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Abstract

This paper studies the construction of self-stabilizing topologies for
distributed systems. While recent research has focused on chain topolo-
gies where nodes need to be linearized with respect to their identifiers, we
go a step further and explore a natural 2-dimensional generalization. In
particular, we present a local self-stabilizing algorithm that constructs a
Delaunay graph from any initial connected topology and in a distributed
manner. This algorithm terminates in time O(n3) in the worst-case. We
believe that such self-stabilizing Delaunay networks have interesting ap-
plications and give insights into the necessary geometric reasoning that is
required for higher-dimensional linearization problems.

1 Introduction

Open distributed systems such as peer-to-peer systems are often highly
dynamic in the sense that nodes join and leave continuously. In addition to
these natural membership changes, a system is sometimes under attack,
e.g., a botnet may block entire network fractions by a denial-of-service
attack. For these reasons, there is a considerable scientific interest in ro-
bust and “self-healing” topologies that can be maintained in a distributed
manner even under high churn.

An important concept to build robust networks is topological self-
stabilization: A self-stabilizing network can provably recover from any
connected state, that is, eventually the network always returns to a de-
sirable (to be specified) state. Despite its relevance, topological self-
stabilization is a relatively new area and today, we still know only very
little about the design of self-stabilizing algorithms. In particular, while
much existing literature focuses on eventual stabilization, the required
convergence times are still not well understood.
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Recently, researchers have made progress in the field of graph lineariza-
tion where nodes need to be arranged in a chain network which respects
the node identifiers. In this paper, we go one step further and explore the
2-dimensional case. We assume nodes are distributed in the Euclidean
plane and are arbitrarily connected. A natural 2-dimensional analogon of
linearization is the Delaunay graph, whose edge set includes all nearest
neighbor connections between node pairs. Delaunay graphs are an impor-
tant graph family in various CS domains, from computational geometry
to wireless networking. This is due to their desirable properties such as
locality, sparseness or planarity. We find that while insights from graph
linearization are useful for self-stabilizing Delaunay graphs as well, the
construction and analysis is more involved, requiring a deeper geometric
reasoning.

1.1 Related Work

Researchers in the field of self-stabilization study algorithms that prov-
ably converge to a desirable system state from any initial configuration.
In the seminal work by E.W. Dijkstra in 1974 [7], the problem of self-
stabilization in a token ring is examined. Subsequently, many aspects
of distributed systems have been explored from a self-stabilization point
of view, including communication protocols, graph theory problems, ter-
mination detection, clock synchronization, and fault containment. Also
general techniques for self-stabilization have been considered: In [2], Awer-
buch and Varghese showed that every local algorithm can be made self-
stabilizing if all nodes keep a log of the state transitions until the current
state.

However, much of this work is not applicable to scenarios where faults
include changes in the topology (e.g., see [9] for an early work on topo-
logical self-stabilization): A single fault may require the involvement of
all nodes in the system and is hence expensive to repair. To reduce this
overhead, researchers have started to study so-called superstabilizing pro-
tocols [8]. Topological self-stabilization is still in its infancy. Often, re-
covery algorithms do not work generally but only from certain degenerate
network states (see, e.g., the technical report of the Chord network [18]).
A notable recent exception is [14] which describes a truly self-stabilizing
algorithm for skip graphs. Unfortunately, however, skip graphs do not
maintain locality in the sense that nodes which are close in the metric
space are also close with respect to the hop distance, and therefore can-
not be used in our context.

In order to shed light onto the fundamental principles enabling prov-
able topological self-stabilization, researchers have started to examine the
most simple networks such as line or ring graphs (e.g., [5, 10]). Our paper
goes one step further and initiates the study of self-stabilizing construc-
tions of 2-dimensional graphs. As a case study, we consider the important
family of Delaunay graphs. We assume nodes have (x, y) coordinates and
are distributed in the Euclidean plane. As Delaunay graphs include all
nearest neighbor edges, our algorithms also involve a kind of 2-dimensional
linearization. However, it turns out that the problem is more involved,
and the reasoning requires geometric techniques. Still we are able to prove
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a O(n3) convergence time in the worst-case.
Delaunay graphs are known for almost a century now [6] and there ex-

ists a large body of literature. For an introduction and basic algorithms,
see, e.g., the handbook by Goodman et al. [11]. The recent interest in ad-
hoc networks has brought the Delaunay graph back to the limelight. Led
by the energy challenges—nodes in ad-hoc networks often have a limited
power supply—researchers have proposed numerous approaches for topol-
ogy control [12, 20]. In [13], Hu presents a local topology-control algorithm
for Delaunay triangulations in packet radio networks. Using neighbor ne-
gotiations, the graph is also made degree-bounded. In [4], competitive
memory-less online routing algorithms on Delaunay structures are pro-
posed. Due to the expensive distributed construction of Delaunay graphs
and the sometimes long edges, alternative topologies have been proposed,
some of which contain the Delaunay graph as a subgraph [15]. Note that,
if the initial neighbors of a node are local (which is typically the case in
wireless networks), self-stabilizing constructions are simple and can even
be performed in constant time [16, 21]. In contrast to the wireless con-
structions, in this paper, we do not assume that nodes initially have con-
nections to local neighbors. Rather, nodes can be connected to any nodes
on the metric space. In this sense, our algorithms can be understood as a
topology control mechanism for wireline systems.

1.2 Our Contributions

This paper presents the first self-stabilizing algorithm to build a Delaunay
graph from any weakly connected network. Our algorithm is local in the
sense that nodes are only allowed to communicate with their topological
neighbors. Besides correctness, we are able to derive a O(n3) worst-case
bound on the convergence time (i.e., number of communication rounds).
We believe that this result has interesting implications, and that our
geometric reasoning can give general insights into the design of higher-
dimensional “nearest-neighbor graphs” respecting the closeness of nodes
in a self-stabilizing manner. If the initial network contains the Delaunay
graph, the convergence time is at most n rounds.

Compared to the trivial strategy to obtain a complete graph in
O(logn) rounds in a first phase and then compute the Delaunay graph
“locally” at each node in a second phase, our algorithm provides several
advantages. First of all, it is not necessary to distinguish between differ-
ent execution phases: Each node will perform updates according to the
same set of rules at any time; only like this, the algorithm is truly self-
stabilizing. Furthermore, our algorithm can deal efficiently with small
topology changes: If only a small number of nodes joins or leaves, the
topology is repaired locally ; a complete re-computation is not needed. Fi-
nally the simulations show that the maximal degree and the total number
of edges remain rather small in general. This keeps the resource require-
ments at each node small.
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1.3 Paper Organization

The remainder of this paper is organized as follows. We describe our
formal model and introduce some technical preliminaries in Section 2.
Our algorithm is presented in Section 3, and it is subsequently analyzed
in detail (Section 4). Section 5 reports on our simulation results. The
paper is concluded in Section 6.

2 Model and Preliminaries

This section first introduces some notations and definitions from geome-
try. Subsequently, the Delaunay graph is introduced together with some
important properties. In this paper, we will consider non-degenerate cases
only, that is, we assume that no two nodes are at the same location, no
three points are on a line, and no four points are on a circle.

2.1 Geometry

We consider the 2-dimensional Euclidean space R2. The scalar product
is written as 〈·, ·〉 and the Euclidean norm (the distance from the origin)
is given by ‖x‖ =

√
〈x, x〉. We make use of the following notation. Let

B(x, r) denote the disk (or ball) with center x ∈ R2 and radius r ∈ R, i.e.,
B(x, r) := {y ∈ R2 : ‖x−y‖ ≤ r}. Note that the border explicitly belongs
to the ball in our model, and hence, a point y ∈ B(x, r) may lie on the
border. C(x, y) := B( 1

2
(x + y), 1

2
‖x − y‖) is the disk between x, y ∈ R2.

Similarly, C(x, y, z) := B(c, r) with r = ‖x− c‖ = ‖y− c‖ = ‖z− c‖ is the
disk defined by non-collinear x, y, z ∈ R2. For a vector x 6= 0 we define
0 6= ⊥x ∈ R2 to be the perpendicular, i.e., 〈x,⊥x〉 = 0. Note that ⊥x is
unique up to constant factors.

By ∠xzy we denote the area spanned by the vectors x and y attached
to z, i.e., the area that can be expressed as a linear combination of the
vectors x and y with non-negative factors. In particular, ∠xzy = ∠yzx.
If a node u is contained in this area, we write u ∈ ∠xzy.

This paper makes use of the following simple geometric facts. For
two general points a, b ∈ R2, due to the triangle inequality, we have that
‖a+ b‖ ≤ ‖a‖+ ‖b‖. Moreover, it holds that ‖a+ b‖ = ‖a‖+ ‖b‖ ⇔ ∃t ≥
0 : a = t · b. Pythagoras’ law says that for any a, b ∈ R2 with 〈a, b〉 = 0, it
holds that ‖a+b‖2 = ‖a‖2+‖b‖2. If we know two points on the border of a
disk, then their midpoint must be on a specific straight line. Formally, let
u, v, x ∈ R2. Then ‖u−x‖ = ‖v−x‖ if and only if x = 1

2
(u+v) + t(u−v)

for some t ∈ R. For the Euclidean norm, it holds for C = C(u, v) for
u, v ∈ R2 that w ∈ C and ‖w − u‖ ≥ ‖v − u‖ imply w = v.

For some proofs we want to choose a disk C̃ contained in a bigger disk
C with at least two points on the border of C̃. We can make the following
observations.

Fact 2.1. Let C = B(x, r) be a disk with u, v ∈ C and u 6= v. Then there
is a disk C̃ = B(x̃, r̃) ⊆ C with ‖u− x̃‖ = ‖v − x̃‖ = r̃.

For the opposite direction, given a set of points, we need a disk con-
taining all of them, with at least three on the border.
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Fact 2.2. Let V ⊂ R2 be a finite set of points, not all of them collinear.
Then there are three different, not collinear points u, v, w ∈ V with
C(u, v, w) ⊃ V .

2.2 Delaunay Graphs

We consider graphs with an embedding into R2. Let V ⊂ R2 be a finite
set and E ⊂

(
V
2

)
, then G = (V,E) is called undirected embedded graph

with nodes V and edges E. Let n = |V | be the cardinality of V . We
define NG(u) = {v ∈ V : {u, v} ∈ E} as the neighbors of u. Moreover, let
NG(u) = NG(u) ∪ {u} denote the neighbors of u including u.

Usually we speak of a directed graph G = (V,E) with E ⊂ V 2. Then
a directed edge from u to v is denoted by (u, v), the undirected edge {u, v}
represents the two directed edges (u, v) and (v, u) and NG(u) = {v ∈ V :
(u, v) ∈ E}. NG(u) is defined analogously. Note that any undirected graph
can be seen as a directed graph with this interpretation of undirected
edges. This will be done implicitly throughout the paper. A directed
graph is called strongly connected, if for every pair (u, v) of nodes u, v ∈ V
there is a directed path from u to v. A direct graph is weakly connected,
if the graph obtained by replacing all directed edges by undirected edges
is connected.

Armed with these definitions, we can now define the Delaunay graph.

Definition 2.3 (Delaunay Graph). The Delaunay Graph

GD(V ) = (V,ED(V ))

of the vertices V is an undirected embedded graph defined by {u, v} ∈
ED(V ) ⇔ u 6= v ∧ ∃C = B(x, r) : C ∩ V = {u, v} i.e., u and v are
connected, if and only if there is a disk containing only these two points
of V .

Recall that we will consider non-degenerate cases, that is, we assume
there is no disk B(x, r) with four different points x1, . . . , x4 ∈ V on its
border, i.e. ∀B(x, r) : |V ∩ {y ∈ R2 : ‖x − y‖ = r}| ≤ 3. It is easy to see
that the Delaunay graph on a given node set always includes the convex
hull edges.

2.3 Properties

We can give several equivalent formulations of Definition 2.3 that will
be useful in our analysis. In a Delaunay graph, two nodes u and v are
connected if and only if either they are the only two nodes in the disk
C(u, v), or if there exists a third node w such that u, v, and w are the
only three nodes in C(u, v, w). [3]

Lemma 2.4. Let G = (V,ED(V )) be a Delaunay graph. Then

{u, v} ∈ ED(V ) ⇔ u 6= v ∧ (C(u, v) ∩ V = {u, v} ∨
∨∃w ∈ V \ {u, v} : C(u, v, w) ∩ V = {u, v, w})

The following lemma states that in a Delaunay graph, for each pair of
non-adjacent nodes, there must be a “close” neighboring node.
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Lemma 2.5. Let G = (V,ED(V )) be a Delaunay graph and {u, v} /∈
ED(V ). Then every disk C = B(x, r) containing u and v must contain at
least one neighbor w ∈ NG(u) with ‖w − x‖ < r.

Proof. Consider the family of disks Ct = B(x+ t(u− x), (1− t)‖u− x‖),
for t ∈ [0, 1], i.e., with center between u and x and radius at most ‖u−x‖.
Obviously u ∈ Ct for t ∈ [0, 1], C0 = C and C1 = {u}. Moreover the disk
Ct is always a part of the disk C: y ∈ Ct implies ‖y − x − t(u − x)‖ ≤
(1− t)‖u− x‖, so ‖y − x‖ ≤ ‖y − x− t(u− x)‖+ t‖u− x‖ ≤ ‖u− x‖ ≤ r
and thus Ct ⊆ C. Let Ct̃ be a specific disk for t̃ ∈ [0, 1] and Ct̃ ∩V 6= {u}
(not only including u), which contains the minimal number of points from
V .

Recall that since we do not consider degenerate cases, no more than
three points lie on a circle. Thus, and due to the minimality of Ct̃ ∩ V ,
Ct̃∩V will contain one or two points besides u, which are all on the border
of Ct̃.

From Definition 2.3, since {u, v} /∈ ED(V ), we immediately know that
there is at least one point w ∈ Ct̃ ∩ V , w /∈ {u, v}. The distance between
w and x must be smaller than r: By Definition 2.3 and Lemma 2.4 (for
three points on a circle), {u,w} ∈ ED(V ) and so w ∈ NG(u). Due to
the triangle inequality, ‖w − x‖ ≤ ‖w − xt‖ + ‖xt − x‖ ≤ (1 − t)r + tr
with equality only for w = u, where xt = x+ t(u− x) is the center of Ct.
Therefore ‖w − x‖ < r.

We need some properties about restrictions of Delaunay graphs to a
subset of nodes U ⊂ V . It is easy to see, that the restriction of the
Delaunay graph of V to U is contained in the Delaunay graph on U :

Lemma 2.6.
U ⊂ V ⇒ ED(U) ⊃ ED(V ) ∩ U × U

Proof. Let {u, v} be an edge in ED(V ) ∩ U × U . Then by Definition 2.3
there is a disk C = B(x, r) such that C ∩ V = {u, v}. Since U ⊂ V ,
C ∩ U = {u, v} and thus {u, v} ∈ ED(U).

Combining this lemma with the previous one, additional insights can
be gained. Let us pick U such that is contains the neighbors NG(u) of a
node u. Then u has the same neighbors in the Delaunay graph on U as
in the original Delaunay graph.

Lemma 2.7. Let G = (V,ED(V )) be a Delaunay graph, u ∈ V and
NG(u) ⊂ U ⊂ V . Then NGD(U)(u) = NG(u).

Proof. NGD(U)(u) ⊃ NG(u) is clear by Lemma 2.6. Now let {u, v} ∈
U×U\ED(V ). So, by Lemma 2.5, in each disc C = B(x, r) containing v, w
there is a neighbor w of u (i.e. w ∈ NG(u) ⊂ U). Thus, by Definition 2.3,
{u, v} /∈ ED(V ).

The next, important characterization of Delaunay graphs also argues
about edges that are not Delaunay. If and only if two nodes u and v are
not connected, there must exist two neighbors x and y of u, such that the
disk C(u, v, x) contains only y, and x and y lie on different sides of the
line connecting u and v.
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Lemma 2.8. Let G = (V,ED(V )) be a Delaunay graph. Then

{u, v} /∈ ED(V ) ⇔ ∃x, y ∈ V \ {u, v} : C(u, v, x) ∩ V ⊃ {u, v, x, y} ∧
∧〈x− u,⊥(v − u)〉 · 〈y − u,⊥(v − u)〉 ≤ 0

That is, x and y must be on different sides of the line connecting u and
v. One can even choose x, y ∈ NG(u).

Proof. Observe that the lemma claims an equivalence. We will study the
two directions individually.

Direction “⇒”: First we assume {u, v} ∈ ED(V ), and prove that in
this case, no such x and y exist. If {u, v} ∈ ED(V ), by the definition of
Delaunay graphs (Definition 2.3), a disk B(c, r) with B(c, r)∩V = {u, v}
exists. By Fact 2.1, w.l.o.g. ‖u− c‖ = ‖v− c‖ = r. For an arbitrary node
x other than u and v, and consider the disk C(u, v, x) 6= B(c, r) (B(c, r)
cannot contain x), the borders of C(u, v, x) and B(c, r) intersect in exactly
two points, namely u and v. Thus C(u, v, x) \ B(c, r) lies completely on
one side of the line uv. Therefore, there is no such y as required lying
in C(u, v, x) but on the other side of uv than x. This yields the desired
contradiction to the existence of such x and y nodes.

Direction “⇐”: Now assume {u, v} /∈ ED(V ). Then by Lemma 2.5 for
every disk B(c, r) 3 u, v there is a point w ∈ NG(u)∩B(c, r) (i.e. w 6= v).

Define Ct = C(xt, rt) to be a disk with center on the perpendicular
bisector of the line through u and v, i.e., with xt = 1

2
(u+ v) + t · ⊥(u− v)

and rt = ‖xt − u‖. Then u, v ∈ Ct. Since there is only a finite number of
points in V , consideration with regard to Definition 2.3 of CT and C−T

for big enough T > 0 ensures x, y ∈ NG(u) on different sides of uv, i.e.,
with 〈x− u,⊥(v − u)〉 · 〈y − u,⊥(v − u)〉 < 0.

Now we choose U = NG(u) ∪ {v} in the sense of Lemma 2.7. With
increasing parameter t the circle Ct will contain less of the area on the one
and more of the area on the other side of uv. Let t̃ the maximal t such
there is an x on the opposite side of xt with respect to the line uv, i.e.,
t̃ = max{t ∈ R : ∃x ∈ Ct ∩ U : 〈x− u,⊥(v − u)〉 · 〈xt − u,⊥(v − u)〉 < 0}.
Let x be as in the definition of t̃. We know ‖x − xt̃‖ = rt̃ (otherwise we
could increase t̃) and thus Ct̃ = C(u, v, x).

If Ct̃ ∩ U = {u, v, x}, then {u, v} ∈ ED(U) by Lemma 2.4. But this
cannot be true according to Lemma 2.7. So take y ∈ Ct̃ ∩ (U \ {u, v, x}).
As we only consider non-degenerate cases, i.e. no four points are on
the border of C(u, v, x) and no other point is on the line uv, y must
be on the opposite side of uv with respect to x (by maximality of t̃, i.e.
〈x−u,⊥(v−u)〉·〈y−u,⊥(v−u)〉 < 0. Therefore, x, y fulfill the conditions
of the statement.

We will later need the existence of special edges in Delaunay graphs.
First, we observe that a Delaunay node is always connected to the closest
node, that is, the Delaunay graph contains the nearest neighbor graph.
The following lemma follows directly from the observation that, for two
closest neighbors u, v ∈ V , C(u, v) ∩ V = {u, v}.
Lemma 2.9. Let G = (V,ED(V )) be a Delaunay graph and u ∈ V . Then
u is connected to the node v ∈ V \ {u} with minimal Euclidean distance
to u.
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Another important property of Delaunay graphs is that they are con-
nected.

Lemma 2.10. Every Delaunay graph G = (V,ED(V )) is connected. [19]

Moreover, it can be shown that these graphs have a planar embedding.

Lemma 2.11. Every Delaunay graph G = (V,ED(V )) is planar. [3]

2.4 Local Algorithms and Self-Stabilization

The main objective of this paper is to devise a distributed algorithm—
essentially a simple set of rules—which is run by every node all the time.
Independently from the initial, weakly connected topology (nodes can
be connected to any other nodes from all over the metric space), a self-
stabilizing algorithm is required to eventually terminate with a correct
Delaunay graph as defined in Definition 2.3. During the execution of
this algorithm, each node will add or remove edges to other nodes using
local interactions only. In order to evaluate the algorithm’s performance, a
synchronous model is investigated (similarly to [17]) where time is divided
into rounds. In a round, each node is allowed to perform an update of its
neighborhood, that is, remove existing edges and connect to other nodes.
We study the time complexity of the algorithm and measure the number
of rounds (in the worst-case) until a Delaunay graph is formed and the
algorithm stops.

3 Self-Stabilizing Algorithm

This section presents our algorithm ALG. During the execution of ALG,
all nodes continuously calculate a Delaunay graph on their neighbors, that
is, each node u computes the Delaunay graph on the node set N(u)—a
triangulation consisting of circular edges (“convex hull”) and radial edges.
In the following, we will call the considered node the active node and the
calculated Delaunay graph its so-called local Delaunay graph. Here active
is not referring to an calculation order but emphasizes the local role of
the computing node for its local Delaunay graph. Note that the local
Delaunay graph of a node u, denoted by GL(G, u) = (NG(u), ED(NG(u)),
also contains edges that are not incident to u, but connect neighbors of u.

The construction of the local Delaunay graph GL(G, u) is reminiscent
of the 1-localized Delaunay graph LDEL(1)(NG(u)) introduced by Li et
al. [15]. The major difference is that [15] assumes an underlying unit
disk graph to define the neighbors of a node whereas in our construction
the current approximation of the Delaunay graph is used (which can be
arbitrarily bad initially).

Informally, the active node keeps edges to neighbors in the local De-
launay graph, and forms edges among them in a circular order around
it. All other nodes are deferred to some Delaunay neighbor of the active
node. The Delaunay update G̃ = (V, Ẽ) of G is the union of these update
edges for all nodes in G.

Definition 3.1 (Stable and Temporary Edges). Stable edges are undi-
rected and are currently—from a local point of view—consistent with the
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Delaunay properties. Temporary edges on the other hand are directed and
will appear, be forwarded, and disappear again (i.e., become stable) during
the execution of our algorithm.

We are now ready to formally define the Delaunay update:

Definition 3.2 (Delaunay Update). Let G = (V,E) be a directed graph.

• The local Delaunay graph of u is GL(G, u) = (NG(u), ED(NG(u)).

• Each node u selects the following edges ES(G, u) from ED(NG(u)),
which will be kept for the next round:

ES(G, u) = Estable(G, u) ∪ Etemp(G, u)

where Rule I:

Estable = {{u, v} : v ∈ NGL(G,u)(u)}
(undirected edges from u to its neighbors in GL(u))

∪
{
{v, w} : v, w ∈ NGL(G,u)(u)∧
@x ∈ NGL(G,u)(u) : x ∈ ∠vuw

}
(undirected circular edges between u’s neighbors)

and Rule II:

Etemp(G, u) =
{

(v, w) : v ∈ NGL(G,u)(u), w ∈ NG(u) \NGL(G,u)(u)∧
∀x ∈ NGL(G,u)(u) : ‖x− w‖ ≥ ‖v − w‖

}
(directed edges from u’s non-neighbors to neighbors)

Rule II keeps directed edges between a node’s neighbor and a non-
neighbor if there is no closer neighbor to the non-neighbor (a nearest
connection strategy).

• Then the Delaunay update is G̃ = (V, Ẽ) with

Ẽ =
⋃

u∈V

ES(G, u),

the graph that arises when all nodes have chosen their new neighbors
for the next round.

Observe that ALG follows a nearest neighbor strategy in the sense
that temporary circular edges are only allowed from closest neighbors to
non-neighbors of the active node. Moreover, an important property of our
algorithm is that temporary edges are forwarded to closer nodes. We will
say the edge (u, v) is passed to node w, if (u, v) is replaced by (w, v); the
node pointed to remains the same.

In summary, in algorithm ALG, each node u ∈ V runs the following
simple code:

while (true) {
compute ES(G, u) (cf Definition 3.2);
propagate edge updates;

}

Figure 1 gives a simple example to acquaint ourselves with ALG.
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Figure 1: ALG sample execution (Delaunay updates from top left to bottom
right). In the first Delaunay update, Nodes 1 and 4 connect temporarily to
Node 3. Subsequently, Nodes 2 and 4 can connect to Node 3, rendering the stable
edge between Node 0 and Node 3 superfluous. After four Delaunay updates,
the nodes are triangulated.

4 Analysis

In this section, the following theorem is derived.

Theorem 4.1. Let G = (V,E) be a directed embedded, weakly connected
graph. Then ALG requires at most O(n3) rounds (i.e. Delaunay updates)
until the topology converges to the Delaunay graph GD(V ).

Our analysis is organized as follows. First we study basic properties of
the Delaunay updates and show that Delaunay edges will not be removed
in updates and become stable. Subsequently, we prove that starting from
a supergraph, superfluous non-Delaunay edges will be removed in time
O(n). Finally, we put things together, and show that our algorithm has a
unique fixpoint, where the “local Delaunay graph” equals the real (unique)
Delaunay graph; from a potential function argument, the O(n3) conver-
gence time follows.

4.1 Delaunay Updates

We start with two fundamental properties of the Delaunay updates.

Lemma 4.2. Let G = (V,E) be a directed embedded graph and G̃ = (V, Ẽ)
its Delaunay update. Then Delaunay edges of G will also be in G̃, that is,

(u, v) ∈ E ∩ ED(V ) ⇒ {u, v} ∈ Ẽ.

Proof. Since (u, v) ∈ E, u, v ∈ NG(u). By Lemma 2.6, {u, v} ∈
ED(NG(u)) and by Definition 3.2, Rule I, {u, v} ∈ Ẽ.

Moreover, the following lemma claims that Delaunay updates maintain
connectivity.

Lemma 4.3. Let G = (V,E) be a directed embedded graph and G̃ = (V, Ẽ)
its Delaunay update. If G is (weakly or strongly) connected, then so is G̃.
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Proof. It is enough to show, that for every neighbor w of u in G there is
a directed path from u to w in G̃. By Definition 3.2, we have to consider
two cases. If w ∈ NGL(G,u)(u), then (u,w) ∈ Ẽ is a path from u to w.
Otherwise (v, w) ∈ E for some v ∈ NGL(G,u)(u), since directed edges are
forwarded between nodes, while the pointed-to node remains the same.
Thus (u, v) and (v, w) form a path from u to w.

Note that Lemma 4.3 proves that all paths are maintained during
updates.

4.2 Superfluous Edges

Lemma 4.2 implies that if every Delaunay edge will be created in some
round, we end up with a supergraph of GD(V ). Assuming that this hap-
pened, this section will show that all non-Delaunay edges will disappear
after a few rounds, so that we are left with just the Delaunay graph.

First we need that the circular connections of a node’s Delaunay neigh-
bors are Delaunay edges.

Lemma 4.4. Let G = (V,E) be a directed embedded graph with NG(u) ⊇
NGD(V )(u). Then

A :=
{
{v, w} : v, w ∈ NGL(G,u)(u) ∧ @x ∈ NGL(G,u)(u) : x ∈ ∠vuw

}
⊆ ED(V ).

Proof. We prove by contradiction. Assume {v, w} ∈ A \ED(V ). Since u,
v, w are not collinear, C(u, v, w) exists. Then, by Lemma 2.5, C(u, v, w)
must contain a “close” neighbor y ∈ NGL(G,u)(u). If 〈y−u,⊥(v−u)〉·〈w−
u,⊥(v−u)〉 ≤ 0, we can use Lemma 2.8 to conclude that {u, v} /∈ ED(V )
(nodes w and y on different sides of uv). The local Delaunay graph
GL(G, u) is a Delaunay graph on the nodes U = NG(u) ⊂ NGD(V )(u)
by assumption. Lemma 2.7 and v ∈ NGL(G,u)(u) yields the desired con-
tradiction. Thus 〈y−u,⊥(v−u)〉 · 〈w−u,⊥(v−u)〉 > 0. Analogously we
can get 〈y−u,⊥(w−u)〉·〈v−u,⊥(w−u)〉 > 0. So y, w lie on the same side
of uv and y, v lie on the same side of uw. But this means y ∈ ∠vuw and
therefore y /∈ NGL(G,u)(u) which contradicts Lemma 2.5 and concludes
the proof.

The following helper lemma is crucial for our convergence analysis, as
it shows that non-Delaunay edges become shorter over time. The lemma
takes into account that ALG follows a nearest neighbor strategy.

Lemma 4.5. Let G = (V,E) be a directed embedded graph with E ⊇
ED(V ) and G̃ = (V, Ẽ) its Delaunay update. Then for every non-
Delaunay edge in G̃ there is a strictly longer non-Delaunay edge in G,
formally, (v, w) ∈ Ẽ \ED(V )⇒ ∃(u,w) ∈ E \ED(V ) : ‖u−w‖ > ‖v−w‖.

Proof. Let (v, w) ∈ Ẽ be an edge in the updated graph. Then according
to ALG, there are three possibilities that lead to this edge in Ẽ. Either
v is a local neighbor of w (i.e. v ∈ NGL(G,w)(w)), or v and w are local
neighbors of u with (v, w) in the local hull (i.e. v, w ∈ NGL(G,u)(u)∧@x ∈
NGL(G,u)(u) : x ∈ ∠vuw), or w is no local neighbor of u and v is the
local neighbor with smallest distance to w (i.e. v ∈ NGL(G,u)(u), w ∈
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NG(u) \NGL(G,u)(u) ∧ ∀y ∈ NGL(G,u)(u) : ‖y − w‖ ≥ ‖v − w‖). We will
consider the three cases in turn.

If v ∈ NGL(G,w)(w): By Lemma 2.7 and since E ⊇ ED(V ), w’s local
Delaunay neighbors are exactly its Delaunay neighbors (NGL(G,w)(w) =
NGD(V )(w)), and thus {v, w} ∈ ED(V ). This is a contradiction to our

assumption that (v, w) ∈ Ẽ \ED(V ), and hence the claim holds trivially.
If v, w ∈ NGL(G,u)(u)∧@x ∈ NGL(G,u)(u) : x ∈ ∠vuw: In this case the

contradiction follows from Lemma 4.4, which tells us that {v, w} ∈ ED(V ).
If v ∈ NGL(G,u)(u), w ∈ NG(u) \ NGL(G,u)(u) ∧ ∀y ∈ NGL(G,u)(u) :

‖y − w‖ ≥ ‖v − w‖: Given w ∈ NG(u) \NGL(G,u)(u) it remains to prove
the existence of a point v ∈ NGL(G,u)(u) with ‖v − w‖ < ‖u − w‖. By
Lemma 2.5, C(u,w) contains a “close neighbor” v ∈ NGL(G,u)(u) with
‖v− 1

2
(u+w)‖ < 1

2
‖u−w‖. Then ‖v−w‖ ≤ ‖v− 1

2
(u+w)‖ +‖ 1

2
(u+w)−w‖

< ‖u− w‖.

We are now ready to prove that superfluous edges disappear quickly
in at most n rounds.

Lemma 4.6. Let G = (V,E) be a directed embedded graph with E ⊇
ED(V ), i.e., G is a supergraph of the Delaunay graph GD(V ). Then ALG
converges to GD(V ) in at most n rounds.

Proof. Consider the sequence of graphs G0 = G, G1, . . ., where Gi+1 is the
Delaunay update of Gi = (V,Ei). By Lemma 2.7, Delaunay neighbors are
not removed in updates, i.e., Ei ⊇ ED(V ) for all i. Moreover, according to
Lemma 4.5, no new edges are added during an update operation, implying
that ED(V ) is stable.

Define li to be the maximal non-Delaunay edge distance in Gi, i.e.,
li = max{‖u − v‖ : (u, v) ∈ Ei \ ED(V )}. Obviously if there are no non-
Delaunay edges left, the graph is Delaunay, i.e., li = −∞⇔ Gi = GD(V ).
By Lemma 4.5, for each edge (v, w) in Ei\ED(V ) there is a strictly longer
edge (u,w) in Ei−1 \ ED(V ). According to our algorithm ALG, for each
directed non-Delaunay edge, the second pointed to node remains fixed
and the other node gets closer (w.r.t. Euclidean distances) in each step.
Since there are only n−1 nodes different from w and the nearest is always
a Delaunay neighbor (cf. Lemma 2.9), G|V |−1 = GD(V ).

4.3 Fixpoint and Convergence

We will first show that there is no “dead end”, i.e., as long as we do not
reach the Delaunay graph, local updates will change the graph.

Lemma 4.7. Let V ⊂ R2 be a finite set of nodes in general positions.
Then the Delaunay graph G = GD(V ) = (V,ED(V )) is the only weakly
connected stable graph on the nodes V , i.e., the only graph that equals its
Delaunay update G̃ = (V, Ẽ).

Proof. First recall the fact that the global Delaunay triangulation and
hence GD(V ) is unique. Moreover, recall from Lemma 4.6 (and its proof)
that the edge set ED(V ) is stable with respect to update operations.

We now need to show uniqueness of ALG’s fixpoint. Remember that
each node of the graph is associated with a point in the plane. We consider
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the embedding of the graph in which all edges are replaced by undirected
edges and represented by straight lines. We call a graph G locally tri-
angulated if for each node u ∈ V the induced subgraph on the node set
NG(u) is a triangulation. According to Definition 3.2, a stable graph with
respect to ALG is locally triangulated.

We pursue the following strategy: We prove by induction that a locally
triangulated graph is a planar graph with respect to the above embedding
(i.e. no two edges cross). Thus fixpoints must be planar graphs. From
this and connectedness, however, uniqueness follows due to the classic
result (cf, e.g., Chapter 9.3 in the book [3] by Berg et al.) that from any
triangulation, a sequence of edge flips leads to the Delaunay graph.

Therefore, it only remains to prove planarity. Assume for contradiction
that a graph G with n nodes is locally triangulated but not planar.

For n = 1, 2, 3, this is obviously impossible. Thus consider n = 4 and
call the nodes w1, w2, w3, w4. W.l.o.g., assume that the edges {w1, w3}
and {w2, w4} cross (here we don’t worry about the direction of the edges
since they are replaced by lines). Since we assumed the graph G to be
connected, there must be another edge. W.l.o.g., let this edge be {w1, w2}.
Since G is locally triangulated, looking at node w1 implies that the edge
{w2, w3} must belong to G. Now looking at w2 gives a contradiction
since the two crossing edges both belong to the induced subgraph on
NG(w2) = {w1, w2, w3, w4}. This induced subgraph is not triangulated
and thus G is not locally triangulated.

For n > 4, we show that the existence of a connected locally trian-
gulated graph on n nodes with crossing edges implies a connected locally
triangulated graph on n − 1 nodes with crossing edges. Thus no such
graph can exist.

Consider an arbitrary pair of crossing edges. Since n > 4 we can
choose a node v not incident to any of these edges. We consider the graph
G′ obtained by removing v and all edges incident to v. Since G is locally
triangulated and no three points are collinear, G′ is still connected. Since
we only worry about local triangulation, this property may be distorted
only for neighbors of v. Those form due to the edge removal a polygon
in G′ (i.e., each neighbor of v has edges to exactly two other neighbors
of v). Since any polygon can be triangulated (cf e.g., Chapter 3.1 in the
book [3] by Berg et al.), we can add edges to G′ such that the graph is
locally triangulated. Since the pair of crossing edges remains untouched,
this graph fulfills the induction hypothesis, which leads to the desired
contradiction.

For the convergence proof we need a potential function.

Definition 4.8 (Potential φ). Let G = (V,E) be a directed embedded
graph. Then the potential φG(v) of a node v is defined as the number of
nodes w ∈ V that are better approximations of the Delaunay neighbors
than its current neighbors. This means they would be neighbors of v in
the local Delaunay graph containing v, its neighbors and w. Formally

φG(v) = |{w ∈ V \NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})}|.

The potential of the whole graph is φ(G) =
∑

v∈V φG(v).
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Figure 2: Convergence times (average over 100 runs) for different initial networks
Circle, Clique, Max Tree, and Rand Tree.

We now observe that the potential φ(G) is monotone.

Lemma 4.9. Let G = (V,E) be a directed embedded graph and G̃ = (V, Ẽ)
its Delaunay update. Then φ(G) ≥ φ(G̃).

Proof. Consider a node v ∈ V and define Xv and X̃v as

Xv :=
{
w ∈ V \NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})

}
X̃v :=

{
w ∈ V \N G̃(v) : {v, w} ∈ ED(N G̃(v) ∪ {w})

}
It suffices to show Xv ⊃ X̃v for all v. Therefore consider an arbitrary
w ∈ X̃v, i.e., w ∈ V \N G̃(v) and {v, w} ∈ ED(N G̃(v) ∪ {w}).

First we have to show w /∈ NG(v). For the sake of contradiction,
assume w ∈ NG(v). Since N G̃(v) contains the local Delaunay neighbors
NGL(G,v)(v) by Rule I, the node set of the local Delaunay graph NG(v)
must contain witnesses in the sense of Lemma 2.8. These nodes are local
Delaunay neighbors of v and therefore their connection to v persists in
G̃. So there are x, y ∈ NGL(G,v)(v) \ {v, w} ⊂ NG(v) ∩N G̃(v) such that
C(v, w, x) ∩ NG(v) ⊃ {v, w, x, y} and x, y are on opposite sides of the
line vw. But, again by Lemma 2.8, {v, w} /∈ ED(N G̃(v) ∪ {w}) which
contradicts the assumption w ∈ X̃v.

It remains to show {v, w} ∈ ED(NG(v) ∪ {w}). We prove by contra-
diction, again. Assume {v, w} /∈ ED(NG(v) ∪ {w}). So, by Lemma 2.8,
there are x, y ∈ NGL(G,v)(v) \ {v, w} ⊂ NG(v) ∩ N G̃(v) such that
C(v, w, x) ∩ NG(v) ⊃ {v, w, x, y} and x, y are on opposite sides of the
line vw. Again Lemma 2.8, together with Lemma 2.6, implies that
{v, w} /∈ ED(N G̃(v) ∪ {w}) and leads to the desired contradiction.

Combining all our insights, we can now prove our main result.

Theorem 4.10. Let G = (V,E) be a directed embedded, weakly connected
graph. Then ALG requires at most O(n3) rounds (i.e. Delaunay updates)
until the topology converges to the Delaunay graph GD(V ).
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Figure 3: Evolution of the sum of the node degrees (network with 300 nodes).

Proof. Consider the sequence of graphs G0 = G, G1, . . ., where Gi+1 is
the Delaunay update of Gi = (V,Ei). Due to Lemma 4.3 each graph in
this sequence is weakly connected. As soon as ED(V ) ⊆ Ei, we know
Gi+n = GD(V ) from Lemma 4.6. So we just have to consider the case
ED(V ) 6⊆ Ei.

From Lemma 4.9 we know that the potential cannot increase. In par-
ticular, it holds that once a node leaves the potential set

{w ∈ V \NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})},

it will never be member of the set again. Therefore, it remains to show
that after every at most n steps, the cardinality of the set decreases (by
a positive integer value): Since the potential is bounded by n · (n − 1)
and the only graph with potential 0 is the Delaunay graph, this gives the
desired bound on the convergence time.

Now assume for the case of contradiction that the potential set has
the same cardinality for more than n rounds. This implies that no new
Delaunay edge appeared during this time period. Since each temporary
edge is forwarded no more than n−1 times, the topology must describe a
Delaunay fixpoint in the sense of Lemma 4.7. Since the graph is connected,
it must be the Delaunay graph. This contradiction proves the claim.

5 Simulations

In order to complement our formal analysis, we briefly report on some of
the results obtained during our in silico experiments. Let us emphasize
that the lessons in this section are preliminary, and a more extensive
simulation study is left to the future.

We examined different initial topologies. In the Circle topology,
nodes are arranged and connected in a circle-like fashion in the Euclidean
plane; “close” nodes are therefore already linked. In the Clique topology,
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Figure 4: Maximal node degree for Circle and Rand Tree networks.

nodes are distributed uniformly over the plane, and are completely con-
nected to each other; in particular, Clique contains the Delaunay graph
as a subgraph. A particularly hard, non-local case is modeled with the
topology Max Tree: nodes are distributed uniformly at random in the
plane, and are connected in a maximum spanning tree fashion. In other
words, nodes are typically connected to far away nodes only. In contrast,
in the Rand Tree topology, the randomly distributed nodes form a ran-
dom tree. Although our algorithm also works for directed graphs, we only
present simulation results for undirected graphs.

Figure 2 shows the resulting runtimes (in number of rounds). We first
observe that for all topologies Circle, Clique, Max Tree, and Rand
Tree, the actual number of rounds is quite small. Indeed, we believe
that our asymptotic analysis may be too pessimistic (or at least hides
very small constants only), for any topology. Note also that the runtime
of Circle and Clique is smaller than the runtimes of the trees. In case of
Circle, this can be explained by the high initial locality; the graph also
already contains the convex hull. A good convergence time for Clique
corresponds to our formal analysis, where we proved a better performance
if the initial topology is a super-graph of the Delaunay graph. Finally, it
does not come as a surprise that the maximum spanning tree yields the
worst results.

An interesting performance measure for any topological, self-
stabilizing scheme is the node degree. Figure 3 depicts how the sum of
the node degrees (incoming plus outgoing) evolves over time in a system
with 300 nodes. As expected, in the Clique, the degree declines sharply.
Here, in order to improve presentation, we omitted the high initial degrees
on the left; also recall that the execution on complete networks is faster,
which explains the missing data points to the right. In the Circle graph,
the degree increases slightly in the beginning, but drops again soon and
comes to a stable value. The maximal edge count observed during all 100
runs with 300 nodes was 927. Max Tree yields a similar picture; how-
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ever, the degree can become higher (maximum over all runs was 2024)
and it takes more time to reach the equilibrium point. Apparently, here
the non-locality entails a certain additional degree cost. Finally, let us
remark that in none of our experiments, the degree reached values larger
than twice the final number of Delaunay edges, unless the initial topol-
ogy was already very dense—in which case the number of edges declined
sharply. Figure 4 plots the maximal node degree (rather than the sum)
for different networks. Generally, also here it can be observed that if the
initial topology has a low degree and is sufficiently “local” already, there
is typically no node with high degree.

We averaged each experiment over 100 runs, and found that while the
runtimes for the trees are very stable, the Circle topology exhibits quite
a high variance (σ2 ≈ 20 for 300 nodes). We have experimented with
an alternative Rule II for our Delaunay updates, which is not a nearest
neighbor but a circular connection strategy. The selected temporary edges
are

Etemp(G, u) =
{

(v, w) : v ∈ NGL(G,u)(u), w ∈ V \NGL(G,u)(u)∧
∀x ∈ NGL(G,u)(u) : x /∈ ∠vuw

}
.

We conjecture that this strategy also converges to the Delaunay graph.
While the runtime (and also the average degree) is typically slightly worse
in our simulations, for certain star-shaped topologies, the variance can be
smaller. We will not go into these details here, but would like to point out
that—depending on the application—considering the circular variation of
ALG may help.

6 Conclusion

The relatively young field of topological self-stabilization promises the
advent of very robust network structures that recover from arbitrary
changes or attacks. While already several solutions for graph lineariza-
tion have been proposed, our work initiates the study of more complex,
2-dimensional stabilization mechanisms. Especially, we show how to con-
struct Delaunay graphs, and also provide a convergence time guarantee.
We believe that our construction can be useful in several settings, e.g.,
in social networks where participants want to organize in such a manner
that participants with similar interests are connected. From this perspec-
tive, our algorithms can be regarded as a topology control mechanism for
wireline networks.

In our future research, we plan to investigate whether our algorithm
(and thus the convergence time and the degree during the execution) can
be improved. Moreover, we will study whether, and if yes how, the insights
gained for the 2-dimensional case can also be adopted for three or more
dimensional distributions or graphs. Finally, we will analyze the effect
of different scalable scheduling regimes (see [10]) where in each round, an
independent set of operations is executed.
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