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Abstract

In this paper we determine the computational complex-
ity of the dynamic convex hull problem in the planar case.
We present a data structure that maintains a finite set ofn
points in the plane under insertion and deletion of points
in amortizedO(log n) time per operation. The space us-
age of the data structure isO(n). The data structure sup-
ports extreme point queries in a given direction, tangent
queries through a given point, and queries for the neighbor-
ing points on the convex hull inO(log n) time. The extreme
point queries can be used to decide whether or not a given
line intersects the convex hull, and the tangent queries to
determine whether a given point is inside the convex hull.
We give a lower bound on the amortized asymptotic time
complexity that matches the performance of this data struc-
ture.

Keywords: Planar computational geometry, dynamic con-
vex hull, lower bound, data structure, search trees, finger
searches

1 Introduction

The convex hull of a set of points in the plane is one
of the most prominent objects in computational geometry.
Computing the convex hull of a static set ofn point set
can be done in optimalO(n log n) time, e.g., with Gra-
ham’s scan [9] or Andrew’s vertical sweep line variant [1]
of it. Optimal output sensitive algorithms are due to Kirk-
patrick and Seidel [16] and also to Chan [5], they achieve
O(n log h) running time, whereh denotes the number of
vertices on the convex hull.

In the dynamic setting we consider a data structure:
Given a setS of points in the plane that is changed by inser-
tions and deletions, maintain the convex hull ofS. Observ-
ing that a single insertion or deletion can change the convex
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hull of S by |S| − 2 points, reporting the changes to the
convex hull is in many applications not desirable. Instead
of reporting the changes one maintains a data structure that
allows queries for points on the convex hull. Typical exam-
ples are the extreme point in a given direction, the tangent(s)
on the hull that passes through a given point, whether or not
a point is inside the convex hull, the edges of the convex hull
intersected by a given line, the common tangent(s) between
two different convex hulls. Furthermore we might want to
report (some consecutive subsequence of) the points on the
convex hull or count their cardinality. Overmars and van
Leeuwen [17] provide a solution that usesO(log2 n) time
per update operation and maintains a leaf-linked balanced
search tree of the vertices on the convex hull in clockwise
order. Such a tree allows all of the above mentioned queries
in O(log n) time. Semidynamic variants of the problems
have been considered. There updates are restricted to be
either insertions only or deletions only. For the insertion-
only problem Preparata [18] gives anO(log n) worst-case
time algorithm that maintains the convex hull in a search
tree. The deletion-only problem is solved by Hershberger
and Suri in [12], where initializing the data structure (build)
with n points and up ton deletions are accomplished in
overallO(n log n) time. Hershberger and Suri in [13] con-
sider the off-line variant of the problem, where both inser-
tions and deletions are allowed, but the times (and by this
the order) of all insertions and deletions are known a priori.
The algorithm processes a list of insertions and deletions
in O(n log n) time and space, and produces a data struc-
ture that can answer extreme point queries for any time us-
ing O(log n) time. Their data structure does not provide
an explicit representation of the convex hull in terms of a
search tree with the points on the convex hull. The space
usage can be reduced toO(n) if the queries are also part of
the off-line information.

Chan [7] gives a construction for the fully dynamic
problem withO(log1+ε n) amortized time for updates (for
any constantε > 0), and O(log n) time for extreme
point queries. His construction does not maintain an ex-
plicit representation of the convex hull. It is based on a
general dynamization technique attributed to Bentley and



Saxe [3]. Using the semidynamic deletions only data struc-
ture of Hershberger and Suri [12], and a constant num-
ber of bootstrapping steps, the construction achieves up-
date times ofO(log1+ε n) for any constantε > 0. The
construction uses an augmented variant of an interval tree
to store the convex hulls of the semidynamic deletion only
data structures. This achievesO(log n) time extreme point
queries. The authors [4] and independently Kaplan, Tar-
jan and Tsioutsiouliklis [10] improve the amortized update
time toO(log n log log n). The improved update time in [4]
is achieved by constructing a semidynamic data structure
that is adapted better to the particular use. More precisely
the semidynamic data structure supports build inO(n) time
under the assumption that the points are already lexico-
graphically sorted. Deletions costO(log n log log n) amor-
tized time. This together with a careful choice of the pa-
rameters for the interval tree and two bootstrapping steps
yields amortizedO(log n log log n) update times and worst-
caseO(log n) query time. All these data structures have
O(n) space usage.

The main result of this paper is fully dynamic planar con-
vex hull data structure that achieves amortizedO(log n) up-
date and query time, as summarized in the following theo-
rem, which is proven in Section 2.

Theorem 1 There exists a data structure for the fully
dynamic planar convex hull problem supportingINSERT

and DELETE in amortizedO(log n) time, andEXTREME

POINT QUERY, TANGENT QUERY and NEIGHBORING-
POINT QUERY in O(log n) time, wheren denotes the size
of the stored set before the operation. The space usage is
O(n).

If we assume that theDELETE operation provides as an
argument a pointer to the point in question, we can move
all of the deletion cost to the insertion, resulting in amor-
tizedO(1) time deletions. From now on we consider only
the upper hull of the set of points, the lower hull is com-
pletely symmetric. Together they form the convex hull of
the set.

For a finite setA of points in the plane, let UH(A) ⊆ A
denote the points on the upper hull ofA, Bd(A) the seg-
ments forming the upper hull (including two vertical lines
at the leftmost and rightmost point ofA), UC(A) the up-
per closure ofA, i.e., the region of the plane enclosed
by Bd(A), and UC0(A) its interior.

Related problems There is a close connection between
the upper hull of some points and the lower envelop of
some lines. We define (as is standard) the dual transform of
pointp = (a, b) ∈ R2 to be the linep∗ := (a · x− b = y).
For a set of pointsS the dualS∗ consists of the lines dual
to the points inS. Every non-vertical line in the plane is
the graph of a linear function. For a finite setL of linear
functions the pointwise minimummL(t) = minl∈L l(t) is

a piecewise linear function. The graph ofmL is called the
lower envelopof L. A line l ∈ L is on the lower envelop
of L if it defines one of the linear segments ofmL.

Lemma 2 LetS be a set of points in the plane. We havep ∈
UH(S) iff p∗ is on the lower envelop ofS∗. The order of
points onUH(S) is the same as the order of the segments
of the lower envelop. The extreme-point query onUH(S) in
directiont is equivalent to evaluatingmS∗(t).

A (dynamic) planar lower envelop is frequently understood
as a parametric (or kinetic) heap, a generalization of a pri-
ority queue. We think of the linear functions as values that
change linearly over time. TheFIND-MIN operation of the
priority queue generalizes to evaluatingmS∗(t), the update
operations can be implemented usingINSERT andDELETE.
The data structure of Theorem 1 allows update and query
in amortizedO(log n) time. A kinetic heap is a parametric
heap with the restriction that the argument (time) of a query
may not decrease between the queries. This naturally leads
to the notion of acurrent timefor queries. In Section 5 we
describe a data structure that can answer kinetic queries in
amortizedO(1) time.

Several geometric algorithms use a parametric (kinetic)
heap to store lines. In some cases the function-calls to this
data structure dominate the overall execution time. Then
our improved data structure immediately improves the algo-
rithm. One such example is thek-level problemin the plane.
As discussed by Chan [6] we can use two fully dynamic ki-
netic heaps to produce thek-level of a set ofn lines. If we
havem segments on thek-level (the output size), the result-
ing algorithm completes inO((n + m) log n) time. This
improves over the fastest deterministic algorithms, (Edels-
brunner and Welzl [8], using Chan’s data structure achiev-
ingO(n log n +m log1+ε n) time). It is faster than the ex-
pected running timeO((n+m)α(n) logn) of the random-
ized algorithm of Har-Peled and Sharir [11]. Hereα(n) is
the slow growing inverse of Ackerman’s function.

Lower bounds For the static convex hull computation
there is a well known reduction to sorting, presented for ex-
ample in the textbook by Preparata and Shamos [19]. This
establishes together with Ben-Or’s [2] result aΩ(n log n)
lower bound on the real-RAM for computing the convex
hull. In the dynamic setting this implies that the sum of the
running times ofINSERT andQUERY has to beΩ(log n). In
Section 7 we prove the stronger theorem stated below.

Theorem 3 Assume there is a data structure implement-
ing the SEMIDYNAMIC INSERTION-ONLY CONVEX HULL

problem on the real-RAM, that supports extreme point
queries in amortizedq(n) time, and INSERT in amor-
tizedI(n) time for size parametern. Then we haveq(n) =
Ω(log n) andI(n) = Ω(log(n/q(n))).

Similar lower bounds hold if the data structures allows
the other mentioned queries. We can use several small in-



stances of the data structures as described in Theorem 1 in-
stead of one big data structure. This asymptotically matches
the trade-off formulated in Theorem 3.

Structure of the paper In Section 2 we give a proof
of Theorem 1. There we only state the function of the two
main components, the geometric merging and the interval-
tree. Section 4 and respectively Section 6 give more details
of these constructions, Section 5 discusses the somewhat
simpler kinetic case. Section 3 focuses on the variant of
a search tree we use for the geometric merging, Section 7
discusses the lower bound results. Due to the limited space
available in this extended abstract, several details of the con-
struction and its analysis are omitted from this version of
our work. The omitted details can be found in Riko Jacob’s
PhD-Thesis [15], and will appear in a journal version.

2 Outline of the main data structure

This section gives a proof of Theorem 1. Using a dou-
bling technique we regularly rebuild the whole data struc-
ture. This allows us to assume that we know in advance the
numbern of points to be stored in the data structure (up to
a constant). We assume thatn = 2k for some integerk ≥ 2
such thatlog n ≥ 2 and log log n ≥ 1. Throughout the
paperlog stands for the binary logarithm.

We keep the points in semidynamic deletions-only data
structures, following the ideas from Bentley and Saxe [3].
Insertions create semidynamic sets of rank 1, contain-
ing only the inserted point. As soon as we havelog n
sets of identical rankr we merge them into one set of
rank r + 1. This achieves that every point participates in
at mostO(log n/ log log n) merge operations, and that we
have at mostO(log2 n/ log log n) semidynamic sets simul-
taneously. This basic approach for the data structure was
introduced by Chan [7] (with a different merging degree),
and is the same as in [4, 10]. In contrast to the solutions
in [4, 7, 10] we do not rebuild the semidynamic data struc-
ture from scratch after a merge. (In [4] we already reuse
the lexicographical ordering of the points.) Instead we use
a data structure that maintains the convex hull of the union
of two (merged) sets, provided that the sets themselves are
stored in semidynamic data structures. We simulate a de-
greelog nmerging by merging along a balanced binary tree.

We assume that only points on the upper hull of a semi-
dynamic set get deleted. If we want to delete an inside point,
we delay its deletion until it becomes part of the upper hull.
This does not affect the amortized performance of the data
structure.

Definition 1 (Semidynamic Merging Structure)
is a data structure that supports the following operations

CREATE SET(p) Creates a setA := {p}, UH(A) := (p);

MERGE(a, b) Creates a new merging data structure for the
setC = A ∪ B. The upper hull of the points stored
in C can be accessed in left to right order as they are
stored in a doubly linked list. The data structures rep-
resentingA andB are from now on only accessible
from inside the data structure forC.

DELETE(r) Removes the pointp referenced to byr from all
the sets it is stored in. Determines the biggest merging
structureM that containsp. It is assumed thatp is on
the upper hull ofM . Returns the listL of points that
replacesp on the upper hull ofM .

In Section 4 we describe a data structure, its performance
is summarized in the following theorem.

Theorem 4 (Semidynamic Merging Structure)
There exists a data structure that implements the operations
as described in Definition 1. Letn be the number of points
stored in the setC = A ∪ B (not only the size ofUH(A) ∪
UH(B)). The operationCREATE SET(p) takesO(1) time.
The operationMERGE(a, b) takes amortized timeO(n). The
operationDELETE(r) takes amortizedO(1) time. This time
for the DELETE operation does not include time spent in
the data structures storingA andB. The space usage of
the data structure isO(|UH(A) ∪ UH(B)|). This space
usage does not include the space used in the data structures
storingA andB.

Linear space Using the above merging data structure di-
rectly yields a space usage ofO(n log n). We reduce the
space usage toO(n) usingseparators. A separator uses the
concept of (the first two) convex layers. The idea is that
we can delete a point from the recursive data structure(s)
as soon as it is on the upper hull of the set we store. This
achieves that every point is stored in at most two semidy-
namic data structures More precisely, a separator uses re-
cursively one semidynamic merging data structure and is
itself a semidynamic merging structure, following Defini-
tion 1:

INIT(A) Initializes a new data structureB that wraps up the
existing semidynamic merging data structureA. LetS
be the set of points stored inA. ThenB has the in-
terface of a semidynamic merging structure storing the
setS. We delete points fromA such that no point is
stored simultaneously inA and inB.

DELETE(p) Delete the pointp ∈ UH(S) from the set of
pointsS stored inB. Returns the listL of points that
replacep on the upper hull ofS. Points ofL are deleted
fromA to guarantee that points are not stored twice.

Using a variant of the merging structure, the operations
INIT andDELETE take amortized constant time per element.
We will not discuss separators further, details can be found
in [15].



Fast queries In order to achieve fast queries, we create
an interval tree that allows simultaneous queries to all semi-
dynamic sets. We can think of the changes to the semidy-
namic sets (given by the dynamization technique) as driving
the interval tree, which then provides fast queries. The inter-
val tree is easiest to explain in the dual setting, we change
our point of view and discuss it in the setting of a lower
envelop data structure. As part of the interval tree we use
secondary structures, i.e., fully dynamic lower envelop data
structures. The gain of the construction is that a secondary
set stores onlylogO(1) n lines. We require that insertions
and queries of the secondary structures already have the
aimed-at performance, only for the deletions we get a speed
up (by performing a lot of them lazily).

Theorem 5 (Speed up construction)Let D be a nonde-
creasing positive function. Assume there exists a dynamic
lower envelope data structure supportingINSERT in amor-
tizedO(log n) time, DELETE in amortizedO(D(n)) time,
and VERTICAL LINE QUERY in O(log n) time, withO(n)
space usage, wheren is the total number of lines inserted.

Then there exists a dynamic lower envelope data struc-
ture problem supportingINSERT in amortizedO(log n)
time, DELETE in amortizedO(D(log4 n)2 + logn) time,
and VERTICAL LINE QUERY in O(log n) time, wheren is
the total number of lines inserted. The space usage of this
data structure isO(n).

We give a proof of this theorem in Section 6. We use it twice
to prove Theorem 1. For a first bootstrapping step we use
Preparata’s data structure withD(n) = O(n). This yields a
data structure with deletion timeD(n) = O(log8 n). In
a second bootstrapping step we get a data structure with
D(n) = O(log16(log4 n) + log n) = O(log n).

3 Finger search trees

We use in several places level-linked-(2,4)-trees [14].
They allow amortized constant extend operations and finger
searches that are logarithmic in the distance to the finger.
We modify them by suspending the search operation. We do
not use arbitrary fingers, but only a finger to the leftmost and
rightmost leaf of the tree. We call the resulting data struc-
ture a splitter. Suspending the search is especially useful
when we search for a point with some geometric properties,
and we are not sure to already have such a point. We can
begin a search and suspend it as soon as we realize that we
do not yet have a good splitting point. Reacting to changes
in the geometric situation we can continue the search, not
wasting a single comparison.

A splitter consists of elements drawn from a completely
ordered universe, stored in a level-linked (2,4)-tree. In con-
trast to the usual situation, searching in this tree should not

be understood as finding the predecessor, but as identify-
ing a leaf with a certain property. Every search results in a
split operation, we should think of only having an operation
SEARCH AND SPLIT. This search is suspended whenever
we have to decide how to narrow the interval of possible
outcomes (split-points). To implement such a search the
splitter has three pointers to elements, namely thecandi-
date, the left guard, and theright guard. The guards iden-
tify the current interval of possible split points. The can-
didate defines two smaller intervals, and the next step of
the search is to decide which of them is correct. If we can
take this decision, weadvancethe search. This amounts to
changing the left or right guard to the candidate and deter-
mining a new candidate. If the current situation does not
yet allow to advance the search, we keep the searchdan-
gling. If the situation changes and we now can decide the
direction to take from the current candidate, we continue the
search (by advancing it). A search is finished by executing a
split operation, that has to split between the two guards. All
operations we describe are destructive, the data structure is
permanently changed by the execution of an operation. For
all operations that deal with new elements, we assume that
the order of the new elements compared to the old elements
is consistent with the operation.

BUILD (e1, . . . , ek) Returns a new splitter containing the el-
ementse1, . . . , ek.

EXTEND(s, e) Extends the splitterS that contains the
elementse1, . . . , ek to the splitter e, e1, . . . , ek or
e1, . . . , ek, e.

SHRINK LEFT/RIGHT(s) The splitter S is changed by
deleting its leftmost/rightmost element

INSTANTIATE DANGLING SEARCH(s) The guard pointers
are set to nil, the candidate pointer is set to an ele-
mentc stored at the root-node of the (2,4)-tree. (We
start a new search that is suspended at the first compar-
ison.) In particular we do not specify an element of the
universe to search for.

ADVANCE DANGLING SEARCH LEFT/RIGHT(s) The left
(or right) guard is changed to point to the element the
candidate pointer is currently pointing to. A new can-
didate element is determined according to the finger-
search procedure (starting from the leftmost or right-
most leaf) in the (2,4)-tree. I.e., we disallow all ele-
ments to the right (or left) of the old candidate as pos-
sible outcomes of the dangling search.

SPLIT(s, w) The splitterS is split into two splittersS1

andS2 according to the value ofw, which is either
left guard, candidate, or right guard.

JOIN (s1, (e1, . . . , ek), s2) The splittersS1 andS2 become
inaccessible and a new splitterS is created. The
splitter S holds all elements fromS1, the new ele-
mentse1, . . . , ek and the elements ofS2 in this order.
It has an active dangling search, where the left guard



is on the rightmost element ofS1 and the right guard
on the leftmost element ofS2. The candidate is chosen
according to a (binary) search overe1, . . . , ek.

Only the operationsADVANCE DANGLING SEARCHand
SPLIT are allowed for a splitter with an active dangling
search, the operationsEXTEND, SHRINK and (more impor-
tantly)JOIN are only allowed for splitters that currently have
no dangling search. We do not implement theJOIN opera-
tion as a join of the (2,4)-trees. We rather take it as a wrap-
per for a delayed extension ofS1 andS2. Remember that
instantiating the dangling search in the situation of the join
has the promise built in that we will split at one of the ele-
mentse1, . . . , ek before we perform anotherJOIN operation
with this splitter. We placee1, . . . , ek in an auxiliary bal-
anced search tree and use this to guide the dangling search
(or in a list and perform a linear scan to guide the search).
Not until this search is settled with aSPLIT operation, we
EXTEND S1 (andS2) with the elements left (and right) of
the split point. This meets the interface of theSPLIT opera-
tion.

Theorem 6 The operations of the splitter incur the follow-
ing amortized execution times: The operationsBUILD and
JOIN take amortizedO(k) time wherek is the number of
the new elements (e1, . . . , ek). The operationsINSTANTI-
ATE DANGLING SEARCH, EXTEND, SHRINK, and SPLIT

take amortizedO(1) time. The operationADVANCE DAN -
GLING SEARCHtakes a negative constant time in the amor-
tized sense, i.e., it can pay for analyzing a constant sized
geometric situation.

Proof: We use the version of a (2,4)-tree presented in [14],
with the modification that searches are suspended. We use
c(n − lnn) as the potential of a splitter of sizen. Split-
ting such a splitter into two splitters of size respectivelyn1

and n2 releasesΩ(log min{n1, n2}) potential, achieving
the amortizedO(1) split operation, including the additional
potential when advancing the search. 2

4 Geometric merging

The merging data structure is the core of the new ap-
proach. Here in particular we refer to [15] for more (and
still important) details of the construction.

LetA andB be two sets of points in the plane. Assume
that we want to compute UH(A ∪B) given that we already
have UH(A) and UH(B) and maintain this under deletion
of points. We focus on the task of identifying (and maintain-
ing) theequality pointsof A andB, i.e. the intersections
of Bd(A) and Bd(B). This identifies the parts of UH(A)
that are inside UC(B) and vice versa. What remains are
several bridge finding tasks, which we can solve efficiently

(following ideas from [17]). In the following we focus on
the situation (between two equality points) where Bd(B) is
above Bd(A).

Because deletions are only allowed for points on the
merged upper hull, Bd(B) gets closer to Bd(A) until it
eventually touches in (creating new equality points). Ad-
ditionally equality points can move to the left or right, or a
pair of equality points can disappear. All of these cases have
to be addressed, but the core problem is to detect if one or
several new pairs of equality points come into existence. We
sample both hulls, leading to an over-approximation of the
inner hull and under-approximating of the outer hull. It is
sufficient to only refine the approximations, sampling more
and more points. We never take any points out of the sam-
pling. This monotonicity allows the use of splitters.

For every pointp ∈ UH(A) we define the concept of a
valid pair of raysin the following way: Leth andl be two
different tangent lines on Bd(A) throughp, i.e.h∩ l = {p}
and all points ofA are on or belowh andl. If h andl con-
tain the two adjacent segments of Bd(A) that are adjacent to
p we call this thecanonical pair of raysrooted atp. LetH
andL be the intersection points ofh (and respectively ofl)
with Bd(B). Then we have a certificate that there is no
equality point of Bd(A) and Bd(B) between the vertical
lines throughH andL. We maintain only some of these
certificates, we require that the maintained certificates are
vertically disjoint. A point for which we maintain the cer-
tificate is called aselected point. For each selected point we
decide upon a particular valid pair of rays, itsstrong rays.
Once we decided to select a pointp ∈ A it stays selected
until Bd(B) drops belowp (and it is therefore no longer a
certificate of Bd(B) being locally above (outside) Bd(A)).
The strong rays of a selected point do not change. We main-
tain the intersections of the strong rays with Bd(B) explic-
itly. These intersections and the equality points are the only
points of the locally outer hull that are explicitly set in rela-
tion with the locally inner hull.

The data structure maintains an inclusion-maximal set
of selected points, such that the certificates of two selected
points do not overlap: the intersection of two strong rays
is outside (above) of UC(B). For a selected pointp ∈
UH(A) this requirement disallows the selection of several
other points of UH(A), a range in the left-to-right order-
ing of UH(A) aroundp, the shadowof p. The maximal
independent set of selected points is characterized by the
selected points not being in the shadow of another selected
point, and every point of UH(A) being in the shadow of
some selected point.

Deletions of points on UH(B) induce that some shadows
get smaller. We focus on two consecutive selected pointsp
andq where a shadow is changed. We maintain maximal-
ity by searching for a point of UH(A) that is between the
shadow ofp and the shadow ofq. If we find such a point we



select it (and perform the same maximality check between
the new point andp andq). If we cannot find such a point
(the set of selected points is maximal), the shadows ofp
andq overlap (or touch at least). A point in the intersection
of the two shadows is called a(geometric) valid candidate.
(Geometrically it is easy to verify that a point is a candi-
date, whereas it seems to require a search to determine the
boundaries of the shadows.)

We use a splitter for this search for a selectable point. It
stores all the not-selected points of UH(A) betweenp andq.
If the candidate of the dangling search is a geometrically
valid candidate, we leave the search dangling. We found a
new certificate that the set of selected points is maximal. If
another deletion of a point inB changes the shadows fur-
ther, we do not start over the search, but merely advance it.
This use of the splitter is of course the motivation for the
otherwise somewhat unusual interface of the splitter. In this
way we manage to search for a next point to select, using
overall constant time per point inA.

For a candidate pointc we determine in which of the two
shadowsc is contained. This amounts to considering the
canonical pair of raysh, l rooted atc. The raysh andl are
calledweak rays. If the right (left) directed strong ray ofp
(q) intersectsl (h) before it intersects Bd(B), thenc is in
the shadow ofp (q). If c is a geometrically valid candidate,
this shows that we additionally have a certificate that there
is no equality point of Bd(A) and Bd(B) betweenp andq.

candidates
p q

strong rays

B

A

c

Figure 1. A dangling search. Hull A is below
hull B (depicted as a curve, it is here not im-
portant that it is a polygon). The points p and q
are selected, their strong rays are depicted as
a solid line. The point c is the current candi-
date of the dangling (suspended) search, its
weak rays are depicted as dashed lines. The
resulting over-approximation of A is depicted
as a light, dotted line.

Between an equality point and the first selected point we
maintain a certificate that no further point can be selected.
In analogy to the dangling search, we call the situation a
half open search. Geometrically we merely consider the
weak rayh originating from the segment defining the equal-
ity point. If h intersects the next strong ray inside Bd(B), no

further point of UH(A) can be selected. We store the points
of UH(A) between the last selected point and the equality
point in a splitter that does not have a dangling search.

The certificates defined by selected points and candi-
dates form an over-approximation ofA that is entirely in-
side of UC(B). This situation is exemplified in Figure 1.
We only maintain the intersections of Bd(B) with the strong
rays explicitly, between two intersections we define ashort-
cut: We consider an appropriate half-planeH and replace
in our considerations UC(B) with UC(B) ∩ H. This situ-
ation is exemplified in Figure 2. We can have several such
shortcuts. We only have to make sure that the shortcuts do
not create new equality points, and that they do notoverlap,
i.e., that any point ofB is cut away by at most one shortcut.
This ensures that the shortcuts do not make the approxima-
tion more complicated than the hull itself. When selecting
a point and establishing a new pair of strong rays, we find
the intersection with the simplified (shortcut) version ofB.

The analysis of the running time of the data structure
follows the life-cycle of a point. Whenp first appears as part
of UH(B) (as a result of a deletion onB), it can be inside
of UC(A) and is not selected. Then it can become selected.
It stays selected until it becomes outside of UC(A) (because
of a deletion onA). Once outside it can get cut away by
a shortcut once and also be part of a bridge finding once.
Finally it might get deleted.

Every deletion requires us to consider only a constant
size part of the construction, the deletion can pay for revert-
ing the life-cycle of these constantly many points. Every
deletion and every selection of a point can cause the cre-
ation of constantly many shortcuts.

B
selected

shortcutH

B

A

Figure 2. A shortcut. The selected point of A
defines two strong rays, depicted as dashed
lines.

Processing a deletion ofr ∈ B has to handle different
cases: Each of the two deleted segments (in Bd(B) adjacent
to r) intersects not, once or twice Bd(A). The correspond-
ing equality points change. We have to examine the position
of the new points on the upper hull ofB and decide for each
of them whether it is inside, outside or on Bd(A). This is
done by reestablishing the construction.

We use the splitters and dangling searches if we are look-
ing at a situation where it is still possible thatB is aboveA.
If we find a stretch where we now have a stretch withA



aboveB, we can afford to perform linear scans, both on the
new points on UH(B) and on the surfacing part of UH(A).
An additional problem is that a deletion can destroy a pair
of equality points, then we have to join two regions whereA
is aboveB. We can afford to perform a linear scan to de-
tect the situation (the points ofA get outside UC(B), onB
we have new points), and we can use theJOIN operation
on splitters to join the regions. OnA the shortcuts achieve
that we have to deal with only constantly many old points
of B. This situation is exemplified in Figure 3. For a de-
tailed treatment of the different cases see [15].

grgl
A

r

e f

p q

X Y

SC SC

New

Figure 3. Joining two strips. The point r of
hull B gets deleted. The points p and q of B
are selected, before the deletion they belong
to different regions of the construction. The
weak rays of the neighbors of r are depicted
as dashed lines. The range of UH(A) marked
by SC can be arbitrarily long; here shortcuts
achieve that we can regard all of the range
of UH(A) between X and Y as new points.

5 Kinetic Heaps

Using the semidynamic geometric merging data struc-
ture of Theorem 4 we can design a kinetic heap:

Theorem 7 There exists a data structure for the fully dy-
namic kinetic heap problem supporting, for size parame-
tern, INSERTandDELETE in amortizedO(log n) time, and
KINETIC FIND MIN in amortizedO(1) time. The space us-
age of the data structure isO(n).

Again we could charge the cost of the deletion to the in-
sertion, thus achieving amortized constant time deletions.
We give some more details about this construction, as it il-
lustrates several techniques that we also use for the general
construction of Theorem 1. The semidynamic data structure
of Theorem 4 allows kinetic find-min queries in amortized
O(1) time. We perform a linear scan when answering a
query, this is charged to the insertion.

Every linel that is part of the lower envelope of its semi-
dynamic structure defines anactivity interval Il that con-
tains the query-values for whichl is the correctFIND-MIN

answer.

Lemma 8 (Kinetic speed up) Let D be a nondecreasing
positive function. Assume there exists a fully dynamic
kinetic heap data structure supportingINSERT in amor-
tizedO(log n) time, DELETE in amortizedO(D(n)) time,
andKINETIC FIND MIN in O(1) amortized time, wheren is
the total number of lines inserted. Assume the space usage
of this data structure isO(n).

Then there exists a fully dynamic kinetic heap data struc-
ture supportingINSERT in amortizedO(log n) time and
DELETE in amortizedO(D(log2 n) + log n) time, andKI -
NETIC FIND MIN in amortizedO(1) time, wheren is the
total number of lines inserted. The space usage of this data
structure isO(n).

Proof: We use the already explained dynamization tech-
nique with merging degreelog n. We use one secondary
structure with the assumed performance. This secondary
structure stores at mostO(log2 n) lines simultaneously, the
current answer from every (un-merged/top-level) semidy-
namic structure.

For the current timet we store all theFIND-MIN answers
from the semidynamic sets in the secondary structure. Ad-
ditionally we keep a (2,4)-tree holding the right endpoints
of the corresponding activity intervals. We also keep the
smallest such endpoint explicitly, it tells how long the cur-
rent answer remains valid.

For a KINETIC-FIND-MIN query for timet we do the
following: We first check with the smallest right endpoint
whether the current secondary structure is up-to-date. If so,
there is no further change to the data structure. If this is
not the case we delete all endpoints from the (2,4)-tree that
are smaller thant. We lazily delete the corresponding lines
from the secondary structure, i.e. we merely mark them as
deleted and remove them only when the data structure is re-
built because half of the lines stored are marked as deleted.
For all semidynamic sets that are no longer represented in
the secondary structure we perform aKINETIC-FIND-MIN

query for timet. We insert the resulting lines into the sec-
ondary structure and insert the right endpoints of the seg-
ments into the (2,4)-tree. We update the smallest right end-
point when updating the (2,4)-tree. Now we perform the
query on the secondary structure for timet.

For aMERGE operation (stemming from the dynamiza-
tion technique) we remove the affected current endpoints
from the (2,4)-tree and perform lazy deletions of the lines
in the secondary structure. We query the new data structure
for the current time and insert the resulting line in the sec-
ondary structure, and the right endpoint of the segment into
the (2,4)-tree.



For aDELETE(l) operation we deletel from the semidy-
namic data structure it is stored in, and if the deleted line
is currently stored in the secondary structure we delete it
from the secondary structure (not lazily). We call this sit-
uation aforceddeletion. We also delete the right endpoint
from the (2,4)-tree. We query the changed semidynamic
data structure for the current time and insert the line into the
secondary structure and the right endpoint of the answered
segment into the (2,4)-tree.

The run-time analysis keeps accounts for the lines. Every
line has to pay for one insertion and deletion into the (2,4)-
tree and for one insertion, query, and lazy deletion in the
secondary structure for the at mostlog n/ log log nmerging
levels. This totals toO(log n) amortized time, charged to
the insertion of the line. A deletion pays for the deletion
of one line in the secondary structure and for querying and
reinserting one right endpoint in the (2,4)-tree and a line
into the secondary structure, thus reverting some other lines
life-cycle. 2

Using Preparata’s [18] semidynamic insertion only data
structure, we achieve insertions inO(log n) time andO(1)
kinetic heap queries. TheO(n) amortized deletions do
not only rebuild the data structure, but also pay for ad-
vancing the kinetic search over all segments, thus achiev-
ing amortizedO(1) queries. Using this data structure in
Lemma 8 (bootstrapping) we getO(log n) amortized in-
sertions,O(1) amortized queries and amortizedO(log2 n)
deletions. Bootstrapping one more time reduces the amor-
tized deletion cost toO(log n), yielding Theorem 7.

6 General queries: Interval Tree

The overall approach to prove Theorem 5 is similar to
the use of a secondary structure in the kinetic solution. The
main difference is that we need to maintain several sec-
ondary structures, each of limited sizelogO(1) n. To orga-
nize them we use the activity intervals of the segments. Ge-
ometrically this construction is very similar to Chan’s [7],
in particular the reasoning for the correctness of the queries
is the same, our construction allows the same queries with
the same performance.

A traditional interval tree is a data structure that stores
intervals in a way that allows efficient containment queries.
More precisely for a setJ of intervals, the query consists
of x ∈ R and the answer consists of all intervalsI ∈ J
such thatx ∈ I. The central idea is to store the intervals
at the nodes of a search tree, such that only intervals stored
on a standard search-path forx have to be considered for
the containment query. We create a secondary structure for
every node ofT . If we store the lines of the lower envelopes
of the semidynamic sets at appropriate nodes ofT , as given
by their activity interval, we can correctly answerFIND-MIN

queries.

The tree structure of an interval treeT is that of a search
tree storing at the leafs the endpoints of the intervals. For
every intervalI exists acanonical nodeof T , defined as
the nodev of T where both endpoints ofI are (would
be) leafs belowv, but none of the children ofv enjoys
this property. Like Chan we choose the underlying tree
structure to be that of an insertion-only B-tree. In con-
trast to Chan we use degree parameter oflog n, indepen-
dent of the bootstrapping. With this choice the height ofT
is bounded byO(log n/ log log n). Even if we allow sec-
ondary structures of sizelogO(1) n, we achieve vertical line
queries inO(log n) time. Unlike Chan we allow the lines
to be stored anywhere on the path inT from the root to the
canonical node. This does not compromise the correctness
of the queries. Like in [4] this allows us to save time when
determining for a line the appropriate node ofT to store it.
Additionally, this freedom allows us to perform the move-
ment of lines lazily (as a result of changed lower envelopes
in the semidynamic sets, i.e., because of merge or delete
operations). Chan’s argument bounding the work spent in
node-split operation carries over.

Like in the kinetic case we can allow every line to be
inserted into a secondary structure once as the result of
a merge operation of the dynamization technique. Here
we also have to determine appropriate nodes ofT where
we should insert the lines. We address this problem by
formingchunksof log n/ log log n consecutive segments on
the lower envelope. Now we determine for the complete
chunk one interval and find the appropriate node inT , tak-
ing O(log n) time. This costs per segmentO(log log n)
time, the same as for inserting the line into the secondary
structure. This chunk size is small enough to move the
chunk inO(log n) time, i.e. to insert all lines into a dif-
ferent secondary structure. This allows us to maintain the
chunks under deletions of lines and also bounds the work
when we split nodes of the interval tree.

As part of moving a line from one secondary structure to
another, we also need to delete the line from the secondary
structure it is currently stored in. We will perform these
deletions lazily, delaying the insertion of the line into the
new secondary structure as well. We call this concept alazy
movement. When half of a secondary structure consists of
lazily moved lines, we rebuild it from scratch. Only then
we execute lazy movements, i.e., we insert the lines in the
secondary structure they belong.

If a line l is part of the merging of semidynamic sets, its
interval shrinks because the linel is now competing with
more lines for a place on the lower envelope. This means
that the canonical node of the interval of a line will in gen-
eral be closer to the leafs. We do not really need to move the
line, it is still stored on the path from the root to its canonical
node. Even if the linel is no longer on the lower envelope
(but is still not deleted fromS) we can storel at anynode



in the interval tree without compromising the correctness of
the queries.

In contrast to this, a deletion of linel ∈ S can extend ac-
tivity intervals, first of all the two segments that are neigh-
bors ofl on the lower envelope of the semidynamic set ofl.
But also a lineh that becomes part of the lower envelope
and is still stored somewhere inT get a new activity in-
terval. This can be bigger (not a subset) than the last non-
empty activity intervalIh (the one justifying the position
of h in T ), only if Ih was defined by an intersection point
of h andl. This happens for at most two lines per mergingl
participated in. When the activity interval of a line extends,
we might have to immediately move it to a different sec-
ondary structure. As we do not allow multiple copies of one
line, we have to delete the line from a secondary structure
using the (slow)DELETE operation, we say that we perform
a forced move. It is essential for our analysis to bound the
number of forced moves.

We distinguish two cases depending on the performance
of the deletions of the secondary structure. The size of a sec-
ondary structure is bounded byO(log n · logn

log logn ·
log2 n

log logn ),
the terms stemming respectively from the degree ofT , the
chunk size, and the number of semidynamic sets. We sim-
plify this bound toO(log4 n).

AssumeD(log4 n) = Ω(log n) (e.g. D(n) = O(n)
in the first bootstrapping step). Every line participates
in at mostO(log n/ log log n) merge operations, this also
bounds the number of forced moves a deletion can cause.
This term is by assumption bounded byO(D(log4 n)),
resulting in a total amortized cost ofO(D(log4 n)2) as
claimed in Theorem 5.

Otherwise we haveD(log4 n) = O(log n) (e.g.D(n) =
O(log8 n) in the second bootstrapping step). In this situ-
ation we move some of the costs for forced moves to the
insertions without changing their asymptotic performance.
To do so, we introducebarrier levelsof the merging in the
dynamization technique. At a barrier level, all lines in the
created semidynamic set get paid a forced move. Choos-
ing the parameterb(n) = log n/D(log4 n), we chargeb(n)
forced moves to every insertion. Now a deletion has only
to pay for forced moves back to the last barrier level, leav-
ing us with less thanlog n/b(n) forced moves to be paid by
the deletion. This chargesO(b(n) ·D(log4 n)) = O(log n)
time to the insertion, thus not changing the asymptotic per-
formance. The forced moves a single deletion has to pay
isO(D(log4 n) logn/b(n)) = O(D(log4 n)2). This yields
Theorem 5.

7 Lower bounds

In this section we derive lower bounds on running times
that asymptotically matches the quality of the data struc-
tures we presented in the previous sections. The model of

computation is the algebraic real-RAM. The lower bounds
on the decision problems hold for algebraic computation
trees. A real-RAM algorithm can be understood as generat-
ing a family of decision trees, the height of the tree corre-
sponds to the worst-case execution time of the algorithm.
This is the model used in the seminal paper by Ben-Or,
from where we take the main theorem [2, Theorem 3] that
bounds the depth of a computation tree in terms of the num-
ber of connected components of the decided set. We con-
sider the following decision problem, a variant of element-
distinctness.

Definition 2 For a vectorz = (x1, . . . , xn, y1, . . . , yk) ∈
R
n+k we havez ∈ DISJOINTSET+

n,k ⊂ Rn+k if and only if
y1 ≤ y2 ≤ · · · ≤ yk and for all i andj we havexi 6= yj .

Lemma 9 For 8 < k ≤ n the depthh of an algebraic
computation tree (the running time of a real-RAM algo-
rithm) deciding the setDISJOINTSET+

n,k is lower bounded
byh ≥ c · n log k for somec > 0.

Proof: (sketch) There are(k + 1)n ways of distribut-
ing the valuesxi into the intervals formed by theyi,
no two of them can be in the same connected compo-
nents of DISJOINTSET+

n,k. Using [2, Theorem 3] we
get 2h3n+k+h ≥ (k + 1)n implying the claimed lower
bound. 2

The running time functions in the following theorems
are assumed to be non-decreasing with the size of the data
structure. As these functions are used as upper bounds on
running times, this is no loss of generality.

Definition 3 SEMIDYNAMIC KINETIC MEMBERSHIP asks
for a data structure that maintains a setS of real numbers
under insertions, and allows for a valuex the queryx ∈ S,
provided thatx is not smaller than any previously per-
formed query.

Theorem 10 Let A be a data structure that implements
SEMIDYNAMIC KINETIC MEMBERSHIP. For size param-
eter n assume that the amortized running time of theIN-
SERToperation ofA be bounded byI(n) and the amortized
running time for theKINETIC-FIND-MIN query be bounded

by q(n). Then we haveI(n) = Ω
(

log n
q(n)

)
.

Proof: By reduction from DISJOINTSET+
n,k. We choose

the parameterk = bn/q(n)c. Let the vectorz =
(a1, a2 . . . , an, b1, b2 . . . , bk) ∈ R

n+k be some input to
DISJOINTSET+

n,k. We check in linear time whether we
haveb1 ≤ b2 ≤ · · · ≤ bk. If this is not the case, we re-
ject. We insert all the valuesai into A. Then we perform
queries for all thebj (in the natural order). If one of the
queries returnsbj ∈ S, i.e., bj = ai for somei and j,
we reject. Otherwise we accept. This correctly solves the
DISJOINTSET+

n,k problem.



The reduction takes linear time. By Lemma 9 the run-
ning time of this algorithm is bounded by(I(n) + d) · n+
q(n) · k ≥ c · n · log k for some constantsc andd. Us-
ing our choice ofk we get(I(n) + d) · n + n ≥ c · n ·
log bn/q(n)c. Dividing by n and rearranging terms yields
I(n) ≥ c · log(bn/q(n)c)− 1− d. 2

Note that forq(n) = O(n1−ε), Theorem 10 implies
I(n) = Ω(log n). Another example is thatI(n) =
O(log log n) yieldsq(n) = Ω(n/(log n)O(1)).

Theorem 11 Consider a data structure implementing the
SEMIDYNAMIC MEMBERSHIP problem on the real-RAM
that supportsMEMBER queries in amortizedq(n) time, for
size parametern. Then we haveq(n) = Ω(log n).

Proof: Reduction from DISJOINTSET+
n,k. Let I(k) be an

upper bound on the amortized insertion time for one ele-
ment when creating a data structure holdingk elements.
We choose the parametern = k · (1 + I(k)). Let the
vector z = (a1, . . . , an, b1, . . . , bk) ∈ R

n+k be an in-
put to DISJOINTSET+

n,k. We check in timek whether we
haveb1 ≤ b2 ≤ · · · ≤ bk. If this is not the case, we reject.
We insert the valuesb1, . . . , bk into the data structure. Now
we perform queries for the valuesa1, . . . , an. By Lemma 9
we get for sufficiently largek and some constantc the in-
equalityk · (1 + I(k)) + n · q(k) ≥ c · n log k. 2

Corollary 12 Consider a kinetic heap data structure. As-
sume that for size parametern the amortized running time
of the INSERT operation is bounded byI(n) and the amor-
tized running time for theKINETIC-FIND-MIN query is

bounded byq(n). Then we haveI(n) = Ω
(

log n
q(n)

)
.

Proof: We use the data structure to solve theSEMIDYNAMIC

KINETIC MEMBERSHIP. For an insertion ofai we insert
the tangent ony = −x2/2 at the point(ai,−a2

i /2). For
a member querybi we performKINETIC-FIND-MIN(bi). If
the query returns the tangent line, we answer “bi ∈ S”. The
corollary follows from Theorem 10. 2

Finally we can also conclude the main theorem:
Proof: (of Theorem 3) A semidynamic insertion-only
convex-hull data-structure can be used as a kinetic heap (du-
ality), Corollary 12 provides the bound on the insertions.
The bound on the queries relies on Theorem 11, with the
same geometric reduction as in Corollary 12. 2

8 Open problems

It remains open whether a data structure achieving worst-
caseO(log n) update times exists. It is also unclear if other
queries (like the segment of the convex hull intersected by a
line) can also be achieved inO(log n) time. Furthermore it
would be desirable to come up with a simpler data structure
achieving the same running times.
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