm is inspired by the theory of mem-
ory efficient algorithms. It is based on a cache-friendly layout of a compact
data storage, and the idea of rearranging the data for the different phases
of the algorithm. The core steps of the algorithm can be phrased as multi-
plying the input vector with two sparse matrices. A generalized counting
makes it possible to create (or apply) the matrices in constant time per
row.

The algorithm is implemented as a proof of concept and first experi-
ments show that it performs well in comparison with the previous imple-
mentation SG++, in particular for the case of high dimensions and low
level.

1 Introduction
In many applications high dimensional models arise naturally, for example as a
function that maps the high dimensional space [0, 1]d to the real numbers. Such
a function can be represented using a regular grid. If we use a regular grid that
has N points in every direction, this approach leads to Nd sample points, which
can be more than what is computationally feasible.

One approach to reduce the number of sample points are sparse grids intro-
duced by Zenger [12] in 1991. To see the potential for improvement, consider
an axis parallel line through a grid point. We call the sampled points that lie
on such a line a pole. In the regular grid, all poles consist of N points. Take
two poles a and b in direction ed that are shifted in direction e1 by 1/N . For a
smooth function f we would expect that the restricted functions f |a and f |b are
very similar, at least for small 1/N . Still, the full grid samples both functions
on N points. In contrast, the sparse grid uses a different number of grid points
on the two poles, say more on a than on b, and uses the samples for f |a to
increase the accuracy of the representation of f |b.

The sparse grid interpolation is based on hierarchical basis functions, as de-
tailed for our concrete setting in Section 2. Each such basis functions has an
axis parallel hyperrectangle as support and the volume of this support is 2−`,
where the integer ` is the level of the basis function. Importantly, the support
is not necessarily square, i.e., the side length can change drastically with the
dimension. By using only basis functions of level up to n ≥ `, we get some
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poles (actually one for each direction) that are sampled with N = 2n+1 − 1
points, whereas all other poles are sampled with fewer points. In contrast
to the corresponding full grid with its Nd points, the sparse grid has only

O
(
N
(
n+d−1
d−1

))
= O

(
N
(
e(n+d)
d−1

)d−1)
sample points. The rate of convergence,

i.e., how the approximation accuracy depends on increasing N , remains compa-
rable to that of the full grid [12, 3, 4].

If we consider some examples, we see that the sparse grid with N = 7 points
on the most densely sampled poles has for d = 100 only 20’401 grid points.
For comparison, the corresponding full grid has 7100 ≈ 1084 grid points, more
than what is currently assumed to be the number of atoms in the universe. For
N = 7 and d = 10′000 there are 200 million sparse grid points and for N = 15
and d = 100 there are 72 million. In this situation, a different asymptotic esti-
mate is helpful, namely O

(
N
(
n+d−1
d−1

))
= O

(
N
(
n+d−1
n

))
= O

(
N
(
e(n+d)
n

)n)
.

Concretely, we see that for N = 7 the number of grid points grows with Θ(d2),
for N = 15 with Θ(d3), and so on. Hence high dimensions might be numerically
feasible for small N . In this work, we focus as an example on one particu-
lar task, namely the hierarchization of a sparse grid (see Section 2). For this
particular task, there is one value per grid point as input and output, and this
number of values is referred to as degrees of freedom (DoF). Further, hierarchiza-
tion is a task of relatively small computational intensity, i.e., in every round of
the algorithm every variable gives rise to at most 4 floating point operations.
Hence our algorithmic ideas are related to good memory usage. On one hand
this amounts to minimizing the size of the data structures (ideally only one
variable per DoF), and on the other hand we want make sure that the data
access patterns are cache-friendly. This leads us to so called memory efficient
or I/O-efficient algorithms. While the above points are our main focus, clearly
a useful implementation must reflect other aspects of modern hardware. One
noteworthy aspect is parallelism, for example in the context of several cores of
the same CPU.

Many efficient algorithms known for sparse grids are based on the unidirec-
tional principle [3]. It allows us to operate only on the one-dimensional sparse
grids, i.e., the poles. More precisely, we iterate over the dimensions and for each
dimension consider each of the poles in this dimension on its own.

The question we consider in this work is how to implement the unidirectional
principle I/O-efficiently, with the example of hierarchization. Let us pictorially
describe the situation by thinking of the sparse grid as a work piece that needs to
be drilled from many different directions. There are two standard ways of doing
this: Either you mount the working piece to the bench and move a mobile drill
around it, or you mount the drill on the bench and turn the working piece. We
propose to switch to the analogue of the latter method: Instead of adapting the
one-dimensional hierarchization procedure to the current dimension, we move
the data. For the one-dimensional hierarchization algorithm to be I/O-efficient,
it would be good if each pole we work on is stored contiguously in memory.
Provided that each pole fits into the cache, we immediately get an I/O-efficient
algorithm: It loads the pole once and efficiently because the pole is split into
few cache lines. Then it performs all operations on this pole in the cache, and
writes the finished pole back to main memory to free the cache.

Because it is impossible to have a data layout of the sparse grid that stores
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all poles of all dimensions contiguously, we rearrange the layout of the sparse
grid according to the dimension in which we currently work. More precisely, we
define a rotation of the sparse grid that is a cyclic shift of the dimensions, i.e.,
maps (x1, . . . , xd) 7→ (x2, x3, . . . , xd, x1). Using this, it is sufficient to be able to
perform the one dimensional hierarchization algorithm efficiently in one of the
dimensions. We chose for this working step to operate in dimension d.

This approach has four main advantages:

• We can choose a memory layout that makes the access pattern of the
working step cache-friendly

• Both phases (working and rotation) are exactly the same for all d rounds.
They can be phrased as sparse matrix multiplication. Computing these
matrices once is sufficient.

• There is no need to store position information (like level and index) to-
gether with a variable. This role of the variable is always implied by the
position of the variable in the array representing the sparse grid. This
leads to a fairly small memory-footprint, in particular in comparison to
hash-based implementations.

• The algorithm can be easily and efficiently (both computation and memory
access-wise) parallelized for multiple cores.

1.1 Algorithmic Background
The theory of I/O-efficient algorithms go back to the definition of the I/O-
model [1]. It is based on the idea that the CPU can only work on a memory of
sizeM (the cache). Input, output and auxiliary storage are in external memory,
which is unbounded in size and organized in blocks of size B (a cache-line). The
running time of an algorithm is estimated by the number of I/O-operations that
read a block from external memory or write a block to external memory.

The differences between the I/O-model and the somewhat similar RAM or
von-Neumann model can be illustrated by considering the task of permuting.
Given a permutation π: {1, . . . , N} → {1, . . . , N}, a program for permuting takes
an input vector (x1, . . . , xN ) and creates the output vector (y1, . . . , yN ) accord-
ing to yπ(i) = xi. The naive algorithm loops over the input and writes the value
to the specified position of the output. On the RAM, this takes Θ(N) oper-
ations which is trivially optimal. The naive algorithm can be adapted to the
I/O-model where it causes Θ(N) I/O-operations. In contrast to the RAM this is
not always optimal. The alternative algorithm is to use a B/M -way merge sort
to rearrange the input array into the output array, which takes O(NB logM/B

N
B )

I/Os. If the logarithmic term is smaller than B, this is better than the naive
algorithm. When the I/O-model is used to describe a situation where the ex-
ternal memory is a disk and the internal memory is main-memory, the naive
algorithm can easily be orders of magnitude slower. This is complemented by a
lower bound stating that taking the better of the two mentioned algorithms is
optimal [1]. The lower bound holds even if the algorithm can be adapted to the
permutation, but this permutation is random. In contrast, there are also some
permutations that can be performed easily, for example if the permutation is a
cyclic shift or moves the elements not too far, e.g., |π(i)− i| < M − 2B. Many
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RAM algorithms have a completely unstructured memory access, similarly to
the naive algorithm for permuting. Sometimes this can be avoided by rearrang-
ing the data [7]. One example of this technique is the I/O-efficient algorithm
for multiplying a dense vector with a sparse matrix [2]. The first phase of the
algorithm is to create all elementary products by multiplying each entry aij of
the matrix with xj . To perform this I/O-efficiently the matrix should be stored
in a column major layout such that matrix entries of the same column are stored
together and the columns are in the same order as the input vector. In a second
phase of the algorithm the output is computed as row sums of the elementary
products. For this to be I/O-efficient, they are first rearranged into a row-major
layout such that all entries belonging to the same row are stored together. Here,
the I/O-efficient way to rearrange might be to use the sorting algorithm.

Note that even though we phrase our result here as a multiplication with a
sparse matrix and a permutation matrix, the structure of these two particular
matrices usually makes the naive algorithm I/O-efficient. Still, we use the idea
of working in phases and rearranging the date between the phases.

1.2 Related Work
Many different aspects of sparse grids have been investigated in the last years.
The presentation here follows [12, 3, 4, 10].

Most of the proposed algorithms for sparse grids have been implemented,
and some of the code is publicly available.

One easily available implementation is SG++ [10, 11]. Its focus is adap-
tive sparse grids and it provides a lot of generality in terms of the used basis
functions. Because of its availability and ease of installation, we use this for
comparison in this paper.

The idea of using a layout of the complete sparse grid as a compact data
structure has been proposed [8], but the layout itself differs from what we con-
sider here. The corresponding implementation fastsg is described [9], where a
recursive formula for the size of the sparse grid is proposed, similar to the one
presented here. The code is publicly available but does not provide a hierar-
chization procedure for the 0-boundary case considered here.

Some of the ideas presented here (rotation, compact layout) are also the basis
for a different implementation with focus on SIMD parallelism [5]. Optimizing
for this kind of parallelism favors a different layout. This code has been extended
with a focus on evaluation [6].

2 Sparse Grids
Sparse grids have been designed to approximate functions in high dimensional
spaces with relatively few degrees of freedom. By now, there is a body of
literature discussing the mathematics of sparse grids. In contrast, this work
investigates only the computer science aspects arising in the context, actually
only for one particular task called hierarchization. Nonetheless, there is the
need for a brief discussion of the underlying mathematical concepts, at least to
explain how we phrase them in our algorithms.

In the following (0, 1) ⊂ R denotes the open interval from 0 to 1, whereas
[0, 1] denotes the closed interval. A sparse grid space as we use it here is a finite

4



dimensional linear space. Its dimension is phrased as degrees of freedom (DoF)
and it is given by the size of the basis we define for the space. The elements
of the basis are specific continuous functions Rd → R with support limited to
(0, 1)d, the so called hierarchical basis functions as defined in the following. An
element of the sparse grid space is a linear combination of these basis elements,
and hence also a continuous function Rd → R with support (0, 1)d.

2.1 1-Dimensional Tree Structure
In one dimension (d = 1) the hierarchical structure can be described by an
annotated complete binary tree, as exemplified in Figure 1. Each node v is
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Figure 1: The 1-dimensional sparse grid of level 2 The tree Tl, the asso-
ciated intervals above and the centerpoints below. The BFS-number is given
inside the circle of the nodes.

annotated with an interval Iv = (av, bv) ⊆ (0, 1) leading to the centerpoint cv =
av+bv

2 . The root is annotated with the open interval (0,1) and the centerpoint
1/2. Each node v of the tree has two children l and r that are annotated with the
intervals Il = (av, cv) and Ir = (cv, bv). Note that the centerpoints are unique
and can be used to identify the node and the interval. Note further that two
intervals of nodes u and v in the tree are either disjoint or one is contained in the
other. In the latter case, if Iu ⊆ Iv, then v is an ancestor of u, i.e., the path from
u to the root passes through v. For any node v, the endpoints av and bv of its
interval are either 0, 1, or a centerpoint of an ancestor of v. These ancestors are
called the hierarchical predecessors of v. There can be at most two hierarchical
predecessors, namely one for av and another for bv. We define the level of the
root node to be 0, and the level of a node v, denoted by l(v), to be its distance
to the root, i.e., the number of times one has to follow a parent link to reach
the root node. At level ` of the tree there are 2` nodes, all associated intervals
have length bv − av = 2−` and they partition the interval (0, 1) (ignoring that
centerpoints of nodes with level < ` are not element of any interval). We call
the tree up to and including level ` the `-tree, denoted by T`. Performing an
in-order traversal of T` and collecting the centerpoints yields an equidistant grid
in the interval [0, 1] with spacing 2−(`+1) and 2`+1 − 1 points.

For every node v of an `-tree we define a basis element of the one-dimensional
sparse grid space. In this work, the one dimensional basis function fv of a node v
is piece-wise linear hat function with support (av, bv) and the maximum of 1 at
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the centerpoint cv. Observe that the nodes u with fu(cv) > 0 are precisely the
ancestors of v.

A function f in the one-dimensional sparse grid space of level ` is given by
coefficients λv, one for each node of the `-tree, i.e.

f =
∑
v∈T`

λvfv .

Such a function f is continuous and piece-wise linear on [0, 1] with kinks at the
centerpoints of the nodes of T` and support (0, 1), and it is an element of the
one-dimensional sparse grid space. Note that the value f(cv) at a centerpoint cv
is in general different from the coefficient λv.

Definition 1 (The Task of 1-D Hierarchization)

Input Values yv, one for each node v ∈ T`.

Output Coefficients λv such that the represented function f =
∑
λvfv has the

property f(cv) = yv for each node v of the `-tree.

The coefficients λv are also called hierarchical surpluses.

Algorithm 1: 1-D hierarchization
Input : values at the grid points, stored in y[ ]
Output: hierarchical surpluses, stored in λ[ ]
for i = maxlevel downto 0 do

foreach node v of Tl with l(v) = i do
Let lv be the left hierarchical predecessor of v
Let rv be the right hierarchical predecessor of v
λ[v] = y[v]− 0.5 ∗ (y[lv] + y[rv])

One dimensional hierarchization can be achieved by the pseudocode given
in Algorithm 1. To see why, we argue that yv = yl+yr

2 +λv holds. Consider any
node v ∈ T`. Observe that for all u ∈ T`, u 6= v the basis functions fu falls in one
of the following two cases. The first case is fu(av) = fu(cv) = fu(bv) = 0, either
because the support of fu and fv does not overlap, or because u is a descendant
of v, i.e., in u is in the subtree below v. The second case is that fu is linear
in the complete interval [av, bv], which means u is an ancestor of v. Hence, the
contribution of all other functions together will result in the linear interpolation
between yl at av and yr at bv, leading to the equation λv = yv − yl+yr

2 .

2.2 Higher Dimensional Case
In higher dimensions (d > 1), the sparse grid space is constructed using a tensor
product approach, and the term sparse becomes meaningful.

We generalize the index set T` to its d-fold Cartesian product T d` = T` ×
· · · × T`. For a vector of d tree nodes v = (v1, . . . , vd) ∈ T d` the level of v is
defined as the sum of the levels `(v) =

∑d
i=1 l(vi). We define its d-dimensional

basis function by fv(x1, . . . , xd) =
∏d
i=1 fvi(xi). The support of fv is Iv1 ×
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· · · × Ivd and its unique centerpoint cv = (cv1 , . . . , cvd) ∈ (0, 1)d is called a
grid point. Note that the d-dimensional volume of the support of fv is 2−`(v).
The sparse grid of dimension d and level ` is based on the set of sparse grid
vectors Id` = {v ∈ T d` | `(v) ≤ `}, and the sparse grid space is the span of the
corresponding basis functions F d` = {fv | v ∈ Id` }. The set of sparse grid points
is Cd` = {cv | v ∈ Id` }.

Note that in most of the established literature, the level of the one dimen-
sional functions is counted starting from 1 for what we call the root node. This
leads to the situation that the simplest d-dimensional basis function with sup-
port (0, 1)d has level d, whereas in our notation it has level 0. In other words,
what we call level represents directly the number of refinement steps and hence
the volume of the support, independently of the dimension of the underlying
space.

With these definitions, the one dimensional hierarchization task formulated
in Definition 1 naturally generalizes to higher dimensions.

Definition 2 (The Task of Hierarchization)

Input Values yv, one for each sparse grid vector v ∈ Id`

Output Coefficients λv such that the represented function f =
∑

v∈Id`
λvfv

has the property f(cv) = yv for each v ∈ Id` .

Its algorithmic solution will be the focus of this work. The well established
algorithm follows the unidirectional principle [3], making use of the one dimen-
sional algorithm. A pole of the sparse grid in direction i containing the sparse
grid vector v = (v1, . . . , vd) is the subset of sparse grid vectors that differ from
v only in dimension i. All such poles have the structure of a one dimensional
sparse grid (by projection to dimension i), even if some consist of only a single
element. Further, the poles in direction i partition the sparse grid. The hierar-
chization algorithm considers the dimensions one after the other, i.e., it works
in the directions i = 1, . . . , d. In each iteration it runs Algorithm 1 on all poles
of direction i (one-dimensional hierarchization). The pseudocode of this well

Algorithm 2: High Dimensional Hierarchization
for i = d downto 1 do

foreach pole p of the sparse grid in dimension i do
perform one-dimensional hierarchization on p

established solution is given as Algorithm 2 and we do not modify it at this
level of abstraction. Beyond this pseudocode, several important aspect need to
be addressed:

• Which computation happens when.

• How and where the variables are stored.

• How the data is moved.
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3 Memory Efficient Algorithm
This section describes the ideas that lead to a memory efficient algorithm for
the hierarchization of a sparse grid of high dimension and low level.

3.1 Data Layout
At the heart of the algorithm is a specific layout of the data. From this layout
the algorithm itself follows naturally.

3.1.1 Layout in 1 dimension

Given the tree structure detailed in Section 2.1, a breadth-first-search (BFS)
traversal of the nodes is well defined: It starts at the root, and then traverses
the nodes of the tree with increasing level and from left to right. More precisely,
we assign the BFS-number 0 to the root, BFS-number 1 to its left child, 2 to
its right child, the BFS-numbers 3, 4, 5, 6 to the four nodes of level 2, and
so on. These BFS-numbers are shown in Figure 1. The BFS-number is a
unique identifier of a node in the one dimensional tree T`. This BFS-layout for
a complete binary tree is well understood (its perhaps most prominent use is
in the heap-sort algorithm). For a node with BFS-number i, its two children
have the BFS-number 2(i+ 1)− 1 and 2(i+ 1), and its parent has BFS-number
b(i−1)/2c. This simplicity of computing related BFS-numbers is one of the big
advantages of the BFS-layout. Note that starting the counting at 1 would make
this even simpler, but indexing the array in C-style starting from 0 is not only
closer to the code, but it is also more natural when working with subarrays.
Observe that the BFS-number encodes the level and the index within the level
in one number. The BFS-numbers of nodes with level ` start with 2`+1− 1. We
define the level of a BFS-number to be the level of the corresponding node in
the `-tree. Further, a tree of maximum level ` uses precisely the BFS-numbers
in {0, . . . , 2`+1− 2}. We use the BFS-number as a position in the layout. A one
dimensional sparse grid (i.e. a pole) can in this way be represented as an array
(with one entry per degree of freedom).

3.1.2 Higher Dimensional Layout

Following the tensor product structure of the sparse grid, it is natural to identify
a sparse grid point (defined by a vector of tree-nodes v = (v1, . . . , vd)) with a
vector b ∈ Nd0 of BFS-numbers. Each such vector of a sparse grid of level n
has

∑d
i=1 `(bi) ≤ n. We sort the vectors of BFS-numbers lexicographically,

with the significance of the positions decreasing (as is usual). This directly
leads to a layout of a higher dimensional sparse grid, as exemplified in Figure 2
in 2 dimensions and level 2. Because the first position is most significant, all
elements with a 0 at the first position are grouped together at the beginning,
then come the elements with a 1 at the first position and so on. Within these
groups the sorting bundles together the elements with the same entry at the
second position. And within these groups, the elements with the same entry at
the third position are grouped together, and so on.

At the end of this conceptual recursion we see groups of vectors that differ
only in the entry at the last position and are sorted by this entry. Hence, we
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see that the poles (defined in Section 2.2) in dimension d form subarrays in the
complete lexicographical layout.
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Figure 2: The 2-dimensional sparse grid of level 2: On the right the
grid points at their positions in [0, 1]2, labeled with their position in the lay-
out. On the left the lexicographical layout of the grid points as triples layout-
position:(x1, x2). Note the matrix structure of both figures: rows have the same
x1 coordinate, columns the same x2 coordinate. The restriction on the level-sum
yields a symmetric shape.

3.2 Numerical Work: Hierarchize All Poles
The high dimensional hierarchization Algorithm 2 works pole-local in the inner
loop. In other words, when considering dimension i, there is no interaction be-
tween variables of different poles in dimension i. Let us focus, for the moment,
on the first iteration of the outer loop of Algorithm 2, where all poles of di-
mension d are hierarchized. This task fits particularly well to our layout of the
sparse grid. Each such pole is located in a subarray, starts at a certain offset
and has length 2` − 1 for a pole of level `. Note that some of these poles have
level 0, i.e. consist of a single element and hence require no numerical work at
all.

Consider Algorithm 1 when it operates on a pole stored in BFS-layout. More
precisely, consider the j-th input pole as stored in a vector yj and the output
in a vector hj , both with N = 2` − 1 entries. We express Algorithm 1 as
hj = H` · yj for a sparse matrix H`. Consider a node v of the `-tree. The
variables of the input and output associated with this node are stored in the
same position in the two vectors, say at position i. Hence, on the diagonal, all
entries are 1. The variables associated with the hierarchical predecessors are
stored before i. Hence, the matrix H` has at most two non-zero entries below
the diagonal, and each of them has value −1/2. Note that Hk is the upper left
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corner of H` for k < `.
We can also express the whole first iteration of Algorithm 2 as a matrix

multiplication. To this end consider all input values stored in the vector y′ and
the result in the vector h′, both according to our layout. Let us describe the
matrix Wd for which we have h′ = Wdy

′. The matrix Wd is a block diagonal
matrix composed of many matrices Hlj , where lj is the level corresponding to
the size of pole j. Hence, on the diagonal of Wd all entries are 1, above the
diagonal all entries are 0, there are at most two entries of value -1/2 in every
row and they are at distance at most 2` below the diagonal for a sparse grid of
level `.

By the above discussion it is clear that also the other hierarchization steps
for dimension i 6= d are linear, but the structure of the corresponding matrices
would be different and harder to describe. Hence, in the following, we use a
rotation to reuse Wd.

3.3 Rotation
We achieve the outermost loop of Algorithm 2 by performing rotations. In this
way the one dimensional algorithm formulated as Wd in Section 3.2 can operate
on all dimensions in turn.

Consider the shift S(n1, . . . , nd) = (n2, n3, . . . , nd, n1) working on d-
dimensional BFS-vectors. When following the movement of the corresponding
centerpoints when applying S to each grid point, geometrically we see a rotation
operating on [0, 1]d. Because we are working with a non-adaptive sparse grid,
this grid-point exists in our sparse grid as well. Observe that Sd is the identity,
and that Si maps the (d − i)-th position of the vector to the last position. In
terms of our algorithm, using this rotation means that we should take a variable
of our vector, understand it as a grid-point/BFS-vector, rotate it with S, and
move it to the position in the vector associated with the rotated grid-point. We
expresses this data movement by a permutation matrix R.

With this definition of R, we can express one execution of the outer loop
of Algorithm 2 as applying the matrix RWd, and the complete algorithm as
applying (RWd)

d. In other words, to transform a vector y of function values at
the grid-points to a vector of hierarchical surpluses h (both in our layout), we
can use the equation

h = (RWd)
dy

to express Algorithm 2.

3.4 Considerations of an Implementation
With this description of the algorithm as the alternating application of two
sparse matrices, it is quite natural to work with two vectors as in the pseudocode
given in Algorithm 3.

This code obviously relies on the definition of the matrices Wd and R in
a crucial way, and these matrices are based on the correspondence between
positions in the layout, BFS-vectors, and the tree structure in the BFS-numbers.
We call the translation of a BFS-vector to the position in the layout pos, and the
reverse operation depos. They can be implemented quite efficiently in O(`+d),
but by the nature of having a BFS-vector with d entries as input or output, they
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Algorithm 3: Hierarchization as Sparse Matrix Multiplication
Input : values at the grid points, stored in vector y[ ]
Output: hierarchical surpluses, stored in vector y[ ]
Let x be a vector of same size as y
for i = 1 to d do

x = Wd ∗ y
y = R ∗ x

cannot take constant time. This can be avoided by considering the BFS-vector
as a data structure that changes its state according to well defined operations, in
particular changing the BFS-vector such that the corresponding position in the
layout is incremented. More precisely, we have an abstract data type BFS-vector
that stores as it state a b = (b1, . . . , bd) and supports the following operations:

int pos(): Return p(b), the position in the layout of b.

init(): set b = (0, . . . , 0).

increment(): Change b such that pos is incremented, i.e., for the current
state b and the new state b′ it holds p(b′) = p(b) + 1.

int shift_pos(): Return p(S(b)), i.e. the position of the shifted current BFS-
vector.

int last_entry(): Return bd.

depos(x): Change the current vector such that p(b) = x.

All of the above operations but depos can be implemented in O(1) time using
a sparse representation of the BFS-vector, as detailed in Section 4.

With this presentation of the hierarchization algorithm, there are several
design choices to be taken. Either we can implement a carefully tuned routine
that has the effect of applying Wd and R, or we can explicitly represent the two
sparse matrices. Which alternative is superior depends on the circumstances
and the used hardware: If several hierarchization tasks are performed, the di-
mension is high, and the access to the sparse matrices is fast enough, the time
for precomputation of R and Wd can be amortized by sufficiently many mul-
tiplications with the matrices. If instead bandwidth to the memory is much
more precious than computation on the CPU, then an on the fly computation
is preferable.

Another important concern is the possibility to turn the above algorithm
into a parallel one. The multiplication steps are trivial to parallelize including
the load balancing. Also the creation of the matrices can easily be parallelized.
Only the initialization of the individual parallel threads needs some care and
uses depos.

4 Navigating the High Dimensional Layout
This section is concerned with computing the position of a BFS-vector v =
(v1, . . . , vd) in the layout described in Section 3.1.2. It relies on knowing the
size of a sparse grid of dimension d′ and level `′ for all d′ ≤ d and n′ ≤ n.

11



4.1 The Concept of Remaining Level
In this section we work exclusively with BFS-vectors with dimension d and
level ` ≤ n to represent the points of the sparse grid. Remember that we use l(bi)
to denote the level of the i-th digit, and that a BFS-vectors b = (b1, . . . , bd)

belongs to the sparse grid if and only if
∑d
i=1 l(bi) ≤ n.

Assuming that the first k entries of b are fixed to b1, . . . , bk, we want to
know which values are still possible for bk+1, . . . , bd. This is restricted by the
limit on the sum of the levels of the complete vector. Let the remaining level
be defined as r = n −

∑k
i=1 l(bi). If r < 0, then the initial entries do not lead

to a grid point, regardless of the remaining entries. Otherwise, the level sum of
the remaining entries has to be bounded by r for the complete BFS-vector to
belong to the sparse grid.

4.2 The number of Grid Points v(d, `)

One important quantity is v(d, `), the number of grid points (size) of a d-
dimensional sparse grid of level `, or equivalently, the number of d-dimensional
BFS-vectors with level sum bounded by `. In the following, we use a recursive
formula for v.

For the base case, it is convenient to understand a 0-dimensional sparse grid
to consist of precisely one point, regardless of the level. Hence,

v(0, `) = 1 for all ` ∈ N0 . (1)

The recursive case is given by

v(d, `) =
∑̀
i=0

2i · v(d− 1, `− i) . (2)

Here the quantity 2i represents the number of grid points in a BFS-tree with
level precisely i.

The validity of (2) follows, for example, from the layout proposed in Sec-
tion 3.1.2: The first group has a 0 in the first position, the remaining level is `,
and the group is a sparse grid with level ` in d − 1 dimensions. The next 2
groups have in the first digit a value of level 1, which means that the remaining
level is r = ` − 1 and each of them is a grid with dimension d − 1 and level r.
This argument continues with increasing level of the first digit, finally reaching
the digits of level `. These are 2` many groups, each with a remaining level 0.
This means that the remaining digits must all be 0, which is consistent with our
definition that a level 0 grid consists of a single grid point.

The formulas (1) and (2) form a recursion because the right hand side de-
pends only on cases with smaller or equal level and one dimension less. For
efficiency we usually compute the (relatively small) table for v(d′, n′) using dy-
namic programming.

4.3 Operations on a Full Vector
4.3.1 pos: the Position in the Layout

With the help of v(d, `) we can compute for a BFS-vector b = (b1, . . . , bd) the
position in the layout p(b). This position can be computed by Algorihm 4,
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Algorithm 4: pos(), the position of a BFS-vector in the layout
Input : the BFS-vector in b[ ]
Output: the position in p
p = 0
l = maxlevel
for i = 1..d do

for x = 0..b[i]-1 do
p = p+ v(d− i, l − level(x))

l = l − level(b[i]);

where level(x) denotes the level of the 1-D-tree node with BFS-number x, and
maxlevel denotes the overall level ` of the sparse grid, and the BFS-vector is
stored in the array b[ ] (indexed with 1, . . . , d).

We can think of the addition to p as jumping in the layout. To account
for the first entry b1 ∈ {0, . . . , 2`+1 − 2}, we jump to the group of BFS-vectors
with first entry b1, namely to the position of the BFS-vector (b1, 0, . . . , 0). From
this we can continue in the same manner for the remaining vector (b2, . . . , bd),
interpreting this vector as an element of the sparse grid with d− 1 dimensions
and the remaining level. Note that for the last entry the increments are by
1 = v(0, `).

4.3.2 depos: the BFS-vector from a Position

Now we consider the operation depos, the inverse to pos, as formulated in
Algorithm 5. Given a position p, we want to find the BFS-vector b = (b1, . . . , bd)
that is mapped to p in the layout. The structure of depos is very similar to
pos. Instead of jumping to the starting position of a group, we want to find the
group in which p is located. In other words, the algorithm consists of d linear

Algorithm 5: depos(), the BFS-vector from the position in the layout
Input : the position in p
Output: the BFS-vector in b[ ]
freelevel=maxlevel
b = (0, .., 0)
for i = 1..d do

w = v(dim− i, freelevel)
while p >= w do

p = p− w
b[i] = b[i] + 1
w = v(dim− i, freelevel− level(b[i]))

freelevel = freelevel− level(b[i])

searches for the group of dimension i (inside the group of dimension i − 1) in
which p is located.
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4.3.3 increment: the Next BFS-vector in the Layout

The functions pos and depos as explained in the last two Sections are not
efficient enough to be used in the innermost loop of a hierarchization algo-
rithm, a problem we circumvent by an increment operation. We store the
BFS-vector b = (b1, . . . , bd) in the array b[ ], and the corresponding position p
in the layout in the variable p. The increment operation has the purpose of in-
crementing p and changing b in a way that preserves this correspondence. This
and the direct access to bd are sufficient to create Wd (or to compute y = Wd ·x
without a representation of the matrix) serially. For a parallel version of this
algorithm we assign each thread the task to create a range pi : pi+1 − 1 of rows
of Wd. Then the thread starts by setting p = pi and establishing the invariant
by initializing the vector using depos(pi). From then on, depos is no longer
needed.

Assume for the moment that there is an additional array of the remaining
levels r[k] = ` −

∑k
i=1 l(bi) as defined in Section 4.1. If r[d] > 0, the current

vector does not exhaust the maximum level, and the last entry b[d] can be
incremented without violating the constraint on the level sum. Even if r[d] = 0,
it is possible that b[d] is not the highest BFS-number of level r[d−1], and hence
the increment changes only b[d] = b[d] + 1.

If b[d] is the the highest BFS-number of level r[d − 1], we know that the
increment has to change some of the entries further to the left, and the incre-
mented vector has b[d] = 0. The change further left is an increment operation
on the d−1 dimensional BFS-vector stored in b[1], . . . , b[d−1] with level-sum `,
and we can continue in the same way. If this process would continue to the left
of b[1], this means that the first entry b[1] is the highest allowed BFS-number
(and all other digits are 0). Then an increment is impossible because we reached
the last point of the sparse grid.

After updating the digits b[ ] as described (from right to left), we also update
all r[ ] values that might have been changed (from left to right). Note that it is
actually not necessary to work with a complete vector of r[ ]-values. Instead, we
can have a single variable r (freelevel in the code) that maintains r[d], i.e.,
by how much the current vector does not exhaust the level `.

4.3.4 shift_pos: the Position of the Shifted BFS-vector

For the computation of R we can use increment, if we manage to update the po-
sition of the shifted BFS-vector efficiently. More precisely, if our current array b[ ]
represents the BFS-vector b = (b1, . . . , bd), we want to compute pos(S(b)). We
use some additional arrays that need to be updated during increment.

An increment operation leaves a prefix b1, . . . , bk of b unchanged, which
means that the prefix b2, . . . , bk of length k−1 of S(b) remains unchanged. The
algorithm of pos (Section 4.3.1) considers the entries of the BFS-vector from left
to right. Hence, an unchanged prefix of the BFS-vector means that the initial
operations of pos are unchanged. This can be used by recording the state of
the algorithm for pos(S(b)) at each entry into the body of the loops. More
precisely, this gives two arrays, one for the position p and one for the remaining
level l, both two-dimensional, indexed by i and x. It is sufficient for these arrays
to be current in each dimension i up to the position b[i].

Every increment operation increments one entry, say from bk to b′k = bk + 1,
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and all entries to the left are zero, i.e., b′k+1 = · · · = b′d = 0. Hence, we can
"jumpstart" the execution of pos(S(b)) starting from what we find as state
in [k − 1, bk], the offset implementing the shift. From there we can complete
(including recording) the execution of pos on the entries (bk+1, . . . , bd, b1). Ob-
serve that the control-flow of this remaining execution is always the following:
There is the last iteration of the inner loop with i = k−1 and x = bk (creating a
new entry in our arrays). For i = k, . . . , d− 1 we only update our tables at [i, 0]
recording the unchanged state of position p and remaining level r. The inner
loop is not executed. Only for i = d the inner loop iterates up to b1, which
always results in adding b1 to p. Hence, the running time of this continuation
of pos is proportional to the number of entries consider by increment, namely
d− k + 1.

4.3.5 Performance Limitations of the Full Representation

It is well known that counting with a binary representation of the number
changes amortized constant many bits per increment operation. In analogy, we
might hope for a good performance of the operations increment and shift_pos
in the amortized sense. This is actually not the case. In the following example
the amortized cost per increment operation is lower bounded by Ω(d). Consider
the case of level 2 and a very high dimension d. Then, almost all BFS-vectors
have precisely two ones, and there are

(
d
2

)
such vectors. For such a vector the

cost of an increment is given by the distance of the last 1 to the right. Now
all vectors that have at least d/2 trailing zeros require d/2 work, and there are
roughly

(
d/2
2

)
of them, i.e., roughly a fourth of all vectors. In this case enumer-

ating all BFS-vectors with an increment operation takes time cubic in d, which
means that the amortized time per increment is Ω(d).

4.4 Sparse Implementation
As detailed in the previous Section, the increment operation on the full BFS-
vector becomes problematic if there are many trailing zeros. This immediately
suggests to use a sparse representation of the vector. This means storing a list
of pairs (dimension, BFS-number), one for each entry that differs from zero,
sorted by dimension.

Observe that the number of pairs is not only at most the dimension d, but
also at most the level n of the sparse grid.

With this sparse representation, the increment takes only O(1) operations, as
we will argue in the following. The algorithm has to distinguish between several
cases as listed below. Observe that for each case the sparse representation allows
to test if it is applicable, and if so, to update the representation in constantly
many operations, including the remaining level of the current BFS-vector.

• If the remaining level of the current vector is > 0, the last entry bd can be
incremented. This might extends the list by the pair (d, 1).
Hence, in all other cases we can assume that the current vector has re-
maining level zero.

• If the last non-zero entry can be incremented without changing the level,
we do so.
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• If the list consists of the single entry (1, 2n+1−2) the increment operation
is impossible (last BFS-vector).

• If the rightmost non-zero entry is bi (in dimension i > 1 and it cannot be
incremented), and bi−1 = 0, we set bi = 0 and bi−1 = 1.

• Otherwise the rightmost two non-zero entries are bi−1 and bi. In this case
we set bi = 0 and increment bi−1. This is always possible because changing
bi to 0 decreases the level by at least one, whereas incrementing bi−1
increases the level by at most one.

It is easy to adjust the computation of depos, pos and its incremental version
needed for shift_pos to the sparse representation. Overall this means that all
operations, but depos, of the abstract data type formulated in Section 3.4 can
be implemented in worst case constant time.

5 Implementation and Experiments
The described algorithms are implemented as a proof of concept and we compare
running times for the hierarchization tasks with the implementation in SG++.
The new approach presented in this paper is abbreviated as rSG (rotating Sparse
Grid). SG++ is designed to deal with adaptive refinements and cannot take
advantage of the simpler structure of a complete sparse grid. Further, as it
is currently bundled, it is not parallelized. Another candidate for comparison
would be fastsg, but its hierarchization procedure is only for sparse grids with
boundary points, so it solves a different problem and a comparison would be
meaningless. As a proof of concept, the point of the experiments is to show the
potential of the new algorithmic ideas. Hence, our focus in these experiments is
to show how far we can go beyond the current standard solution. Accordingly,
the focus of the results are the sizes of the problems that can be tackled at all and
the orders of magnitude of runtime and memory consumption. This is meant
to give an indication of the strengths and weaknesses of our new approach.

The current implementation does not (yet) use the constant time algorithm
for shift_pos. With the current setup of creating the matrices Wd and R once
and then applying them several times, the possible savings in runtime are not
significant enough.

5.1 Experimental Setup
The implementation is a C++ design that is parallelized with openMP, with
a focus on being able to compare the performance of different algorithmic ap-
proaches. To this end, templates are used in many situations, whereas inher-
itance and in particular virtual classes and other constructs that are resolved
at runtime are avoided. The experiments are run on a linux workstation with
an Intel XEON E3-1240 V2 chip, having 4 cores clocked at 3.4 GHz. The total
main memory of the machine is 32Gb. The code is compiled with gcc 4.4.7
and the compiler flags -O3 -march=native -fopenmp -D_GLIBCXX_PARALLEL.

The time measurements generally consider the whole execution time of the
algorithm for both SG++ and rSG, including the initialization of data structures
and setting the input vector with values. This means that in particular the phase
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where the two matrices Wd and R are computed (preparation phase) includes
the time for using the memory for the first time (cold cache).

The time is measured inside the programm using the system call gettimeofday().
The memory requirement is determined by the system utility time with the

%M format, stating "Maximum resident set size of the process during its lifetime."
In this section, we describe the problem instances not only by their dimension

and level but also by their number of grid points (DoF).

5.2 Experiments
5.2.1 Parallel Scaling
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Figure 3: Strong scaling behaviour for dimension 20, level 6

To evaluate the effectiveness of the ideas to paralellize the hierarchization al-
gorithm we perform a strong scaling experiment, i.e., we solve the same problem
with an increasing number of processors.

As a prototypical example we take the hierarchization of a sparse grid in 20
dimensions and level 6. This sparse grid has roughly 13 million grid points, uses
377 Megabytes to store the grid and the execution uses in total 1.9 Gigabytes
memory from the system.

Given that our machine has 4 cores with hyperthreading, we experiment
with up to 8 threads. The running times for the different numbers of threads
are summarized in Figure 3.

The preparation of the matrices scales perfectly up to 4 threads on the
4 cores, whereas more threads give no further improvement of the running time.

As a third plot in Figure 3, we have the average hierarchization, i.e., the
average time for one application of the two sparse matrices. We see that this
phase scales poorly, and preparing the matrices takes roughly twice as long as
applying them using 4 processors. Hence, with our current implementation of
computing the matrices we have an algorithm that scales almost perfectly, but
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it is in total not fast enough to justify changing to an on the fly computation of
the matrices, i.e., not creating a representation of the matrices. With different
hardware or a more efficient implementation of the algorithms presented in this
paper, this situation might change.

5.2.2 Running times
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Figure 4: Serial Run time comparison for different dimensions and level
3: The x-axis gives the dimension of the sparse grid, labeled at the bottom. The
dimension induces a certain DoF, as given above the figure. The y-axis on the
left is running time in seconds for the two single core implementations with lines
connecting the measurements. The y-axis on the right gives the ratio between
the running times as plotted in the blue dashed line.

In the plots given in Figure 4 and 5 we compare the running times for
the sparse grids of level 3 and level 6 for different dimensions. The range of
dimensions is in both cases chosen in a way that the running times of both
implementations are between 1 ms and 3 minutes. In this range the implemen-
tation rSG (following the ideas presented in this paper) achieves speedups over
SG++ as shown in the range of 100-220 for level 3 and respectively 30-53 for
level 6.

5.2.3 Memory Footprint

The amount of memory used by a program is not only an important resource
in itself, it also has, due to caches, a significant influence on the running time.

In Figure 6, we plot the memory usage of the two implementations rSG
and SG++ . We see significant differences in the memory usage per DoF of
the sparse grid, in particular for high dimensions and high levels. For large
instances the rSG implementation reaches a space usage of 16 words of 64-bit
(i.e. doubles or long integers) per DoF. In contrast, the space usage of SG++
per DoF increases with the dimensionality of the problem.
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Figure 5: Serial Run time comparison for different dimensions and
level 6: Same setup as Figure 4.
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5.2.4 Solvable Problem Sizes
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Figure 7: Maximal sparse grid hierarchization doable serially in one
second: For every sampled dimension, as given on the x-axis, we have the
maximum level (left y-axis) that the two single core implements can hierarchize
within the resource constraint. In blue the ratio of the DoF of the corresponding
(maximal) sparse grids.

Figures 7–9 show the pareto front of problem sizes that can be computed
with different resource limitations, namely limited computation time for the
serial program and memory consumption. Remember that this comparison is
somewhat unfair against SG++ because SG++ does not exploit that the grid
is non-adaptive.

The first experiment sets a limit on the computation time for the hierar-
chization task. Figure 9 limits the used space somewhat arbitrarily to 16GB.

In almost all considered cases, the new approach can hierarchize a sparse
grid with at least one more level, sometimes three more levels, than SG++. In
particular for high dimensions, the corresponding increase in degrees of freedom
is a factor of up to 10’000.

Observe that this comparison is not very fine grained: Increasing the level
of the sparse grid by one increases the degrees of freedom by a factor of 10 to
5000. Hence, in many cases in the above comparisons, the resource constraint
is by far not exhausted.

5.2.5 Relation between Preprocessing and Hierarchization

We investigate the relation between the preprocessing time to create the matrices
Wd and R, and the time to apply them once.

In Figure 10 we see in the serial case that for small grids the preparation
time is comparatively expensive. One explanation for this behavior is that the
application step becomes memory bound for large grids: As long as the grid
is small and everything fits into the cache, we see that the preparation takes a
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minute: Same setup as Figure 7.
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lot more computing than the application step. As soon as the grid needs to be
fetched from main memory because it does not fit into the cache anymore, the
application step gets slower, if there are no other effects, by a factor of roughly 3.
The preparation phase is spending more time on computations on BFS-vectors,
and hence the additional time for the slower memory access accounts for a
smaller fraction of the total running time. Perhaps the additional memory
latency is even completely hidden because the computation continues while the
memory system stores the results.

We repeat this experiment with all four cores in Figure 11. The findings of
this experiment give further evidence that the application step is memory bound.
It is consistent with the findings of Section 5.2.1 and Figure 3. There we saw
that the preprocessing step scales well with additional processors, whereas the
hierarchization step improved over the serial case by at most a factor of 1.2,
which suggests that the latter one is memory bound. This fits to what we can
observe in Figure 11, where we see that the ratio for big sparse grids improves
to 1.7–2.

When comparing Figure 10 and Figure 11 directly, one notices that in the
parallel case there are fewer samples for small sparse grids. This is due to the
fact the computation gets faster, and that these grid are now reported with a
0 running time for hierarchization, and we cannot compute the ratio we are
interested in.

Going back to the case of level 6 and dimension 20 considered in Figure 3
(Section 5.2.1) we see that it is indeed prototypical. When locating this mea-
surements in Figure 10 by looking for the level 6 measurements with 1.28e7
DoF, we see that it actually achieves one of the smallest ratios.

One question that can be addressed by the considerations in this section is
by how much the implementation of the data type for the BFS-vector needs to
improve before an on the fly creation of the matrices is superior. Note that good
processor scaling could provide this improvement and that the implementation
does not yet use the constant time algorithm for shift_pos.

6 Conclusion
In this article, we have been exploring the basics of a new algorithmic idea to
work with sparse grids of low level and high dimensions. The main concepts
of a compact layout, rearranging the data and generalized counting present
themselves as promising ideas. There are many directions in which the topic
should be developed further. One direction is to consider vectorized parallel
implementation, as done in [5]. Another direction is the evaluation algorithm
on the data layout proposed here, as done in [6]. More directly, there is the
question if a carefully tuned on-the-fly computation of the two sparse matrices
can be beneficial in a parallel setting.
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