
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Binary Search on Two-Dimensional Data

Riko Jacob

ABCDE
FGHIJ
KLMNO

TUM-I0821
Juni 08

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-06-I0821-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut für Informatik der
Technischen Universität München

Binary Search on Two-Dimensional Data

Riko Jacob

Institut für Informatik, Technische Universität München
D-80290 München

Abstract

We consider the problem of searching for the predecessor (largest element that is smaller than
some key) among elements that are organized as a matrix such that every row and every column
is weakly monotonic (sorted matrix). The results are matching upper and lower bounds for the
number of accesses to the matrix and comparisons with the key.
Keywords: sorted matrix, binary search
ACM Computing Classification System (1998): F.2.2

1 Introduction
It is well known that the complexity of searching for the predecessor of some key in a set of size n
heavily depends on how the set is organized: If it is sorted, it can be done in log n steps, if nothing
is known about the set, it will take n steps. Here, we consider a setting where the set is organized
in a matrix (two dimensional array) such that each column and each row is sorted. A generalization
of such matrices are known in the literature as “Young Tableaux”, and there is a rich literature on
the topic, see for example the textbook by Fulton [2]. Usually, such tableaux are used to represent
elements of an algebra, and the interest is in the structure of some operations acting on the tableaux.
In contrast, here we are considering a single tableau in which we search a predecessor as efficiently
as we can.

This questions originates in the work of Matthias Altenhoefer and Sven Oliver Krumke in the
context of parametrized search for flow computations. There, an access to the oracle corresponds to a
max-flow computation on G, and the matrix has one row and column per edge of G.

A variant of the problem, where oracle questions are cheap (as expensive as matrix accesses) has
been considered in [1].

1.1 Setting
Here, we assume that the entries of the matrix stem from an ordered universe, and that the only
operation allowed on such elements is the comparison. The indices necessary to describe positions of
the matrix are natural numbers. We assume that such numbers (up to n ·m, the size of the matrix) can
be added and compared at unit cost.

We count the indexed accesses to the matrix separately. Further, comparisons involving the ele-
ment for which we search the predecessor are counted as oracle questions.

1

Monotone Matrix Search

Given A real (totally ordered universe) m×n matrix A, where the values are sorted within a column
and sorted within a row. More precisely, we have that i ≤ i′ and j ≤ j′ implies aij ≤ ai′j′ .
A monotone oracle B; internally, B contains a value b, and a question a to the oracle gives the
yes/no answer to a < b

Output A largest entry of A for which the oracle answers yes, i.e., an aij ≤ b such that no ai′j′ exists
with aij < ai′j′ < b.

One algorithm to solve a Monotone Matrix Oracle is the following: Sort the n · m entries of the
matrix A in time O(nm log nm), then use the oracle B to perform a binary search. This algorithm
accesses n · m elements of the matrix, and uses the oracle dlog n ·me times. In the following, we
want to reduce the number of accesses to the matrix without significantly increasing the number of
questions to the oracle.

semi-Monotone Matrix Search is an Monotone Matrix Search, where only the columns are sorted.
Here it is convenient to allow different sized columns (there is no connection between columns any-
way). In that situation the vector (m1, . . . ,mn) gives the size (length) of the different columns.

f, ` Matrix Oracle An n × n Matrix given by aij = (f + i`)/j. After mirroring around a vertical
axis, this matrix is strictly monotone in the above sense.

2 Auxiliary Algorithms

2.1 Weighted Median
The following result appeared in [3].

weighted median

Given n pairs (ai, wi)

Output a such that for N =
∑

i wi we have ∑
i:ai<a

wi ≤ N/2

and ∑
i:ai>a

wi ≤ N/2

Lemma 1 weighted median can be computed in O(n) time (assuming addition to be constant time).

Proof. Find the unweighted median in O(n) time. Check if it is too big or to small in linear time.
Recurse with updated weight demand. ut

2

3 Lower Bounds

3.1 Oracle
Lemma 2 For every n,m, there is a Monotone Matrix Search matrix A such that for every algorithm
there exists an oracle that is queried at least log n + log m many times.

Proof. Consider the matrix A with the entries aij = i · n + j. Now, all the n ·m different outcomes
possible, depending on the oracle. The questions to the oracle that an algorithm asks on A gives rise
to a binary decision tree, where each leaf is labeled with an entry of A. Hence, there must be n · m
leafs, which is impossible if the algorithm asks always less than log n + log m questions. ut

3.2 Matrix Access
Antichain

Lemma 3 There exists a n × n Monotone Matrix Search A such that any algorithm must access at
least n entries.

Proof. Define M = n2 + 2. Consider the matrix A with entries aij = i · n + j if j < n − i,
aij = 2M + i · n + j if j > n − i, and ai,(n−i) = xi = M + i. Take an oracle with value M . This
matrix is clearly Monotone Matrix Search, and the correct answer is an−1,1 < M − 1. Now, if an
algorithm does not access one of the positions on the secondary diagonal, one of the values xi is not
read. Hence, the matrix A′ that is like A and only xi is changed to M − 1, will lead the algorithm to
the wrong answer. Any algorithm must access at least all the n elements on the secondary diagonal
of A. ut

semi-Monotone Matrix Search

Lemma 4 A semi-Monotone Matrix Search with chain-length m1, . . . ,mn requires
∑n

i=1(1+log mi)
accesses to the matrix by a deterministic algorithm in the worst case.

Proof. Consider the following game where the oracle is fixed to 0 (and may be accessed by the
algorithm without cost). The algorithm and the adversary take turns. The algorithm points at a
position, the adversary announces some value for this position. With m = max{m1, . . . ,mn}, the
adversary may use integers in [−m, m]. The goal of the algorithm is to find in each column the
position of the smallest positive number. The number of alternations the adversary can enforce gives
a lower bound on the worst case number of accesses to the matrix by the algorithm.

The strategy of the adversary is the following: It “fills in” consecutive negative numbers from the
bottom and consecutive numbers from the top. Initially, it places −(m + 1) below, and m + 1 above.
Now, if the algorithm asks a position that is not yet filled in, the adversary has the choice (within
its self-given framework), to either extend the positive numbers or the negative numbers. It chooses
whatever leaves more spaces open. Hence, the algorithm can at best force the adversary to reduce the
number of open positions from m′ to d(m′ − 1)/2e.

Hence, the biggest m(i) for which an algorithm can get away with i questions is given by the
recursion m(1) = 1, m(i + 1) = 2m(i) + 1, which has the solution m(i) = 2i − 1. From this the
statement of the lemma follows. ut

3

Using Yao’s Minimax-principle [5, 4, p. 35], Lemma 4 shows that the worst case running time can-
not be improved by using randomization. This principle (together with some standard considerations)
show that Lemma 4 remains valid for the expected execution time.

non-square Monotone Matrix Search

Lemma 5 An n × m Monotone Matrix Searchwith m ≥ n requires n log bm/nc accesses to the
matrix.

Proof. If m < 2n there is nothing to be shown. Otherwise, there is a secondary diagonal consisting
of n pieces, each bm/nc positions long, pieces non-overlapping. Place −∞ in the positions below
this, +∞ above. On the diagonal, embed an arbitrary n× bm/nc semi-Monotone Matrix Search. By
Lemma 4 the statement of the lemma follows. ut

4 Monotone Matrix Search Algorithms

4.1 Algorithm 0 / Optimizing Matrix Accesses only
The following algorithm can be understood as a variant of one of the algorithms in [1].

Consider the situation of a square matrix A and n = 2k − 1. Hence, there are k natural subma-
trices Ai, given by both indices being divisible by 2k−i for i ∈ {1, . . . , k}. We generalize the task in
the following way: Instead of asking only for the largest element for which the oracle answers yes,
we want in every row and in every column this element (in case of ties, the one with largest index).
Actually, this is equivalent to finding the correct position of b in each row and each column. Now,
assume this knowledge is already available for the submatrix of level i, and we want to create it for
level i+1. To this end, we only need to access elements that could still be this boundary. Observe that
every new element either is in an old row or column and has two old horizontal and vertical neighbors,
or has two old diagonal neighbors. Because old rows, columns and diagonals are ordered and there
the boundary is known, there can be at most one new element per old row, column, and diagonal.
Hence there are at most 2i + 2i + 2 · 2i = 4 · 2i new elements to be accessed and tested in this round.
Hence, this algorithm accesses in total

∑k
i=1 4 · 2i = 4 · (2k+1 − 1) ≤ 8n out of the n2 elements of

the matrix.
The number of questions to the oracle can be kept at k2 = log2 n by not asking every element

individually. Instead, we collect all new elements of the matrix of one round, sort them, and perform
a binary search on this list. Then, all necessary answers of the oracle can be deduced. The O(n log n)
computation time of this step can be improved to O(n) by replacing the sorting with repeated median
finding.

4.2 semi-Monotone Matrix Search
Considering the columns of a semi-Monotone Matrix Search as individual tasks, it can certainly be
solved with n log m oracle questions and matrix accesses. A first improvement is to proceed in rounds,
where each column contributes with the current median of the remaining possible answers. Again,
instead of asking all n oracle questions, the n values are sorted and a binary search with the oracle is
performed, yielding all n answers. The total number of questions to the oracle is now log n · log m.

4

The following algorithm reduces this to O(log n + log m) questions to the oracle. The main idea
is to let go the synchronization between the searches in the different columns. Then, in every column,
at all times, the search can be characterized by 3 entries, namely the smallest one known to be larger
than b, the largest one known to be smaller than b, and the middle position between the two, the
element xi for which the comparison with b (the question to the oracle) is pending (unless the column
is finished). This identifies the number mi of elements in this column that are still potentially the right
answer. Now, the median x of the xi weighed with mi is computed and is used to question the oracle.
If the oracle answers “yes” (x < b) this makes progress for all searches with xi ≤ x, if the answer
is “no” it makes progress for all searches with xi ≥ x. If a search makes progress, the number mi

is halved. Because x is the weighted median, this progress happens for one half of the potential
outcomes, and

∑
i mi is reduced by a factor 3/4. Hence, the number of rounds and oracle questions

is O(log(n · m)) = O(log n + log m), and the number of accessed matrix elements is O(n log m),
which is optimal.

4.3 square Monotone Matrix Search

Now, the ideas of Section 4.1 and 4.2 can be combined to an algorithm that on square Monotone
Matrix Searchs performs O(n) accesses to the matrix and O(log n) oracle questions.

Observe that we can identify new elements to be accessed in the matrix (and to schedule to im-
plicitly check with the oracle) as soon as its neighbors one level higher are identified to be on the
boundary. Define for every element that is accessed in Algorithm 0 in level i its weight to be (2k−i)2.
Similarly to Section 4.2, we keep a list of active nodes (for which the comparison with the oracle is
pending), compute their weighted median, and query the oracle with this median. This resolves either
all active nodes whose values are at least as large as the median, or at most as large as the median.

If an element a of level i is resolved (implicitly compared to the oracle), it gives rise to at most
three new elements on level i + 1, namely one for the row, one for the column, and one for the
diagonal. Because the weight of one such element is one quarter of the weight of a, exchanging a
with its three replacements (follow-ups), still reduces the weight of active nodes by one quarter of
the weight of a. Hence, every question to the oracle reduces half the weight of the active nodes by a
factor 3/4. Because initially there is one active node of weight n2, the total number of queries to the
oracle is log4/3 n2 = O(log n).

4.4 general Monotone Matrix Search

Assume w.l.o.g. n > m. Select n columns of A at distance roughly n/m, leading to the square
submatrix A′. Solve Monotone Matrix Search on A′, remembering the dividing line. Now, solve the
remaining pieces of the rows as columns of a (transposed) semi-Monotone Matrix Search. In total,
this gives O(log nm) questions to the oracle and O(ndlog(n/m)e accesses to the matrix (both terms
dominated by the second part).

4.5 f, ` Matrix Oracle

For the particularly structured case of a f, ` Matrix Oracle, a simpler algorithm achieves O(n) matrix
accesses and O(log n) oracle queries, asymptotically matching the Monotone Matrix Search case. For

5

non-square situations it achieves O(min(n, m)) accesses to the matrix, improving over the general
case.

Extend the matrix to a real valued function in the plane (x, y) 7→ (f + x`)/y. The level curves
of this function are straight lines of the form y = f + x`. All these straight lines meet in the point
(−f/`, 0). Hence, the overall task is to find the point with integer coordinates in [1, n] × [1, m] with
highest slope from (−f/`, 0) and positive oracle answer.

The algorithm first performs a binary search on the points of the form (i, m) and (n, i) (the totally
ordered backmost boundaries). This leads to two points a, b on the backmost boundary of the square.
Next, it performs another binary (perhaps exponential) search at a perpendicularly to the boundary.
Now, the remaining cone from (−f/`, 0) has within [1, n] × [1, m] the height and width at most 1.
Hence, at most one element per column and per row (whatever is less) still needs to be considered.
These elements can be computed with constantly many multiplications, divisions and +1 or -1.

5 Adaptivity to Short Antichain
In the above considerations, we analyzed the worst-case performance of the algorithms. It is possible
to improve on this if the antichain of elements smaller than b is short.

It is possible, that for a sorted matrix A and an oracle b a very short proof of the correct output
exists. For example, if the smallest entry of a row is actually larger than the largest value of the
previous row (aij = i ·n+ j). Then with the oracle n+ .5 it is sufficient to evaluate a1n = n (showing
that entries in the first row are at most n) and a21 = n + 1 (showing that the remaining matrix is at
least n + 1).

More generally, a position (i, j) of A is called an upper witness if b ≤ aij and ai−1,j < b,
ai,j−1 < b. Symmetrically, a position with aij < b and b ≤ ai+1,j , b ≤ ai,j+1 is called a lower witness.
Obviously, any correct algorithm needs to access all upper and lower witnesses. Observe that the
witnesses form a staircase (the boundary between smaller than b and larger than b), where right-turns
are around lower witnesses and left-turns are around upper witnesses. Hence, the number of lower
and upper witnesses can differ by at most one. Let p denote the number of witnesses. In the following,
we discuss an algorithm whose number of accesses to the matrix depends on p in an asymptotically
optimal way.

5.1 Adaptive Algorithm
The following algorithm is a modification of Algorithm 0. To show this analogy, define for an inte-
ger x the number z(x) to be the number of trailing zeros in binary representation. Like in Algorithm 0
we consider coordinates with larger z(x) first, mimicking a binary search.

• Maintain a region of possible witnesses, partitioned into L-shaped regions (alternating direc-
tions), with the invariant that in each L is at least one witness.
Similar to the other algorithms, as described in detail below, from each L one entry of the ma-
trix participates in a weighted median search that results in an oracle question comparing some
of the entries with b.

• One L is specified by 3 x-coordinates x1, x2, x3 and 3 y-coordinates y1, y2, y3 (all integral).
Coinciding lines are allowed (L is a rectangle).

6

Keep the invariant that for x1 < x < x2 we have z(x) < min{z(x1), z(x2)}, and the analog
statement for x2, x3, y1, y2 and y2, y3.
Different Ls overlap only at the side where the boundary enters and leaves, there the dividing
lines (given by x1 and y3 or y1 and x3) are shared with the neighboring L. More precisely,
the positions (xi, yj) are already compared to the oracle, such that the other boundaries are
already known to not contain further witnesses. Hence, the area for a lower L (turning right) is
(x3 − x1 − .5) · (y3 − y1 − .5) − (x3 − x2 + .5) · (y3 − y2 + .5), an upper L analogously has
area (x3 − x1 − .5) · (y3 − y1 − .5)− (x2 − x1 + .5) · (y2 − y1 + .5). It is allowed that (x2, y2)
is the only witness of an L.
Initially, there is one degenerated L consisting of the whole matrix; Assuming the dimensions
of the matrix to be powers of two by filling in +∞ or−∞, this satisfies the invariants about z(.)
with x1 = x2 = y1 = y2 = 0, y3 = n, x3 = m.

• In every refinement step of a region double precision, i.e., choose x12 = (x1 + x2)/2, i.e., the
x-value with largest z(x) between x1 and x2. Choose x23, y12, and y23 analogously. This leads
to 5 × 5 new probe positions, of which 7 are not already implicitly compared to the oracle.
Points on the boundary might already be clear by previous questions of other Ls, other points
might be clear by previous questions to the oracle. (All of this is ignored in the analysis.)

• Access and sort the entries at the probe positions, build the binary tree of height 3 that models
a binary search for b in the probes. Following a path in this tree, the current probe participates
in the median search (resulting in a question to the oracle) with weight (3/4)

i
3 times the area of

the original L, where i = {0, 1, 2} denotes the distance from the root in the binary search tree.

• Once a leaf of the decision tree is reached, the grid inside the L-region is completely evaluated.
One possibility is that the L just shrinks in width. By the choice of new lines, the invariants are
maintained.
The other possibility is that three or more (always an odd number) of new L-shaped regions
(possibly degenerated) come into existence. Observe that there are at most 4 rectangles in a
row or column (inside the L). Hence, there are at most two consecutive non-corner rectangles,
such that these rectangles can be attached to Ls. If there is one such rectangle, one (arbitrarily)
of the Ls is degenerated. Hence, only neighboring x-values and y-values are used to define new
Ls. This maintains the invariant about z(.).

5.2 Analysis

Oracle questions Define γ = (3/4)
1
3 . The total virtual weight is the sum of the weights of elements

participating in the median selection. Note that this is one point from every L. At the very first step,
there is only one degenerated L with weight nm. Note that an L with weight < 1 cannot contain
a point and has hence weight 0. Now, for every point that is implicitly answered by the oracle, the
follow up weight (virtual area, perhaps summed up) is at most the current multiplied by γ < 1: During
the binary search, this factor changes from γj to γj+1, when the L is split from γ2 to 3/4 = γ3 or less.

Hence, every oracle question reduces the remaining total virtual weight by (1 − γ)/2 > 0. The
factor is τ = 1− (1−γ)/2, hence the task is finished after x oracle questions if the area is nmτx < 1,
log nm + x log τ < 0, x > − 1

log τ
log nm. Hence, at most 15 log nm oracle questions suffice.

7

Matrix accesses Assume m ≥ n. The following discussion assumes that p is a power of two.
Consider running Algorithm 0. Annotate positions accessed by this algorithm with the round they are
accessed in. After for log n

p
rounds, the resulting region where further witnesses must be consists of

O(p) rectangles of size n
p
× m

p
, and the total number of accesses to the matrix is O(p).

Define the width of an L to be the smaller side of the corner-rectangle, i.e., for a right turning L
min{x2 − x1, y2 − y1}, and the relative width v = min{x2−x1

m
, y2−y1

n
}. If v > 1/p, then at least one

of the probe positions of the adaptive algorithm has a level smaller than log p. Charge the constantly
many accesses of refining this L to the probe with this smallest annotation.

Observe that the Ls used in the algorithm form a hierarchy (tree by inclusion, no subsequent L
ever extends outside an ancestor). Mark all Ls that have relative width v > 1/p, but not all of their
children have this. Then, the total access cost in marked Ls and their ancestors is O(p) by comparison
with Algorithm 0, and the marked Ls form an alternating staircase from lower left to upper right.

Say that an L passes its name on to its leftmost child, the other children are said to be created
in the step. Observe that one L (identified by its name over time) will use at most logarithmic in its
area number of rounds and accesses to the matrix before it identifies a single witness. In this way, we
can account the matrix accesses to certain witnesses, namely, the overall number of accesses within
marked Ls is the sum over all witnesses, taking the logarithm of its Ls. More precisely, focus on the
Ls with a lower witness (turning right), the other Ls yield the same bound. Note that no two such Ls
contain the same x- or y-coordinate. Denote by (Xi, Yi, bi)i=1...k the dimensions (x3 − x1) and the
number of points of the staircase formed by the marked lower witness Ls. Now we have

∑
Xi = m,∑

Yi = n,
∑

bi ≤ p/2 + 1, and the total access inside this Ls is bounded by O(
∑k

i=1 bi log XiYi).
Observe that the number of witnesses per L is between 1 and its width. Hence, the number of Ls is
k ≤ p and k ·m/p ≥ p, i.e., k ≥ p2/m. Now, we want to find an upper bound for w =

∑k
i=1 bi log xi.

To this end, observe that w cannot decrease if we shift some weight (bi) from a small to a larger or
equal xj . Hence, as long as there are bi and bj with bi + bj < m/p, we can shift weight to the larger
x.. After these operations, we have p2/m ≤ k ≤ 2p2/m, and we continue by increasing all bi to m/p.
Then we get w ≤ 2p2

m
m
p

∑
log xi = p

∑
log xi. It is well known that the sum over the logarithms

is maximized for equally distributed xi = m/k = m m
p2 =

(
m
p

)2

. Hence, we get w ≤ 2p log m
p

, as
desired.

Applying the same reasoning to the yi, we arrive at the number of accesses to the matrix being
O

(
p log m

p

)
.

For p = Θ(n), this is optimal by the Lemma 5. Generalizing that idea, we can embed any p×m/p
semi-Monotone Matrix Search into an n×m matrix. Hence, the lower bound of Lemma 4 implies a
lower bound of Ω(p log m

p
), matching the upper bound asymptotically.

Numbers The algorithm needs to be able to calculate (multiply, add, compare) with numbers up
to 27(nm)3 (representation size O(log nm)). If we assume it does so in constant time per algebraic
operation, the computation time is asymptotically the same as the number of accesses to the matrix.

6 Acknowledgment
I would like to thank Sven Oliver Krumke and Matthias Altenhoefer for introducing me to the problem
and for several fruitful discussions.

8

References
[1] G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: Sorted matrices. SIAM

Journal on Computing, 13(1):14–30, 1984.

[2] W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1997. With applications to representation theory and geometry.

[3] D. B. Johnson and T. Mizoguchi. Selecting the kth element in x + y and x1 + x2 + · · · + xm.
SIAM Journal on Computing, 7(2):147–153, 1978.

[4] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge,
UK, 1995.

[5] A. C. C. Yao. Probabilistic computations: towards a unified measure of complexity. In Proc. 18th
FOCS, pages 222–227. IEEE, 1977.

9

