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Abstract. We consider the well known problem of finding two identical
elements, called a collision, in a list of n numbers. Here, the (very fast)
comparison based algorithms are randomized and will only report exist-
ing collisions, and do this with (small) probability p, the success probabil-
ity. We find a trade-off between p and the running time t, and show that
this trade-off is optimal up to a constant factor. For worst-case running
time t, the optimal success probability is p = Θ (min{t/n, 1}t/(n log t)).
For expected running time t, the success probability is p = Θ (t/(n log n)).

1 Introduction

We consider the problem of finding two equal elements, called a collision, in a list
of numbers. This is a fundamental problem in computational complexity theory
and among the first decision problems for which non-trivial lower bounds were
known. It is usually formulated as the decision if all elements of a list are different,
and is hence called “element uniqueness” or “element distinctness.” One
way to guarantee that no element is repeated is to provide a linear sequence of
strict inequalities. Actually, in many models of computation where numbers are
treated as atoms, the lower bound of Ω(n log n) for sorting carries over to this
decision problem. The problem has been studied in all kinds of machine models,
for example in the stronger algebraic decision tree model [1], in a general decision
tree setting [2], or on a quantum computer [3, 4].

Motivation The investigation in this paper was triggered by a question in cryp-
tography, namely the precise complexity of computing discrete logarithms in a
cyclic group of roughly n ≈ 2h numbers, where the input can be specified us-
ing O(h) bits. Here, cryptographic primitives are build on the assumption that
exponentiation is a good one-way function, i.e., it is easy to compute x = az

mod n, but it is difficult to invert this function, namely to compute z from x,
the discrete logarithm of x to the base a.

One classical algorithm for the discrete logarithm is the so called baby-step
giant-step algorithm that produces two lists A,B of

√
n elements and determines

the discrete log from a collision between the lists, i.e., elements a ∈ A and b ∈ B
with a = b, a generalization of the collision problem considered here. If we allow
? Work done at ETH Zurich, Institute of Theoretical Computer Science, Switzerland.



the algorithm to use a hash table and assume that the algebraic operations
have unit cost, this algorithm takes O(

√
n) time, whereas a comparison based

algorithm, where a hash table is not allowed and is replaced by a balanced
search tree, takes O(

√
n log n) time. Now, in the cryptographic setting, of course

lower bounds for the discrete log computation are even more interesting than
upper bounds. Today, no good general lower bounds are known, which led to the
investigation of restricted classes algorithms. One such restriction are abstract
models of computation [5], that treat the group as a black box that allows
only the group operations and a comparison of elements. Now, one can show
a
√

n lower bound to compute the discrete log with constant probability if the
group order n is prime [5], matching the performance of the hash-table based
version of the baby-step giant-step algorithm. Here, we consider the situation
of allowing only comparisons, which makes a hash table impossible. We show
that this strengthens the lower bound by the logarithmic factor the algorithm is
slowed down, and that this remains the case for small success probabilities. This
setting also motivates to consider worst case running times which translate into
the assumption that a code-breaking algorithm can run only for a limited time,
which might be in contrast to its expected running time.

Randomized Algorithms Here, we consider randomized algorithms (in the Monte-
Carlo sense) with one-sided error. Such an algorithm must announce an existing
collision with probability p, but never claim a collision for an input consisting of
distinct elements. We are interested in how the running time depends on the suc-
cess probability p. More precisely, we consider both the success probability p and
the running time t as functions of n, and are mainly interested in the asymptotic
behavior for large n.

Randomized Input Intuitively, it is clear that a completely random input will
make it particularly difficult to find a collision, and, because the input is ran-
dom, even a deterministic algorithm has access to randomness. This idea directly
suggests two particular uniform distributions that are discussed in detail in Sec-
tion 1.2. First, there is the uniform distribution q of all inputs with precisely one
collision. This kind of input reveals the success probability of the algorithm. Sec-
ondly, there is the uniform distribution p of all inputs without collision. This is
useful to analyze the worst case running time of the algorithm. We analyze the
asymptotic worst-case and expected running time of deterministic algorithms
achieving success probability p. Using Yao’s Minimax-principle [6, 7, p. 35], we
can transfer the obtained lower bound to randomized algorithms.

Output and allowed errors For a comparison based algorithm, it is actually
equivalent to find a collision or to state the existence of a collision without
making an error. Certainly, if the algorithm needs to show a collision to have
success, it can as well just state that there is a collision. But also if a comparison
based algorithm announces the existence of a collision only if it is actually present
in the input, then it must have compared two identical elements, and hence is
in the position to report this collision.



It is also meaningful to consider only the decision problem and to allow the
algorithm to announce a non-existing collision with a certain probability q < p.
For a comparison based algorithm, this means that in some situations where
no comparison showed equality, the algorithm still announces a collision. By
eliminating this behavior one gets an algorithm that announces only existing
collisions and has success probability at least p− q.

New Results We parametrize the algorithms by a goal running time function t(n).
The deterministic Algorithm 1 achieves in worst-case O(t(n)) time a success
probability pt(n) = min{ t

n , 1} t
n log t when input is drawn from distribution q.

Here, and throughout the paper, log stands for the binary logarithm. In Sec-
tion 2.3, this algorithm is randomized, resulting in an algorithm with the same
worst-case performance on arbitrary input. Additionally, we analyze the above
situation for expected running times (instead of worst-case). There we find that
success probability p(n) requires running time tp(n) = Θ(p(n) · n log n), or put
the other way around, that expected running time t(n) allows for success prob-
ability pt(n) = Θ

(
t log t
n log n

)
.

Observe that in both situations, for any positive constant c we have pc·t(n) =
Θ(pt(n)). Vice versa, to change the success probability by a constant factor c,
it is always possible to choose a t′(n) = Θ(t(n)) with pt′ = c · pt. Hence, the
trade-off between running time and success probability can be formulated either
way, and it is meaningful to state that the mentioned algorithm is optimal up
to a constant factor.

On a side note, we also analyze the maximal number of random bits needed
by an algorithm to be Θ(− log p).

As is usual, the lower bounds are valid in a strong, non-uniform model of
computation (comparison trees), whereas the algorithms are quite general and
can be implemented in many uniform models of computation.

1.1 Related Work

The inverse setting, where a randomized comparison based algorithm solves “el-
ement uniqueness” (and not “collision”), has been studied by Snir [8]. There,
the algorithm needs to recognize that all elements are different with probabil-
ity p, but is not allowed to misclassify an input with collision. The result is a
lower bound of λn log n + λ log(p(1− λ)) for all 0 < λ < 1, which yields, for ex-
ample, for p = 1/ log n (with λ = 1/2) an Ω(n log n) lower bound. This shows an
important difference to collision, where this success probability can be achieved
in O(n) time. Grigoriev, Karpinski, Meyer auf der Heide, and Smolensky [9]
show that if the algorithm is allowed to misclassify with probability p < 1/2 in
both directions (two-sided errors), even for algebraic decision trees of constant
degree, there is an Ω(n log n) lower bound.

For the problem “collision”, or “element non-uniqueness” as they call
it, Manber and Tompa [10, 11] give a lower bound of Ω(n log n) for comparison
based algorithms that are not allowed to announce a collision if there is none, and



need to announce an existing collision with probability 1/2. This is the special
case of our result with p = 1/2. Similar to our main technical Lemma 3, they
bound the number of linear extensions of a graph, given that at least half of the
edges must be used, an idea going back to [12]. In contrast to the results presented
here, their estimate heavily depends on the success probability being 1/2, and
does not give a lower bound for smaller probabilities like 1/ log n.

Our Lemma 3 is an observation about the structure of the directed acyclic
graph Gc describing the outcomes of comparisons at a (leaf) node c of the com-
parison tree. The observation is that a high success probability can only be
achieved if the number of linear extensions is small. The permutations ending
at c describe linear extensions of Gc, and the success probability of one permu-
tation/linear extension π is given by the number of successor relations of π that
coincide with edges of G. This number is also known as π, the number of steps
in G [13], and often analyzed as the number of jumps n− 1− π.

1.2 Preliminaries

The input to Collisionn consists of a list of n numbers x1, . . . , xn. The answer
is YES if there exist i 6= j such that xi = xj , and otherwise NO. The numbers
are assumed to be atomic to the algorithms, and the only operation on numbers
is the comparison x ≤ y. A set of inputs that are indistinguishable by such
comparisons are called an order type, and for Collisionn there is no loss of
generality in assuming that all xi ∈ {1, . . . , n}. An input without collision is
then a permutation π understood as xi = π(i). The variable j with xj = π(j) =
π(i)+1 is called the successor of i. The distribution p is defined to be the uniform
distribution over these n! different inputs.

Choosing uniformly from the inputs with precisely one collision is called the
distribution q. There are two interesting procedures to draw from this distribu-
tion.

The collision first procedure starts by choosing uniformly a pair i 6= j of
indices. Set xi = xj , and then choose a random ordering (permutation) of the
values of the variables x1, . . . , xj−1, xj+1, . . . , xn. In this way, the (n− 1)!n(n−
1)/2 different order types with precisely one collision are created with equal
probability.

Alternatively, the permutation first procedure chooses a permutation π
and a pivot o ∈ {1, . . . , n−1} of the collision, both with uniform probability. The
input is created by changing the value o to the value o+1, creating two elements
with value o + 1. More precisely, the input is given by xi = π(i) if π(i) 6= o, and
xi = o + 1 = π(i) + 1 if π(i) = o. Consider the permutation π′ that is identical
to π, only the values of o and o + 1 are exchanged. Then the input (π, o) is
indistinguishable from the input (π′, o). Further, these two representations are
the only way to create this order-type. Again, the n!(n − 1)/2 different inputs
are created with equal probability.

We denote the uniform distribution of inputs without collision when the
defining permutation is restricted to belong to S as p|S . With q|S we denote the
restriction of q where in the permutation first procedure π is restricted to the



set S. Note that q|S is not a uniform distribution because inputs can be created
from one or two permutations of S.

The focus of our considerations is the number of comparisons performed by
an algorithm. Hence, we model the algorithm as a family of comparison trees
of the following type: For every input size n (number of variables), there is a
comparison tree T , a rooted tree where every internal node c has a left and a
right child and is annotated by a pair (i, j). Every input x = x1, . . . , xn (with
or without collision) defines a path P (x) in T , the next node is given by the
outcome of the comparison, for xi < xj the left child, for xi > xj the right child.
If the comparison yields xi = xj , the path stops at the corresponding node.
Here, we assume that all nodes of the tree are reached for some input. This is a
non-uniform model of computation, the tree for n elements need not be similar
in any way to the trees for other n.

The success probability pT of T is the probability for an input x (with colli-
sion) drawn from distribution q that the last node of P (x) is an internal node,
and hence the collision is indeed detected. More precisely, we define the random
variable S(x) to be 1 if P (x) ends at an internal node, and 0 otherwise, i.e.,
P (x) ends at a leaf of T . For a given probability distribution on the input, we
define the success probability as E[S(x)].

This modeling reflects that we require our algorithms to have found the col-
lision if they answer YES. Indeed, any well defined comparison based algorithm
with this property can be described by a comparison tree T , with the same
success probability and performing not more comparisons than the original al-
gorithm.

By |P (x)| we denote the number of internal nodes on P (x), which is for
randomly chosen x a random variable, representing the number of comparisons
or running time on input x. We are interested in the expected running time
Cq = Eq[|P (x)|] and Cp = Ep[|P (x)|]. We are also interested in the worst-case
running time of T which is the maximal running time (number of comparisons)
for a possible input, which is given by the height of T .

2 The Algorithms

We start with the slightly simpler deterministic algorithms that rely upon ran-
dom input, then we also consider randomized algorithms. The connection be-
tween element uniqueness and sorting is well known for comparison based mod-
els of computation. Not surprisingly, all algorithms presented here are based on
sorting some subset of the input values. We use that the rank k element of a
list can be found in linear time [14], and that sorting k values takes O(k log k)
comparisons.

2.1 Deterministic or Worst-Case Time

Consider the following Algorithm 1 that is designed to run in worst-case O(t(n))
time. For t(n) = n log n time, this algorithm sorts the complete input and hence



Algorithm 1: Deterministic collision find
1 Determine r = min{n, t(n)} and k = min{r, t(n)/ log t(n)};
2 Select the k-smallest element xj of R = {x1, . . . , xr};

Determine S := {x ∈ R | x ≤ xj} /* |S| = k */

3 Sort S;
return the collision if two elements of S are equal;

finds the collision with probability 1. For t(n) = O(1) the success probability
is O( 1

n2 ), comparable to testing a single edge. Note that for the interesting case
t(n) ≤ n log n we always have k = t(n)

log t(n) .

Lemma 1. For a function t that can be computed in O(t(n)) time, Algorithm 1
runs in worst-case time O (t(n)) and computes Collisionn on input drawn from
distribution q with success probability at least p = min

{
t(n)
n , 1

}
t(n)

n log t .

Proof. The selection in Line 2 can be achieved in worst-case O(t(n) time [14].
Sorting k elements can be achieved in O(k log k) = O

(
t

log t log t
log t

)
= O(t)

worst-case time, for example with heap sort.
To compute the success probability of Algorithm 1, consider the “collision

first” procedure to draw an element from distribution q. The probability that the
collision is in the first variables (i < j ≤ r) is r

n
r−1
n−1 . The rank of the value xi = xj

within x1, . . . , xr is uniform between 1 and r− 1, hence the probability for it to
be ≤ k is k

r−1 . Hence, the success probability of Algorithm 1 is r
n

r−1
n−1

k
r−1 > kr

n2 .
If t(n) > n log n, we have r = k = n and hence p = 1, as stated in the lemma.
For n ≤ t(n) ≤ n log n we have r = n and hence p = k

n . Finally, for t(n) < n, we
have r = t(n) and hence r

n < 1, leading to p = r
nkn. ut

In Section 3.4 Lemma 8 shows that the trade-off between success probability
and worst-case running time is asymptotically optimal if t(n) < n. Otherwise,
this follows from Section 3.3, Lemma 6 because the worst case running time is
an upper bound on the expected running time.

2.2 Expected Time

In comparison to the worst-case time, it is easier to achieve good expected run-
ning times because on some inputs the algorithm may be slow if it is fast on
others. More precisely, if a fraction p of the inputs is sorted completely, the
success probability is p, and the expected running time is O(pn log n), as long
as the expected running time of a non-successful input is O(1). If p ≤ 1/n2,
comparing x1 and x2 suffices.

To achieve this, we use that in distribution q and p, the outcomes of the
i-th canonical test, comparing x2i with x2i+1 are independent for different i ∈
{1, . . . , bn/2c}, and will be used to emulate random bits. Choose the integer k
such that 2−k ≥ p > 2−k−1. For p > 1/n2, we have k ≤ 2 log n < bn/2c if n > 7.



The algorithm performs the canonical tests in the natural order. As soon as
one of the tests fails, the algorithm stops. Once test k succeeds, the algorithm
sorts the input and hence finds all collisions. Hence, the success probability is
at least 2−k ≥ p. The expected running time until a failing test is reached
is bounded by

∑k
i=1 i2−i = O(1). Hence, the expected running time is O(1 +

pn log n).
This running time is asymptotically optimal, for distribution p this is shown

in Section 3.3 (Lemma 6), for distribution q in Section 3.5 (Lemma 9).

2.3 Randomized Algorithms

Expected time Again, if only a good expected running time should be achieved,
the algorithm is very simple if we allow to toss an arbitrarily biased coin. With
probability p, we solve the problem deterministically in O(n log n) time, other-
wise we do nothing and declare that we find no collision. This algorithm has
expected success probability p and expected running time O(pn log n) on any in-
put. If only unbiased binary coins are allowed, p should be overestimated as 2−k,
leading to the same asymptotic performance, which is optimal by Theorem 1.

Worst-case time Now consider the case where the randomized algorithm
should never exceed a certain running time, and still find a collision with rea-
sonably high probability. The idea here is to use few random bits to “simulate”
distribution q in Algorithm 1.

Let t = t(n) ≤ n log n be the goal for a asymptotic worst-case running time.
We design an algorithm with running time O(t(n)) and high success probability.
For the case t < n/2 the variables are divided equally into k = bn/tc classes,
such that the size is bn/kc or dn/ke. Now, choose uniformly at random two
different such classes and call the resulting set of variables R and define r = |R|.
Observe that dn/ke ≤ n/k + 1 ≤ n/(n/t− 1) + 1 = t/(1− t/n) + 1 ≤ 2t + 1, and
hence r = O(t(n)). Divide the set [r] equally into ranges of length at least t/ log t
and at most 2t/ log t. Choose one such range [a, b], determine the rank-a element
of R and the rank-b element, such that another scan over R yields the set S
of elements whose rank is in the range [a, b], and sort this set S. By a similar
calculation as for Algorithm 1, the worst case running time of this algorithm
is O(t(n)).

To have success, the algorithm needs to randomly choose the two classes
where the variables of the collision are located, and it must randomly choose the
rank of this collision within the set R.

For the case t < n, there are k ≤ n/t classes, and at most log t ranges,
such that this success probability is at least p = (t/n)2(1/ log t). Otherwise, only
the choice of the range is random, the range with the collision is chosen with
probability at least t

log t
1
n .

We summarize the above discussion in the following Lemma.
Lemma 2. Let t be a function that can be computed in O(t(n)) time, then
there is a randomized algorithm that runs in worst-case time O (t(n)) and com-
putes Collisionn with success probability at least p = min

{
t
n , 1

}
t

n log t .



The performance of the described algorithm is asymptotically optimal as
discussed in Section 3.

3 The lower bound

The purpose of this section is to show that the four algorithms introduced in
Section 2 achieve an asymptotically optimal trade-off between running time and
success probability, for all functions t.

By Yao’s minimax principle, this task reduces to showing lower bounds for
deterministic algorithms working on random input, i.e., the two algorithms of
Section 2.1 and Section 2.2. It then follows that also the randomized algorithms
cannot be faster. For the sake of completeness, we summarize the results of this
section (in particular Lemma 8) in the following theorem. It also states a lower
bound on the amount of randomness required.

Theorem 1. Assume a randomized algorithm A solves Collisionn for all in-
puts in time t and with positive success probability. Then, with r = min{t, n}
and p ≤ pt = 8r2

(n−1)2 log(2t) , the success probability of A is at most p and there
exists an input where it uses at least − log pt random bits.

Proof. We see the randomized algorithm A as first using a certain number b
of random bits (biased or unbiased) to select one of at most 2b deterministic
algorithms with worst-case running time t. By Yao’s minimax principle [6, 7,
p. 35] and Lemma 8, any deterministic algorithm has success probability at
most pt, giving the bound on the success probability of the algorithm. Let X =
n!(n− 1)/2 be the number of different inputs. Any deterministic algorithm has
success on at most X · pt inputs, such that the total number of successful inputs
is Xpt2b. If pt2b < 1, there would exist an input that fails for all random choices.
Hence, 2b ≥ 1/pt, b ≥ − log pt. ut

At the heart of the lower bound is the consideration about a single leaf of
the comparison tree that relates the fraction of the input ending at this leaf to
the success probability induced by this leaf. This basic trade-off is formulated
between success for input from q versus running time (fraction of input reaching
the leaf) of p, which is the worst-case running time of the tree. Transforming
this into bounds on the expected running time for q, and taking into account
that sublinear algorithms cannot access all the variables, requires some extra
work.

3.1 High-probability DAGs

For the purposes of analyzing T , we annotate every node c of T by the directed
graph Gc that reflects the already performed comparisons. The vertices of G′

c

are the variables, and there is a directed arc from xi to xj if the variables were
compared, and xi < xj . By this definition, G′

c is a directed acyclic graph. Since
the order relation is transitive, and because we are interested in single collisions



we consider the irreducible core Gc of G′
c, i.e., the graph with the fewest edges

and the same transitive closure as G′
c.

This leads to an alternative way of computing the success probability of T
following the “permutation first” procedure to draw an input with collision.
Choose uniformly a permutation π. The corresponding input vector defines a
path to a leaf c of T , and π can be understood as a linear extension of Gc.
Actually, the node c is the only leaf of T with this property. Now, uniformly
choose the pivot o ∈ {1, . . . , n − 1} (identifying the value o and o + 1). This
collision is detected if and only if there is an arc between the vertex i with
π(i) = o of Gc and its successor in π, which is called the success probability
of the permutation π in T , and hence in Gc.

Define the success probability pc of Gc by the probability that a uniformly
chosen linear extension of Gc and a uniformly chosen collision is detected by Gc.
Let uc be the number of linear extensions of Gc, and define fc = u/n!. Then,
the probability of reaching (ending at) c with a uniformly chosen permutation
is fc, and we can express the success probability of T as the weighted sums of
the success probabilities of the leaves:

pT =
∑

c is leaf of T
fc · pc .

The following information theoretic consideration gives a precise relation
between the success probability pc and the number of linear extensions fc.

Lemma 3. Let G = (V,E) be a directed acyclic graph with n vertices, V =
{1, . . . , n}. Then, the number of linear extensions of G with at least k arcs in G
is at most (

n

k

)
· n!
k!

Proof. Any linear extension with at least k arcs in G can be described by the
set A of additional arcs that need to be inserted into G to yield a directed
path (thinking of G as an order-relation, the additional comparisons that are
necessary to make all elements comparable). Since at least k arcs of G are used
we have |A| ≤ n− k− 1 < n− k. Define TA ⊆ V to be the starting points of the
arcs in A. Now, the arcs form an injective mapping γ : TA → {1, . . . , n}. There
are at most

(
n

n−k

)
=

(
n
k

)
possibilities for TA, and at most n!

k! possibilities for γ.
This leads to the claimed bound. ut

By Stirling’s formula, we get the following lemma.

Lemma 4. Given a graph G on n vertices and a set S of permutations on [n].
Assume that the success probability of G when drawing uniformly permutations
from S that are linear extensions of G and uniformly the collision is at least p ≥
n−

1
6 . Then the number u of permutations in S that are linear extensions of G

is bounded by − log u
|S| ≥

pn
6 log n− 3pn− log n

6 − 1 + log |S|
n! .



Proof. For a given linear extension/permutation, the success probability q is
given by the number k of arcs of G it is using as q = k/(n − 1). Let R ⊆ S be
the set of permutations with at least k = dpn/2e arcs of G, i.e., permutations
that have success probability at least p/2. By a Markov inequality we have
r = |R| ≥ pu/2, and Lemma 3 yields r ≤

(
n
k

)
· n!

k! . Hence,

u ≤
(

n

dpn/2e

)
· 2n!
pdpn/2e!

.

We use the well known bounds on the binary logarithm of the factorial x(log x−
2) ≤ log(x!) and log

(
x
y

)
≤ 3y log(x/y) for the case y < x/2 that derive from

Stirling’s formula. Define x by 2−xn! = u. This yields

x = log(n!/u) (1)

≥ log(pdpn/2e!)− log
(

n

dpn/2e

)
− log 2 (2)

≥ log p +
⌈pn

2

⌉(
log pn/2− 2

)
− 3

⌈pn

2

⌉
log

(
n

dpn/2e

)
− 1 (3)

≥ log p +
pn

2

(
log n + log(p/2)− 3 log(2/p)− 2

)
− 1 (4)

= log p +
pn

2

(
log n− 4 log(2/p)

)
− pn− 1 (5)

= log p +
pn

2

(
log n− 4 log(1/p)− 4

)
− pn− 1 (6)

≥ − log n

6
+

pn

2

(
(1− 4/6) log(n)

)
− 3pn− 1 (7)

=
pn log n

6
− 3pn− log n

6
− 1 (8)

In (4), we omit the ceiling in the denominator of a negative term (inside the
log), only lessening the term, and omit the ceiling in a positive product. In (7)
we use the bound on p ≥ n−

1
6 yielding log(1/p) ≤ log n

6 twice.
ut

3.2 Easy Low-Probability Bound

If an algorithm runs in sublinear time, it cannot access all the input elements,
leading to a fairly small success probability. We make this precise as a mini-
mum number of accessed variables that is required to achieve a certain success
probability.

Lemma 5. Assume a leaf node c of a decision tree T for Collisionn has success
probability pc for q. Then the depth dc of c is at least dc ≥ n−1

2

√
pc. For pc ≤ n−

1
6

this implies dc ≥ pcn log n
6 − 3pcn− log n

6 − 1



Proof. By the “collision first” procedure to draw an input from q, the pair of
variables forming the collision must be accessed, which happens with probability
pc ≤ r(r−1)

(n−1)n < (2dc)
2

n(n−1) . This yields 2dc >
√

pcn(n− 1) >
√

pc(n − 1), implying
dc > n−1

2

√
pc.

Now assume pc ≤ n−
1
6 . Observe that − 1

2

√
p > −1, and hence it is sufficient

to argue for n
2

√
p ≥ pn

(
log n

6 − 3
)
, or equivalently 1/

√
p ≥ log n

3 − 6. To this

end, we consider the function f(n) = n
1
12 − log n

3 + 6, and argue that f(n) > 0
for all n > 0. Because for log n ≤ 18 we certainly have f(n) > 0, and because
limn→∞ f(n) = +∞, the existence of a point x̂ with f(x̂) < 0 would imply
a local minimum x > 0 with f(x) < 0. At such a local minimum we would
have f ′(x) = 0, i.e., 1/(12x

11
12 ) − 1/(3x ln 2) = 0, x

1
12 = 4/ ln 2, yielding x =

(4/ ln 2)12. Now, f(x) = (4/ ln 2)− 12 log(4/ ln 2)/3 + 6 > 4/ 3
4 − 4 log 4/ 2

3 + 6 =
16/3 − 4 log 6 + 6 > 5 − 4 8

3 + 6 = 11 − 32/3 > 0, a contradiction that shows
f(n) > 0 for all positive n. Here we used the estimate 2/3 < ln 2 < 3/4 and
log 6 < 8/3. ut

3.3 Expected Running Time without Collisions

We want to show a lower bound of Ω(pn log n) for the expected running time.
As a first step, we consider the running time implied by input without collision
(drawn from p). This certainly implies the corresponding lower bound on the
worst-case running time, the depth of the tree.

Lemma 6. Let T be a comparison tree solving Collisionn, and S a set of per-
mutations. Assume an input drawn from q|S (uniform permutation in S and
uniform collision) has success probability at least p and expected running time D
for input from p|S, i.e., a uniformly chosen permutation from S without colli-
sion. Then D ≥ pn

6 log n− 3pn− log n
6 − 1 + log |S|

n!

Proof. Every leaf c of T has success probability pc, a depth dc, and a fraction fc

of the permutations from S that end at c. Now, by definition, D =
∑

fc · dc,
and p =

∑
fc · pc.

We define two classes of nodes, the high-probability nodes H = {c | pc >

n−
1
6 }, and the remaining nodes L. Define further for these two classes of per-

mutations in S the split fH =
∑

c∈H fc, and similarly fL =
∑

c∈L fc, such
that fH + fL = 1. The restricted probabilities pH and pL, and the restricted
expected running times DL and DH are defined by fH · pH =

∑
c∈H fc · pc,

fH ·DH =
∑

c∈H fc · dc, fL · pL =
∑

c∈L fc · pc, fL ·DL =
∑

c∈L fc · dc. These
values satisfy p = fH · pH + fL · pL, and D = fH ·DH + fL ·DL.

Define for c ∈ H the relative reach-probability by f ′c = fc/fH . Note that
the f ′c sum to 1, i.e., they form a probability distribution. Define ac = 2−dc ,
AH =

∑
c∈H ac, such that the values a′c = ac/aH sum to 1 and form a probability

distribution.



With this, we get

DH = −
∑
c∈H

f ′c log ac = − log aH −
∑
c∈H

f ′c log a′c (9)

≥ − log aH −
∑
c∈H

f ′c log f ′c (10)

= − log fH − log aH −
∑
c∈H

f ′c log fc (11)

≥ log−fH +
∑
c∈H

f ′c

(
pcn log n

6
− 3pcn−

log n

6
− 1 + log

|S|
n!

)
(12)

= − log fH +
pn

6
log n− 3pn− log n

6
− 1 + log

|S|
n!

. (13)

Where the inequality (10) is Gibbs’ inequality and the inequality (12) is the
statement of Lemma 4, together with the fact that − log aH ≥ 0. Now, consider
a node c ∈ L of T , i.e., with low probability pc ≤ n−

1
6 . By Lemma 5 we have the

depth-bound dc ≥ pcn
6 log n−3pn− log n

6 −1. This inequality yields DL =
∑

c∈L f ′c·
dc ≥

∑
c∈L f ′c ·

(
pcn
6 log n− 3pcn− log n

6 − 1
)

pLn
6 log n− 3pLn− log n

6 − 1. Now,

the lemma follows by D = fH ·DH +fL ·DL ≥ (fHpH +fLpL)
(

n
6 (log n− 18)

)
−

log n
6 − 1 + fH log fH |S|

n! ≥ pn
6 log n− 3pn− log n

6 − 1 + log |S|
n! . ut

3.4 Strong Low Probability Bound for Worst-Case Time

Certainly, the lower bound on the expected running time is also lower bound
on the worst-case running time. Still, for sub-linear time algorithms the success
probability is significantly lowered by the impossibility to touch all vertices.

Lemma 7. Let T be a comparison tree for Collisionn with maximal depth r <
n/2, and that input is drawn from p or q. Then there is a comparison tree T ′

with the same success probability, expected and worst-case running time as T ,
and T ′ uses only the variables x1, . . . , x2r.

Proof. Structurally, T and T ′ are the same, they differ only in the variable
names. Rename variables (recursively from root to leafs) in a way that any new
variable (so far not part of any comparison) is changed to the new variable with
the lowest index. Now, the comparison graphs at the corresponding nodes of T
and T ′ are isomorphic and hence reached with the same probability if input is
drawn from p or q. ut
Lemma 8. Any comparison tree T with worst-case running time t ≤ n has
success probability p ≤ pt = 16t2

(n−1)2 log(2t) when input is drawn from q.

Proof. With r = 2t, by Lemma 7 w.l.o.g. the comparison tree T solves Collisionr

in worst-case time t and success probability q. From Lemma 6 follows t ≥
qr
6 log r − 3pr − log r

6 − 1, which yields q ≤ 6(r/2 + log r
6 + 1)/r(log r − 18) <

(3r+log r+1)/r log r < 4/ log r = 4/ log(2t). Now, by the argument of Lemma 5
p ≤ r(r−1)

n(n−1)q ≤
16t2

(n−1)2 log(2t) . ut



3.5 Expected Time for Random Input with Collision

Finally, we can also conclude an asymptotic lower bound of Ω(pn log n) for the
expected running time when input is drawn according to q. By Yao’s Minimax
Principle, the same lower bound holds for the expected running time of random-
ized algorithms on input with collision.

Lemma 9. Let T be a linear decision tree solving Collisionn. Assume that
the success probability for input drawn according to distribution q is p, and the
expected running time is Cq. Then, Cq ≥ pn

48 (log n− 18)− log n
12 − 4.

Proof. Let S be the set of permutations that have success probability > 1/2.
With fS := |S|/n! we can express running time and probability as C = fSCS +
(1− fS)CS̄ , where CS is the expected running time for permutations in S, and
CS̄ the expected running time for permutations not in S. Similarly, we can write
the success probability as p = fSpS + (1− fS)pS̄ .

For permutations not in S, half the contribution to the average running
times stems from undetected collision. Hence, it can be estimated using Cp, by

Lemma 6, we have CS̄ ≥
(

npS̄

6 (log n− 18)− log n
6 − 1 + log(1− fS)

)
/2.

By a Markov inequality, at least half of the inputs in q|S stop at times before
2CS . Cut T at depth (time) 2CS , leading to T ′ with success probability p′S ≥
1/4 ≥ pS/4. Now, because the expected running time of T ′ is less than the
worst-case running time 2CS of T ′, Lemma 6 yields 2CS ≥ pSn

4·6 (log n − 18) −
log n

6 − 1 + log fS . It remains to take the weighted sums of the bounds on 2CS

and 2CS̄ , yielding 2C ≥ pn
4·6 (log n − 18) − log n

6 − 2. Here, the last term stems
from fS log fS + (1− fS) log(fS − 1) > −1. ut
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