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Abstract. Distance oracles and graph spanners are excerpts of a graph
that allow to compute approximate shortest paths. Here, we consider the
situation where it is possible to access the original graph in addition to
the graph excerpt while computing paths. This allows for asymptotically
much smaller excerpts than distance oracles or spanners. The quality of
an algorithm in this setting is measured by the size of the excerpt (in
bits), by how much of the original graph is accessed (in number of edges),
and the stretch of the computed path (as the ratio between the length of
the path and the distance between its end points). Because these three
objectives are conflicting goals, we are interested in a good trade-off. We
measure the number of accesses to the graph relative to the number of
edges in the computed path.

We present a parametrized construction that, for constant stretches,
achieves excerpt sizes and number of accessed edges that are both sub-
linear in the number of graph vertices. We also show that within these
limits, a stretch smaller than 5 cannot be guaranteed.

1 Introduction

We study the problem of answering approximate shortest path queries on an edge
weighted, undirected graph G = (V, E) (called the base graph from now on) with
n vertices and m edges, where the vertices are labeled with unique bit strings of
length at most d` log ne for an ` ≥ 1. For practical purposes we also assume that
all edge weights are `-limited precision rational numbers whose numerators and
denominators can be stored with d` log ne bits. In our specific setting, we are
allowed to preprocess the (very large) base graph and store information about
it (viewed as a bit string) in a memory of severely limited size; we call this an
excerpt of the graph, and the number of bits the excerpt size. A path query is
specified by the labels of both end vertices; the answer to the query is a path in G,
returned as a sequence of vertex labels. No information can be passed from one
query to the next. For answering a path query, we may read from the excerpt at
no cost. In addition we may access the graph by probing a vertex, which reports
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a single edge incident to this vertex at unit cost. In a sequence of probes of the
same vertex, the incident edges are returned in order of increasing weights, with
equal weight edges in the same order within any probe sequence. A vertex can
be reset at any time to its start state, with the effect that probing starts again
at the adjacent edge with the smallest weight. When a path query starts to be
processed, all vertices are in their start states. The total cost of accessing the
graph for a path query (the total probe cost) is the number of probes for that
query. Because paths with more edges tend to need more probes, we define the
efficiency of probing as the ratio of the probe cost against the number of edges
in the returned path, the probe factor.

We are interested in the trade-off between excerpt size, probe factor, and
approximation ratio of the length of the returned path against the shortest path
length in the base graph (also known as the stretch). While we are interested
in the asymptotic limits of the trade-off in arbitrarily large graphs, we still
give concrete values for the trade-off parameters and their limits. Our focus
is on showing that graph excerpts and path finding algorithms with the desired
properties exist. Still, our proofs are constructive, and the presented and implied
algorithms all run in polynomial time.

We came across problems of this nature in the study of public key authenti-
cation, but we believe our problem is of interest in other domains as well, such as
for external memory and caching. In public key authentication, the certificate of
a public key can be retrieved from the organization that issued that certificate.
These certificates can be interpreted as the edges of a huge implicit graph. An
important and potentially time-consuming part of asserting that a key belongs
to an alleged owner translates into finding a path in this graph.

Short paths by means of small excerpts have attracted attention earlier:
Graph spanners [16] and approximate distance oracles [20] solve the special case
where (expressed in our setting) the allowed probe cost for computing a path
is zero, that is, the path has to be computed from the excerpt alone, without
access to the base graph. Both the graph spanner and the approximate distance
oracle allow for a trade-off between the two conflicting goals of keeping excerpts
as well as stretch small. For graphs on n vertices, O(n log n) bits are sufficient
to store a log n-spanner. On the other hand, any excerpt from which paths (of
arbitrary stretch) need to be computed without further information (such as
base graph accesses) requires at least Ω(n log n) bits, as shown in Section 3.1.
We are therefore interested in trade-offs where the excerpt size is o(n log n) bits.
Without a limit on the probe factor we can easily restrict the excerpt size. Thus,
in our trade-off we limit the probe factor to o(n). This does not even allow the
path finding algorithm to exlore the whole neighbourhood of the returned path
in dense graphs.

To keep our modelling reasonably simple, we do not restrict the path finding
algorithm to be time or space efficient. This strengthens the impossibility results
of Section 3. Our construction based on the index graph is not exploiting this
loophole, it only computes shortest paths on the index graph and on explored
subgraphs with r edges. In particular, for the choice of parameters that achieves



sublinear index size and sublinear probe factor, this computation time (per edge
in the reported graph) and computation space remain sublinear in the number
of nodes of the base graph.

1.1 Results

In Section 2, we define a path finding algorithm and a corresponding excerpt,
the index graph. We give two trade-off parameters for the construction of the
index graph. The first, r, limits the probe factor to O(r), the second, σ, lim-
its the stretch to O(σ). With these parameters we get an index graph with
ñ ≤ min

(
n log n√

r
, n

)
nodes and m̃ ≤ ñ1+2/σ edges, which can be stored with

O(m̃` log n) bits. As mentioned above, we are interested in trade-offs with both
excerpt size and probe factor sublinear in the number of vertices. And indeed,
for every ε, 0 < ε < 1

2 , we can set r ≥ n2ε and σ ≥ 2
(

1−ε
ε

)
to achieve sublinear

size and probe factor and still guarantee a constant stretch.
Our construction can be seen as a natural extension of graph spanners and

distance oracles. For probe factor 0, it results in a σ-spanner of the base graph.
Beside the index graph construction, we also provide bounds on the trade-

off that can be achieved in different situations. Specifically, we show that for
a stretch smaller than 5 (Section 3.3), or if the order in which the edges are
accessed is independent of their weights (Section 3.2), the probe factor cannot
be smaller than n

8 , even if the excerpt size is in the same order of magnitude as
a graph spanner, namely n log n

8 . Thus, the desired trade-off with sublinear size
and sublinear probe factor cannot be achieved in these cases.

1.2 Related Work

The problem of finding shortest or short paths in a graph received a lot of
attention in the last decades, see for example the recent survey by Zwick [21]. The
role of limited amount of working storage space has been investigated, among
others, for approximate distance oracles, external memory data structures, and
the streaming model, as detailed below.

The approximate distance oracle [20] chooses a k ≥ 1, uses a data structure
of size O(kn1+1/k) and returns an approximate shortest path in constant time
per path edge. The returned path is at most 2k − 1 times larger than the true
distance. The construction of the data structure takes O(kmn1/k) expected time,
which was recently improved to Õ(n2) time [4]. Note that the data structures
in approximate distance oracles are always of size Ω(n log n) bits, whereas our
focus are excerpts that use asymptotically less bits than that.

Another possibility is the relabeling of the entire graph in a preprocessing
step [7]. There, the two labels of the source and the sink are sufficient to answer
(approximate) distance queries. In this setting, the total space usage of the labels
is necessarily Ω(n

√
m) for some graphs, and is always super-linear in the number

of vertices.



Along a different line of thought, external memory algorithms and data struc-
tures have been designed for shortest path computations, among other graph
problems. See [14] for a recent overview and [15] for one of the latest shortest
path algorithms. For external memory algorithms, the assumption is that main
memory is limited, and external memory accesses to storage blocks are costly.
Distance oracles reduce the required size of main memory, but still they are only
suited for what is known as semi-external memory graph algorithms, namely sit-
uations in which the memory is big enough to store some information about every
node of the graph. In this respect, our approach extends the possibilities since
it uses even less space. In contrast to our model, the general external memory
model has the focus on algorithms for very limited size memory and arbitrar-
ily large graphs, and assumes that the external memory is organized in blocks
(cache-lines). Our setting can be understood as a situation where the algorithm
is not able to change the representation of the graph in external memory but
can extract a small graph excerpt in an expensive preprocessing phase. Then, a
probe corresponds to an access to external memory that retrieves the next block
of edges. Hence, our results can be understood in the external memory set-up,
but are certainly different in focus from the well established external memory
algorithms and data structures.

One of the most recent areas with a strong emphasis on storage efficiency
is the streaming model of computation, where only little information can be
maintained while a long stream of data passes by. While this area started out
with simple statistical and aggregate questions, it has matured to include gen-
eral algorithmic problems, such as computing some graph property when the
huge graph is given as a sequence of edges in arbitrary order. Interestingly, for
many of these properties, such as connectedness, which is at the basis of short
path computations, at least Ω(n) bits need to be stored if streams can only be
read [11]. The W-Stream model [8], where intermediate streams are written in
one pass to be read in the next pass, allows for a trade-off between memory and
number of passes for single source shortest path. Such an intermediate stream
can be viewed as an excerpt of the graph. Nevertheless, one cannot apply these
concepts in our setting, since in the first pass the whole graph is read, the size
of the intermediate streams may be in the order of the number of graph edges,
and the content of the intermediate streams depends on the query and not only
on the graph.

Exact and approximate shortest path acceleration [9] can be regarded as
closely related to our problem. Shortest path acceleration tries to answer several
path queries on the same graph efficiently. To that end, the graph is preprocessed
and some data structure is stored additionally to the graph. This preprocessing
should also be completed with low running time. In contrast to shortest path
acceleration, we try to limit the number of graph edges that need to be examined
to answer path queries, and we do not, at this point, consider the cost or running
time for preprocessing. On the other hand, the data structure generated in the
preprocessing of the shortest path acceleration may be as large as the graph itself,
whereas in our model the size of this data structure should be really small, i.e., of



size o(n). In particular, the techniques used for shortest path acceleration are not
directly applicable to our model. For instance, Goldberg and Harrelson [13] use
a vertex labelling in the preprocessing to be used for triangulation during path
queries. This is not feasible in our model since the vertex labels require Ω(n log n)
space. Sanders and Schultes [19] present a different approach, so called highway
hierarchies. While the space needed to store the additional data is considerably
smaller than the one needed by vertex labelling, the authors observe that the
space is “a small constant factor of the input size” [19].

2 Index Graph and Path Finding Algorithm

In this section, we present an algorithmic solution for the problem of finding ap-
proximate shortest paths guided by a small index, or graph excerpt. We describe
mainly the mathematical structure of our excerpt. The algorithm to construct it
follows directly from this structure. First we describe roughly the path finding
algorithm, and then the undirected weighted index graph, the graph excerpt that
supports such a path finding algorithm. Details on the path finding algorithm
and the index graph are given in Section 2.1 and 2.2, respectively.

Note that because we are interested in trade-offs with sublinear excerpt size,
not all vertices are represented in the index graph. Thus, the path finding algo-
rithm computes a path between two vertices s and t in the following way. First,
it explores the vicinities of s and t in the base graph to find two index nodes,
i.e., graph vertices represented in the index graph, that are closest to s and t,
respectively. Then it computes a preliminary path in the index graph between
the two index nodes. This preliminary path is a path with gaps. Finally, the path
finding algorithm closes the gaps by exploring the base graph and thus obtains
a path between s and t in the base graph.

The two trade-off parameters, r and σ, are not explicitly used in the path
finding algorithm. Instead, the structure of the index graph guarantees that the
probe cost for finding an index node in the vicinity of any vertex, and for closing
a gap in the preliminary path, are bounded by r resp. 2r. The index graph also
limits the stretch of the obtained path to 9σ + 2 (Lemma 9 and Lemma 3).

The main ingredient of constructing the index graph is the selection of the
index nodes. As indicated above, we want enough index nodes such that we
can find a shortest path from any vertex in the graph to an index node while
accessing at most r edges. On the other hand, the limit of the excerpt size imposes
a limit on the number of index nodes. To specify a “good” set of index nodes,
we introduce the relation nearr(u, v) over pairs of vertices that is parametrized
with the probe cost limit r. We postpone the technical definition of this r-near
relation. For now, it is sufficient that if nearr(u, v), then with probe cost at
most r we can find all shortest paths from u to v and to all vertices closer to u
than v. Because every vertex is r-near to at least

√
r other vertices (Lemma 5,

page 8), we can compute a set of at most n log n√
r

index nodes in polynomial time
(Lemma 7) such that every vertex is r-near an index node. In a similar way as
the neighbourhood of a vertex v is the set of vertices to which there is an edge



from v, we call the set of vertices to which v is r-near the vicinity of v; the vertex
v is the center of the vicinity of v. Note that every vertex is in its own vicinity.

The r-near relation is not only useful to select the index nodes, but also to
construct the index edges, which represent paths in the base graph. We connect
two index nodes v1 and v2 if there is an edge {u1, p2} in the base graph such
that a vertex p1 is r-near v1 and u1, and p2 is r-near v2. Exploring from the
vertices p1 and p2, the path finding algorithm can close the gap between v1 and
u1 and between v2 and p2 with probe cost at most 2r. The weight of the edge is
the length of the path from v1 to v2 that results from closing the gaps, and the
edge is annotated with the vertices p1, u1, and p2. If the path from v1 to v2 has
less than 6 edges, we annotate the index edge with the whole path. Note that p1

may be the same vertex as u1. In particular, with an edge {v1, v2} in the base
graph, p1 = u1 = v1 and p2 = v2.

The limit on the probe cost is not the only feature based on these index
edges. Lemma 9 shows that the distance between two index nodes in the full
index graph, i.e., the graph induced by all index edges, is at most 3 times their
distance in the base graph.

Even if we eliminate multiple edges between index nodes, the full index graph
may still be arbitrarily dense, causing a large excerpt. Therefore, our index graph
Iσ
r (G) of a base graph G is a greedy σ-spanner [16] of the full index graph.

With Definition 4 (page 8) of the r-near relation, which is based on the
exploration of a shortest path tree, we can give the following upper bounds for
the size of the index graph and the performance of the path finding algorithm:

Theorem 1. For all graphs G = (V, E) on n vertices with unique d` log ne bit
vertex labels and `-limited precision rational edge weights, for all integer val-
ues r ≤ n and σ, 1 ≤ σ ≤ log n, the index graph Iσ

r (G) and the corresponding
path finding algorithm A with input (s, t, Iσ

r (G)) that reports a path p(s, t) from
any vertex s to any vertex t in G have the following properties:

1. the index graph Iσ
r (G) has ñ ≤ min

(
n log n√

r
, n

)
nodes and m̃ ≤ ñ1+2/σ edges

and can be stored with O(m̃` log n) bits
2. the length of the path p(s, t) reported by the algorithm A is less than (9σ + 2)·

dist(s, t)
3. the probe cost of the algorithm A to compute path p(s, t) is at most 2r if

p(s, t) has less than 6 edges; the probe factor is at most r/2 if p(s, t) has at
least 6 edges.

Note that for graphs with positive integer edge weights, the probe factor can
also be limited relative to the length of the returned path.

The remainder of this section gives the details of the path finding algorithm
and the index graph construction, and defines the r-near relation. Theorem 1
follows directly from these details.

2.1 Path Finding Algorithm

In this section, we formalize the details of the path finding algorithm and present
the lemmas used to prove Points 2 and 3 of Theorem 1.



To find a path from a vertex s to a vertex t, the algorithm starts exploring
from s and t until an index node s̃ and t̃ is reached, respectively. Note that if
nearr(s, t) or nearr(t, s), then the algorithm has already found a shortest path
from s to t. Next, the algorithm computes a shortest path from s̃ to t̃ in the
index graph. For every index edge on that path, the corresponding path in the
base graph is computed by exploring from the annotated vertices p1 and p2, if
it cannot be read directly from the index edge.

We use the term expanding an index edge for computing a path in the base
graph that connects the two index nodes incident to the index edge. Lemma 2,
the limit for the probe factor, is based on the observation that if an index edge
is expanded, the corresponding part of the returned path has at least 6 edges.

Lemma 2 (without proof). The probe factor of the path finding algorithm to
compute a path p between two graph vertices is at most r/2 if p has at least 6
edges; the total probe cost is at most 2r if p has less than 6 edges.

The following lemma is based on the observation that if one end point of
the path query is closer to the other end point than to an index node, the path
finding algorithm will find and return a shortest path.

Lemma 3 (without proof). If the distance between two index nodes in the
index graph Iσ

r (G) is at most k times their distance in the base graph, then the
length of any path returned by the path finding algorithm is at most 3k +2 times
the distance between the two end points.

It remains to define an r-near relation that allows the path finding algorithm
to find shortest paths from v to all vertices in the vicinity of v, while accessing
at most r graph edges. The properties of r-near suggest that we define r-near
based on the shortest path tree, which can be computed with Dijkstra’s shortest
path algorithm [10]. Note that the shortest path algorithm operates on directed
graphs. This serves our purpose, since any edge {u, v} is reported both by a
probe of u and by a probe of v.

However, the shortest path algorithm in its classical formulation examines
all arcs of one vertex at once. In a high degree graph, this can induce probe costs
higher than any r ∈ o(n). Therefore, we modify Dijkstra’s algorithm slightly to
evaluate edges lazily, that is, to only read those arcs that are really needed to
determine the next vertex to be added to the shortest path tree. Similar methods
to speed up Dijksta’s shortest path algorithm by limiting the number of edges
in the priority queue have been proposed before, see [1] for an example. The
main goal in our case, however, is to limit the number of examined edges. For
every vertex u we only need one out-going arc (u → v) in the priority queue at a
time. Remember that we access the edges incident to one vertex in the order of
increasing weights. Thus, examining and possibly adding an arc (u → w) with
greater or equal weight can be postponed until (u → v) is removed from the
queue. Specifically, when a vertex u (including the root) is added to the shortest
path tree, we add only the first arc reported by a probe of u to the priority
queue. Whenever an arc (u → v) is removed from the queue, we add the next



Algorithm 1 Shortest path with lazy edge evaluation
procedure Explore(vertex source, vertex dest)

add first outgoing arc of source to priority queue
while dest not in shortest path tree do

(u → v) ← arc on top of priority queue
remove (u → v) from priority queue
if v not in shortest path tree then

add v to shortest path tree with edge {u, v}
quit if v = dest
add first outgoing edge of v to priority queue

end if
add next outgoing edge of u to priority queue

end while
end procedure

arc reported by a probe of u. See Algorithm 1 for a formal description of the
modified shortest path algorithm.

We want the vertices to be added to the shortest path tree in a deterministic
order, for situations in which many vertices have the same distance to the root
of the tree, and we want the root to be r-near some but not all of them. For
simplicity, we use the label of the arc’s target vertex as a tie-breaker, even though
using a deterministic priority queue would suffice.

From here on, Explore(u,v) refers to the modified shortest path algorithm
with source u and destination v. The definition of r-near naturally follows from
Explore.

Definition 4. A vertex u is r-near another vertex v, nearr(u, v), if and only if
Explore(u,v) adds at most r edges to the priority queue.

Based on this definition, we can bound the size of the vicinity of any vertex.

Lemma 5. A vertex is r-near at least d√re vertices, including itself.

Proof. Assume that Explore(u,v) is about to add v as the (k + 1)st node to
the shortest path tree. At that point, at most k2 arcs can have been added to
the priority queue: k(k− 1) arcs between tree nodes, and k arcs from tree nodes
to vertices that are not in the tree yet (including v). For k = d√re − 1 <

√
r we

get k2 < r and therefore nearr(u, v). ut
Lemma 6. A vertex is r-near at most r + 1 vertices, including itself.

Proof. For every edge that is added to the priority queue in Explore, at most
one vertex can be added to the shortest path tree. ut

2.2 Index Graph

In this section, we describe the details of the index graph construction, and
present the lemmas used to prove Point 1 of Theorem 1.



As outlined at the beginning of Section 2, we first select the index nodes, then
compute the index edges, and lastly build the index graph Iσ

r (G) as a greedy
σ-spanner [16] of the full index graph induced by the index edges.

Lemma 7. In every graph G on n vertices there is a set Ṽ of at most
min

(
n log n√

r
, n

)
vertices such that every vertex in G is r-near a vertex in Ṽ .

The set Ṽ can be computed in O(rn log n) time.

Proof. The size limit n is trivial because the set Ṽ cannot contain more vertices
than the graph G, and every vertex is r-near itself.

The set Ṽ of vertices can be interpreted as a Set Cover [12] solution. The
graph vertices form the universe of the Set Cover instance, and for every vertex v
there is a set containing all vertices that are r-near to v. This Set Cover instance
has n elements and n sets. Every element is in at least

√
r sets because every

vertex is r-near at least
√

r vertices (Lemma 5). Thus, with Lemma 8, Greedy
Set Cover [6] computes a set Ṽ with at most (log2(

√
r) + 1) n√

r
≤ n log n√

r
vertices.

The sets of the Set Cover instance can be computed in O(r log r) per vertex
using Explore. The upper bound of r + 1 for the sets (Lemma 6) limits the
running time of Greedy Set Cover to O(rn log n). ut
Lemma 8 (Alon, Spencer [2]). Given a universe U with at most n elements
and at most n subsets of U . If every element is in at least k sets, then the number
of sets selected by the Greedy Set Cover algorithm [6] is at most (log2(k) + 1) n

k .

This concludes the selection of the index nodes. The structure of the index
edges is already described at the beginning of Section 2. The index edges can
be computed efficiently by considering every vertex as point p1 and creating
an index edge for every edge {u1, p2} with nearr(p1, u1). Lemma 9 limits the
distances in the full index graph.

Lemma 9. The distance between any two index nodes in the full index graph
induced by the set of all index edges is at most three times their distance in the
base graph.

Proof. Let p be a shortest path in the base graph from index node s̃ to index
node t̃. We use a sequence of vertices pi on the path p, with increasing distance
from s̃, to split p into several parts, such that for each part there is an index
edge. These index edges will form a path from s̃ to t̃.

For every pi, let ṽi be the closest index node and di be the distance from pi

to ṽi. Note that pi is r-near ṽi. As p1 we take any vertex on p for which ṽ1 = s̃.
The last vertex pk of the sequence has ṽk = t̃. There must be such a pk because
di ≤ dist(pi, t̃) for every pi.

For a given vertex pi, we set pi+1 as the first vertex on path p with
dist(pi, pi+1) ≥ di. Since the left neighbour ui of pi+1 on the shortest path is
r-near pi, there is an index edge {ṽi, ṽi+1} with weight at most 2 dist(pi, pi+1)+
di+1. These index edges form a path from s̃ to t̃. The weight of this path is at
most

∑
i<k(2 dist(pi, pi+1) + di+1) ≤ dk +

∑
i<k 3 dist(pi, pi+1) ≤ 3 dist(s̃, t̃).



Note that it does not matter if two index nodes ṽi and ṽj are actually the
same vertex, since this only shortens the length of the path in the full index
graph. ut

To compute the index graph Iσ
r (G) as a σ-spanner of the full index graph, we

use the Greedy σ-Spanner algorithm [3]. With this algorithm, we can compute
the index graph from the index edges in polynomial time. The Greedy σ-Spanner
also guarantees an upper bound on the edges in the index graph:

Lemma 10 (Regev [18], combined with Bollobás [5]). The Greedy σ-
Spanner of every graph on ñ vertices has at most ñ1+2/σ edges.

3 Impossibility Results for Trade-Offs

In this section, we show various impossibility results for trade-offs between ex-
cerpt size, stretch, and probe factor.

Throughout this section, we allow all operations on vertex labels. This is in
contrast to the path finding algorithm and the index graph construction pre-
sented in Section 2, where we only use comparisons. Additionally, for all impos-
sibility results presented in this section, we restrict the vertex labels to integers
from 1 to n on graphs with n vertices. There is also no assumption on the form
or content of the graph excerpt, except that it can be stored as a bit string.

We use the same technique to prove all three limits presented in this section.
For each limit, we present a family of graphs such that for every pair of graphs
in the family, there is at least one pair of vertices for which the connecting paths
that may be returned by the path finding algorithm differ. Additionally, the
probe cost for distinguishing two graphs of the family is above the allowed limit
of the probe cost (which is zero in Section 3.1).

3.1 Lower Bound for Spanners and Oracles

In this section we show that if the path finding algorithm is not allowed to access
the base graph, then the size of the excerpt needs to be in Ω(n log n).

Lemma 11. There is no path finding algorithm A(s, t, {0, 1}L), with L ≤ n log n
2 ,

that returns a path from vertex s to vertex t for all graphs G on n vertices with
integer labels 1 to n.

Proof. Consider the family of trees with unique vertex labels 1 to n. There are
nn−2 > 2

n log n
2 different trees on the vertices with unique labels 1 through n [17].

Therefore, with L ≤ n log n
2 , at least two different trees T and T ′ are represented

by the same bit string of length L. However, there is one pair of vertices s and t
such that the path from s to t is different in the two trees. Otherwise, all edges
in T must also be in T ′, and the two trees are identical. Hence, it is not possible
for the algorithm A to decide which path to return without accessing the base
graph. ut



3.2 Edge Orders

In this section we demonstrate that the order in which the edges are reported is
important for achieving good trade-offs between excerpt size, number of accessed
edges and stretch. More precisely, we show that if the order in which the edges
adjacent to one vertex are reported is based on a criterion that is independent
of the edge weights, then the stretch cannot be limited to a value independent
of the base graph’s edge weights, even if the excerpt size is in the same order
of magnitude as a log n-spanner and the probe factor is linear in the number of
vertices. We denote the combination of the orders in which the edges adjacent
to the individual vertices are reported as an edge order.

Lemma 12. For every edge order of the complete graph Gn on n vertices and
every positive integer k, there is a family of weight functions W : V × V → R+

such that there is no path finding algorithm A(s, t, {0, 1}L), with L ≤ n log n
8 , that

returns a path p(s, t) with stretch k and probe factor n
8 for every vertex pain s, t

and every weight function in W.

Proof Idea: We divide the vertices into two sets A and B, with |A| = n/4.
Which vertices are in A depends on the edge order. The set B forms a complete
subgraph with all edge weights 1. Every vertex in A has exactly one edge to a
vertex in B with weight 1, all other edges have weight 2k + 1. Which edge has
weight 1 depends on the specific weight function. The distance between a vertex
a in A and a vertex b in B is thus at most 2, and any path from a to b with
stretch k must start with the one edge adjacent to a that has weight 1. However,
there are more than 2

n log n
8 such weight functions for which the weights of the

first n/8 edges adjacent to every vertex do not differ, which makes it impossible
to distinguish any two graphs with probe factor n/8. ut

3.3 Stretch Limit

In this section we argue for finding only approximate shortest paths instead of
true shortest paths, although the base graph can be accessed while computing a
path. More precisely, we show that even with excerpts whose size is in the same
order of magnitude as a log n-spanner, and with a linear probe factor, no stretch
smaller than 5 can be achieved.

Lemma 13. For every ε > 0 there is a family Gε
n of graphs on n vertices with

integer labels 1 to n, such that there is no path finding algorithm A(s, t, {0, 1}L),
with L ≤ n log n

8 , that returns a path from s to t with stretch 5 − ε and probe
factor n/8 for every vertex pair s, t in every graph G ∈ Gε

n.

Proof Idea: We divide the graph vertices into four equally sized sets A, B, C,
and D. Sets A and B form a complete bipartite graph with edge weights 1− ε

8 ,
as do sets C and D. Additionally, there is a perfect matching with edge weights
1 between the vertices of A and the vertices of D. The difference between the
graphs in Gn lies only in the matching. The only path between two vertices a ∈ A



and d ∈ D with stretch 5− ε is {a, d} if that edge exists in the graph. However,
there are more than 2

n log n
8 such matchings, and the probe cost for finding out

if {a, d} is in the graph is larger than n
4 . ut
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