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Abstract

Orthogonal Variable Spreading Factor (OVSF) codes can be used to share the
radio spectrum among several connections of possibly different bandwidth, which is
used for example in UMTS. The combinatorial core of the OVSF code assignment
problem is to assign some nodes of a complete binary tree of height h (the code tree)
to n simultaneous connections, such that no two assigned nodes (codes) are on the
same root-to-leaf path. A connection that uses 2−d of the total bandwidth requires
some code at depth d in the tree, but this code assignment is allowed to change over
time. Requests for connections that would exceed the total available bandwidth are
rejected. We consider the one-step code assignment problem: Given an assignment,
reassign a minimum number of codes to serve a new request. Minn and Siu propose
the so-called DCA algorithm to solve the problem optimally. We show that DCA does
not always return an optimal solution, and that the problem is NP-hard. We give an
exact nO(h)-time algorithm, and a polynomial time greedy algorithm that achieves ap-
proximation ratio Θ(h). We also consider the online code assignment problem, where
future requests are not known in advance. Our objective is to minimize the overall
number of code reassignments. We present a Θ(h)-competitive online algorithm and
show that no deterministic online algorithm can achieve a competitive ratio better
than 1.5. We show that the greedy strategy (minimizing the number of reassignments
in every step) is not better than Ω(h) competitive. We give a 2-resource augmented
online algorithm that achieves an amortized constant number of (re-)assignments.
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1 Introduction

Recently UMTS1 has received a lot of attention, and also raised new algorithmic problems.
In this paper we focus on a specific aspect of its air interface W-CDMA2 that turns out to
be of algorithmic interest, more precisely on its multiple access method DS-CDMA.3 The
purpose of this access method is to make it possible for all users in one cell to share the
common resource, i.e. the bandwidth. In DS-CDMA this is accomplished by a spreading
and scrambling operation. Here we are interested in the spreading operation that spreads
the signal and separates the transmissions from the base-station to the different users.
More precisely, we consider spreading by Orthogonal Variable Spreading Factor (OVSF)
codes [14, 2], which are used on the downlink and the dedicated channel of the uplink.
These codes are derived from a code tree. Each user in one cell is assigned a different
OVSF code. The key property that separates the signals sent to the users is the mutual
orthogonality of the users’ codes. In particular, it is irrelevant which code on a level a user
gets, as long as all codes are mutually orthogonal.

The OVSF code tree is a complete binary tree that reflects the construction of Hadamard
matrices: The root is labeled with the vector (1), the left child of a node labeled a is la-
beled with (a, a), and the right child with (a,−a). Obviously, all codes on one level are
mutually orthogonal. In the DS-CDMA system users request different data rates and get
OVSF codes of different levels. (The data rate is inversely proportional to the length of the
code.) All codes that are assigned to users are mutually orthogonal if and only if on each
path from a leaf to the root there is at most one assigned code. We say that an assigned
code in any node in the tree blocks all codes in the subtree below it and all codes on the
path to the root, see Figure 1.1.
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Figure 1.1: A code assignment and blocked codes

1Universal Mobile Telecommunications System, for an in-depth coverage of the technical underpinnings
we refer the reader to the literature [14, 16].

2Wideband Code Division Multiple Access
3Direct Sequence Code Division Multiple Access
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Figure 1.2: A request r for a code and one of the possible reassignments (dashed arcs)

As users connect to and disconnect from a given base station, i.e. request and release
codes, the assigned codes in the code tree can get fragmented, so that it can happen
that a code request for a higher level cannot be served at all, because lower level codes
block all codes on the specified level. This problem is known as code blocking or code tree
fragmentation in the literature [16, 17]. One way of solving this problem is to reassign
some codes in the tree (more precisely, to assign changed OVSF codes to some users in the
cell, without changing the level of the codes). In the example in Figure 1.2 a user requests
a code on level two, where all codes are blocked. Still, after reassigning some of the already
assigned codes, the code request can be served.

The process of reassigning codes necessarily induces signaling overhead from the base
station to the users whose codes change, which should be kept small. Therefore, a natural
objective already stated in [17, 18] is to serve all code requests as long as this is possible,
while keeping the number of reassignments as small as possible. (In fact, as long as the total
bandwidth of all simultaneously active code requests does not exceed the total bandwidth,
it is always possible to serve them.) The problem has been studied before with focus on
simulations. In [17] the problem of reassigning the codes for a single additional request is
defined. The Dynamic Code Assignment (DCA) algorithm is introduced and claimed to
be optimal. In this paper we prove that the DCA algorithm is not always optimal and
analyze natural versions of the underlying code assignment (CA) problem. Our intention is
to present a first rigorous analysis of a problem that looks simple at first glance but turns
out to be algorithmically challenging after closer inspection. Still, interesting questions
remain open.

First, we give a counterexample to the optimality of the DCA algorithm in Section 2. In
Section 3 we begin our analysis of code assignment problems with some simple observations.
Then we prove the original problem stated by Minn and Siu [17] to be NP-complete for a
natural input encoding in Section 4. In Section 5 we give a dynamic programming algorithm
that solves the problem optimally and is efficient for small instance sizes. In Section 6 we
show that a natural greedy algorithm already mentioned in [17] achieves approximation
ratio h for one step. We tackle the online problem4 in Section 7, which is a more natural
version of the problem, because we are interested in minimizing the signaling overhead
over all operations rather than in every step. We present a Θ(h)-competitive algorithm

4We use standard terminology from the field of online algorithms, see e.g. [10].
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and show that the greedy strategy that minimizes the number of reassignments in every
step is not better than Ω(h)-competitive. We also give an online algorithm with constant
competitive ratio that uses resource augmentation, i.e. we give it one more level than the
adversary. In Section 8 we show that a very natural class of algorithms can be forced into
arbitrary configurations. This finding gives more substance to both the NP-completeness
proof and the analysis of possible online algorithms. We draw our conclusions in Section 9.
Appendix A contains additional details and an example for the dynamic programming
algorithm of Section 5.

1.1 Problem definition and preliminaries

We are concerned with assigning codes of an (OVSF) code tree T = (V,E) to users. As the
tree is a complete binary tree, it is completely specified by its height h. All users who are
using a code at a given moment in time can be modeled by a request vector r = (r0 . . . rh) ∈
N

h+1, where ri tells us how many users request a code on level i (with bandwidth 2i, where
we assume without loss of generality that the leaf codes have bandwidth 1). We count
the levels from leaves to root. The level of a node, a code, or a code request c is denoted
by l(c). The subtree of T rooted at a node v is denoted by Tv. The requests have to be
mapped to positions (nodes) in the tree, such that:

1. For all levels i ∈ {0 . . . h} there are exactly ri codes on level i.

2. On every path pj from a leaf j to the root there must be at most one code.

We call every set of positions in T that fulfills these properties a code assignment F ⊂ V .
For ease of presentation we call F sometimes also a set of codes. A set S ⊆ V that fulfills
only condition two is called independent, and its elements are called independent positions.
Changing a position in F is called moving a code. When we talk about a code tree, we
usually mean the tree together with a code assignment F . If an additional user requests a
code we call this a code request (on a given level), if some user disconnects we call this a
deletion (in a given position). A code request is also called code insertion. The request is
dropped if it cannot be served because its acceptance would exceed the total bandwidth.
By N we denote the number of leaves of T and by n the number of assigned codes |F |. After
a request on level lt at time t any correct CA algorithm must change the code assignment
Ft into a code assignment Ft+1 for the new request vector r′ = (r0, . . . , rlt + 1, . . . , rh). We
call |Ft+1 \ Ft| the number of reassignments. This implies that in the case of an insertion,
we also consider the one new assignment as a reassignment and count it as such. We do not
count deletions because every code can be deleted only once. This is important, because
we take the number of reassignments as the cost function.

We state the original CA problem studied by Minn and Siu [17] together with some of
its natural variants:

one-step offline CA Given a code assignment F for a request vector r and a code request
for level l, find a code assignment F ′ for the new request vector r′ = (r0, . . . , rl +
1, . . . , rh) with minimum number of reassignments.
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general offline CA Given a sequence S of code requests and deletions of length m, find a
sequence of code assignments so that the total number of reassignments is minimum,
assuming the initial code tree is empty.

online CA This is the same problem as the general offline CA, except that the future
requests of S are not known in advance.

insertion-only online CA Here S consists of insertions only.

It is instructive to look at a natural ILP formulation of the one-step offline CA. We
introduce {0, 1}-decision variables xv that decide whether there is a code at position v ∈ V
in the tree or not.

max
∑

v∈F xv

s.t.
∑

v∈li
xv = r′i ∀ levels li

∑

v∈pj
xv ≤ 1 ∀ paths pj

xv ∈ {0, 1}

In this formulation we are maximizing over the positions that stay, i.e. over xv where
v is in the initial assignment F , which is equivalent to minimizing the number of moved
codes.

1.2 Related work

It was a paper by Minn and Siu [17] that originally drew our attention to this problem.
There the one-step CA version is defined together with an algorithm that is claimed to
solve it optimally. As we show in Section 2 this is not true, the argument contains errors.
Many of the follow-up papers such as [4, 15, 18, 5, 11, 12] acknowledge the original problem
to be solved by Minn and Siu and study some other aspects of it. Assarut et al. [4] do a
performance evaluation of Minn and Siu’s DCA algorithm, and compare it to other schemes.
Moreover, they propose a different algorithm for a more restricted setting [3]. Others use
additional mechanisms like time multiplexing or code sharing on top of the original problem
setting in order to mitigate the code blocking problem [18, 5]. A different direction is to use
a heuristic approach that solves the problem for small problem instances [5]. Kam, Minn
and Siu [15] address the problem in the context of bursty traffic and different QoS.5 They
come up with a notion of “fairness” and also propose to use multiplexing. Priority based
schemes for different QoS classes can be found in [7], similar in perspective are [12, 11].

Fantacci and Nannicini [9] are among the first to express the problem in its online
version, although they have quite a different focus. They present a scheme that is similar
to the compact-representation scheme in Section 7, without focusing on the number of
reassignments. Rouskas and Skoutas [18] propose a greedy online algorithm that minimizes
in each step the number of additionally blocked codes, and provide simulation results but no
analysis. Chen and Chen [6] propose a best-fit least-recently used approach, also without
analysis.

5Quality of Service
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Figure 2.1: Example for the proof of Theorem 2.1

2 Non-optimality of greedy algorithms

Here we look at possible greedy algorithms for the one-step offline CA. A straight-forward
greedy approach is to select for a code request a subtree with minimum cost that is not
blocked by a code above the request level, according to some cost function. All codes
in the selected subtree must then be reassigned. So in every step a top-down greedy
algorithm chooses the maximum bandwidth code that has to be reassigned, places it in a
minimum cost subtree, takes out the codes in that subtree and proceeds recursively. The
DCA algorithm in [17] works in this way. The authors propose different cost functions,
among which the “topology search” cost function is claimed to solve the one-step offline
CA optimally. Here we show the following theorem:

Theorem 2.1. Any top-down greedy algorithm Atdg with a cost function independent of
the sequence of codes that have to be reassigned is not optimal.

As all proposed cost functions in [17] are independent of the sequence of codes to be
reassigned, this theorem implies the non-optimality of the DCA algorithm.

Proof. Our construction considers the subtrees in Figure 2.1 and the assignment of a new
code in the root of the tree T0. The tree T0 has a code with bandwidth 2k on level l and
depending on the cost function has or does not have a code with bandwidth k on level l−1.
The subtree T1 contains k− 1 codes at leaf level and the rest of the subtree is empty. The
subtrees T2 and T3 contain k codes at leaf level interleaved with k free leaves. All other
subtrees, in particular, the sibling trees of T1, T2 and T3 (omitted from the figure) have all
the leaves assigned. This pairing rules out all cost functions that do not choose to put the
initial code at the root of T0. We are left with two cases:

case 1 The cost function evaluates T2 or T3 as cheaper than T1. In this case we let the
subtree T0 contain only the code with bandwidth 2k. Algorithm Atdg reassigns the
code with bandwidth 2k into the root of the subtree T2 or T3, which causes one more
reassignment than assigning it into the root of T1.

case 2 The cost function evaluates T1 as cheaper than T2 and T3. In this case we let the
subtree T0 have both codes. Atdg moves the code with bandwidth 2k into the root
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Figure 3.1: Correspondence of code assignments in tree of height 4 with codes on levels
{0,1,1,1,2} and prefix free codes of lengths {4,3,3,3,2}

of T1 and the code with bandwidth k into the tree T2 or T3, see solid lines in Figure
2.1. The number of reassigned codes is 3k/2 + 2. However, the minimum number of
reassignments is k + 3, achieved when the code with bandwidth k is moved in the
empty part of T1 and the code with bandwidth 2k is moved into the root of T2 or T3,
see dashed lines in Figure 2.1.

3 Observations about the code assignment problem

3.1 Feasibility of code assignment

Given a tree T with n codes at levels l1, . . . , ln and a code request for level ln+1, can we
serve the request? Can we reassign the codes such that we can assign a code on level ln+1?
Such a code reassignment for desired levels {l1, . . . , ln+1} exists if and only if there exists a
binary prefix free code set of given lengths {h− l1, . . . , h− ln+1}. Every assigned code on
level l has its unique path from the root to a node of length h− l. The path can be encoded
by a word w ∈ {0, 1}h−l determining whether we traverse through the left or right child.
From the properties of code assignments the path/node identifiers form a binary prefix free
code. On the other hand, given a prefix free code set of lengths {h − l1, . . . , h − ln+1} we
can clearly assign codes on levels li — just follow the paths described by the code words
(see Figure 3.1).

Now we are ready to use the Kraft-McMillan inequality.

Theorem 3.1. A binary prefix code of code lengths a1, . . . , am exists if and only if

m
∑

i=1

2−ai ≤ 1.

Proof. E.g., in [1].
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Corollary 3.2. A code assignment for desired levels l1, . . . , lm into the tree T of height h
with N leaves exists if and only if

m
∑

i=1

2li ≤ N .

Proof. According to Theorem 3.1, a binary prefix code exists if and only if
∑m

i=1 2−ai ≤ 1.
Multiplying with 2h we get

∑m
i=1 2h−ai ≤ 2h. Setting li = h − ai, i.e., ai = h − li, the

statement follows.

We see that checking whether we can successfully serve the code requests can be done
in linear time. Therefore, from now on we assume that the requests for code assignment
always fit in the tree capacity, i.e., there exists a code reassignment to serve the request.

3.2 Irrelevance of higher level codes

In the one-step offline CA we are looking for a subtree Tv to assign a code for the request
c for a code assignment on level l(c) = l(v). In this section we show according to [17] that
an optimal algorithm moves only codes on levels smaller than l(c), i.e., it does not move
codes on levels greater or equal to l(c).

Lemma 3.3. Let c be a request for a code assignment on level l(c) into a code tree T .
Then for every code reassignment F ′ that moves a code of level l ≥ l(c) there exists a code
reassignment F ′′ moving fewer codes, i.e., with |F ′′ \ F | < |F ′ \ F |.

Proof. Let x ∈ F be the highest code that is reassigned and suppose l(x) ≥ l(c). Let
y ∈ F ′ be a position in T to which x is assigned. Denote by S the set of codes from T
that are moved into Tx and by Q the set of codes in Ty (these two sets need not to be
disjoint). Denote by R the rest of the codes that are moved, i.e., R = (F ′ \ F ) \ (S ∪ Q)
(the set R contains also the assigned code for the request c). Denote by Q′ ⊆ Q the set
of codes in Q that are moved into Tx. Then the number of movements can be expressed
as Cost = |S \ Q′| + |Q| + |R| (where R includes also the movement of x). To construct
F ′′, we assign codes S into Ty (we can do that because the capacity of Tx and Ty is the
same) and thus have to reassign only Q \Q′ from Q (the codes in Q′ are already involved
in the reassignments S). The rest of the codes can be reassigned as in F ′, but with |R| − 1
movements since we do not have to move x. We get a new code assignment F ′′ with cost
Cost′ = |R| − 1 + |S \Q′|+ |Q′|+ |Q \Q′| = Cost− 1, from which the lemma follows.

4 NP-hardness of one-step offline CA

Here we prove the decision variant of the one-step offline CA to be NP-complete. The
(canonical) decision variant of it asks if a new code request can be handled with cost less
or equal to a number cmax, which is also part of the input. First of all, we note that
the decision variant is in NP, because we can guess an optimal assignment and verify in
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polynomial time if it is feasible and if its cost is less than or equal to cmax. Now the NP-
completeness is established by a reduction from the three-dimensional matching problem
(3DM) that we restate here for completeness (cf. [13]):

Problem 4.1. (3DM) Given a set M ⊆ W ×X × Y , where W,X and Y are disjoint sets
having the same number q of elements, does M contain a matching, i.e., a subset M ′ ⊆M
such that |M ′| = q and no two elements of M ′ agree in any coordinate?

Let us index the elements of the ground sets from 1 to q. To simplify the presentation,
we introduce the indicator vector of a triplet (wi, xj, yk) as a zero-one vector of length 3q
that is all zero except at the indices i, q + j and 2q + k. The idea of the reduction is to see
the triplets as such indicator vectors and to observe that the problem 3DM is equivalent
to finding a subset of q indicator vectors out of the indicator vectors in M that sum up to
the all-one vector.

Figure 4.1 shows an outline of the construction that we use for the transformation. An
input to 3DM is transformed into an initial feasible assignment that consists of a token
tree on the left side and different smaller trees on the right. The construction is set up in
such a way that the code request forces the q codes on the left side to move to the right
side. Then these codes must be assigned to the roots of triplet trees. The choice of the q
triplet trees reflects the choice of the corresponding triplets for a matching. All codes in
the chosen triplet trees find a new place without any additional reassignment if and only
if these triplets really represent a 3D matching.

Let us now delve into the details of the construction. The token tree consists of q codes
positioned arbitrarily on level lstart with sufficient depth, e.g. dlog(|M |+ 21q2 + q)e + 1.
The triplet trees have their roots on the same level lstart. They are constructed from the
indicator vectors of the triplets. For each of the 3q positions of the vector such a tree has
four levels — together called a layer — that encode either zero or one, where the encodings
of zero and one are shown in Figure 4.2 (a) and (b).

Figures 4.2 (c) and (d) show how layers are stacked using sibling trees. We have chosen
the zero- and one-trees such that both have the same number of codes and occupy the
same bandwidth (but are still different).

9



(a) The zero-tree (b) The one-tree

(c) A layer, consisting of a one-tree and its
sibling

0000

0000

1

(d) Stacking layers

Figure 4.2: Encoding of zero and one

The receiver trees are meant to receive all codes in the triplet trees. These codes fit exactly
in the free positions if and only if the chosen triplets form a 3DM, i.e. if their indicator
vectors sum up to the all-one vector. This equivalence directly tells us how many codes
the trees must receive on which level: On every layer the receiver trees must take q − 1
zero-trees, 1 one-tree and q sibling-trees, so that on the four levels of each layer there must
be exactly 0, q + 1, 5q − 3 resp. q + 2 free codes (plus q extra codes on the very last level).
For each one of these 3q · 7q + q = 21q2 + q codes we build one receiver tree. The receiver
tree for a code on level l′ is a tree with root on level lstart with these properties: it has one
free position on level l′, the rest of the tree is full and it contains 21q + 2 codes, i.e. one
more code than a triplet tree. Clearly, such a tree always exists in our situation.

Finally, the fill trees are trees that are completely full and have one more code than
the receiver trees. They fill up the level lstart in the sibling-tree of the token tree.

An interesting question is whether this transformation from 3DM to the one-step offline
CA can be done in polynomial time. This depends on the input encoding of our problem.
To us, two encodings seem natural:

• a zero-one vector that specifies for every node of the tree whether there is a code or
not.

• a sparse representation of the tree, consisting only of the positions of the assigned
codes.

Obviously, the transformation cannot be done in polynomial time for the first input
encoding, because the generated tree has 212q+lstart leaves. For the second input encoding the
transformation is polynomial, because the total number of generated codes is polynomial
in q, which is polynomial in the input size of 3DM. Besides, we should rather not hope
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for an NP-completeness proof for the first input encoding, because this would suggest—
together with the dynamic programming algorithm in this paper—nO(log n)-algorithms for
all problems in NP.

We now state the crucial property of the construction in a lemma:

Lemma 4.2. Let M be an input for 3DM and φ the transformation described above. Then
M ∈ 3DM if and only if φ(M) can be done with α = 21q2 + 2q + 1 reassignments.

Proof. Assume there is a matching M ′ ⊂ M . Now consider the reassignment that assigns
the code request to the root of the token tree and the tokens to the q roots of the triplet
trees that correspond to the triplets in M ′. We know that the corresponding indicator
vectors sum up to the all-one vector, so that all codes in the triplet trees that need to
be reassigned fit exactly in the receiver trees. In total, 1 + q + (21q + 1)q = α codes are
(re-)assigned.

Now assume there is no matching. This implies that every subset of q indicator vectors
does not sum up to the all-one vector. Assume for a contradiction that we can still serve
φ(M) with at most α reassignments. Clearly, the initial code request must be assigned to
the left tree, otherwise we need too many reassignments. The q tokens must not trigger
more than (21q+1)q additional reassignments. This is only possible if they are all assigned
to triplet trees, which triggers exactly (21q + 1)q necessary reassignments. Now no more
reassignments are allowed. But we know that the corresponding q indicator vectors do not
sum up to the all-one vector, in particular, there must be one position that sums up to
zero. In the layer of this position the receiver-trees receive q zero-trees and no one-tree
instead of q−1 zero trees and one one-tree. But by construction the extra zero-tree cannot
be assigned to the remaining receiver tree of the one-tree. It cannot be assigned somewhere
else either, because this would cause an extra reassignment on a different layer. This is
why an extra reassignment is needed, which brings the total number of (re-)assignments
above α.

One could wonder whether an optimal one-step offline CA algorithm can ever attain
the configuration that we construct for the transformation. We prove in Section 8 that
we can force such an algorithm into any configuration. To sum up, we have shown the
following theorem:

Theorem 4.3. The decision variant of the one-step offline CA is NP-complete for an
input given by a list of positions of the assigned codes and the request level.

5 Exact nO(h) dynamic programming algorithm

In this section we describe an exact algorithm for the one-step offline CA problem using
dynamic programming, and at the end of the section we give the asymptotic analysis for
the storage space required and the running time. We define the signature for a subtree at
level k as a k + 1 dimensional vector. The signature Vk = [ak, ak−1, . . . , a1, a0]

T tells us
that on level i there are ai assigned codes. To have a feasible signature for a tree Tk, the

11



0
1
1
2

0
1
2

1
0
0

1
0

0
2

0
0

0
0

0 0 1 0 0 0 01

b)a)
0

1

2

3

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

j

k

Figure 5.1: a) OVSF code tree. b) Tree configuration using signatures.

vectors must satisfy the capacity constraint
∑k

i=0 ai · 2
i ≤ 2k. One way to further reduce

the number of signatures is by restricting the feasible signatures to those that are relevant
for the current input. Let Vh = [vh, vh−1, . . . , vl, . . . , v1, v0]

T be the original tree signature
and l the level of the new code request. The root node of the final tree will have the
signature V ′

h = [v′
h, v

′
h−1, . . . , v

′
l, . . . , v

′
1, v

′
0]

T = [vh, vh−1, . . . , vl + 1, . . . , v1, v0]
T . For every

node on level k we need only those feasible signatures that satisfy the additional constraint
of the input instance ai ≤ v′

i,∀i ∈ {0 . . . k}.

We define the tree configuration as the representation of the OVSF code tree given by
the corresponding subtree signatures of the nodes in the tree. Figure 5.1 shows an example
tree for the tree configuration. The tree configuration is equivalent to a code assignment
(see Section 1.1) for the request vector given by the signature.

The algorithm constructs one 2-dimensional table Mk for each level k starting with the
leaf level. The tables have as rows all relevant tree signatures for that level and one column
for every node of this level. The table for the root level h has only one entry for the final tree
signature V ′

h. We use the number of assigned codes that are not moved by the algorithm
as a profit function that we want to maximize. Each cell c of a table stores the following
values: the maximum profit c.P , and a left and right pointer (c.L and c.R) to the table
entries from one level below that achieve the maximum profit. The cells of table Mk are
computed by using the cells in table Mk−1. We combine two columns from table Mk−1 that
represent sibling nodes at level k − 1. We enumerate all possible signature pairings from
these columns and update the cell of the corresponding parent signature (the sum of the
left and right subtree signature augmented with 0 at position k) in table Mk. The update
is done only if the sum of the profits from the left and right subtrees is bigger than the
current profit stored in the cell. The left and right pointers are also updated and are used
at the end of the algorithm to reconstruct the final tree configuration with the new code
assigned. The signature [1, 0, . . . , 0, 0]T for a node on level k cannot be constructed using
the signatures from table Mk−1. In this case the left and right subtrees have the signature
[0, 0, . . . , 0, 0]T and the maximum profit is 1 if originally there was a code assigned at this
node and 0 otherwise. The number of codes that were reassigned by the algorithm is the
difference between the number of codes in the tree and the maximum profit for the root
node signature. The pseudo-code of the algorithm together with a concrete example is
shown in Appendix A.

The algorithm finds a feasible configuration of the OVSF tree, including the new code,
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so that a maximum number of already assigned codes do not move. For a node j at level k
and a possible signature Sk, the maximum number of codes that do not move is computed
using the following recursion:

Mk[Sk, j].P =







1, if Sk = [1, 0, . . . , 0, 0]T and originally a code was assigned to node j
0, if Sk = [1, 0, . . . , 0, 0]T and originally node j was not assigned
maxSleft+Sright=Sk

(Mk−1[Sleft, lj].P + Mk−1[Sright, rj].P ), otherwise

Here, lj and rj refer to the left and right child of j, respectively. Note that the pairings
of subtree signatures Sleft and Sright must be limited to those subtree signatures from level
k − 1 that when summed up and augmented with 0 at position k give the signature Sk.
The two problems, maximizing the number of codes that do not move and minimizing the
number of reassigned codes, are equivalent. Thus, the correctness of the recursive formula
above proves also the correctness of the algorithm for solving the original problem.

For the analysis of the algorithm we need to determine the number of relevant signatures
per table and the time to compute the values stored in the cells. For the table Mk the
number of columns is 2h−k and the number of rows is the number of relevant tree signatures
for level k. Let us denote this number by Ck. We can bound Ck by

∏k
i=0(v

′
i + 1). Let

n = ‖V ′
h‖ =

∑h
i=0 v′

i be the total number of assigned codes. Using the arithmetic-geometric

mean inequality, it follows that Ch−1 ≤ (1 + n
h
)h. Let Sh =

∑h−1
k=0 2h−k · Ck denote the

number of entries in the tables of the algorithm for levels 0, . . . , h − 1. Using the upper
bound for Ch−1 and that Ci ≤ Ch−1, ∀i ∈ {0 . . . h}, we have Sh ≤

∑h−1
k=0 2h−k · Ch−1 ≤

2h · (1 + n
h
)h ·

∑h−1
k=0

1
2k ≤ 2h+1 · (1 + n

h
)h. Therefore, the storage space required by the

algorithm is bounded by O(2h · (1 + n
h
)h). An upper bound on the running-time is given

in the following theorem.

Theorem 5.1. The dynamic programming algorithm presented above has asymptotic run-
ning time nO(h).

Proof. The running time of the algorithm is proportional toRh = 2h+1+
∑h

k=1 2h−k·(Ck−1)
2·

h, taking into account the time for computing the entries for table M0 (first component)
and the time for computing the entries for tables Mk, k ∈ {1 . . . h} (second component).
Thus, the running time is O(h · 2h · (1 + n

h
)2h) = nO(h).

6 An h-approximation algorithm for one-step offline

CA

In this section we propose and analyze a greedy algorithm for one-step offline CA, i.e.,
for the problem of assigning an initial code assignment request c0 into a code tree T with
given code assignment F . The idea of the greedy algorithm Agreedy is to assign the code
c0 onto the root g of the subtree Tg that contains the fewest assigned codes among all
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possible subtrees6. Then the greedy algorithm takes all codes in Tg (denoted by Γ(Tg))
and reassigns them recursively in the same way, always processing codes of higher level
first.

At every time t the greedy algorithm has to assign a set Ct of codes into the current
tree T t. Initially, C0 = {c0} and T 0 = T . Recall that for a given position, code or request c,
its level is denoted by l(c).

Algorithm 6.1. Greedy algorithm Agreedy:

C0 ← {c0}; T 0 ← T
t← 0
WHILE Ct 6= ∅ DO

ct ← element with highest level in Ct

g ← the root of a subtree T t
g of level l(ct) with the fewest

codes in it and no code on or above its root

/* assign ct to position g */

T t+1 ← (T t \ Γ(T t
g)) ∪ {g}

Ct+1 ← (Ct ∪ Γ(T t
g)) \ {ct}

t← t + 1
END WHILE

In [17] a similar algorithm is proposed as a heuristic for the one-step offline CA. We
prove that Agreedy has approximation ratio h. This bound is asymptotically tight: In the
following examples we show that Agreedy can be forced to use Ω(h) ·OPT (re-)assignments
(see Figure 6.1), where OPT refers to the optimal number of (re-)assignments. A new
code cnew is assigned by the greedy algorithm into the root of T0 (which contains the least
number of codes). The two codes on level l − 1 from T0 are reassigned as shown in the
figure, one code can be reassigned into Topt and the other one goes recursively into T1.
In total, the greedy algorithm does 2 · l + 1 (re-)assignments while the optimal algorithm
assigns cnew into the root of Topt and reassigns the three codes from the leaf level into the
trees T1, T2, T3, requiring only 4 (re-)assignments. Obviously, for this example the greedy
algorithm is not better than (2l + 1)/4 times the optimal. In general l can be Ω(h).

For the upper bound we compare Agreedy to the optimal algorithm Aopt. Aopt assigns
c0 to the root of a subtree Tx0

, the codes from Tx0
to some other subtrees, and so on. Let

us call the set of subtrees to the root of which Aopt moves codes the opt-trees, denoted by
Topt, and the arcs that show how Aopt moves the codes the opt-arcs (cf. Figure 6.2). By
V (Topt) we denote the set of nodes in Topt.

A sketch of the proof is as follows. First, we show that in every step t Agreedy has the
possibility to assign the codes in Ct into positions inside the opt-trees. This possibility can
be expressed by a code mapping φt : Ct → V (Topt). The key-property is now that in every
step of the algorithm there is the theoretical choice to complete the current assignment
using the code mapping φ and the opt-arcs as follows: Use φ to assign the codes in Ct into

6From Lemma 3.3 we know that no optimal algorithm reassigns codes on higher levels than the current
one; hence the possible subtrees are those that do not contain assigned codes on or above their root.
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Figure 6.1: Example for the lower bound for Agreedy

g

c0

x0

an opt-arc greedy assignment

Figure 6.2: Aopt moves codes to assign a new code c0 using opt-arcs. The opt-trees are
subtrees to the root of which Aopt moves codes. Here, the cost of the optimal solution is
5. The greedy algorithm has cost 6.

positions in the opt-trees and then use the opt-arcs to move codes out of these subtrees
of the opt-trees to produce a feasible code assignment. We will see that this property is
enough to ensure that Agreedy incurs a cost of no more than OPT on every level.

In the process of the algorithm it can happen that we have to change the opt-arcs in
order to ensure the existence of φt. To model the necessary changes we introduce αt-arcs
that represent the changed opt-arcs after t steps of the greedy algorithm.

To make the proof-sketch precise, we need the following definitions:

Definition 6.2. Let Topt be the set of the opt-trees for a code request c0 and let T t (together
with its code assignment F t) be the code tree after t steps of the greedy algorithm Agreedy.
An α-mapping at time t is a mapping αt : Mαt

→ V (Topt) for some Mαt
⊆ F t, such that

∀v ∈Mαt
: l(v) = l(α(v)) and αt(Mαt

) ∪ (F t \Mαt
) is a code assignment.

The set αt(Mαt
)∪(F t\Mαt

) represents the resulting code assignment after reassignment
of the codes Mαt

⊆ F t by αt.

Definition 6.3. Let T t be a code tree, x, y be positions in T t and αt be an α-mapping. We
say that y depends on x in T t and αt, if there is a path from x to y using only tree-edges
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Figure 6.3: The filled subtrees represent all the positions that depend on x.

from a parent to a child and αt-arcs. By dept(x) we denote the set of all positions y that
depend on x in T t and αt. We say that an αt arc (u, v) depends on x if u ∈ dept(x).

For an illustration of this definition, see Figure 6.3.

Definition 6.4. At time t a pair (φt, αt) of a code mapping φt : Ct → V (Topt) and an
α-mapping αt is called an independent mapping for T t, if the following properties hold:

1. ∀c ∈ Ct the levels of φt(c) and c are the same (i.e. l(c) = l(φt(c)).

2. ∀c ∈ Ct there is no code in T t at or above the roots of the trees in dept(φt(c)).

3. the code movements realized by φt and αt (i.e. the set φt(Ct)∪αt(Mαt
)∪ (F t \Mαt

))
form a code assignment.

4. every node in the domain Mαt
of αt is contained in dept(φt(Ct)) (i.e., no unnecessary

arcs are in αt).

Note that φt and αt can equivalently be viewed as functions and as collections of
arcs of the form (c, φt(c)) and (u, αt(u)), respectively. We write dept(φt(Ct)) for the set
⋃

c∈Ct
dept(φt(c)). Note that for two given independent positions u, v ∈ T and for an

independent mapping (φt, αt) we have dept(u)∩dept(v) = ∅, i.e. the αt-arcs of independent
positions point into disjoint subtrees. Note also that if a pair (φt, αt) is an independent
mapping for T t, then dept(φt(Ct)) is contained in opt-trees and every node in dept(φt(Ct))
can be reached on exactly one path from Ct (using one φt-arc and an arbitrary sequence
of tree-arcs, which always go from parent to child, and αt-arcs from a code c ∈ Γ(T t) to
αt(c)).

Now we state a lemma that is crucial for the analysis of the greedy strategy, the proof
of which we give in Section 6.1.

Lemma 6.5. For every set Ct in algorithm Agreedy the following invariant holds:

There is an independent mapping (φt, αt) for T t. (6.1)
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We remark that Lemma 6.5 actually applies to all algorithms that work level-wise top-
down and choose a subtree T t

g for each code ct ∈ Ct arbitrarily under the condition that
there is no code on or above the position g.

We can express the cost of the optimal solution by the opt-trees:

Lemma 6.6. (a) The optimal cost is equal to the number of assigned codes in the opt-trees
plus one, and (b) it is equal to the number of opt-trees.

Proof. Observe for (a) that Aopt moves all the codes in the opt-trees and for (b) that Aopt

moves one code into the root of every opt-tree.

Theorem 6.7. The algorithm Agreedy has an approximation ratio of h.

Proof. Agreedy works level-wise top-down. We show that on every level l the greedy al-
gorithm incurs cost at most OPT . Consider a time tl where Agreedy is about to start a
new level l, i.e. before Agreedy assigns the first code on level l. Assume that Ctl contains
ql codes on level l. Then Agreedy places these ql codes in the roots of the ql subtrees on
level l containing the fewest codes. The code mapping φtl that is part of the independent
mapping (φtl , αtl), which exists by Lemma 6.5, maps each of these ql codes to a different
position in the opt-trees. Therefore, the total number of codes in the ql subtrees with roots
at φtl(c) (for c a code on level l in Ctl) is at least the number of codes in the ql subtrees
chosen by Agreedy. Combining this with Lemma 6.6(a), we see that on every level Agreedy

incurs a cost (number of codes that are moved away from their position in the tree) that
is at most Aopt’s total cost.

6.1 Proof of Lemma 6.5

We prove the lemma by induction on t. Assume that the code c0 is to be inserted into the
tree initially, and that Aopt assigns it to position x0. For the base of the induction (t = 0),
let φ0(c0) = x0 and let α0 consist of all opt-arcs, i.e., all arcs (u, v) such that Aopt moves a
code from u to v. It is easy to see that (φ0, α0) is an independent mapping.

Now let t ≥ 0 and assume that the lemma holds after t iterations of the greedy algo-
rithm. We show how to construct (φt+1, αt+1) from the independent mapping (φt, αt). In
iteration t + 1, the greedy algorithm Agreedy assigns the code ct of highest level in Ct to a
feasible position g in T t.

Case 1. There is a code c′t in Ct with φt(c
′
t) = g. If c′t 6= ct, we exchange the φt values

of c′t and ct while maintaining (φt, αt) as an independent mapping for T t. Thus, we can
assume that φt(ct) = g. We set

φt+1 = {(c, φt(c)) | c ∈ Ct \ {ct} } ∪ {(c, αt(c)) | c ∈ Γ(T t
g)}

and
αt+1 = αt \ {(c, αt(c)) | c ∈ Γ(T t

g)}.
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Figure 6.4: T t
g contains the heads of αt-arcs and φt-arcs as well as codes with and without

αt-arcs.

It is easy to see that (φt+1, αt+1) is an independent mapping for T t+1.

We remark that Case 1 could also be handled in the same way as Case 2 below, but
we have chosen to give a direct treatment of Case 1 in order to illustrate some of the proof
ideas on a simple case.

Case 2. There is no code c′t in Ct with φt(c
′
t) = g. In this case, T t

g can contain a number
of codes, some of which may be in the domain Mαt

of αt. Furthermore, there can be φt-arcs
and αt-arcs pointing into T t

g . An example is shown in Figure 6.4. We have to define a
φt+1-arc for all codes in T t

g , and we must find a new destination outside T t
g for those φt-arcs

and αt-arcs pointing into T t
g that we need for the construction of (φt+1, αt+1).

First, we will define an intermediate generalized independent mapping (φ, α) for T t+1

in which we allow loose ends, i.e., we allow a code c to have as head of its α-arc or φ-arc a
dummy tree (that is not part of the real tree) of the required capacity. In a second step, we
will fix loose ends by finding proper destinations in dep(φt(ct)) for them (where dep refers
to the dependency induced by tree-arcs and the current α-arcs). In the end, a part of the
resulting (φ, α) without loose ends will be used to define (φt+1, αt+1).

We proceed as follows. For each assigned code c at a node v in T t
g that is not in the

domain Mαt
of αt, define φ(c) = v. For each assigned code c in T t

g that has an αt-arc, define
φ(c) = αt(c). For all codes c in Ct \ {ct}, set φ(c) = φt(c). Let α = αt \ {(u, v) | u ∈ T t

g}.
Finally, replace every α-arc or φ-arc (u, v) for which v ∈ T t

g by a loose end, i.e., an α-arc
or φ-arc pointing from u to a dummy tree of height l(v). The generalized mapping (φ, α)
constructed in this way is indeed independent. Figure 6.5 shows the generalized mapping
(φ, α) resulting from the situation in Figure 6.4.

Dummy trees that can be reached from φt(ct) along tree-arcs and α-arcs are called
inactive, all other dummy trees are called active. Active dummy trees have to be fixed (so
that we can eventually obtain an independent mapping without loose ends), while inactive
dummy trees will either become active later on or will be discarded in the end. Similarly,
we call all α-arcs that can be reached from φt(ct) along tree-arcs and α-arcs inactive, and all
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Figure 6.5: The constructed generalized independent mapping (φ, α). All shown α-arcs are
inactive (indicated by dashed lines). The rightmost dummy tree is inactive, the other two
are active.

other α-arcs active. Inactive α-arcs will either become active later on or will be discarded
in the end as well.

Let U denote the capacity of the tree Tg, i.e., U = 2l(g). Note that all dummy trees were
generated from independent subtrees of T t

g . Therefore, the total capacity of all dummy
trees is at most U . Let Ua be the total capacity of active dummy trees and Ui be the total
capacity of inactive dummy trees. We have Ua + Ui ≤ U .

We want to use dep(φt(ct)) for finding new destinations for α-arcs or φ-arcs that point
to dummy trees. We say that a path from φt(ct) to some tree node v is strict if it follows
tree-arcs downward from nodes without assigned codes in T t+1 and α-arcs from nodes with
assigned codes in Tt+1. Now we can define the available capacity in dep(φt(ct)) to be the
number of leaves that are not in dummy trees and that can be reached from φt(ct) along
a strict path that does not contain the head of any φ-arc or active α-arc. Note that a
position v in dep(φt(ct)) can be used as the new head of an α-arc or φ-arc if and only if v
is not in a dummy tree, there is no code at or above v, and no φ-arc or active α-arc points
to a position in dep(v) or to a position p such that v is in dep(p). Otherwise, the position
v is called unavailable.

The available capacity in dep(φt(ct)) is U − Ui initially, since only the loose ends in
dep(φt(ct)) reduce the available capacity. The total capacity of active dummy trees is
Ua ≤ U − Ui. In the following we will maintain the invariant that the total capacity of
active dummy trees is at most the available capacity in dep(φt(ct)).

We fix the active dummy trees one by one in order of non-increasing levels. Assume
that we are currently processing a dummy tree of level d that is the head of an α-arc or
φ-arc (x, y). Consider all nodes vd of level d in T t+1 that do not have assigned codes and
are reachable from φt(ct) along strict paths. Observe that a node vd is unavailable only if
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it is inside an inactive dummy tree or if the path from φt(ct) to vd passes through the head
of an active α-arc or a φ-arc. However, it is not possible that all nodes vd are unavailable,
because then the total available capacity in dep(φt(ct)) would be zero, contradicting our
invariant. Thus, we can find a node vd that is available (i.e., not unavailable). We replace
(x, y) by (x, vd) and make all α-arcs reachable from vd as well as all inactive dummy trees
reachable from vd active. (Note that no active dummy tree can have been reachable from
vd before this operation, since we fix the active dummy trees in order of non-increasing
levels.) Let U ′ be the total capacity of previously inactive dummy trees that were made
active now. The total capacity of active dummy trees decreases by 2d − U ′, and the total
available capacity in dep(φt(ct)) decreases by 2d −U ′ as well (since the part of dep(φt(ct))
that is reachable from vd had available capacity exactly 2d − U ′). Therefore, the invariant
is maintained and the process can be continued until no active dummy trees are left. The
process terminates because the total capacity of active dummy trees never increases and
in each step the number of active dummy trees of highest level decreases by one (and only
dummy trees of lower levels may become active). A possible result of applying this process
to the generalized independent mapping of Figure 6.5 is shown in Figure 6.6.
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Figure 6.6: The final generalized independent mapping (φ, α) in which all active dummy
trees have been fixed. The independent mapping (φt+1, αt+1) is obtained by deleting the
inactive α-arcs and discarding the remaining inactive dummy tree.

When all active dummy trees are fixed, we let φt+1 = φ and αt+1 = {(u, v) ∈ α |
(u, v) is active }. Since (φ, α) was a generalized independent mapping and (φt+1, αt+1) does
not contain loose ends, we have that (φt+1, αt+1) is an independent mapping as required.

7 Online code assignment

Here we study the online CA problem. Recall that we assume that the requests never
exceed the total available bandwidth. We give a lower bound on the competitive ratio,
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Figure 7.1: Lower bound for the online assignment problem.

analyze several algorithms, and present a resource augmented algorithm with constant
competitive ratio.

Theorem 7.1. No deterministic algorithm A for the online CA problem can be better than
1.5-competitive.

Proof. Let A be any deterministic algorithm for the problem. Consider N leaf insertions.
The adversary can delete N/2 codes (every second) to get to the situation in Figure 7.1.
Then a request for a code assignment on level h − 1 causes N/4 code reassignments. We
can proceed with the left subtree of full leaf codes recursively. We can repeat this process
(log2 N − 1) times. The optimal algorithm Aopt assigns the leaves in such a way that it
does not need any reassignment at all. Thus, Aopt needs N + log2 N − 1 code assignments.
Algorithm A needs N + T (N) code assignments, where T (N) = 1 + N/4 + T (N/2) and
T (2) = 0. Clearly, T (N) = log2 N − 1 + N

2
(1 − 2/N). If CA ≤ c · COPT then c ≥

3N/2+log
2

N−2
N+log2 N−1

−→N→∞ 3/2.

7.1 Compact representation algorithm

This algorithm maintains the codes in the tree T sorted and compact. For a given
node/code v ∈ T , we denote by w(v) its string representation, i.e. the description of
the path from the root to the node/code, where 0 means left child and 1 right child. We
use the lexicographic ordering when comparing two string representations. By U we denote
the set of unblocked nodes of the tree. We maintain the following invariants:

∀ codes u, v ∈ F : l(u) < l(v)⇒ w(u) < w(v), (7.1)

∀ nodes u, v ∈ T : l(u) ≤ l(v) ∧ u ∈ F ∧ v ∈ U ⇒ w(u) < w(v). (7.2)

This states that we want to keep the codes in the tree ordered from left to right according
to their levels (higher level assigned codes are to the right of lower level assigned codes)
and compact (no unblocked code to the left of any assigned code on the same level).
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Figure 7.2: Algorithm Acompact finds the rightmost position (blocked or unblocked) for a
code insertion and reassigns at most one code at every level.

In the following analysis we show that this algorithm is not worse than O(h) times the
optimum for the offline version. We also give an example that shows that the algorithm is
not asymptotically better than this.

Theorem 7.2. Algorithm Acompact satisfying invariants (7.1) and (7.2) performs at most
O(h) code reassignments per request.

Proof. We show that for both insertion and deletion requests we need to make at most h
code reassignments. When inserting a code on level l, we look for the rightmost unassigned
position on that level that maintains the invariants (7.1) and (7.2) among codes on level
0, . . . , l. Either the found node is not blocked, so that we do not move any codes, or the
code is blocked by some assigned code on a higher level l′ > l (see Figure 7.2). In the latter
case we remove this code to free the position for level l and handle the new assignment
request for level l′ recursively. Since we move at most one code at each level and we have
h levels, we move at most h codes for each insertion request.

Handling the deletion operation is similar, we just move the codes from right to left in
the tree and move at most one code per level to maintain the invariants.

Corollary 7.3. The algorithm Acompact satisfying invariants (7.1) and (7.2) is O(h)-
competitive.

Proof. In the sequence σ = σ1, . . . , σm the number of deletions d must be smaller or equal
to the number i of insertions, which implies d ≤ m/2. The cost of any optimal algorithm
is then at least i ≥ m/2. On the other hand, Acompact incurs a cost of at most m · h, which
implies that it is O(h)-competitive.

Theorem 7.4. Any algorithm AI satisfying invariant (7.1) is Ω(h)-competitive.

Proof. Consider the sequence of requests for code assignments on levels 0, 0, 1, 2, 3, . . . , h−1.
There is a unique code assignment satisfying invariant (7.1), see Figure 7.3. Consider now
two requests—deletion of the code at level h−1 and insertion of a code on level 0. Then AI

has to move every code on level l ≥ 1 to the right to create space for the code assignment
on level zero and maintain the invariant (7.1). This takes h − 1 code (re-)assignments.
Consider as the next requests the deletion of the third code on level zero and an insertion
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Figure 7.3: Code assignments for levels 0, 0, 1, 2, 3, 4, . . . , h− 1 and four consecutive oper-
ations: 1. DELETE(h-1), 2. INSERT(0), 3. DELETE(0), 4. INSERT(h-1).
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Figure 7.4: Requests that a greedy strategy cannot handle efficiently.

on level h− 1. Again, to maintain the invariant (7.1), AI has to move every code on level
l ≥ 1 to the left. This takes again h− 1 code (re-)assignments. An optimal algorithm can
handle these four requests with two assignments, since it can assign the third code on level
zero in the right subtree, where AI assigns the code on level h − 1. Repeating these four
requests k times, the total cost of the algorithm AI is then CA = h + k · (2h− 2), whereas
OPT has COPT = h + k · 2. As k goes to infinity, the ratio CA/COPT is Ω(h).

7.2 Greedy strategies

Assume we have a deterministic algorithm A that solves the one-step offline CA problem.
This A immediately leads to a greedy online strategy. As an optimal algorithm breaks ties
in an unspecified way, the online strategy can vary for different optimal one-step offline
algorithms.

Theorem 7.5. Any deterministic greedy online strategy, i.e. a strategy that minimizes the
number of reassignments for every request, is Ω(h) competitive.

Proof. Assume that A is a fixed, greedy online strategy. First we insert N/2 codes at
level 1. As A is deterministic we can now delete every second level-1 code, and insert N/2
level-0 codes. This leads to the situation depicted in Figure 7.4. Then we delete two codes
at level l = 1 (as A is deterministic it is clear which codes to delete) and immediately
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assign a code at level l +1. As it is optimal (and up to symmetry unique) the algorithm A
moves two codes as depicted. The optimal strategy arranges the level-1 codes in a way
that it does not need any additional reassignments. We proceed in this way along level 1
in the first round, then left to right on level 2 in a second round, and continue toward
the root. Altogether we move N/4 codes in the first round and we assign N/23 codes.
In general, in every round i we move N/4 level-0 codes and assign N/2i+2 new codes on
level i + 1. Altogether the greedy strategy needs O(N) + (N/4)Ω(log N) = Ω(N log N)
(re-)assignments, whereas the optimal strategy does not need any reassignments and only
O(N) assignments.

7.3 Minimizing the number of blocked codes

The idea of minimizing the number of blocked codes is mentioned in [18] but not analyzed
at all. In every step the algorithm tries to satisfy the invariant:

# blocked codes in T is minimum. (7.3)

In Figure 7.5 we see a situation that does not satisfy the invariant (7.3). Moving a code
reduces the number of blocked codes by one.

We can prove that this approach is equivalent to minimizing the number of gap trees
on every level (Theorem 7.7).

Definition 7.6. A maximal subtree of unblocked codes is called a gap tree. The level of
its root is called the level of the gap tree. The vector q = (q0, . . . , qh), qi =# gap trees on
level i, is called the gap vector of the tree T .

We can see that the invariant (7.3) implies at most one gap tree at each level. For
example in Figure 7.6(a) we have two gap trees on level one. Using the concept from
Figure 7.5, i.e. moving a sibling tree of the gap tree to fill the second gap tree, we reduce
the number of blocked codes by at least one.

Theorem 7.7. Let T be a code tree for requests σ. Then T has at most one gap tree on
every level if and only if T has a minimum number of blocked codes.

Proof. Suppose T has minimum number of blocked codes. If T had two gap trees Tu, Tv

on level l, then we could move the codes in sibling tree Tu′ (there are some) of u into Tv,
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Figure 7.6: Definition of gap trees and gap vector

which would save at least one blocked code (the parent of u would become unblocked), a
contradiction.

Now suppose T has at most one gap tree on every level. Since for every tree with two
or more gap trees on some level, we can reduce the number of blocked codes by filling the
gap trees, the minimum number of blocked codes has to be attained at trees with at most
one gap tree at every level.

The free bandwidth capacity of T can be expressed as

cap =
h

∑

i=0

qi2
i.

As qi ≤ 1, the gap vector is the binary representation of the number cap and thus the gap
vector q is unique for every tree serving requests σ with at most one gap tree at every level.

The gap vector determines also the number of blocked codes:

# blocked codes =(2h+1 − 1)−
h

∑

i=0

qi(2
i+1 − 1).

Thus, every tree for requests σ with at most one gap tree at every level has the same
number of blocked codes.

Now we are ready to define the algorithm Agap (Algorithm 7.8). As we will show, on
insertions Agap never needs any extra reassignments.

Algorithm 7.8. Agap:

1. Insert: • Assign the new code into the smallest gap where it fits.

2. Delete: • If after the deletion a second gap tree appears on some level, move one of
their sibling subtrees to “fill” the gap tree
• Look for a second gap tree on a higher level and treat it recursively.
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Figure 7.7: Two gap trees on a lower level than l′ violate the minimum chosen height of
the gap tree.

Lemma 7.9. The algorithm Agap has always a gap tree of sufficient height to assign a code
on level l and at every step the number of gap trees at every level is at most one.

Proof. We know that there is sufficient capacity to serve the request, i.e. cap ≥ 2l. We also
know that cap =

∑

i qi2
i. Summing only over gap trees on level i < l we get a capacity

cap′ =
∑l−1

i=0 qi2
i ≤ 20 + 21 + . . . 2l−1 = 2l − 1. Therefore, there exists a gap tree on level

j ≥ l.

Next, consider an insertion operation into the smallest gap tree on level l′ where the
code fits. New gap trees can occur only on levels j, l ≤ j < l′ and only within the gap tree
on level l′. Also, at most one new gap tree can occur on every level.

Suppose that after creating a gap tree on level j, we have more than one gap tree
on this level. Then, since j < l′, we would assign the code into this smaller gap tree, a
contradiction (Figure 7.7).

Therefore, after an insertion there is at most one gap tree on every level.

Consider now a deletion of a code. The nodes of the subtree of that code become
unblocked, i.e. they belong to some gap tree. At most one new gap tree can occur in the
deletion operation7. Thus, when the newly created gap tree is the second one at the level,
we fill the gap trees and then we recursively handle the newly created gap tree at a higher
level. In this way the gap trees are moved up. Because we cannot have two gap trees on
level h− 1, we end up with a tree with at most one gap tree at each level.

The result shows that the algorithm is optimal for insertions only. It does not need any
extra code movements, contrary to the compact representation algorithm. Similarly to the
compact representation algorithm, this algorithm is Ω(log N)-competitive.

Theorem 7.10. Algorithm Agap is Ω(log N)-competitive.

Proof. The proof is basically identical with the proof of Theorem 7.5.

7and some gap trees may disappear
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Figure 7.8: Worst case number of movements for algorithm Agap.

The algorithm Agap has even a very bad worst case number of code movements. Consider
the four subtrees on level h− 2, where the first one has N/4 leaf codes inserted, its sibling
has a code on level h− 2 inserted and the third subtree has again N/4 leaf codes inserted
(Figure 7.8). After deletion of the code on level h−2, Agap is forced to move N/4 codes. This
is much worse than the worst case for the compact representation algorithm. Nevertheless,
it would be interesting to investigate the best possible upper bound that can be proved for
the competitive ratio of Agap.

7.4 Resource-augmented online algorithm

In this section we present the online strategy 3-gap and study it by a resource-augmented
competitive analysis. The strategy 3-gap uses a tree T ′ of bandwidth 2b to accommodate
codes whose total bandwidth is b. By the nature of the code assignment we cannot add a
smaller amount of additional resource. 3-gap uses only an amortized constant number of
reassignments per insertion or deletion.

3-gap is similar to the compact representation algorithm of Section 7.1 (insisting on
the ordering of codes according to their level, Invariant (7.1)), only that it allows for up to
3 gaps (unblocked codes) at each level ` (instead of only one for aligning), to the right of
the assigned codes on `. The algorithm for inserting a code at level ` is to place it at the
leftmost gap of `. If no such gap exists, we reassign the leftmost code of the next higher
level ` + 1, creating 2 gaps (one of them is filled immediately by the new code) at `. We
repeat this procedure toward the root. We reject an insertion if the nominal bandwidth b
is exceeded. For deleting a code c on level ` we reassign the rightmost code on level ` to c,
keeping all codes at level ` left of the gaps of `. If this results in 4 consecutive gaps, we
reassign the rightmost code of `+1, in effect replacing two gaps of ` by one of `+1. Again
we proceed toward the root. More precisely, we keep for every level a range of codes (and
gaps) that are assigned to this level. In every range there are at most 3 gaps allowed. If
we run out of space or if there are too many gaps, we move the boundary between two
consecutive levels, affecting two places on the lower level and one on the upper level. This
notion of a range is in particular important for levels without codes. The levels close to
the root are handled differently, to avoid an excessive space usage. The root code of T ′ has
bandwidth 2b, it is never used. The bandwidth b code can only be used if no other code
is used, there is no interaction with other codes. The b/2 codes are kept compactly to the
right. In general there is some unused bandwidth between the b/4 and the b/2 codes, which
is not considered a gap. For all other levels (≤ b/8 codes) we define a potential-function by
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counting the number of levels without gaps, and the number of levels having 3 gaps, and
adding these numbers. With this potential function it is clear that it is sufficient to charge
two (re-)assignments to every insertion or deletion, one for placing the code (filling the
gap), and one for the potential function or for moving a b/4-bandwidth code. The initial
configuration is the empty tree, where the leaf level has two gaps, and all other levels have
precisely one gap (only the close-to-root levels are as described above).

It remains to show that our algorithm manages to host codes as long as the total
bandwidth used does not exceed b. To do this, we calculate the bandwidth wasted by
gaps, which is at most 3( b

8
+ b

16
+ · · · ) ≤ 3b/4. Hence the total bandwidth used in T ′ is

7b/4 < 2b.

Theorem 7.11. Let σ be a sequence of m code insertions and deletions for a code tree of
height h, such that at no time the bandwidth is exceeded. Then the above online strategy uses
a code tree of height h + 1 and performs at most 2m code assignments and reassignments.

Corollary 7.12. The above strategy is 4-competitive for resource augmentation by a factor
of 2.

Proof. Any sequence of m operations contains at least m/2 insert operations. Hence the
optimal offline solution needs at least m/2 assignments, and the above resource-augmented
online algorithm uses at most 2m (re-)assignments, leading to a competitive factor of 4.

This approach might prove to be useful in practice, particularly if the code requests
only use half the available bandwidth.

8 Enforcing arbitrary configurations

We have discussed already the hardness of the one-step offline problem. We constructed
a special configuration of the code tree in order to encode an instance of another hard
problem, 3D-matching. One can wonder whether this configuration would ever be attained
when an optimal one-step offline algorithm is applied to a sequence of requests. In this
section we show that for any configuration C ′ and any optimal one-step algorithm A there
exists a sequence of code insertions and deletions of polynomial length, so that A ends up
in C ′ on that sequence. The result even holds for any algorithm A that only reassigns codes
if it has to, i.e. it places a code without any additional reassignments if this is possible and
does not reassign after a deletion.

We start with the empty configuration C0. The idea of the proof is to take a detour
and first attain a full-capacity configuration Cfull and then go from there to C ′. The second
step is easy: It suffices to delete all the codes in Cfull that are not in C ′; A must not do
any reassignments during these deletions. First, we show that we can force A to produce
an arbitrary configuration Cfull that uses the full tree capacity.

Theorem 8.1. Any one-step optimal algorithm A can be led to an arbitrary full configu-
ration Cfull with n assigned codes by a request sequence of length m < 3n.
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Proof. We proceed top-down: On every level l′ with codes in Cfull we first fill all its un-
blocked positions using at most 2h−l′ requests of level l′. A just fills l′ with codes. Then
we delete all codes on l′ that are not in Cfull and proceed recursively on the next level.

Now we have to argue that we do not insert too many codes in this process. To see
this, observe that we are only inserting and deleting codes above the n codes in Cfull, and
we do this at most once in every node. Now if we consider the binary tree the leaves of
which are the codes in Cfull, then we see that the number of insert operation is bounded
by n + n − 1, where n − 1 is the number of inner nodes of this tree. Together with the
deletions we obtain the statement.

Now we come back to arbitrary configurations.

Corollary 8.2. Given a configuration tree C ′ of height h with n assigned codes, there exists
a sequence σ1, . . . , σm of code requests of length m < 4nh that forces A into C ′.

Proof. To go from C ′ to Cfull we fill the gap trees in C ′ (as high as possible) with codes.
Each code causes at most one gap tree on every level, hence we need at most h codes to
fill the gap trees for one code. Altogether we need at most nh codes to fill all gap trees.
According to Theorem 8.1, we can construct a sequence of length m < 3nh that forces A
into Cfull. Then we delete the padding codes and end up in C ′. Altogether we need at
most 4nh requests for code insertion and deletion.

9 Conclusions and future work

In this paper we bring an algorithmically interesting problem from the mobile telecommu-
nications field closer to the theoretical computer science community. To our knowledge,
we are the first to analyze the computational complexity of the OVSF code assignment
problem. We point out that the algorithm in [17], believed to have solved the one-step
offline CA problem, is erroneous, and we prove that for a natural encoding of the input
the problem is NP -complete. We present an exact algorithm for the one-step offline CA
problem that has running time nO(h). We also prove that the simplest greedy algorithm
for the one-step offline version is an h-approximation algorithm. Next we introduce and
analyze the more realistic online version of the problem. For insertions and deletions the
online strategy that uses the compact representation is O(h) competitive. We also show
that a slight modification of the compact representation algorithm that uses only twice
the available bandwidth is 4-competitive. The merits of this paper, besides the rigorous
analyses and results presented, lie in the challenge addressed to theoreticians to solve the
open problems raised by our work:

• Is there a constant approximation algorithm for the one-step offline CA problem?

• Can the gap between the lower bound of 1.5 and the upper bound of O(h) for the
competitive ratio of the online CA be closed?
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• Is there an instance where the optimal general offline algorithm has to reassign more
than an amortized constant number of codes per insertion or deletion?

• What is the complexity of the general offline CA problem?

• Is there a fixed-parameter tractable [8] algorithm for the one-step offline CA problem
with at most k reassignments?
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A Exact algorithm with example

Algorithm A.1 shows the pseudo-code for the dynamic programming approach presented in
Section 5. For a better understanding of the algorithm we give an example for the original
tree in Figure A.1 and a new code request at level two.

0
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2

3

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

j

k

new

Figure A.1: Original tree and the new code request

The tables that the algorithm constructs are shown in Table 1. For the root level M3

it is enough to consider only the final tree signature. The reconstruction of the final tree
(which is performed by the function call to ReconstructTree in Algorithm A.1) starts with
the table M3, takes the final signature for the root node, and goes recursively following the
left and right pointers into the table M2. The final tree configuration of the example can
be seen in Figure A.2.
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Figure A.2: Final tree configuration for the example in Figure A.1
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Algorithm A.1. Optimal Algorithm AOPT

in: Th original tree configuration; l level of the new code
out: T ′

h optimal final tree configuration
params: h height of the tree; Mk table for level k; Sk temporary signature for level k;
Mk[Sk, j] entry in table Mk with the following fields: maximum profit P , left tree signature
L, right tree signature R; lj and rj are the column indices for the left and right subtrees
of node j
begin

for k ← 0 to h do

Allocate(Mk);InitProfit(Mk,0)
end for

Initialize(M0)
for k ← 1 to h− 1 do

{iterate over all nodes of level k}
for j ← 0 to 2h−k − 1 do

{fill in column j}
for all signatures Sleft in Mk−1 do

for all signatures Sright in Mk−1 do

Sk ← Sleft + Sright augmented with a 0 at position k
P ←Mk−1[Sleft, lj].P + Mk−1[Sright, rj].P
if Mk[Sk, j].P < P then

Mk[Sk, j].P ← P
Mk[Sk, j].L← Sleft

Mk[Sk, j].R← Sright

end if

end for

end for

if node j originally had a code assigned to it then

Sk ← [1, 0, . . . , 0, 0]T

Mk[Sk, j].P ← 1
Mk[Sk, j].L← the all zero signature from col lj of Mk−1

Mk[Sk, j].R← the all zero signature from col rj of Mk−1

end if

end for

end for

FillIn(Mh[V
′
h, 0])

T ′
h ← ReconstructTree(Mh[V

′
h, 0])

return T ′
h

end AOPT
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Table 1: Tables constructed by Algorithm A.1 for the example in Figure A.1
M0 0 1 2 3 4 5 6 7
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