
Sequential Vector Packing ?

Mark Cieliebak2, Alexander Hall1, Riko Jacob1, and Marc Nunkesser1

1 Department of Computer Science, ETH Zurich, Switzerland,
{alex.hall|riko.jacob|marc.nunkesser}@inf.ethz.ch

2 sd&m Schweiz AG, 8050 Zurich, Switzerland,
mark.cieliebak@sdm.com

Abstract. We introduce a novel variant of the well known d-dimensional bin
(or vector) packing problem. Given a sequence of non-negative d-dimensional
vectors, the goal is to pack these into as few bins as possible. In the classical
problem the bin size vector is given and the sequence can be partitioned arbi-
trarily. We study a variation where the vectors have to be packed in the order
in which they arrive. The bin size vector can be chosen once in the beginning,
under the constraint that the coordinate-wise bounds sum up to at most a given
total bin size. This setting arises from a special resource constrained scheduling
problem. We prove that the problem isNP-hard and we propose LP based bicri-
teria (1

ε
, 1

1−ε
)- and (1, 2)-approximation algorithms. Furthermore, we investigate

properties of natural greedy algorithms, and present an easy to implement heuris-
tic which is fast and performs well in practice. Experiments with the heuristic and
an ILP formulation yield very promising results on real world data.

Key words. Multi-dimensional bin packing, vector bin packing, resource con-
strained scheduling, approximation algorithms,NP-hardness.

1 Introduction

Needless to say, many variations of bin packing have attracted a huge amount of scien-
tific interest over the past decades, partly due to their relevance in diverse scheduling
applications. The variation which we investigate arises from a specific resource con-
strained scheduling problem: A sequence of jobs is given and must be processed in this
order. Each job needs certain amounts of various types of resources (for instance 1 unit
of resource A, 2 units of resource B, 0 units of all others). Several jobs can be pro-
cessed in one batch, if the resources they consume altogether are bounded. Specifically,
for each individual type we have a reservoir containing some amount of the resource
and none of these amounts may be exceeded during one batch.

Within a given bound on the total amount of available resources one has the freedom
to choose how these individual amounts are distributed once and for all (e.g., 10 units
in the reservoir of resource A, 23 units in the reservoir of resource B, . . .). The aim is
to tune these amounts in such a way that the jobs are processed in as few batches as
possible.
? Work partially supported by European Commission - Fet Open project DELIS IST-001907

Dynamically Evolving Large Scale Information Systems, for which funding in Switzerland is
provided by SBF grant 03.0378-1.

2

Our industry partner, who has provided us with the problem setting and large real
world data sets, wishes to remain unnamed. We therefore cannot go into the details of
the original application that motivated the definition of sequential vector packing. To
nevertheless get a flavor of the type of industry problems that fall into this setting, we
give here a potential alternative application:

The task is to optimize an assembly line that consists of a conveyor belt on which
different work pieces arrive in the work area and a set of robot arms that can process
these work pieces. The robot arms can perform different tasks depending on the re-
sources (or tools) they load in a setup phase before each step from a toolbox. There
are d different such resources. The work pieces require different processing, i.e., robot
arms equipped with a specific amount of each resource (or number of each tool). The
sequence S in which the work pieces arrive on the assembly line is fixed and cannot be
altered, it can be thought of as a stack. The toolbox has a total size of B and contains an
amount bj of each resource j, j ∈ {1, . . . , d}, such that

∑d
j=1 bj ≤ B. One production

cycle consists of a first setup phase in which the robots load the necessary resources, so
that in a second phase as many work pieces as possible can be popped from the stack
and processed. For a set of work pieces to be processed all the necessary resources have
to have been loaded in the setup phase. The optimization task is to choose the values
bj , j ∈ {1, . . . , d} such that the total number of cycles needed to process the whole
sequence is minimized. A similar application is described, e.g., by Müller-Hannemann
and Weihe [10].

We now give a formal definition of the problem. The jobs or work pieces correspond
to a sequence of vectors and the available resources or tools to a bin vector, respectively.
To the best of our knowledge this setting is novel. Due to its basic character we believe
that it may be of interest also in contexts other than resource constrained scheduling.

Definition 1 (Sequential vector packing).
Given: a sequence S = s1 · · · sn of demand vectors si = (si1, . . . , sid) ∈ Qd

+, d ∈ N,
and a total bin size B ∈ Q+.
Goal: a bin vector (or short: bin) b = (b1, . . . , bd) ∈ Qd

+ with
∑d

j=1 bj = B such
that s1 · · · sn can be packed in this order into a minimum number of such bins b. More
precisely, the sequence can be packed into k bins, if breakpoints 0 = π0 < π1 < · · · <
πk = n exist, such that (inequalities over vectors are to be read component-wise)

πl+1∑
i=πl+1

si ≤ b for l ∈ {0, . . . , k − 1}.

We denote the jth component, j ∈ {1, . . . , d}, of the demand vectors and the bin vector
as resource j, i.e., sij is the demand for resource j of the ith demand vector. We also
refer to si as position i.

The sequential unit vector packing problem considers the restricted variant where
each vector si, i ∈ {1, . . . , n}, contains exactly one entry equal to 1, all others are
zero—i.e., each work piece needs only one tool. Note that any solution for this version
can be transformed in such a way that the bin vector is integral, i.e., b ∈ Nd, by poten-
tially rounding down resource amounts to the closest integer (therefore one may also

3

restrict the total bin size to B ∈ N). The same holds, if all vectors in the sequence are
integral, i.e., si ∈ Nd, i ∈ {1, . . . , n}. In the following we will call an algorithm A a
bicriteria (α, β)-approximation algorithm for the sequential vector packing problem if
it finds for each instance (S, β · B) a solution which needs no more than α times the
number of bins of an optimal solution for (S, B). That is, the approximation algorithm
may not only approximate the value of the objective function within a factor of α, but
it may also relax the total bin size by a factor of β.

Related Work. There is an enormous wealth of publications both on the classical bin-
packing problem and on variants of it. The two surveys by Coffman, Garey and John-
son [1, 8] give many pointers to the relevant literature until 1997. In [2] Coppersmith
and Raghavan introduce the multidimensional (on-line) bin packing problem. There are
also some variants that take into consideration precedence relations on the items [17,
16] that remotely resemble our setting. Still, we are unaware of any publication that
deals with the sequential vector packing problem. In the context of scheduling algo-
rithms, allowing a certain relaxation in bicriteria approximations (here increasing the
bin size) is also called resource augmentation, cf. [9, 13].

New Contributions and Outline. In Section 2 we present approximation algorithms
for the sequential vector packing problem. These are motivated by the strong NP-
hardness results that we give in Section 3. The approximation algorithms are based on
an LP relaxation and two different rounding schemes, yielding a bicriteria (1

ε , 1
1−ε)-

approximation and a (1, 2)-approximation. Recall that the former algorithm, e.g., for
ε = 1

3 , yields solutions with at most 3 times the optimal number of bins while using at
most 1.5 times the given total bin size B, the latter may use at most the optimal number
of bins and at most twice the given total bin size B. In Section 4 we present two simple
greedy strategies and argue why they perform badly in the worst case. Furthermore,
we give an easy to implement heuristic and present two optimizations concerning sub-
routines of it. In particular, we show how one can “evaluate” a given bin vector—i.e.,
compute the number k of bins needed with this bin vector—in time O(k · d) after a
preprocessing phase which takes O(n) time. Finally, in Section 5 we give the results of
experiments with the heuristics and an ILP formulation.

2 Approximation Algorithms

We present an ILP formulation which we subsequently relax to an LP. We continue by
first describing a simple rounding scheme which yields a bicriteria (1

ε , 1
1−ε)-approx-

imation and then show how to to obtain a (1, 2)-approximation.

2.1 ILP Formulation

For a sequential vector packing instance (S, B), let wu,v :=
∑v

i=u+1 si, for u, v ∈
{0, . . . , n} and u < v, denote the total demand (or total demand vector) of the subse-
quence Su,v := su+1 · · · sv . If wu,v ≤ b holds, we can pack the subsequence Su,v into
bin b. The following integer linear programming (ILP) formulation solves the sequen-
tial vector packing problem. Let X := {xi|i ∈ {0, . . . , n}} and Y := {yu,v|u, v ∈
{0, . . . , n}, u < v} be two sets of 0-1 variables, let b ∈ Qd

+.

4

ILP: minimize
n∑

i=1

xi

s.t. x0 =1 (1)
i−1∑
u=0

yu,i =
n∑

v=i+1

yi,v =xi for i ∈ {0, . . . , n} (2)∑
u,v:

u<i≤v

wu,v · yu,v ≤b for i ∈ {1, . . . , n} (3)

d∑
j=1

bj =B (4)

b ∈ Qd
+, xi, yu,v ∈ {0, 1} for xi ∈ X, yu,v ∈ Y

The 0-1 variable xi indicates whether there is a breakpoint at position i ≥ 1. Hence
the objective: to minimize the sum over all xi. The 0-1 variable yu,v can be seen as
a flow which is routed on an (imagined) edge from position u ∈ {0, . . . , n − 1} to
position v ∈ {1, . . . , n}, with u < v. The Constraints (2) ensure that flow conservation
holds for the flow represented by the yu,v variables and that xi is equal to the inflow
(outflow) which enters (leaves) position i. Constraint (1) enforces that only one unit of
flow is sent via the Y variables. The path which is taken by this unit of flow directly
corresponds to a series of breakpoints. If we for instance have consecutive breakpoints
at positions u and v, there will be a flow of 1 from u to v, i.e., xu = yu,v = xv = 1.

In Constraints (3) the bin vector b comes into play: for any two consecutive break-
points (e.g., xu = xv = 1) the constraint ensures that the bin vector is large enough
for the total demand between the breakpoints (e.g., the total demand of the subse-
quence Su,v). Note that Constraints (3) sum over all edges that span over a position i (in
a sense the cut defined by position i), enforcing that the total resource usage is bounded
by b. For the two consecutive breakpoints xu and xv this amounts to wu,v · yu,v ≤ b.
Finally, Constraint (4) ensures the correct total size of the bin vector.

2.2 An Easy (1
ε
, 1

1−ε
)-Approximation

As a first step we relax the ILP formulation to an LP: here this means to have xi, yu,v ∈
[0, 1] for xi ∈ X, yu,v ∈ Y . We claim that Algorithm EPS ROUNDING computes a
(1

ε , 1
1−ε)-approximation:

1. Solve the LP optimally. Let (X?, Y ?,b?) be the obtained fractional solution.
2. Set (X, Y,b) = (X?, Y ?, 1

1−ε · b
?) and is = 0. Stepwise round (X, Y,b):

3. Let ie > is be the first position for which
∑ie

i=is+1 xi ≥ ε.
4. Set xi = 0 for i ∈ {is + 1, . . . , ie − 1}, set xie = 1. Reroute the flow accordingly

(see also Figure 1): (a) Set yis,ie
= 1. (b) Increase yie,i by

∑ie−1
i′=is

yi′,i, for i > ie.
(c) Set yis,i′ = 0 and yi′,i = 0, for i′ ∈ {is + 1, . . . , ie − 1}, i > i′.

5. Set the new is to ie and continue in Line 3, until is = n.

5

< ε

i′′ i′ i′′

xis = 1

is ie

xie = 1xi′ = 0
xi′′ = 0xis = 1

xiexi′
xi′′

ieis

≥ ε

i′

Fig. 1. An example of the rerouting of flow in lines 4 (a)-(c) of the algorithm.

Theorem 1. The algorithm EPS ROUNDING is a (1
ε , 1

1−ε)-approximation algorithm
for the sequential vector packing problem.

Proof. (Sketch, for full proof see appendix.) It is easy to see that the algorithm produces
an integer solution and that by rerouting the flow in Line (4) the objective function is
only increased by a factor of at most 1

ε , due to the condition in Line (3). To see that
the increase in the bin size is bounded, note that in the fractional solution before the
rerouting at least 1 − ε flow is sent directly from is to ie or beyond. After rerouting a
flow of 1 is sent from is to ie, thus the Constraint (3) is violated by at most 1

1−ε . ut

Note that one of course would not actually implement the algorithm EPS ROUND-
ING. Instead it suffices to compute the bin vector b with the LP and then multiply it by

1
1−ε and evaluate the obtained bin vector, e.g., with the algorithm given in Section 4.

2.3 A (1, 2)-Approximation

We start by proving some properties of the LP relaxation and then describe how they
can be applied to obtain the rounding scheme yielding the desired bicriteria ratio.

Properties of the Relaxation Let (X, Y,b) be a fractional LP solution; recall that the
Y variables represent a flow. Let e1 = (u, v) and e2 = (u′, v′) denote two flow carrying
edges, i.e., yu,v > 0 and yu′,v′ > 0. We say that e1 is contained in e2 if u′ < u and
v′ > v, we also call (e1, e2) an embracing pair. We say an embracing pair (e1, e2) is
smaller than an embracing pair (ê1, ê2), if the length of e1 (for e1 = (u, v), its length is
v−u) is less than the length of ê1. Further, let ymin ∈ Q+ denote the minimum amount
of flow on any flow carrying edge. We show that the following structural property holds:

Lemma 1 (no embracing pairs). Any optimal fractional LP solution (X?, Y ?,b?)
can be modified in such a way that it contains no embracing pairs, without increasing
the objective function and without modifying the bin vector.

Proof. We set Y = Y ? and show how to stepwise treat embracing pairs contained in Y ,
proving after each step that (X?, Y,b?) is still a feasible LP solution. We furthermore
show that this procedure terminates and in the end no embracing pairs are left in Y .

Let us begin by describing one iteration step, assuming (X?, Y,b?) to be a feasible
LP solution which still contains embracing pairs. Let (e1, e2), with e1 = (u, v) and
e2 = (u′, v′), be the smallest embracing pair—as defined above. If there are several
smallest embracing pairs, choose one of these arbitrarily. We now modify the flow Y

6

u v

u′ v′

u

vu′

v′

a b c d edd

e1

e2

e′
1

e′
2

pmin

is

e

· · · · · ·S
ie

Fig. 2. Left: Replacement of λ units of flow on e1 and e2 by λ units of flow on e′1 and e′2 in
Lemma 1. Right: Extracting the integral solution. Edge e together with other potential edges in
Y ? in Theorem 2.

to obtain a new flow Y ′ by rerouting λ = min{yu,v, yu′,v′} units of flow from e1, e2

onto the edges e′1 = (u, v′) and e′2 = (u′, v): y′u,v = yu,v − λ, y′u′,v′ = yu′,v′ − λ and
y′u′,v = yu′,v + λ, y′u,v′ = yu,v′ + λ; see also left picture in Figure 2. The remaining
flow values in Y ′ are taken directly from Y . It is easy to see that the flow conservation
constraints (2) still hold for the values X?, Y ′ (consider a circular flow of λ units sent in
the residual network of Y on the cycle u′, v, u, v′, u′). Since X? is unchanged this also
implies that the objective function value did not change, as desired. It remains to prove
that the Constraints (3) still hold for the values Y ′,b? and that the iteration terminates.

Feasibility of the Modified Solution. Constraints (3) are parameterized over i ∈
{1, . . . , n}. We argue that they are not violated separately for i ∈ {u′ + 1, . . . , u},
i ∈ {u + 1, . . . , v}, and i ∈ {v + 1, . . . , v′}, i.e., the regions b, c, and d in Figure 2
(left). For regions a and e (the rest) it is easy to check that the values of the affected
variables do not change when replacing Y by Y ′. So let us consider the three regions:

Region b (d) The only variables in (3) which change when replacing Y by Y ′ for this
region are: y′u′,v′ = yu′,v′−λ and y′u′,v = yu′,v +λ. This means that flow is moved to a
shorter edge, which can only increase the slack of the Constraints: With wu′,v < wu′,v′

it is easy to see that (3) still holds in region b. Region d is analogous to b.

Region c Here the only variables which change in (3) are: y′u,v = yu,v − λ, y′u′,v′ =
yu′,v′ −λ, y′u′,v = yu′,v +λ, and y′u,v′ = yu,v′ +λ. In other words λ units of flow were
moved from e1 to e′1 and from e2 to e′2. Let us consider the fraction of demand which is
contributed to (3) by these units of flow before and after the modification. Before (on e1

and e2) this was λ·(wu,v+wu′,v′) and afterwards (on e′1 and e′2) it is λ·(wu′,v+wu,v′).
Since both quantities are equal, the left hand side of (3) remains unchanged in region c.

Termination of the Iteration. First we show that the modification did not introduce an
embracing pair which is strictly smaller than (e1, e2). We assume the contrary and say
that w.l.o.g. the flow added to edge e′1 created a new embracing pair (e, e′1) which is
smaller than the (removed) embracing pair (e1, e2). Clearly e is also contained in e2.
Therefore, before the modification (e, e2) would have been an embracing pair as well.
Since (e, e2) is smaller than (e1, e2) it would have been chosen instead, which gives
our contradiction. It follows that in the course of the iteration the length of the e1-type
edges is non-decreasing.

7

Now, observe that in each iteration the flow on an e1-type edge is reduced by λ ≥
ymin ≥ y?

min units (notice that the modification does not decrease the minimum amount
of flow on flow carrying edges). At the same time only flow amounts on edges that are
strictly longer than the e1-type edge are increased. Since y?

min ∈ Q+ this clearly cannot
be repeated for an infinite number of steps: after a finite number of steps the length of
the considered e1-type edges must increase, at the latest when, after some finite number
of steps, the flow on all edges of this length is reduced to zero. Such an increase in
length can obviously only happen at most n times. ut

Path Flow Algorithm We will use the structural insights of the last section to prove
that bin vector 2 · b? yields a (1, 2)-approximation to the optimal solution.

For an optimal fractional LP solution (X?, Y ?,b?) without embracing pairs—due
to Lemma 1 such a solution exists—let pmin denote the shortest flow carrying path,
where shortest is meant with respect to the number of breakpoints. Clearly, the length
of pmin is at most the objective function value

∑n
i=1 x?

i . Below we will show that the
integral solution corresponding to pmin is feasible for the bin vector 2 ·b? and thus pmin

and 2 ·b? are our (1, 2)-approximation. Observe that the approximation algorithm does
not actually need to transform an optimal LP solution given, e.g., by an LP solver into
a solution without embracing pairs. The existence of path pmin in such a transformed
solution is merely taken as a proof that the bin vector 2 · b? yields less than

∑n
i=1 x?

i

breakpoints. To obtain such a path, we simply evaluate 2 · b? with the algorithm pre-
sented in Section 4 (b? given by the LP solver).

Theorem 2. Given an optimal fractional LP solution (X?, Y ?,b?) without embracing
pairs, let pmin denote the shortest flow carrying path. The integral solution correspond-
ing to pmin is feasible for 2 · b?.

Proof. We only have to argue for the feasibility of the solution w.r.t. the doubled bin
vector. Again we will consider Constraints (3). Figure 2 (right) depicts an edge e on
path pmin and other flow carrying edges. We look at the start and end position is and ie
in the subsequence defined by e. Denote by Eis = {(u, v)|0 ≤ u < is ≤ v ≤ n} (and
Eie , respectively) the set of all flow carrying edges that cross is (ie) and by imin, (imax)
the earliest tail (latest head) of an arc in Eis , (Eie). Furthermore, let E′ = Eis ∪ Eie .
Summing up the two Constraints (3) for is and ie gives 2b? ≥

∑
(u,v)∈Eis

y?
u,v ·wu,v +∑

(u,v)∈Eie
y?

u,v ·wu,v = A and thus

2b? ≥ A ≥
∑

imin<i≤imax

∑
(u,v)∈E′:

u<i≤v

y?
u,v · si (5)

≥
∑

is<i≤ie

∑
(u,v)∈E′:

u<i≤v

y?
u,v · si =

∑
is<i≤ie

si = wis,ie . (6)

The second inequality in (5) is in general an inequality because the sets Eis and Eie

need not be disjoint. For the first equality in (6) we rely on the fact that there are no
embracing pairs. For this reason each position between is and ie is covered by an edge
that covers either is or ie. We have shown that the demand between any two breakpoints
on pmin can be satisfied by the bin vector 2 · b?. ut

8

Observe that for integral resources the above proof implies that even b2b?c has
no more breakpoints than the optimal solution. Note also that it is easy to adapt both
approximation algorithms so that they can handle pre-specified breakpoints. The corre-
sponding xi values can simply be set to one in the ILP and LP formulations.

3 Complexity Considerations

In this section, we study the computational complexity of the sequential vector packing
problem. First, we show that finding an optimal solution is NP-hard, and then we
consider special cases of the problem that allow a polynomial time algorithm or that are
fixed parameter tractable (FPT). Our NP-hardness proofs also identify parameters that
cannot lead to an FPT-algorithm.

Hardness of Minimizing the Number of Breakpoints (Bins) For all considered prob-
lem variants it is easy to determine the objective value once a bin vector is chosen.
Hence, for all variants of the sequential vector packing problem considered in this arti-
cle, the corresponding decision problem is in NP .

To simplify the exposition, we first consider a variant of the sequential unit vector
packing problem, where the sequence of vectors has prespecified breakpoints, always
after w positions. Then the sequence effectively decomposes into a set of windows of
length w, and for each position in such a window i it is sufficient to specify the resource
that is used at position j ∈ {1, . . . , w}, denoted as si

j ∈ {1, . . . , d}. This situation can
be understood as a set of sequential unit vector packing problems that have to be solved
with the same bin vector. The objective is to minimize the total number of (additional)
breakpoints, i.e., the sum of the objective functions of the individual problems. Then,
we also show strong NP-hardness for the original problem. The proofs are deferred to
the appendix due to space constraints.

Lemma 2. Finding the optimal solution for sequential unit vector packing with win-
dows of length 4 (dimension d and bin size B as part of the input) is NP-hard.

Theorem 3. The sequential unit vector packing problem is strongly NP-hard.

Polynomially Solvable Cases and FPT Here, we consider the influence of parameters
on the complexity of the problem. We say that an algorithm is fixed parameter tractable
(FPT) with respect to parameter k if its running time is bounded by f(k) · nO(1) for an
arbitrary function f (usually something like 2k or 22k

). See for example [11] or [4] for
a thorough introduction to the concept.

If the windows in the vector packing problem are limited to length three, the prob-
lem can be solved in polynomial time: There is no interaction between the resources,
thus, it is impossible that avoiding a breakpoint induced by one resource depends upon
the multiple availability of another resource. Hence, a natural greedy algorithm that al-
ways takes the resource that currently causes most breakpoints is optimal. Additionally,
Lemma 2 shows that the problem isNP-hard even if all windows have length 4. Hence,
the parameter window size does not allow an FPT-algorithm if P 6=NP .

9

On the other hand, the parameter B allows (partly because d ≤ B) to enumerate and
evaluate (Sections A.2 and A.3) the number of breakpoints in time f(B) · nO(1), i.e.,
this is an FPT-algorithm. A constant upper limit on the number of breakpoints allows
to enumerate all positions of breakpoints and to determine the necessary bin vector in
polynomial time. Note that this is not an FPT algorithm.

4 Practical Algorithms

Greedy Algorithms We describe two natural greedy heuristics for sequential unit vec-
tor packing. Given an input (S, B) we denote by k(b) the minimal number of break-
points needed for a fixed bin vector b. Observe that it is relatively easy to calculate k(b)
in linear time (see end of this section and Section A.3). The two greedy algorithms we
discuss here are: Greedy-Grow and Greedy-Shrink. Greedy-Grow grows the
bin vector starting with the all one vector. In each step it increases some resource by an
amount of 1 until the total bin size B is reached, greedily choosing the resource whose
increment improves k(b) the most. Greedy-Shrink shrinks the bin vector starting
with a bin vector b =

∑n
i=1 si, which yields k(b) = 0 but ignores the bin size B. In

each step it then decreases some resource by an amount of 1 until the total bin size B is
reached, greedily choosing the resource whose decrement worsens k(b) the least.

Also in the light of the following observations (for proofs see the appendix) it is
important to specify the tie-breaking rule for the case that there is no improvement at
all after the addition of a resource. Greedy-Grow can be forced to produce a solu-
tion only by this tie breaking rule, which is an indicator for its bad performance. Also
Greedy-Shrink can produce bad solutions depending on the tie breaking scheme as
the following observation shows.

Observation 1 Given any instance (S, B), this instance can be modified to an instance
(S′, B′), with n′ = n, d′ = 2d, B′ = 2B such that Greedy-Grow needs to apply its
tie breaking rule in every second step.

Observation 2 There are instances with d resources on which the solution produced
by Greedy-Shrink is a factor of bd/2c worse than the optimal solution, if the tie
breaking is done deterministically.

For the experiments we use a round-robin tie breaking rule that cycles through the
resources , i.e., every time a tie occurs it chooses the (cyclic) successor of the resource
that was increased in the last tie.

Enumeration Heuristic We present an enumeration heuristic for integral demand vec-
tors si ∈ Nd, i ∈ {1, . . . , n}, that is inspired by a variant of Schöning’s 3-SAT algo-
rithm [15] that searches the complete hamming balls of radius bn/4c around randomly
chosen assignments, see [3]. The following algorithm uses a similar combination of
randomized guessing and complete enumeration of parts of the solution space that are
exponentially smaller than the whole solution space. The idea is to guess uniformly at
random (u.a.r.) subsequences Si1,i2 of the sequence that do not incur a breakpoint in

10

a fixed optimal solution bopt. For such a subsequence we know that bopt ≥ wi1,i2 .
In particular, if we know a whole set W of such total demand vectors that all come
from subsequences without breakpoints for bopt, we know that bopt ≥ maxw∈W w
must hold for a component-wise maximum. This idea leads to the randomized heuristic
enumeration (RHE) algorithm:

Phase 1: Start with a “lower bound vector” t = 0. For a given subsequence length ssl
and a number p of repetitions, in each of p rounds choose σi =u.a.r {0, . . . , n − ssl},
set σi = σi + ssl, and then set t = max{t,wσi,σi

}.

Phase 2: Find a bin vector b of total size B with b ≥ t that minimizes k(b). Do this
by enumerating all b ≥ t of total size B.

As easy as the enumeration in Phase 2 seems, this should be done efficiently. See
Section A.2 in the appendix for an algorithm. It is straight-forward to analyze the suc-
cess probability of this algorithm if we relate the subsequence length to an estimate k′

of the minimum number of breakpoints k, see Lemma 4 in the appendix.
Observe that the first subsequence that is guessed increases the lower bound vector

by its full length. Subsequent guesses can, but need not, improve the lower bounds. The
growth of the lower bound depends on the distribution of demand vectors in the fixed
input sequence and is therefore difficult to analyze for arbitrary such sequences. On the
other hand analyzing the growth of the lower bound seems possible for random input
sequences, but we doubt that this would give any meaningful insights. For this reason
we only give experimental evidence that this algorithm performs well, see Section 5.

Evaluation For demand vectors si ∈ Qd
+, i ∈ {1, . . . , n}, the evaluation of a given bin

vector b, i.e., computing k(b), can be done in the obvious way in O(n · d) time. With
a preprocessing phase and some algorithmic engineering we can show the following
theorem (see Section A.3 for a complete discussion).

Theorem 4. Given a sequence S we can construct a data structure in O(n) preprocess-
ing time with O(n ·d ·B) resp. O(n) space such that an evaluation query for sequential
vector packing resp. sequential unit vector packing for a bin vector b takes O(kd) time,
where k denotes the number of breakpoints for b.

5 Experiments

In this section we report on some experiments on real world data. This data is electron-
ically available at www.inf.ethz.ch/personal/mnunkess/SVP/. We imple-
mented the greedy algorithms, the enumeration heuristic and the integer linear program.
For the latter we use CPLEX 9.0. All programs were run on a 3GHz P4 workstation with
3GB RAM, running Linux 2.4.22. All figures can be found in the appendix.

Mixed Integer Program Ideally, we want to describe the quality of the heuristic opti-
mization algorithms by comparison to the optimal value. One attempt to compute such
optimal values is to use the ILP-formulation of Section 2.1 and solve it with an ILP-
solver. In our setting, this worked only for the small real world instances, and not for

11

the mediums sized ones. Still, those could be solved with an non-straightforward refor-
mulation of the ILP as a mixed integer linear program as described in Appendix A.4.

Setup and Computational Results We mainly compare solution qualities, because the
running times of the different approaches are orders of magnitude apart. On many of our
instances a calculation for a fixed B takes some seconds for the greedy algorithms and
some hours for the mixed integer linear program. We let the enumeration heuristic run
for 10 minutes which seems like a realistic maximum time that an "online" user would
be willing to wait for a result. We then fix the number of repetitions of the guessing
phase of RHE to be as many as it takes to let ‖t‖1, the sum of the guessed lower bounds,
exceed some fraction of B. This fraction is initially chosen as 99% and adaptively
decreased after each run as long as the targeted time of 10 minutes is not exceeded. The
subsequence length is initially fixed with respect to the estimated number of breakpoints
that we get by running both greedy approaches. We set it to one half times the average
distance between two breakpoints and increase it adaptively if the lower bound does
not grow any more after a fixed number of repetitions in the initialization phase. By the
adaptive choice of both the subsequence length and the fraction the algorithm is robust
with respect to changing values of B, d and the time that it is run.

In Figure 4 we show the relative performances on our biggest real world instance
(Inst1), cf. Table 1 in the appendix that summarizes information on our instances. The
different data points correspond to the algorithms greedy-grow, greedy-shrink,
RHE and the linear relaxations of the two different ILP formulations. The values rep-
resent the ratio of the solution found by the algorithm to the optimal integral solution
that we calculated using the mixed integer programming formulation. The figure shows
that for small values of B greedy-grow produces results that are close to optimal,
whereas for bigger values the quality gets worse. An explanation for this behavior is
that greedy-grow builds a solution iteratively. As the results of Section 4 show, the
greedy algorithms can be forced to take decisions based only on the tie-breaking rule.
On this instance tie-breaking is used at several values of B, which leads to an accu-
mulation of errors in addition to the inherent heuristic nature of the method. Note that
by definition greedy-shrink is optimal for B = ‖

∑n
i=1 si‖1, which is 196 on this

instance. In order to have a meaningful scale we let the x-axis stop before that value.
In Figure 5(a) we present the quality of the solutions delivered by RHE relative to

the optimal solution on four further instances. Note that for different instances different
values of B make sense. Instance Inst1-doubled is obtained from Inst1, by the doubling
transformation used in Observation 1 (in the appendix). In Figure 5(b) we compare the
best of the two greedy results to the result of RHE (Note that even if we use the greedy
algorithms to determine the parameter settings of RHE, these results are not visible
to RHE). Instance rand-doubled is an instance where first the demand unit vectors are
drawn uniformly at random and then a doubling transformation is performed to make
it potentially more complicated. It could not be solved to optimality with our MIP ap-
proach and does therefore not occur in Figure 5(a). Compared to the other instances the
greedy algorithms do not perform too badly. One reason for this is that we chose a uni-
form distribution for the resources. Therefore the tie-breaking rules do the right choices
"on average". On the other hand on the doubled real-world instance Inst1-doubled RHE

12

gives superior results and in particular for higher values of B the greedy algorithms
perform comparatively poorly.

6 Conclusion

In this paper, we have introduced the sequential vector packing problem, presented
NP-hardness proofs for different variations, two approximation algorithms, several
heuristics, and an experimental evaluation. From our point of view the most interesting
open challenges would be to search for approximation algorithms which do not relax
the bin size on the one hand and for inapproximability results on the other hand.

References

[1] E. Coffman, Jr., M. R. Garey, and D. S. Johnson. Algorithm Design for Computer System
Design, chapter Approximation Algorithms for Bin Packing: An updated Survey, pages 49–
106. Springer, 1984.

[2] D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing: Algorithms and
worst-case analysis. Operations Research Letters, 4:48–57, 1989.

[3] E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schöning. Deterministic algorithms for k-
sat based on covering codes and local search. In Proc. 27th International Colloquium on
Automata, Languages and Programming (ICALP), pages 236–247. LNCS, 2000.

[4] R. G. Downey and M. R. Fellows. Parametrized Complexity. Monographs in Computer
Science. Springer, 1999.

[5] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persis-
tent. In STOC ’86: Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 109–121, New York, NY, USA, 1986. ACM Press.

[6] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
[8] D. S. Hochbaum, editor. Approximation Algorithms, chapter Approximation Algorithms

For Bin Packing: A Survey, pages 46–93. PWS Publishing Company, 1997.
[9] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the

ACM, 47:617–643, 2000.
[10] M. Müller-Hannemann and K. Weihe. Moving policies in cyclic assembly–line scheduling.

Theoretical Computer Science, to appear, 2005.
[11] R. Niedermeier. Invitation to fixed-parameter algorithms. Universität Tübingen, 2002.

Habilitation Thesis.
[12] A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Academic Press, 2nd edition, 1978.
[13] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource

augmentation. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 140–149, 1997.

[14] F. Ruskey. Combinatorial generation. 2005.
[15] U. Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.

Algorithmica, 32:615–623, 2002.
[16] T. S. Wee and M. J. Magazine. Assembly line balancing as generalized bin-packing. Oper-

ations Research Letters, 1:56–58, 1982.
[17] J. Yang and J. Y.-T. Leung. The ordered open-end bin-packing problem. Operations Re-

search, 51(5):759–770, 2003.

13

A Appendix

A.1 Omitted Proofs

Proof of Theorem 1. We show the desired result in three separate steps.

Integer Rounding. The following invariant is easy to see by considering Figure 1:
at the beginning of each iteration step (i.e., at Line 3) the current, partially rounded
solution (X, Y,b) corresponds to a valid flow, which is integral until position is. From
this invariant it follows that (X, Y,b) in the end corresponds to a valid integer flow.

At Most 1
ε -times the Number of Breakpoints. In line 4, xi values which sum up to at

least ε (see Line 3) are replaced by xie = 1. Therefore, our rounding increases the total
value of the objective function by at most a factor of 1

ε .

At Most 1
1−ε -times the Total Bin Size. Again consider one step of the iteration. We

need to check that by rerouting the flow to go directly from is to ie we do not exceed
the LP bin capacity by more than 1

1−ε · b
?. First let us consider the increase of yie,i,

for i > ie, in Line 4 (b). Since the total increase is given directly by some yi′,i which
are set to 0 (Line 4 (c)), the Constraint (3) still holds after the change. In other words,
flow on edges is rerouted here onto shorter (completely contained) edges; this does not
change the feasibility of Constraint (3).

Now we consider the increase of yis,ie
to 1. We will show that the total demand

wis,ie between the new breakpoints is and ie is bounded by 1
1−ε ·b

?. With xis = 1 and
since

∑ie−1
i=is+1 xi < ε (see Line 3), we know that

∑n
i=ie

yis,i = xis −
∑ie−1

i=is+1 yis,i ≥
1 −

∑ie−1
i=is+1 xi > 1 − ε; note that the first equality holds by the flow conservation

constraint (2). By Constraint (3) we obtain wis,ie ·
∑n

i=ie
yis,i ≤

∑n
i=ie

wis,i · yis,i ≤∑
u,v:u<ie≤v wu,v · yu,v ≤ b. Thus plugging these two inequalities together, we know

for the total demand wis,ie < 1
1−ε · b

? = b. Since this holds for all iteration steps and
thus for all consecutive breakpoints of the final solution, it is clear that multiplying the
bin vector of the LP solution by a factor 1

1−ε yields a valid solution for the ILP. ut

Proof of Lemma 2. By reduction from the NP-complete problem Clique [7] or more
generally from k-densest subgraph [6]. Let G = (V,E) be an instance of k-densest
subgraph, i.e., an undirected graph without isolated vertices in which we search for a
subset of vertices of cardinality k that induces a subgraph with the maximal number of
edges.

We construct a sequential unit vector packing instance (S, B) with windows of
length 4 and with d = |V | resources. Assume as a naming convention V = {1, .., d}.
There is precisely one window per edge e = (u, v) ∈ E, the sequence of this window is
se = uvuv. The total bin size is set to B = d+k. This transformation can be carried out
in polynomial time and achieves, as shown in the following, that (S, B) can be solved
with at most |E| − ` (additional) breakpoints if and only if G has a subgraph with k
vertices containing at least ` edges.

Because every window contains at most two vectors of the same resource, having
more than two units of one resource does not influence the number of breakpoints. Every
resource has to be assigned at least one unit because there are no isolated vertices in G.

14

Hence, a solution to (S, B) is characterized by the subset R of resources to which two
units are assigned (instead of one). By the choice of the total bin size we have |R| = k.
A window does not induce a breakpoint if and only if both its resources are in R,
otherwise it induces one breakpoint.

If G has a node induced subgraph G′ of size k containing ` edges, we chose R to
contain the vertices of G′. Then, every window corresponding to an edge of G′ has
no breakpoint, whereas all other windows have one. Hence, the number of (additional)
breakpoints is |E| − `.

If (S, B) can be scheduled with at most |E| − ` breakpoints, define R as the re-
sources for which there is more than one unit in the bin vector. Now |R| ≤ k, and we
can assume |R| = k since the number of breakpoints only decreases if we change some
resource from one to two, or decrease the number of resources to two. Now, R defines
a subgraph G′ with k vertices of G. The number of edges is at least ` because only
windows with both resources in R do not have a breakpoint. ut

Now, it remains to consider the original problem without pre-specified breakpoints.

Lemma 3. Let (S, B) be an instance of sequential (unit) vector packing of length n
with k pre-specified breakpoints and d resources (d ≤ B) where every resource is
used at least once. Then one can construct in polynomial time an instance (S′, B′) of
the (unit) vector packing problem with bin size B′ = 3B + 2 and d′ = d + 2B + 2
resources that can be solved with at most ` + k breakpoints if and only if (S, B) can be
solved with at most ` breakpoints.

Proof. The general idea is to use for every prespecified breakpoint some “stopping”
sequence Fi with the additional resources in a way that the bound B′ guarantees that
there is precisely one breakpoint in Fi. This sequence Fi needs to enforce exactly one
breakpoint, no matter whether or not there was a breakpoint within the previous window
(i.e., between Fi−1 and Fi). If we would use the same sequence for Fi−1 and Fi, a
breakpoint within the window would yield a “fresh” bin vector for Fi. Therefore, the
number of breakpoints in Fi could vary depending on the demands in the window (and
whether or not they incur a breakpoint).

To avoid this, we introduce two different stopping sequences F and G which we
use alternatingly. This way we are sure that between two occurrences of F there is at
least one breakpoint.

The resources 1, . . . , d of (S′, B′) are one-to-one the resources of (S, B). The 2B+
2 additional resources are divided into two groups f1, . . . , fB+1 for F and g1, . . . , gB+1

for G. The first pre-specified breakpoint in S, the third and every other odd breakpoint
is replaced by the sequence F := f1f2· · ·fB+1f1f2 · · · fB+1, the second and all even
breakpoints by the sequence G := g1g2· · ·gB+1g1g2· · ·gB+1.

To see the backward direction of the statement in the lemma, a bin b for (S, B)
resulting in ` breakpoints can be augmented to a bin vector b′ for (S′, B′) by adding one
unit for each of the new resources. This does not exceed the bound B′. Now, in (S′, B′)
there will be the original breakpoints and a breakpoint in the middle of each inserted
sequence. This shows that b′ results in ` + k breakpoints for (S′, B′), as claimed.

To consider the forward direction, let b′ be a solution to (S′, B′). Because every
resource must be available at least once, and B′−d′ = 3B+2−(d+2B+2) = B−d,

15

at most B − d < B entries of b′ can be more than one. Therefore, at least one of the
resources fi is available only once, and at least one of the resources gj is available
only once. Hence, there must be at least one breakpoint within each of the k inserted
stopping sequences. Let k + ` be the number of breakpoints induced by b′ and b the
projection of b′ to the original resources. Since all resources must have at least one unit
and by choice of B′ and d′ we know that b sums to less than B.

Now, if a subsequence of S not containing any f or g resources can be packed with
the resources b′, this subsequence can also be packed with b. Hence, b does not induce
more than ` breakpoints in the instance (S, B) with pre-specified breakpoints. ut

Proof of Theorem 3. By Lemma 2 and Lemma 3, with the additional observation that
all used numbers are polynomial in the size of the original graph. ut

Proof of Observation 1. The idea is to split each resource r into two resources r1, r2

and to replace each occurrence of r in a demand vector s by a demand for r1 and r2. We
call this transformation doubling and will come back to it in the experimental section.
Then, considering Greedy-Grow’s approach to reduce the number of breakpoints,
increasing r1 or r2 alone is not enough. Only if r1 and r2 are both increased, the number
of breakpoints may decrease. That is, for all resources the number of saved breakpoints
in the beginning is zero and greedy is forced to take an arbitrary resource in Step 1
and then the partner of this resource in Step 2. Then Greedy-Grow again chooses an
arbitrary resource in Step 3 and its partner in Step 4, and so on. With this scheme it is
obvious that Greedy-Grow can be fooled to produce arbitrary solutions. ut

Proof of Observation 2. Let k = bd/2c, consider the following unit vector instance with
2k resources and B = 3k: “1 · · · k 1 · · · k(k + 1)(k + 1)(k + 2)(k + 2) · · · (2k)(2k)”.
At the beginning of the algorithm b is set to (2, . . . , 2). In the first step the removal
of each of the resources incurs one breakpoint. Therefore, Greedy-Shrink deletes
an arbitrary resource depending on the tie-breaking scheme. As tie breaking is deter-
ministic, we let this resource be one of the last k ones. After this deletion the situation
remains unchanged except for the fact that the chosen resource must not be decreased
any more. It follows that in k steps Greedy-Shrink sets the last k resources to one,
which incurs a total cost of k, whereas the optimal solution sets the first k resources
to one, which incurs a cost of 1. Thus, the ratio of greedy versus optimal solution is
k = bd/2c. ut

Lemma 4. Let bopt be an optimal bin vector for an integral instance (S, B), choose
ssl as b n

4k′ c and assume k′ ≥ k/2, where k is the minimal number of breakpoints.
Then for each of the demand vectors wσi,σi , i ∈ {1, . . . , p} it holds that Pr[wσi,σi ≤
bopt] ≥ 1

2 .

Proof. A sufficient (but not necessary) condition for wσi,σi ≤ bopt is that the optimal
solution bopt has no breakpoint in the subsequence Sσi,σi . As there are at most 2k′

such breakpoints the probability that we hit one with a random interval of length b n
4k′ c

is bounded by 1
2 . ut

16

A.2 Enumeration

As easy as the enumeration in the second phase of our RHE-algorithm looks, this should
be done efficiently. So let us have a look at the problem at hand: We want to enumerate
all possible b1, . . . , bd with sum B and individual lower and upper bounds `(i), u(i) ∈
{0, . . . , B} on the summands `(i) ≤ bi ≤ u(i), i ∈ {1, . . . , d}. For short, we also
denote these bounds as vectors l and u. In the literature on combinatorial generation
algorithms such summations with upper bounds only are known as d-compositions with
restricted parts, see ([14] or [12]). There is a bijection to combinations of a multiset. All
d-compositions with restricted parts can be enumerated by a constant amortized time
(CAT) algorithm, which can be easily extended to the case with lower bounds without
changing the CAT behavior. We give the modified algorithm summations(B,d,U)
that enumerates the d-compositions with restricted parts in colexicographical order
for convenience and refer to [14] for its unchanged analysis. The total number of d-
compositions with restricted parts for given l and u is the Whitney number of the sec-
ond kind of the finite chain product ((u(1)− `(1)+1)×· · ·×(u(r)− `(r)+1), where
x denotes a chain of x elements, see again [14] for details.

Procedure summations(position p, resource r, bound n)

input : dimension d, lower bound vector l, upper bound vector u, sum B
output : summations (B, d, U), U =

Pd
r=1 u(r) evaluates all d-compositions

with restricted parts b with the above parameters.

if p = 0 then
evaluate b

else
for c ∈ {max(0, p− n + u(r)− `(r)) . . . min(u(r)− `(r), p)} do

br ←− c + `(r)
summations (p− c, r − 1, n− u(r) + `(r))
br ←− `(r)

end
end

The initial call is summations(B,d,U) for U =
∑d

r=1 u(r) − `(r). This algo-
rithm has CAT behavior for B ≤ U/2. For B > U/2 there is a similar algorithm that
can be adapted from algorithm gen2 in [14]. We sum up the results of this section in
the following theorem.

Theorem 5. The d-compositions with restricted parts and lower bounds needed in al-
gorithm RHE can be enumerated in constant amortized time.

A.3 Evaluation

For the general problem with demand vectors si ∈ Qd
+, i ∈ {1, . . . , n}, the evaluation

of a given bin vector b can be done in the obvious way in O(n · d) time: Scan through

17

the sequence starting at the last breakpoint π` (initially at π0 = 0) updating the total
demand vector wπ`,i of the current bin until the addition of the next vector si+1 in the
sequence would make the demand vector exceed b. Then add breakpoint π`+1 = i and
continue the scan with the next bin starting from there.

In the special case of sequential unit vector packing the runtime can be improved
to O(n), since for each demand vector only one of the d resources needs to be updated
and checked.

For a single evaluation of a bin vector this algorithm is basically the best one can
hope for. On the other hand, in the setting of our heuristic enumeration algorithm where
many bin vectors are evaluated, the question arises, whether we can speed up the eval-
uations if we allow for preprocessing. We describe here an approach that we developed
for our application, that is, an approach for the sequential unit vector packing problem
with large values of n compared to k the number of breakpoints. It is possible to extend
parts of the approach to the general problem with a loss in space efficiency.

A first simple approach builds an (n × d × B) table T1 as sketched in Figure 3. In
this table we store in entry T1(p, r, δ) the position of the next breakpoint in the sequence
starting from position p for a bin vector b with demand δ for resource r, i.e., br = δ,
and bk = ∞ for k 6= r. To evaluate a given bin vector b we start at position 1 and

1 2 3 4 · · · 1 2 3 4 · · ·

b1 b2

2
3
1
1
2
1
5

1 2 3 4 · · ·

bd
· · ·

1 2 3 4 · · ·

b3

1

3
7
4

2

1

1
3
2...

[4 6 8 12 . . .]

Fig. 3. Simple data structure that accelerates the evaluation of a bin vector. The rows correspond
to positions in S. The solid arcs show the minima of Equation 7 for the example bin vector
(2, 1, 1, . . . , 1). Breakpoints are highlighted in the sequence (leftmost column). Arcs that point
to blocks below the end of the figure are not shown.

inspect positions (1, r, br) for 1 ≤ r ≤ d. The next breakpoint must be at the minimum
of these values. Thus we have

πi+1 = min
1≤r≤d

T1(πi, r, br) . (7)

18

Equation 7 directly gives an O(kd) algorithm for the evaluation of a bin vector. Here
k denotes as usual the number of breakpoints. On instances with kd � n this is a
speedup. The space complexity of this approach seems to be Θ(n ·d ·B) at first glance.
But notice that between two occurrences of a resource r in the sequence the value of
T1(·, r, ·) remains the same. More precisely, if for all p′ with p1 ≤ p′ < p2 it holds that
sp′ 6= r, then we have T1(p1, r, δ) = T1(p2, r, δ) for all δ. Let us call such an interval
with equal entries for a given resource r a block. An example can be found in Figure 3,
where the blocks are depicted as grey rectangles. The total number of blocks is bounded
by n + d = O(n) because at each position exactly one block ends in the setting of unit
vector packing. Also the answer vectors in the blocks need not be stored explicitly: In
the ith block of resource r the table entry for br is simply the end position of block
i + br as indicated by the arrows in the figure. Therefore, in our approach we store the
block structure in an array of size O(n) to get a constant lookup time for a given table
entry T1(p, r, δ). More precisely, we store d arrays {A1, . . . , Ad} of total size O(n),
such that {Ar(i)} gives the end position of block i of resource r or equivalently the
position of the ith occurrence of r in S. It is easy to see that the block structure can be
(pre-)computed in linear time.

However, with this approach a different problem arises: After the computation of
breakpoint πi+1, we need to know at which positions we should access each of the
arrays next. To answer this question we introduce a second table. Let T2 be an (n× 2)-
table that stores in T2(p, 1) the index of the (unique) new block3 that starts at position
p and in T2(p, 2) the index of the current block of resource (p mod d) + 1 in array
A(p mod d)+1. In order to recompute the indices for breakpoint πi+1 we read the d
rows {T2(πi+1−d+1, ·), . . . , T2(πi+1, ·)}. Each resource r occurs once in the second
column of the read rows and might occur several times in the first column. As index
for resource r take the value of the last occurrence of r in the read rows, regardless
of the column, i.e., the occurrence with the highest row index. This approach correctly
computes all new indices in the arrays {A1, . . . , Ad} in O(d) time, which is also the
time that a single step takes without this index computation. Obviously, table T2 needs
O(n) space. Alternatively, this table T2 can be understood as a persistent version of the
list containing for every resource its next occurrence, that is updated during a scan along
the sequence. In this situation a general method for partially persistent data structures
like [5] can be applied and yields the same time and space bounds. Altogether, we have
shown the following theorem:

Theorem 4. Given a sequence S we can construct a data structure in O(n) prepro-
cessing time with O(n ·d ·B)(O(n)) space such that an evaluation query for sequential
(unit) vector packing for a bin vector b takes O(kd) time, where k denotes the number
of breakpoints for b.

Note that for RHE if we have already found a bin vector with k′ many breakpoints
we can stop all subsequent evaluations already after k′ · d many steps.

3 Strictly speaking the first column in table T2 is not necessary as it simply reproduces the
sequence. Here it clarifies the presentation and the connection to the technique in [5].

19

A.4 Mixed Integer Linear Program

Even if the ILP-formulation of Section 2.1 is a good starting point for our theoretical re-
sults, it turns out that in practice only medium sized instances can be solved with it. One
problem is the potentially quadratic number of arc flow variables that makes the formu-
lation prohibitive already for small instances. To reduce the number of variables, it is
helpful to have an upper bound on the length of the longest arc. One such bound is of
course B, but ideally there are smaller ones. As our real-world instances are windowed
instances the window size is a trivial upper bound that helps to keep the number of vari-
ables low. A further problem is that, even if the bin vector is already determined, the
MIP-solver needs to branch on the x and y variables to arrive at the final solution. This
can be avoided by representing the bin vector components br as a sum of 0-1-variables
zr
i , such that br =

∑
i zr

i and zr
i ≥ zr

i+1. If an arc a uses i units of resource r, i.e., the
r-th entry of wa is i, we include a constraint of the form ya ≤ zr

i . This allows to use
the arc only if there are at least i resources available. With these additional constraints,
the arc variables y and x need no longer be binary. For integral values of zr

i , only arc-
variables that do not exceed the bin vector can have a value different from zero, so that
in this case every fractional path of the resulting flow is feasible with respect to the bin
vector, and thus all paths have the same (optimal) number of breakpoints (otherwise a
shorter path could be selected resulting in a smaller objective function value). With this
mixed integer linear program the number of branching nodes is drastically reduced, but
the time spent at every such node is also significantly increased. Still, the overall perfor-
mance of this program is a lot better than the original integer program, small instances
(dimension 8) can now be solved to optimality within a few minutes. A bigger instance
of dimension 22 and with a total bin size of up to 130 can be solved to optimality with
this program within less than 3 hours, for different values of the total bin size.

We observed that on this mixed integer programm feasible solutions are found after
a small fraction of the overall running time. Hence, we consider this approach also
reasonable suited as a heuristic to come up with good solutions.

A.5 Figures

Table 1. summary information on the instances

name demand unit vectors dimension window size note
inst1 4464 24 28

inst1-doubled 8928 48 56 inst1 with “doubled” resources
inst2 9568 8 28
inst3 7564 7 28
inst4 4464 22 28

rand-doubled 2500 26 2500 random “doubled” instance

20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20 40 60 80 100 120 140 160 180

grow
shrink
opt=1
enum
frac1
frac2

Fig. 4. Computational results for the different approaches. Plot of ratio of solution value to opti-
mal solution value versus total bin size B

21

1

1,2

1,4

1,6

1,8

2

2,2

15 65 115 165 215 265 315

inst2
inst3
inst4
inst1-doubled

(a) Ratio of enumeration heuristic to optimal solution on five instances

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 300

inst2
inst3
inst4
inst5
rand-doubled

(b) Ratio of enumeration heuristic to best of greedy algorithms on five instances

Fig. 5. Results on the instances of Table 1

