
A Cache-Optimal Alternative to the
Unidirectional Hierarchization Algorithm

Philipp Hupp and Riko Jacob

Abstract The sparse grid combination technique provides a framework to solve
high-dimensional numerical problems with standard solvers by assembling a sparse
grid from many coarse and anisotropic full grids called component grids. Hierar-
chization is one of the most fundamental tasks for sparse grids. It describes the
transformation from the nodal basis to the hierarchical basis. In settings where the
component grids have to be frequently combined and distributed in a massively
parallel compute environment, hierarchization on component grids is relevant to
minimize communication overhead.
We present a cache-oblivious hierarchization algorithm for component grids of the
combination technique. It causes |G`̀̀| ·

(
1
B +O

(
1

d√M

))
cache misses under the tall

cache assumption M = ω
(
Bd
)
.1 Here, G`̀̀ denotes the component grid, d the dimen-

sion, M the size of the cache and B the cache line size. This algorithm decreases
the leading term of the cache misses by a factor of d compared to the unidirectional
algorithm which is the common standard up to now. The new algorithm is also
optimal in the sense that the leading term of the cache misses is reduced to scanning
complexity, i. e., every degree of freedom has to be touched once. We also present
a variant of the algorithm that causes |G`̀̀| ·

(
2
B +O

(
1

d−1√M·Bd−2

))
cache misses

under the assumption M = ω (B). The new algorithms have been implemented and
outperform previously existing software. In several cases the measured performance
is close to the best possible.

Key words: sparse grids, combination technique, hierarchization, cache misses,
external memory, cache-oblivious algorithms, unidirectional principle

Philipp Hupp
ETH Zürich

Riko Jacob
IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 København S, Denmark e-mail:
rikj@itu.dk

1 The dimension d is assumed to be constant in the O-notation.

1

rikj@itu.dk

2 Philipp Hupp and Riko Jacob

1 Introduction

The gap between peak performance and memory bandwidth on modern processors
is already large and still increasing. In many situations, this phenomenon can be
counteracted by using caches, i.e., a small but fast additional memory close to the
processor. Now, the expensive communication is between the memory and the cache,
and this kind of communication efficiency is crucial for high performance code. All
areas of computer science acknowledge this phenomenon, but call it and the methods
to design such algorithms slightly differently. The algorithms that reduce memory
traffic are called, e. g., I/O efficient algorithms [22, 1, 31], communication avoiding
algorithms [27, 2, 13], and blocked algorithms [30]. Still, all these efforts aim to
increase temporal locality (reuse over time) and spatial locality (use of several items
of a cache line) to reduce the amount of data that is transfered between the different
levels of the memory hierarchy.

Sparse grids [40, 41, 3] are a numerical discretization scheme that allows to solve
high-dimensional numerical problems by lessening the curse of dimensionality from
O
(
h−d

n
)

to O
(

h−1
n · |log2 hn|d−1

)
for dimension d and minimum mesh size hn = 2−n.

Crucial for the reduction in the degrees of freedom is a change of basis from the
nodal basis to the hierarchical basis and the selection of the most important basis
functions of the hierarchical basis. This change of basis is called hierarchization
and is one of the most fundamental algorithms for sparse grids. The reduction in the
degrees of freedom for sparse grids comes at the cost of a less regular structure and
more complicated data access patterns for sparse grid algorithms. In consequence,
communication efficient algorithms are in particular important and less obvious
for sparse grids. Because hierarchization is among the most simple algorithmic
tasks that are based on the hierarchical structure of the sparse grids, we consider it
prototypical in the sense that algorithmic ideas that work for it are also applicable to
more complicated tasks.

The sparse grid combination technique [17] assembles the sparse grid from a
linear combination of many coarse and anisotropic, i. e. refined differently in different
dimensions, full grids called component grids. This allows to solve the numerical
problem on the full component grids with standard solvers while taking advantage of
the reduced number of degrees of freedom of the sparse grid. For time dependent
problems, the combination technique can be applied as depicted in Figure 1: a
standard solver is employed to each of the (regular) component grids. Then, a reduce
step assembles the sparse grid solution as a linear combination of the component
grid solutions. This is followed by a broadcast step that distributes the joint solution
back to the component grids. The change of basis from the regular grid basis to the
hierarchical basis can facilitate the reduce and the broadcast step. In this situation,
hierarchization is on the performance critical path of the solver. Current approaches
to master large simulations of hot fusion plasmas are a prominent example [37].

The task of hierarchization we consider here has as input an array of values
representing the sampled function in the nodal basis, i.e., as function values sampled
at the grid point, and as output the same function represented in the hierarchical basis

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 3

Solve

Full grid
basis

−
+

Hierarchical
basis

Sparse
Grid

Hierarchical
basis

−
+

Hierarchize

Dehierarchize
Component

Grids

Reduce

Broadcast
Component

Grids

Fig. 1 (De-)hierarchization as pre- and postprocessing steps for the reduce/broadcast step of the
combination technique. The combination technique computes a solution in the sparse grid space by
a suitable linear combination (blue: +1; red: −1) of the component grid solutions.

as explained later. The grid points form a regular anisotropic (not all dimensions are
refined equally) grid, and the coefficient values are laid out in lexicographic order,
i.e., in a generalized row major layout. The algorithm is formulated and analyzed
in the cache oblivious model [10]. In this model the algorithm is formulated to
work on a random access memory where every memory position holds an element,
i.e., an input value, an intermediate value or an output value. It is analyzed in the
I/O model with a fast memory (cache) that holds M elements, the transfer to the
slower memory is done in blocks or cache lines with B elements, and the cache
replacement strategy is optimal. This makes sure that elements that participate in
algebraic operations reside in cache. The performance is measured as the number
of cache misses (also called I/Os) the algorithm incurs. Note that in this model the
CPU operations are not counted as if the CPU was infinitely fast. Hence, this model
focuses on one level of the memory hierarchy, usually the biggest relevant one. As
our experiments demonstrate, these assumptions capture the most important aspects
of our test machine. More precisely, it turns out that the shared level 3 cache of the
CPU is usually the bottleneck, because the four cores of the CPU together are fast
enough to keep the memory connection busy all the time. Hence it is reasonable as a
theoretical model to regard the CPU(s) as infinitely fast.

The unidirectional principle is the dominating design pattern for sparse grid
algorithms. The unidirectional principle exploits the tensor product structure of
the underlying basis and decomposes the global operator into d sweeps over the
grid. In each sweep it works locally on all one-dimensional subproblems, called
poles, of the current work direction [3]. By working in d sweeps the unidirectional
hierarchization algorithm (Algorithm 1) needs only 3d arithmetic operations to
hierarchize piecewise d-linear basis functions. In contrast, a direct hierarchization
algorithm, i. e., calculating the hierarchical surplus (the coefficient in the hierarchical
basis) of each grid point in one go, like formulating the task as a multiplication with
a sparse matrix, would require c ·3d arithmetic operations for 1≤ c≤ 2. Therefore,
the unidirectional algorithm is a good choice with respect to the number of arithmetic
operations. As such, the unidirectional algorithm is, however, inherently cache
inefficient in the sense that it performs d sweeps over the data and therefore causes at

4 Philipp Hupp and Riko Jacob

least d · |G`̀̀ |
B −(d−1)· MB = d · 1

B ·
(
|G`̀̀|− d−1

d ·M
)

cache misses. Here, G`̀̀ denotes the
input grid, M the size of the internal memory or cache and B the block or cache line
size. Furthermore, the unidirectional hierarchization algorithm has been implemented
for component grids such that it is within a factor of 1.5 of this unidirectional memory
bound [24]. In consequence, any significant further improvements have to avoid the
unidirectional principle on a global scale.

This paper presents a cache-oblivious [10] hierarchization algorithm (Algorithm 2)
that avoids the unidirectional principle on a global scale but applies it (recursively)
to smaller subproblems that fit into cache. It actually computes precisely the same
intermediate values at the same memory locations as the unidirectional algorithm, but
it computes them in a different order. By doing so, the algorithm avoids the d global
passes of the unidirectional algorithm. For component grids and the piecewise-linear
basis this algorithm causes |G`̀̀| ·

(
1
B +O

(
1

d√M

))
cache misses, i. e., it works with

scanning complexity (touching every grid point once) plus a lower order term. For
the second term to be of lower order a strong tall cache assumption of M = ω

(
Bd
)

is needed. It reflects that we, as is usual (e.g. [10, 38]), consider the asymptotics of
increasing M, and here in particular demand that M grows faster than Bd . With this
strong tall cache assumption, the leading term of this complexity result is optimal,
as every algorithm needs to scan the input. In addition, the presented algorithm
reduces the leading term of the cache misses by at least a factor of d compared
to any unidirectional algorithm. For the situation that the cache is not that tall but
only of size M = ω (B), we give a variant of the algorithm that causes at most
|G`̀̀| ·

(
2
B +O

(
1

d−1√M·Bd−2

))
cache misses. Depending on the size of the cache, the

leading term of the cache misses is therefore reduced by a factor of d or d/2 compared
to the unidirectional algorithm. The presented algorithm is cache-oblivious, works on
a standard row major layout, relies on a least recently used (LRU) cache replacement
strategy, is in-place, performs the same arithmetic operations as the unidirectional
algorithm and works for anisotropic component grids.

To ease readability and in agreement with common usage in the sparse grid
literature, this paper generally assumes for the O-notation that the dimension d is
constant: In numerics, the dimension d is a parameter inherent to the problem under
consideration. If a more accurate solution is required, the refinement level of the
discretization is increased while the dimension of the problem stays constant. For
completeness, we state the complexity of the divide and conquer hierarchization
algorithm for component grids also including the constant d at the end of the relevant
section.

The rest of the paper is organized as follows: Section 2 considers related work,
Section 3 explains the relevant concepts of sparse grids and how they are presented
in this paper, Section 4 formulates the algorithm and analyses it, Section 5 reports
on run time experiments of an implementation on current hardware, and Section 6
discusses conclusions and directions for future work.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 5

2 Related Work

Hong and Kung started the analysis of the I/O-complexity of algorithms with their
red-blue pebble game [22] assuming an internal memory of size M and basic blocks
of size B = 1.2 To use data for computations, it has to reside in internal memory.
Aggarwal and Vitter extended this basic model to the cache-aware external memory
model [1] with arbitrary block or cache line size B to account for spatial locality. Frigo
et. al. generalized this to the cache-oblivious model [10] in which the parameters M
and B are not known to the algorithm and the cache replacement strategy is assumed
to be the best possible. As the parameters M and B are not known when a cache-
oblivious algorithm is designed, a cache-oblivious algorithm is automatically efficient
for several layers of the memory hierarchy simultaneously. All mentioned theoretical
models assume a fully associative cache and so does the analysis presented in this
paper.

Sparse grids [40, 41, 3] and the sparse grid combination technique [17] have
been developed to solve high-dimensional numerical problems. They have been
applied to a variety of high-dimensional numerical problems, including partial dif-
ferential equations (PDEs) from fluid mechanics [16], financial mathematics [21, 4]
and physics [29], real-time visualization applications [7, 6], machine learning prob-
lems [12, 11, 36], data mining problems [12, 5] and so forth. In a current project [37],
the combination technique is used as depicted in Figure 1 to simulate hot fusion
plasmas as they occur in plasma fusion reactors like the international flagship project
ITER. In this project the fusion plasmas are modeled using the gyrokinetic approach
which results in a high-dimensional PDE, i. e., five space and velocity dimensions plus
time. Furthermore, the convergence of the combination technique has been studied
for several special cases [34, 35, 39] as well as general operator equations [14].

Due to the coarse grain parallelism of the component grids the combination tech-
nique is ideal for high performance computing [19]. This coarse grain parallelism
also allows to incorporate algorithm based fault tolerance into the combination tech-
nique [20]. It was discovered early that, for time dependent PDEs, the component
grid solutions need to be synchronized after few time steps [15] and that the com-
munication needed for this synchronization can be reduced if the component grid
solutions are represented in the hierarchical basis [18]. Recently, communication
schemes that use the hierarchical representation of the component grid solutions to
minimize communication in this synchronization step were derived, implemented
and tested for the setting of the gyrokinetic approach [26, 23, 25].

The problem considered in this work, namely finding efficient hierarchization
and dehierarchization algorithms for sparse grids, has been investigated in many
occasions [9, 36, 32, 33, 28, 6, 24, 8]. All these algorithms implement the unidirec-
tional algorithm and hence sweep d times over the whole data set. The unidirectional
hierarchization algorithm for component grids has been implemented such that it
is within a factor of 1.5 of the unidirectional memory bound [24]. Therefore, any

2 We use the terms internal memory and cache as well as cache line size and block size synony-
mously.

6 Philipp Hupp and Riko Jacob

significant further improvements have to avoid the global unidirectional principle.
This paper extends the first algorithm that avoids the unidirectional principle on a
global scale [23]. In contrast to this initial version of the algorithm, the algorithm
presented in this paper works in-place and performs the same arithmetic operations
as the unidirectional algorithm. Also, the first lower bound for the hierarchization
task was proven in [23].

3 Sparse Grid Definitions and the Unidirectional
Hierarchization Algorithm

This section describes the necessary notation and background to discuss the sparse
grid hierarchization algorithm. For a thorough description of sparse grids we refer to
the survey by Bungartz and Griebel [3].

Let us begin with a conventional level ` discretization of the 1-dimensional space
Ω := [0,1]. The grid points x of G` are

G` =

{
x =

i
2`
∈Ω : i ∈

{
0,1, . . . ,2`

}}
.

The corresponding nodal basis functions are the piecewise linear hat functions with
peak at the grid point and support of the form] i−1

2` ,
i+1
2` [. The 1-dimensional sparse

grid of level n= ` has the same grid points. We use the notation xk,i =
i

2k for 0≤ k≤ `

and i ∈ {0, . . . ,2k}. Two distinct pairs (k, i) and (k′, i′) describe the same grid point
if the coordinates of the grid points are identical, i. e., if xk,i = xk′,i′ . For a level-index
pair (k, i) the reduced pair (k′, i′) is defined to have the smallest i′, i. e., i′ is odd, with
xk′,i′ = xk,i. For odd i and 1≤ k, the interval Ik,i =]xk,i−2−k,xk,i+2−k[, is the support
of the corresponding hierarchical basis function φk,i(x) with xk,i as its midpoint,
i.e. φk,i(x) = max(0,1−|x− xk,i| ·2k) as is also depicted in Figure 2. The reduced
level index pairs of the two endpoints (allowing (0,0) as a special case) define the
functions L and R by Ik,i =]xL (k,i),xR(k,i)[. The two grid points xL (k,i) and xR(k,i)
are called the left and respectively right hierarchical predecessor. We additionally
define the interval I0,0 = [0,1]. I0,0 differs from I1,1 =]0,1[only by its two endpoints
which are called global boundary points. These two global boundary points are the
only grid points that have no hierarchical predecessors. The closure Ik,i of an interval
Ik,i =]xL (k,i),xR(k,i)[is defined in the usual way as Ik,i := [xL (k,i),xR(k,i)].

We say that Ik,i has the two children intervals Ik+1,2i−1 =]xL (k,i),xk,i[and
Ik+1,2i+1 =]xk,i,xR(k,i)[. We extend this notion (by transitive closure) to descendants,
and observe that an interval Ik′,i′ is a descendant of Ik,i if and only if Ik′,i′ ⊂ Ik,i. This
immediately leads to the following statement:

Lemma 1. If a grid point xk′,i′ is element of the interval Ik,i (with odd i and i′)
then k′ ≥ k and the hierarchical predecessors of xk′,i′ are in the closure of Ik,i, i. e.,(
xk′,i′ ∈ Ik,i

)
⇒
({

xL (k′,i′),xR(k′,i′)
}
⊂ Ik,i

)
.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 7

`̀̀

i

0

1

2

3

4

Intervals of the
hierarchical basis

ϕ0,0 ϕ0,1

x0,0 x0,1
[]

ϕ1,1

x1,1
()

ϕ2,1

x2,1

ϕ2,3

x2,3
()()

x3,1 x3,3 x3,5 x3,7
()()()()

x4,1 x4,5 x4,9 x4,13
x4,3 x4,7 x4,11 x4,15

()()()()()()()()

Fig. 2 The intervals Ik,i and the corresponding grid points xk,i as well as the piecewise linear basis
functions ϕk,i of the hierarchical basis.

Hierarchization is a change of basis of a piecewise linear function from the nodal
basis of level `, given as the function values yi at position i2−` ∈ {0,2−`, . . . ,1}, into
the hierarchical basis of the sparse grid. For odd i, k ≤ ` and Ik,i =]xL (k,i),xR(k,i)[,
we get the hierarchical surplus as αk,i = yk,i− 1

2 (yL (k,i) + yR(k,i)) for k ≥ 1, and
for the global boundary points we have α0,0 = y0,0 and α0,1 = y0,1. The grid points
{xk,i,xL (k,i),xR(k,i)} form the 3-point stencil of xk,i.

Let us now address the d-dimensional case and the discretization of the space
Ω := [0,1]d . In general, vectors are written in bold face and operations on them
are meant component wise. The conventional anisotropic grid G`̀̀ with mesh-width
h`̀̀r := 2−`̀̀r and discretization level `̀̀r in dimension r ∈ {1, . . . ,d} has the grid points

G`̀̀ =

{
x =

i
2`̀̀
∈Ω : ir ∈

{
0,1, . . . ,2`̀̀r

}
∀r ∈ {1, . . . ,d}

}
.

The corresponding basis functions are the tensor products of the one-dimensional
basis functions. Hence, the grid G`̀̀ ⊂ [0,1]d is completely defined by its level vector
`̀̀ ∈ Nd

0 describing how often dimension r ∈ {1, . . . ,d} has been refined. A grid of
refinement level `r consists of 2`r +1 grid points in dimension r, the outermost two
of which are called global boundary points, i. e., the points with ir ∈

{
0,2`r

}
.

The d-dimensional sparse grid results from a tensor product approach. To express
this, a level and index is replaced by a d-fold level- and index-vector in the above

8 Philipp Hupp and Riko Jacob

definition of the sparse grid. The grid points have the form (xk1,i1 , . . . ,xkd ,id) corre-
sponding to the basis function with support Ik1,i1×·· ·× Ikd ,id . The regular sparse grid
of level n consists of the grid points with |k|1≤ n+d−1, i.e., k1+ · · ·+kd ≤ n+d−1.
The anisotropic component grid with level vector `̀̀ consists of the grid points with
kr ≤ `̀̀r.

In this case hierarchization can be performed using the unidirectional principle
using d−1 intermediate results at every grid point. More precisely, we define d +1
variables α

(j)
`̀̀,i . For j = 0, the variable α

(0)
`̀̀,i is the function value at position described

by (i, `̀̀). The final value α
(d)
`̀̀,i is the hierarchical surpluses, i.e., the coefficient of the

hierarchical basis functions that represent the function with the prescribed values
at the grid points. For j > 0, the variable α

(j)
`̀̀,i is what we call “hierarchized up to

dimension j”, also referred to as the coefficient at position (`̀̀, i) being in state j , and
it is computed from the variables α

(d−1)
∗ by applying the 3-point stencil in direction j.

More precisely, for a level index vector (`̀̀, i) define the left hierarchical predecessor
in direction r as Lr(`̀̀, i) := (`̀̀′, i′), with (`̀̀′r, i′r) := L (`̀̀r, ir) and (`̀̀′s, i′s) = (`̀̀s, is) for
s 6= r. Rr is defined analogously for the right hierarchical predecessor in direction
r. With this we define α

(j)
`̀̀,i = α

(j−1)
`̀̀,i − 1

2

(
α
(j−1)
L j(`̀̀,i)

+α
(j−1)
R j(`̀̀,i)

)
, and for the boundary

points in direction r with (kr, ir) = (0,0) or (kr, ir) = (0,1) we have α
(j)
`̀̀,i = α

(j−1)
`̀̀,i .

If boundary points are not part of the task, for the sake of uniformity, we consider the
modification of the boundary points as applying a 3-point stencil, too, only that the
non-existent hierarchical predecessor variables are considered being 0. For a set of
grid points U and a direction r let Hr(U) denote the set of hierarchical predecessors
in direction r.

It is well known that one-dimensional hierarchization can be performed in-place
by performing the hierarchization from high level to low level. It follows immediately
that also high-dimensional hierarchization can be performed in-place by using the
unidirectional principle. This is expressed in Algorithm 1, the classical unidirectional
hierarchization algorithm. This formulation of the algorithm uses the notion of a
pole, i. e., the grid points that are an axis-aligned one-dimensional grid in dimension
k. In our notation, a pole in direction r is expressed as G`̀̀,I where the interval I is
such that Ir = [0,1] for the direction r and all other components of I are single (grid)
coordinates. We also use πr(G`̀̀) for the projection of G`̀̀ along dimension r, i.e.,
replacing the r-th coordinate by 0. Therefore, πr(G`̀̀) contains exactly one grid point
of each pole in direction r and can be used to loop over all poles in this direction.

4 Divide and Conquer Hierarchization

This section first derives the basic version of the divide and conquer hierarchization
algorithm (Algorithm 2), proves its correctness and then analyzes its complexity. Sub-
sequently, this algorithm is used as basic building block to derive hybrid algorithms

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 9

Algorithm 1: The unidirectional hierarchization algorithm.
1 Function unidirHierarchize(G`̀̀)
2 for r← 1 to d do // unidirectional loop over dimensions
3 forall the xk,i ∈ πr(G`̀̀) do // loop over all poles in dimension r
4 for level← `r down to 1 do // update pole bottom up
5 kr = level
6 forall the index ∈

{
1, . . . ,2kr −1

}
and index odd do

7 ir = index
8 xk,i = xk,i−0.5∗

(
xLr(k,i)+xRr(k,i)

)

which trade a weaker tall cache assumption for an increase in cache misses. The
section ends with a sketch of parallelization possibilities for the derived algorithms.

In the new algorithm, Algorithm 2, we perform hierarchization in-place as in the
unidirectional algorithm, but we do not follow the unidirectional principle globally.
Like in the unidirectional algorithm We still have one intermediate result per grid
point at any time, but the dimension up to which a grid point is hierarchized depends
on its location.

The new algorithm divides the grid spatially and works on d-dimensional intervals
(generalized axis parallel rectangle). The constituting one-dimensional interval may
consist of a single grid point or be the support of a basis function corresponding to a
grid point. More precisely, we call the d-dimensional interval I = I1×·· ·× Id a valid
grid interval for the grid G`̀̀ with respect to level vector `̀̀ if all intervals are of the
form Ir = Ikr ,ir or a single grid point Ir = {xkr ,ir}= [xkr ,ir ,xkr ,ir], with kr ≤ `r . Now
the subgrid of G`̀̀ corresponding to the interval I is defined as

G`̀̀,I = G`̀̀ ∩ I

Such valid grid intervals have few hierarchical predecessors outside of the interval
itself which will ensure that the algorithm is efficient: if Ir is a singleton of the
form Ir = {xk,i}, then I′r := {xL (k,i),xR(k,i)}. Otherwise (Ir is an open interval) set
I′r := Ir. Complete the definition of I′ by setting I′s = Is for s 6= r. With that, the
notion of hierarchical predecessors is extended to valid grid intervals by defining
Hr(G`̀̀,I) := I′. Subgrids G`̀̀,I can be defined for arbitrary intervals I and are not
restricted to valid grid intervals. Furthermore, we write the shorthand G`̀̀,Hr(I) :=
Hr(G`̀̀,I). To describe the hierarchical predecessors that are part of the 3-point stencil,
it is convenient to define the boundary of an interval as Br(I) = Hr(I)\ I, i. e., the
hierarchical predecessors of I which are outside of I. Observe that these boundary
points in different directions are disjoint, i.e., Br(I)∩Bs(I) = /0 if r 6= s.

The number of grid points sr(G`̀̀,I) (size) in dimension r of grid G`̀̀,I , sr(G`̀̀,I) is
the number of different coordinates in dimension r that occur for grid points in G`̀̀,I .
For a valid grid interval I of G`̀̀ we have

10 Philipp Hupp and Riko Jacob

[]

(){} {}
()

() (){}
Fig. 3 Left: Applying the boundarySplit to the interval [0,1]. Right: Applying the
interiorSplit to an interior grid interval]xk,j,xk′,j′ [.

sr(G`̀̀,I) =

2`̀̀r−kr+1−1 if Ir = Ikr ,ir (with ir odd),
2`̀̀r +1 if Ir = [0,1],
1 if Ir is a single grid point.

Next, we define the chooseDim
(
G`̀̀,I

)
function for a grid G`̀̀,I . It returns the

dimension for which the grid G`̀̀,I has the most grid points (ties can be broken
arbitrarily, e. g., choose the smallest dimension).

chooseDim
(
G`̀̀,I

)
= argmax

1≤r≤d

{
sr(G`̀̀,I)

}
.

To split the multidimensional interval I = I1×·· ·×Id in direction r into three parts
we define the following functions. The split functions rely upon G`̀̀,I containing more
than one grid point in direction r, i.e. kr < `r. For all dimensions s 6= r we set I*

s = Is
(for ∗ ∈ {0, int,1, left,mid, right}). The case where Ir = [0,1] is the only situation
where an outer boundary should be split off, hence we set I0

r = {0}, Iint
r =]0,1[and

I1
r = {1}, and write

boundarySplit
(
r, I
)

:=
(

I0
r , I

int
r , I1

r

)
.

Otherwise Ir = Ik,i, and we set Ileft
r = Ik+1,2i−1 =]xL (k,i),xk,i[, Imid

r = {xk,i} and
Iright
r = I`+1,2i−1 =]xk,i,xR(k,i)[. We write

interiorSplit
(
r, I
)

:=
(

Ileft
r , Imid

r , Iright
r

)
.

Both splits are depicted in Figure 3. Clearly, the three parts are a partitioning of the
subgrid, and because only non-trivial dimensions are split, they are all non-empty.

With these definitions, Algorithm 2 is well defined. Its call structure is illustrated in
Figure 4. Next we show that a call hierarchizeRec

(
0,d,G`̀̀, [0,1]d

)
hierarchizes

the grid correctly. Subsequently, the complexity of the algorithm is analyzed.

4.1 Correctness

To prove the correctness of Algorithm 2 it is sufficient to show that whenever we
apply the 3-point stencil in direction r, all three participants store the value α(r−1)

and that, in the end, the 3-point stencils in all d dimensions have been applied for

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 11

Algorithm 2: Divide and conquer hierarchization algorithm.
1 Function hierarchizeRec(s, t,G`̀̀ , I)

// I is a valid grid interval for G`̀̀. Initially, all
variables

// of G`̀̀,I store the values α(s), in the end they store α(t).
// This function changes only variables of G`̀̀,I.
// It assumes that G`̀̀,Br(I), i.e., the boundary points of I

in

// direction r, stores the values α(r).
2 if G`̀̀,I = {xk,i} then // grid consists of a single grid point
3 for r← (s+1) to t do
4 xk,i = xk,i−0.5∗

(
xLr(k,i)+xRr(k,i)

)
5 else // i.e.,

∣∣G`̀̀,I
∣∣> 1

6 r = chooseDim
(
G`̀̀,I

)
// split G into subgrids in dimension r

7 if Ir = [0,1] then // case of global boundary
8

(
I0, Iint, I1

)
= boundarySplit

(
r, I
)

9 hierarchizeRec
(
s,(r−1),G`̀̀ , I0

)
10 hierarchizeRec

(
s,(r−1),G`̀̀ , I1

)
11 hierarchizeRec

(
s, t,G`̀̀ , Iint

)
12 hierarchizeRec

(
(r−1), t,G`̀̀ , I0

)
13 hierarchizeRec

(
(r−1), t,G`̀̀ , I1

)
14 else // Ir ⊂ (0,1), i.e., no global boundary
15

(
Ileft, Imid, Iright

)
= interiorSplit

(
r, I
)

16 hierarchizeRec
(
s,(r−1),G`̀̀ , Imid

)
17 hierarchizeRec

(
s, t,G`̀̀ , Ileft

)
18 hierarchizeRec

(
s, t,G`̀̀ , Iright

)
19 hierarchizeRec

(
(r−1), t,G`̀̀ , Imid

)

all grid points. The presented argument does not rely on the regular structure of the
component grids and hence works for regular and adaptively refined sparse grids
identically.

When an interval Ik,i is split, the boundary of the resulting subintervals is either
part of the boundary of Ik,i or lies exactly in the middle of Ik,i:

Lemma 2. Let I = Ik,i for k ≥ 1 be a valid interval for some grid and assume I is
split by

(
Ileft, Imid, Iright

)
:= interiorSplit

(
r, I
)
.

1. In directions different from r, the boundary remains:
If s 6= r we have Bs(Ileft)⊂Bs(I), Bs(Iright)⊂Bs(I), and Bs(Imid)⊂Bs(I).

2. The boundary of full-dimensional parts is the boundary or the split-plane:
Br(Ileft)⊂

(
Br(I)∪ Imid

)
, and Br(Iright)⊂

(
Br(I)∪ Imid

)
.

3. The hierarchical predecessors of the split plane is the old boundary:
Br(Imid) = Br(I).

12 Philipp Hupp and Riko Jacob

[]

{ }(){ }
{ }(){ }(){ }
{ }(){ }(){ }(){ }(){ }
{ }(){ }(){ }(){ }(){ }(){ }(){ }(){ }(){ }
{ }

[
]

{}(
) {}

{}(
) {}(

) {}
{}(

) {}(
) {}(

) {}(
) {}

{}(
) {}(

) {}(
) {}(

) {}(
) {}(

) {}(
) {}(

) {}
{}

Fig. 4 Hierarchizing a 2-dimensional grid with the divide and conquer hierarchization algorithm
(Algorithm 2). The yellow (or blue or red) grid points are hierarchized up to dimension 0 (or 1 or 2),
i. e., store the original functional values α

(0)
k,i (or the values α

(1)
k,i or the hierarchical surpluses α

(2)
k,i ,

respectively). The subgrid that is currently updated is hatched (in red). The algorithm progresses by
hierarchizing complete grid intervals (depicted on the sides).

Proof. Follows from the definitions and Lemma 1 ut

For the correctness of Algorithm 2 observe that the purpose of the call is to
hierarchize the points inside I in direction s+1, . . . , t. Accordingly, all points inside I
are assumed to be already hierarchized in directions up to s, i.e., the variables present
α(s). We show that the following invariants hold for the recursion.

For a call of hierarchizeRec(s, t,G`̀̀, I) we formulate the following states
of the grid G`̀̀ .

Definition 1 (Precondition(G`̀̀, I,s)).

1. a variable in G`̀̀,I holds the value α(s).
2. a variable in G`̀̀ ∩Br(I) holds the value α(r).

Definition 2 (Postcondition(G`̀̀,G′`̀̀, I, t)).

1. a variable in G′`̀̀,I holds the value α(t).
2. all other variables have the same value in G′`̀̀ as in G`̀̀ .

Lemma 3. If hierarchizeRec(s, t,G`̀̀, I) is called in a situation as described
by Definition 1, then the grid G′`̀̀ after the call is as described by Definition 2.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 13

Proof. By induction on size of the current subgrid, i.e., the number of grid points in
G`̀̀,I . First, consider the case that the current subgrid G`̀̀,I contains a single grid point.
Then the for-loop in Line 3 changes the state from the first item of the precondition
to the first item of the postcondition. In this, the stencil in Line 4 is correct because
of the second item of the precondition.

Second, if
∣∣G`̀̀,I

∣∣> 1, then the algorithm performs a split operation. By Lemma 2,
Item 1, the invariant on the boundary in directions different from r is transferred from
the call to all recursive calls. Because the split partitions G`̀̀,I into three subgrids,
Item 1 of the precondition is also transferred. The algorithm distinguishes between 2
further cases with

∣∣G`̀̀,I
∣∣> 1, namely Ir = [0,1] or Ir ⊂ (0,1).

In the first case we have Ir = [0,1]. In this case the boundary of I0 and I1 in
direction r is empty, i.e., Br(I0) = Br(I1) = /0. Hence, Item 2 of the precondition
holds trivially for the calls in Lines 9, 10 and 12, 13. As Br(Iint) =

(
I0∪ I1

)
, it

follows from the postcondition of the first two calls that Item 2 of the precondition
for the call in Line 11 is fulfilled. Item 1 of the precondition for the call in Line 12
follows from Item 1 of the postcondition of the call in Line 9. A similar argument
works for Line 13.

Otherwise Ir is an open interval that contains at least 3 grid points of G`̀̀ . Hence,
the split operation partitions the subgrid into three non-empty subgrids. Item 2 of
the precondition for the call in Line 16 follows directly from Lemma 2, Item 3.
This establishes by Lemma 2, Item 2 the precondition for the calls in Line 17 and
Line 18. Item 1 of the precondition for the call in Line 19 follows from Item 1 of the
postcondition of the call in Line 16.

The postcondition on the final grid G′`̀̀ for the whole call now follows from the
postconditions of the recursive calls. ut

Therefore, the call hierarchizeRec
(
0,d,G`̀̀, [0,1]

d) hierarchizes the whole
grid G`̀̀ correctly as the precondition holds trivially and the postcondition means that
all grid points are correctly hierarchized.

4.2 Complexity Analysis

For each grid point Algorithm 2 performs exactly d updates and for each update
precisely 3 grid points are needed. As at most 3 cache lines are needed in cache
simultaneously, the hierarchization of any grid point does not cause more than 3d
cache misses, i. e., 3 cache misses per update, for any reasonable cache replacement
strategy. If the subgrid the algorithm works on is sufficiently small, i. e., the subgrid
and all hierarchical predecessors of the stencil fit it into memory, the algorithm is
much more efficient. In that case the whole subgrid can be hierarchized by loading
it and its hierarchical predecessors into memory once and performing the updates
in memory. As the subgrid fits into cache and no other cache lines are accessed
in between, a LRU strategy ensures that the subgrid stays in cache as long as it is
needed. The analysis builds upon these observations.

14 Philipp Hupp and Riko Jacob

Note that for all d-dimensional grids, i. e., for all grids that have more than 1 grid
point in each dimension, the call hierarchizeRec

(
s, t,G`̀̀,I

)
always happens

with s = 1 and t = d. The parameters s and t are only altered for the grids of the form
G`̀̀,I0

r
, G`̀̀,I1

r
and G`̀̀,Imid

r
which have at least one dimension with a single grid point.

The presented analysis assumes that the grid G`̀̀ is significantly larger than the
cache. In particular, it is assumed that all directions are refined such that there
exist isotropic subgrids, i. e., subgrids with the same number of grid points in
each dimension, that do not fit into cache. For component grids, this is the case
if
(
2minr `̀̀r −1

)d ≥M, where M is the memory size.
We analyze the performance of the algorithm by focusing on certain calls to

hierarchizeRec
(
0,d,G`̀̀, Ii

)
on the same level of the recursion, given by the

family of intervals Ii, i ∈ F , where F = {(`̀̀, i) | `̀̀ = (m, . . . ,m)}. All Ii have the
same shape and size. We choose them in a way that the level of the subgrid in
each dimension is m. With our particular definition of chooseDim

(
G`̀̀,I

)
and the

sufficiently large grids we consider, these calls are actually performed. The intervals
intervals Ii (i ∈ F) almost partition the domain, namely they are disjoint and the
union of their closures is the complete domain, i.e., ∪iIi = [0,1]d . Note that G`̀̀,Ii\Ii
contains the boundary points in all directions and a few more points.

The analysis of such a call is based on the number of grid points of the subgrid in its
interior N(m) = |G`̀̀,Ii | and on its boundary Q(m) = |G`̀̀,Ii\Ii |. More precisely, we need
a good lower bound on N(m) (progress), and good upper bounds on N(m)+Q(m)
(base cost and memory requirement) and Q(m) (additional cost). For the base cost
and memory requirement we additionally, have to take into consideration the layout
of the grid and how it interacts with the blocks of the (external) memory.

Once we identified an m such that the whole grid G`̀̀,Ii fits into memory, we
can estimate the overall number of cache misses in the following way: the call
hierarchizeRec(0,d,G`̀̀, Ii) hierarchizes G`̀̀,Ii and costs loading the subgrid
and its boundary. The number of cache misses is (N(m)+Q(m))/B plus an additional
term that is less then Q(m) to account for blocks that are not completely filled
(assuming a row major layout). Hierarchizing the boundary G`̀̀,Ii\Ii incurs at most
3d cache misses per boundary point. The number of calls can be estimated by
|F |< |G`̀̀|/N(m). Hence, the total number of cache misses is at most

|G`̀̀|
N(m)

(
N(m)+Q(m)

B
+(3d +1)Q(m)

)
≤ |G`̀̀|

(
1
B
+

(3d +2)Q(m)

N(m)
)

)
Hence, in the following we analyze the asymptotic behavior of the additional term
(3d+2)Q(m)

N(m) , and show that it is o(1/B).

Lemma 4. Hierarchizing a component grid G`̀̀ with `̀̀r ≥ 1
d log2 M (∀r) using Algo-

rithm 2 takes

|G`̀̀|
(

1
B
+O

(
1

d
√

M

))
cache misses in the cache-oblivious model with the tall cache assumption B= o(d

√
M)

and an LRU cache replacement strategy.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 15

Proof. In the setting of component grids we have N(m) = (2m−1)d , and Q(m)≤
2d(2m +1)d−1. We choose

m = log2

(
d
√

M/2−1
)
.

leading to

1
N(m)

=
1

(2m−1)d = O
(

1
M

)
and Q(m)≤ 2d

(
d
√

M/2
)d−1

= O
(

M
d−1

d

)
.

From the tall cache assumption we conclude that for any constant c we have
c ·Bd ≤M for large enough M and B, which we use as B≤ 1

2 · d
√

M/2. Assuming a
row major layout, the number of occupied cache lines is upper bounded by(⌈

2m +1
B

⌉
+1
)
· (2m +1)d−1 ≤ (2m +1)d

B
+2 · (2m +1)d−1 =

=
M

2 ·B +21/d ·M d−1
d ≤ M

2 ·B +21/d ·M d−1
d · M1/d

2
d+1

d B︸ ︷︷ ︸
≥1

=
M
B

.

Hence, the choice of m is as required in the preceding discussion. In that case the
additional term is

(3d +2)Q(m)

N(m)
= O

(
M

d−1
d

M

)
= O

(
1

d
√

M

)
= o

(
1
B

)
,

where the last equality is the tall cache assumption. ut

When the constant d is made explicit in the last equation the lower order term
reads O

(
d2
/ d
√

M
)
.

4.3 Hybrid Algorithms

One aspect of Algorithm 2 and its analysis that might limit its applicability is the
fairly strong tall cache assumption B = o

(d
√

M
)
. Algorithm 1, in contrast, can be

modified to work with |G`̀̀|
(d

B +O
(1

M

))
cache misses if B = o(M). In fact, these

two algorithms mark the corners of a whole spectrum of algorithms that become
more cache efficient as the cache gets taller. Instead of working subsequently in
all d directions as Algorithm 1, or merging all d phases as Algorithm 2, these hybrid
algorithms merge c ∈ N, 1≤ c≤ d phases of the unidirectional principle. To discuss
these hybrid algorithms it is first assumed that the component grid G`̀̀ is stored in a
block aligned fashion, i. e., every pole in direction 1 is padded with dummy elements
such that every pole starts at the beginning of a cache line. As a result, all poles are

16 Philipp Hupp and Riko Jacob

split into cache lines in the very same way. After discussing this aligned case, the
hybrid algorithms are also sketched for the case that the alignment is not possible.

Lemma 5. For every c ∈ N, 1 ≤ c ≤ d and c divides d there is an algorithm that,
assuming a tall cache with M = ω (Bc), performs hierarchization on a block aligned

component grid G`̀̀ with |G`̀̀|
(

d
c · 1B +O

(
1

c√M

))
cache misses.

Proof. Let us first consider the case of c = 1, i.e., the mentioned modification
of Algorithm 1. To hierarchize a pole, replace Line 4 to Line 8 by the call
hierarchizeRec(r−1,r,G`̀̀, I) for the one-dimensional poles e.g. I = [0,1]×
{xk2,i2}× ·· ·×{xkd ,id}.

For r = 1 and the considered row major layout, the poles are contiguous in
memory. Therefore, each pole can be considered as a 1-dimensional subgrid to
which Algorithm 2 is applied. Therefore, Lemma 4 yields that this modification of
Algorithm 1 needs |G`̀̀|

(1
B +O

(1
M

))
cache misses for the first unidirectional pass,

i. e., to hierarchize the first dimension. In that case, the tall cache assumption of
Lemma 4 is B = o(M).

For r > 1 the poles worked on are not stored contiguously in memory, and working
on a single pole at a time would access a whole cache line to only work with a single
element. This can be avoided by the following kind of blocking that works with
the poles in direction r that share the same cache line. These poles are by layout
neighboring in direction 1. For the sake of the formulation of the algorithm and its
complexity analysis, this allows us to consider the cache lines instead of the grid
points as the atomic elements, which results in cache line size B′= 1, internal memory
size M′ = M/B and grid size G′`̀̀ = G`̀̀

/
B (all in cache lines). As we now consider

B′ = 1, the memory can be filled with the new (meta-)poles without polluting the
internal memory with other grid points. Therefore the analysis is identical to the case
of r = 1 which yields that transferring the grid from state α(r−1) to state α(r) needs
|G`̀̀|

(1
B +O

(1
M

))
cache misses and a tall cache assumption of B = o(M).

For c > 1 the one-dimensional poles are replaced by c-dimensional planes. The
hybrid algorithm works in d/c phases and each phases hierarchizes the grid from
state α((p−1)·c) to state α(p·c) for some p ∈ N. If c = 2, the interval is for ex-
ample I = [0,1]× [0,1]×{xk3,i3}× · · · × {xkd ,id} and this I can be regarded as a
2-dimensional pole which can be hierarchized in dimension 1 and 2 by the call
hierarchizeRec(0,2,G`̀̀, I). The hybrid algorithm performs this call for all
such intervals, bringing the complete grid to the state α(c).

For p = 1, the intervals are in contiguous memory and the c-dimensional analysis
of Lemma 4 applies. This shows that transforming the grid from state α(0) to state
α(c) takes |G`̀̀|

(
1
B +O

(
1

c√M

))
cache misses and requires the tall cache assumption

B = o(c
√

M).
For p > 1, i.e., if the intervals are orthogonal to the direction of the layout, we

can again use a version of the algorithm that works on B intervals simultaneously,
i. e., regards the cache lines as the atomic elements instead of the grid points (i. e.,
cache line size B′ = 1, internal memory size M′ = M/B and grid size G′`̀̀ = G`̀̀

/
B

(all in cache lines)). As we consider the case B′ = 1, the same analysis as in the

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 17

case of hierarchizing the first c dimensions, i. e., p = 1, can be applied. This yields
that transforming the grid from state α((p−1)·c) to state α(p·c) for any p > 1 causes
|G`̀̀ |

B

(
1
1 +O

(
c
√

B
M

))
= |G`̀̀|

(
1
B +O

(
1

c√M·Bc−1

))
cache misses. The tall cache as-

sumption required to use the analysis of the p = 1 case is B = o(M). This assumption
also guarantees that the second term is of lower order.

As this hybrid algorithm performs d/c sweeps over the complete grid and the
lower order term for p = 1 dominates that of p > 1, i. e., 1

c√M·Bc−1 = O
(

1
c√M

)
given

B = o(M), the statement of the lemma follows. ut
Lemma 6. For 1≤ u < d and assuming a tall cache of M = ω (Bu), the number of
cache misses to hierarchize a block aligned component grid G`̀̀ is

|G`̀̀|
(

2
B
+O

(
1

u
√

M

)
+O

(
1

d−u√M ·Bd−u−1

))
.

Proof. Consider a hybrid algorithm which works in 2 passes, each pass hierarchizing
a different number of dimensions: the first pass hierarchizes the first u dimensions,
i. e., c = u and p = 1. The second pass hierarchizes the last (d−u) dimensions, i. e.,
c = (d−u) and p > 1. It follows from the proof of Lemma 5 that the first pass re-
quires a tall cache assumption of B= o

(u
√

M
)

and causes |G`̀̀|
(

1
B +O

(
1

u√M

))
cache

misses. Also by the proof of Lemma 5, the second pass requires a tall cache assump-
tion of B = o(M) and causes |G`̀̀|

(
1
B +O

(
1

d−u√M·Bd−u−1

))
cache misses. ut

For u ≥ d/2, it holds that 1
d−u√M·Bd−u−1

= O
(

1
u√M

)
such that the first lower order

term in Lemma 6 dominates. As the tall cache assumption M = ω (Bu) just becomes
stronger as u increases, choosing u > d/2 is therefore not advantageous. For u < d/2,
it depends on the actual size of the cache whether the first or the second lower order
term dominates. In particular, for u = 1, Lemma 6 becomes:

Lemma 7. Assuming a cache of size M = ω (B), a block aligned component grid G`̀̀

can be hierarchized with |G`̀̀|
(

2
B +O

(
1

d−1√M·Bd−2

))
cache misses.

If for some reason a block aligned layout of the component grid is not feasible,
the hybrid algorithms can block b poles together. When b is sufficiently larger than B
(i. e., B= o(b)), then there are at most two cache lines which contain also unused grid
points for every bb/Bc−1 full cache lines. This changes the term 1/B to (1/B+3/b)
in the above analysis, adding another lower order term, and the effective size of the
cache to M′ = M/b.

4.4 Parallelization

To achieve high performance on modern machines, it is important that an algorithm
can use many parallel processors. In Algorithm 2 this is possible by executing

18 Philipp Hupp and Riko Jacob

the two recursive calls in Line 17 and Line 18 in parallel. This is still a correct
algorithm because Ileft

r and Iright
r are disjoint and the precondition for both calls is

already established after Line 16. On the level of grid points, i. e. B = 1, the resulting
algorithm implements an “exclusive write” police, i.e., two different processors never
write to the same memory location simultaneously. Without further synchronization
it requires the possibility of “concurrent read” because both parallel calls read the
variables in G`̀̀,Imid

r
.

Considering cache-lines, it is possible that two different processors write to the
same cache line. To avoid this, the algorithm performs the two calls serially if and
only if the split was done in dimension 1, the direction in which a cache line extends.
Hierarchization of the boundaries only needs O(|G`̀̀|/M) cache misses, even if it
would be performed in serial. On a system with P processors, each having a private
cache of size M, the above version of Algorithm 2 achieves that the number of
parallel cache misses is |G`̀̀|

(
1

PB +O
(

1
d√M

))
as long as P≤∏

d
r=2 2`̀̀r .

5 Experimental Evaluation

In this section we report on the run times of our implementation of the described
recursive algorithm, its variants and alternatives. The experiments confirm that
the main bottleneck of the task is the memory access. We conclude this from the
observation that the measured running times are generally close to what the I/O model
predicts. Hence, further improvement can only be expected when implementing a
different I/O algorithm. Still, it should be noted that this is only true once the
implementation is sufficiently carefully optimized in other aspects, most notably
multicore parallelism and vectorization, but also branch mispredictions, overhead
for (recursive) function calls, and the creation of parallel tasks. We also observe that
with increasing dimension the gap between the prediction and the measurements
increases, which we suppose has several reasons: Our analysis is not particularly
careful with respect to higher dimensions and constant memory size. The I/O-model
ignores additional memory effects like the TLB, i.e., the cache used to perform
virtual memory translation.

5.1 Setup and systems

We implemented the algorithm in C++, using openMP for parallelization and hand
coded AVX-vectorization. In the implementation we use the C-style numbering of
the dimensions starting with 0, but in the description here we translate this to the
usual numbering from 1 to d. The experiments are performed for the case without
boundary points, i.e., where all global boundary points are implicitly 0.0. For the
recursive algorithms, this is actually more complicated than if all boundaries are

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 19

present because the recursive calls create some cases with boundaries and hence it
is necessary to keep track of the existence of boundaries in the different directions.
This allows a direct comparison with [24].

The main focus of the experiments is wall-clock run-time as measured by the
chrono timer provided in C++11. This is usually taken relative to the time it takes
to touch the grid once, as calculated from the measured performance by the stream
benchmark (using as many cores as helpful), multiplied with the size of the grid. The
stream benchmark measures the speed at which the CPU can access large amounts
of data that is stored contiguously. It turned out to be sensitive to the used compiler,
so we always took the highest performance reported.

The experiments do not empty the cache in order to provide cold cache measure-
ments, but by the size of the grid and the structure of the algorithm, the influence of
the content of the cache when the measurement starts is small.

The implementation is compiled with gcc in the version available on the
architecture (see below), using the flags -mavx -Wa,-q -Wall -fopenmp
-std=c++11 -march=native -O3. We use openMP to run the code on sev-
eral cores in parallel, using the static scheduling to distribute the work of for loops,
and the concept of tasks for the recursive algorithm. Our code compiles with icc, but
a small set of test runs showed that for the bigger grids we are interested in, there
were hardly any differences to gcc.

5.1.1 System 1: Rechenteufel

Most of the experiments were performed on this system. It is a standalone worksta-
tion (called Rechenteufel) with an IvyBridge Intel(R) Xeon(R) CPU E3-1240 V2
3.40GHz. with 8 MB shared L3 cache. (From IvyBridge Specs: private L2 Cache of
256 KB, private L1 Cache of 64 KB.) It has 1 CPU with 4 cores (no hyperthreading)
and 32GB DDR3 main memory. The stream benchmark using icc version 13.1.3 (gcc
version 4.7.0 compatibility) gives a performance of 21.9 GB/s = 21.9 · 109 byte/s.
The used gcc has version 4.8.3. For the reported experiments the maximum grid sizes
are roughly 8 GB (a quarter of the main memory).

5.1.2 System 2: Hornet

This system is used for the experiments with GENE. It is one node of a supercomputer
called hornet. The CPU is an Intel Haswell E5-2680v3 2,5 GHz with 12 Cores,
hyperthreading off, and 30 MB shared L3 cache. (from haswell sepcs: L2 cache: 256
KB per core, L1 cache 64 KB per core), and it has 64 GB DDR4 main memory. One
node has two such CPUs, but our experiments only used one of them.

The stream Benchmark with cc (cray compiler) version 8.3.6, using 12 cores,
gives 57.286 ·109 Bytes/s.

20 Philipp Hupp and Riko Jacob

5.2 Compared Algorithms

Our experimental evaluation considers the task of hierarchization without boundary
points.

5.2.1 Unidirectional Algorithm

The basic unidirectional algorithm has been implemented very efficiently as described
in [24]. It has a natural lower bound of d times scanning, which is almost achieved
in many cases.

5.2.2 Recursive Algorithm

This is an implementation of Algorithm 2, as explained and analyzed in Section 4.
Hence, for sufficiently big cache (compared to the dimension), this algorithm scans
the data set once.

To reduce the overhead of recursive execution, we use as base case regions
(sub-)poles in dimension 1 of level recTile. In our data layout, such a region is
consecutive in memory. Hierarchization in dimension 1 needs two additional values
and is done iteratively and without vectorization. In contrast, each hierarchization in
a dimension different from 1 needs two other such regions, and the application of the
stencil is done vectorized using AVX instructions on 4 doubles.

Multi-core parallelism is implemented as described in Section 4 using openMP
tasks. To avoid the task creation overhead for very small tasks, we do not create tasks
if the level sum of the current recursive call is too small. With a focus on the shared
level 3 cache, we also do not parallelize the tasks if the level sum is too big. These
limits are called minSpawnLevel and maxSpawnLevel.

Given that this algorithm has the three parameters recTile, minSpawnLevel
and maxSpawnLevel, we conducted a parameter study that lead to a reasonable
heuristic to choose these parameters. This algorithm turned out to be the fastest for
problems with 2,3 or 4 dimensions.

5.2.3 Hybrid Algorithm: Twice Rec

This is an implementation of the hybrid Algorithm described in Section 4.3 that per-
forms two scans over the data set. The first phase considers meta-poles in dimensions
1 to dsplit, i.e. 1≤ dsplit < d. These are small complete dsplit dimensional component
grids, presumably small enough to fit into cache. They are hierarchized iteratively
using the optimized unidirectional algorithm of [24]. The loop over these subgrids is
parallelized.

The second phase is Algorithm 2 operating on vectors that constitute the hier-
archized dsplit dimensional subgrids. Here, the base case is a single vector, and the

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 21

application of the stencil is vectorized. To increase the number of vectors that can
fit into cache, we split the vectors into chunks of BlockSize elements. But, to
amortize the overhead of the recursive call structure to sufficiently big base cases, we
should not choose BlockSize too small. Hence for the second phase we have the
parameters BlockSize, minSpawnLevel and maxSpawnLevel, and for the
overall algorithm the additional dsplit. Again, a parameter study lead to a heuristic to
choose good values for these parameters, namely to use BlockSize= 1024 and
choose dsplit in a way that the level sum of the subgrids is at least 14.

This algorithm currently gives the best performance for dimensions 5 and 6.

5.3 Parameter Study and Heuristics

The study of the parameters minSpawnLevel, maxSpawnLevel, and recTile
for the recursive and BlockSize and dsplit for the hybrid Algorithm needs to
consider a big parameter space. Hence, we did not include further parameters and
always used 8 openMP threads and grids of size 8GB. Further, we did not repeat the
individual runs. Accordingly, the heuristic to choose the parameters might not be
perfect, but as we will see in the next sections, the performance achieved with this
heuristic is usually already pretty good.

5.3.1 Recursive

The parameters of the recursive algorithms are all depending on the level sum
of the current rectangle. Hence, they can be at most maxLevel = ∑

d
i=2 `̀̀i. In

the parameter study we vary maxSpawnLevel between 4 and maxLevel, and
minSpawnLevel between 3 and maxSpawnLevel−1. The parameter recTile
varies between 2 and `̀̀1.

The following heuristic yields performance that is close to the best choice
of parameters: We chose recTile to be `̀̀1 if this is smaller than 14, else
we choose it to be 5. Further we choose maxSpawnLevel = maxLevel− 2,
minSpawnLevel = maxLevel−7. This choice of parameters is reasonable in
the following sense: A real split in the first dimension is expensive as on the boundary
we access a whole cache line to use a single grid point. Therefore, if the first dimen-
sion is small, it is better to not split it at all. If the first dimension is very large, then
the recTile is chosen rather small such that the tiles are more quadratic and the
interior to boundary ratio is better than for tiles with a very long first dimension. Only
recursive calls between maxSpawnLevel and minSpawnLevel are parallelized.
Hence, this difference needs to be at least the binary log of the intended number of
parallel tasks, explaining the difference of 5. Keeping maxSpawnLevel slightly
away from maxLevel leads to all threads working on some (still big) subgrid,
which seems beneficial, perhaps because of caching effects in the virtual address

22 Philipp Hupp and Riko Jacob

translation (TLB). Generally we observe that the performance was not very sensitive
to the choice of the spawn levels.

5.3.2 Twice Recursive

The algorithm is only meaningful if the parameter split dimension is in the interval
1 ≤ dsplit < d, and the parameter study explores this whole range. The block size

BlockSize is set to all powers of 2 between 4 and
(

∏
dsplit
i=1 2`̀̀i

)
−2.

This lead to the heuristic of choosing dsplit as the smallest dimension i such
that l = ∑

i
j=1 `̀̀ j > 13, and choosing BlockSize= 1024. With this heuristic, the

subgrids of the first phase are at least 214+3bytes = 128KB big (and not too much
bigger). Hence, they can fit into the private L2 cache of 256KB if l ≤ 15, and will fit
into the 8 MB big L3 cache even if all four cores are active if l ≤ 18. The choice of
BlockSize is a reasonable compromise between keeping the memory requirement
small and having enough work to amortize the overhead of the recursion.

5.3.3 Data and Results for Parameter Study

The results of the parameter study for the recursive algorithm are shown in Table 1,
that of the twice recursive algorithm in Table 2. Comparing the running times between
the tables shows that the recursive algorithm is clearly faster for up to 3 dimensions,
for 4 dimensions it is slightly faster, and for 5 and 6 dimensions twice recursive is
faster. This is coherent with the theoretical analysis that the interior to boundary ratio
and the tall cache requirement become bad for the recursive algorithm, whereas the
twice recursive algorithm can in both phases be close to the scanning bound. The
anisotropic grids are only reported for the generally faster algorithm.

The heuristic works well, it manages to get within 5 percent of the running time
with the best parameters for the recursive algorithm, and within 22 percent for the
twice recursive algorithm. In one case the running time of the heuristic is actually
reported to be faster than that of the best parameters, which is an artifact of repeating
the run and means that the heuristic is optimal up to measurement accuracy. In the
following, we will always use the heuristic to chose the parameters.

5.4 Strong Scaling

A classical experiment is that of strong scaling, i.e., comparing the runtime for
the same task with different number of threads, depicted in Figure 5. In all cases
we see perfect scaling between one and two threads, and in most cases a constant
performance for four or more threads, which reflects that the machine has four cores.
We also see that two threads already achieve more than half of the best performance.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 23

Table 1 Best runtime of the “Recursive” Algorithm over the searched parameter space and runtime
given the parameters chosen by the heuristic. 8 OMP threads on a 4 core CPU (rechenteufel)

d = 2 Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

`̀̀ = (15,15) 0.98 SpawnLevel= (13,14) 1.00 SpawnLevel= (8,13) 1.01
recTile= 5 recTile= 5

`̀̀ = (20,10) 0.99 SpawnLevel= (7,8) 1.00 SpawnLevel= (3,8) 1.01
recTile= 5 recTile= 5

`̀̀ = (10,20) 0.88 SpawnLevel= (16,17) 0.90 SpawnLevel= (13,18) 1.02
recTile= 7 recTile= 10

d = 3 Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

`̀̀ = (10,10,10) 1.21 SpawnLevel= (17,20) 1.21 SpawnLevel= (13,18) 1.00
recTile= 7 recTile= 10

`̀̀ = (15,8,7) 1.57 SpawnLevel= (12,14) 1.58 SpawnLevel= (8,13) 1.01
recTile= 5 recTile= 5

`̀̀ = (8,7,15) 1.12 SpawnLevel= (19,20) 1.12 SpawnLevel= (15,20) 1.00
recTile= 8 recTile= 8

d = 4 Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

`̀̀ = (8,8,7,7) 1.77 SpawnLevel= (18,21) 1.80 SpawnLevel= (15,20) 1.02
recTile= 6 recTile= 8

`̀̀ = (12,6,6,6) 2.14 SpawnLevel= (4,17) 2.21 SpawnLevel= (11,16) 1.03
recTile= 7 recTile= 12

`̀̀ = (6,6,6,12) 1.86 SpawnLevel= (15,16) 1.98 SpawnLevel= (17,22) 1.06
recTile= 6 recTile= 6

d, `̀̀ Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

d = 5 2.76 SpawnLevel= (19,20) 3.04 SpawnLevel= (17,22) 1.10
`̀̀ = (6,6,6,6,6) recTile= 5 recTile= 6

d = 6 3.81 SpawnLevel= (10,22) 4.61 SpawnLevel= (18,23) 1.21
`̀̀ = (5,5,5,5,5,5) recTile= 3 recTile= 5

For the 6 dimensional case we observe that the second phase of the twice recursive
algorithm has a somewhat unstable performance, and that only for 11 and 12 threads
it is close to scanning time. For the 5 dimensional case the performance is stable but
the first phase takes two times scanning, reflecting that the subgrids are bigger than
they should ideally be. All in all, twice recursive does not quite achieve the possible
performance of scanning twice, but it still outperforms the unidirectional scanning
bound by a factor of two for six dimension, and almost that for five dimensions.

24 Philipp Hupp and Riko Jacob

Table 2 Best runtime of the “Twice Recursive” Algorithm over the searched parameter space and
runtime given the parameters chosen by the heuristic.

d, `̀̀ Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

d = 2 1.77 dsplit = 2 1.85 dsplit = 2 1.05
`̀̀ = (15,15) BlockSize= 8192 BlockSize= 1024

d = 3 2.12 dsplit = 2 2.90 dsplit = 3 1.37
`̀̀ = (10,10,10) BlockSize= 256 BlockSize= 1024

d = 4 2.03 dsplit = 3 1.99 dsplit = 3 0.98
`̀̀ = (8,8,7,7) BlockSize= 1024 BlockSize= 1024

d = 5 Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

`̀̀ = (6,6,6,6,6) 2.42 dsplit = 3 2.45 dsplit = 4 1.01
BlockSize= 1024 BlockSize= 1024

`̀̀ = (10,5,5,5,5) 1.97 dsplit = 3 2.22 dsplit = 3 1.13
BlockSize= 2048 BlockSize= 1024

`̀̀ = (5,5,5,5,10) 1.41 dsplit = 4 1.50 dsplit = 4 1.06
BlockSize= 1024 BlockSize= 1024

d = 6 Runtime Parameters Runtime Parameters runtime (heuristic)
runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

`̀̀ = (5,5,5,5,5,5) 1.66 dsplit = 4 1.72 dsplit = 4 1.04
BlockSize= 1024 BlockSize= 1024

`̀̀ = (8,5,5,4,4,4) 2.23 dsplit = 4 2.30 dsplit = 4 1.03
BlockSize= 8192 BlockSize= 1024

`̀̀ = (5,5,4,4,4,8) 1.55 dsplit = 4 1.89 dsplit = 4 1.22
BlockSize= 512 BlockSize= 1024

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
u

n
ti

m
e

 (
w

a
llc

lo
ck

)
[s

]

Number of OpenMP threads

Strong Scaling on 4 Cores for 1 to 16 OpenMP Threads -
"Recursive" Algo for Dim 2 to 4: Best Performance for > 4 Threads

Dim 2
Level=(15,15)

Dim 3
Level=(10,10,10)

Dim 4
Level=(8,8,7,7)

scanning scanning scanning

2 * scanning

3 * scanning

4 * scanning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
u

n
ti

m
e

 (
w

a
llc

lo
ck

)
[s

]

Number of OpenMP threads

Strong Scaling on 4 Cores for 1 to 16 OpenMP Threads -
"Twice Recursive" Algo for Dim 5 and 6: Best Performance for 11 Threads

total

hierarchize dim 1 to 3

hierarchize dim 4 to (d)

Dim 5
Level=(6,6,6,6,6)

Dim 6
Level=(5,5,5,5,5,5)

scanning scanning

2 * scanning
2 * scanning

5 * scanning 6 * scanning

Fig. 5 Scaling of the two algorithms on a four core single CPU machine

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 25

5.5 Anisotropic Grids

In the context of the combination technique, many component grids are anisotropic.
We address this by considering grids of different dimensions with level sum 30, i.e.,
roughly 8 GB of data, as reported Figure 6. In all tested cases, the unidirectional
bound is beaten, in many cases quite clearly. Three cases achieve almost the best
possible performance. The recursive algorithm suffers somewhat from the first di-
mension being refined further. For the twice recursive algorithm, changing the most
refined dimension actually changes the split between the two phases, which has a
strong influence on performance. Further, the performance is better if the refined
dimension is handled in the second phase.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5
Runtime (wallclock) [multiples of scanning]

Level vector

Isotropic Grids vs. Anisotropic Grids - "Recursive" Algo for Dim 2 to 4:
 Refinement Level of 1st Dimension Matters Most

Dim 2

Dim 3

Dim 4

(1
5,

15
)

(2
0,

10
)

(1
0,

20
)

(1
0,

10
,1

0)

(1
5,

8,
7)

(8
,1

5,
7)

(8
,7

,1
5)

(8
,8

,7
,7

)

(1
2,

6,
6,

6)

(6
,1

2,
6,

6)

(6
,6

,1
2,

6)

(6
,6

,6
,1

2)

 0

 1

 2

 3

 4

 5

 6 Runtime (wallclock) [multiples of scanning]

Level vector

Isotropic Grids vs. Anisotropic Grids - "Twice Recursive" Algo for Dim 5 and 6:
 Split Dimension and Size of the Resulting Subgrids Matters Most

Dim 5

Dim 6
hierarchize dim 1 to (splitDim-1)
hierarchize dim (splitDim) to (d)

(6
,6

,6
,6

,6
)

(1
0,

5,
5,

5,
5)

(5
,1

0,
5,

5,
5)

(5
,5

,1
0,

5,
5)

(5
,5

,5
,1

0,
5)

(5
,5

,5
,5

,1
0)

(5
,5

,5
,5

,5
,5

)

(8
,5

,5
,4

,4
,4

)

(5
,8

,5
,4

,4
,4

)

(5
,5

,8
,4

,4
,4

)

(5
,5

,4
,8

,4
,4

)

(5
,5

,4
,4

,8
,4

)

(5
,5

,4
,4

,4
,8

)

Fig. 6 Influence of anisotropy on the performance

5.6 Speedup over Unidirectional ICCS Code

So far we mainly compared the recursive implementations with the scanning bound,
which provides lower bounds, directly for the recursive algorithm, multiplied by 2
for twice recursive and multiplied by d for the unidirectional algorithm. Here we
compare this performance with the unidirectional implementation presented in [24].
As we can see in Figure 7, the new implementation is superior for grids with more
than a million points, i.e., roughly 100 MB size.

5.7 Increase Grid Size

Another important aspect of the code is how it scales with the size of the grids as
depicted in Figure 8. We see that for grids with at least a million points (8 MB
size), the performance is stable, and it seems to converge to a constant depending
on the dimension. This is in line with the analysis in Section 4.2. In all cases we
see the performance well below the bound of the unidirectional algorithm, and for

26 Philipp Hupp and Riko Jacob

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1 1 10 100 1000

Speedup over ICCS Code

Number of Grid Points in Million

Speedups over Unidirectional ICCS Code - "Recursive" Algo for Dim 2 to 4:
New Code is faster for Grids > 8 MB = 1 Mio Points = Size of L3 Cache

Dim 2

Dim 3

Dim 4
1.7x

2.6x
2.1x

1.9x

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1 1 10 100 1000

Speedup over ICCS Code

Number of Grid Points in Million

Speedups over Unidir. ICCS Code - "Twice Recursive" Algo for Dim 5 and 6:
New Code is faster for Grids > 8 MB = 1 Mio Points = Size of L3 Cache

Dim 5

Dim 6

2.3x
1.7x

2.7x

Fig. 7 Comparison of the unidirectional implementation and the recursive ones

dimensions 2 and 3 the recursive algorithm is close to scanning once. In dimensions
5 and 6 the performance is reasonable close to scanning twice, as expected for the
twice recursive algorithm.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.01 0.1 1 10 100 1000
Number of Grid Points in Million

			Increasing the Grid Size - "Recursive" Algo for Dim 2 to 4:
the Unidirectional Approach is Clearly Outperformed

Runtime (wallclock) [multiples of scanning]

Dim 2
Dim 3

Dim 4

1x scanning

2x scanning

3x scanning

4x scanning

 1

 2

 3

 4

 5

 6

 0.01 0.1 1 10 100 1000
Number of Grid Points in Million

			Increasing the Grid Size - "Twice Recursive" Algo for Dim 5 and 6:
the Unidirectional Approach is Clearly Outperformed

Dim 5
Dim 6

Runtime (wallclock) [multiples of scanning]

1x scanning

2x scanning

5x scanning

6x scanning

Fig. 8 Performance of the recursive algorithms with respect to grid size. Reports average running
time per point (relative to scanning bound) over 10 runs, errorbars show min and max.

5.8 GENE

One important example for the combination technique, as mentioned in the introduc-
tion, is the case of using GENE to simulate a fusion reactor, as reported in Figure 9.
The peculiar situation here is that the first two dimensions are in phase space and
should hence not be hierarchized. This can easily be accommodated by using the
twice recursive algorithm with dsplit = 2. The grid sizes stem from a pilot study
performed by Mario Heene and Dirk Pflüger in Stuttgart, and we conducted these
experiments on the haswell system (as described earlier). We see that the hierar-
chization of dimensions 3 to 5 takes less time than scanning the grid twice. These
measurements show that also on this architecture the implementation performs well
and even the heuristic for choosing the parameters (taken from rechenteufel) is not
too system specific.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 27

 0

 1

 2

 3

 4

 5

(12,5,5,5,5) (9,5,10,5,3) (9,5,3,5,10)

Runtime (wallclock) in multiples of scanning time

Level vector of the 5 dimensional grids

Hierarchization of GENE Grids on a Haswell CPU:
Code Outperforms the Unidirectional Approach also on this Microarchitecture

Time to hierarchize dim 1 and 2
Time to hierarchize dim 3, 4 and 5

 5 x scanning
 3 x scanning
 1 x scanning

Fig. 9 Grid sizes relevant for the fusion reactor simulation using GENE; haswell system running
with 12 threads on 12 cores. The grids have size 32 GB and scanning once is roughly one second.

6 Conclusions

This paper has introduced a novel approach to sparse grid algorithms by deriving
a cache-oblivious hierarchization algorithm (Algorithm 2) that avoids the d global
phases of the unidirectional principle but applies it recursively to smaller subprob-
lems that fit into cache. For the piecewise linear basis and the component grids of the
sparse grid combination technique, a discretization scheme to solve high-dimensional
numerical problems, the cache complexity of this algorithm is optimal as the leading
term of the cache misses is reduced to scanning complexity. For optimality, Algo-
rithm 2 relies on the tall cache assumption M = ω

(
Bd
)
. The general idea of divide

and conquer, however, can also be used to derive hybrid algorithms that merge several
but not all phases of the unidirectional principle. These hybrid algorithms trade a
weaker tall cache assumption off against a slightly increased complexity. One such
algorithm only needs a cache of size M = ω (B) and, basically, scans the grid twice.

As sparse grids are inherently hierarchical, the divide and conquer approach can
also be generalized to other kinds of basis functions and sparse grid tasks such as
dehierarchization, i. e., the inverse transformation from the hierarchical basis to the
nodal basis, and up-down schemes used to solve PDEs directly in the sparse grid
space. In addition, Algorithm 2 is not limited to component grids but can also be
applied for adaptive and regular sparse grids. In these cases, the ratio of the number
of interior grid points of a grid interval divided by the boundary grid points, which
can be seen as progress/costs, becomes worse. As a result, the analysis presented for
component grids would need to be altered to show that the leading term of cache
misses is also optimal in the setting of regular sparse grids.

The analysis of the I/O complexity of Algorithm 2 is complemented with an
implementation. The presented results show, that it is possible to handle additional
factors that influence runtime such as vectorization and branch predictions well
enough that the memory connection is used almost fully. In particular, the new
implementation clearly outperforms previously existing implementations, and in
several cases it comes close to optimal performance (as is possible by the memory
system).

28 Philipp Hupp and Riko Jacob

In the experiments, we see that it is advantageous if the base case is square with
respect to cache lines, a case that should be possible to analyze theoretically as well.
Then, perhaps, a weaker tall cache assumption might be sufficient.

Acknowledgements We would like to thank Dirk Pflüger and Mario Heene for support and
discussions, in particular for enabling the experiments on Hornet. We also thank two anonymous
referees for detailed feedback on an earlier draft.

References

1. Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988.

2. Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication in
numerical linear algebra. SIAM J. Matrix Analysis Applications, 32(3):866–901, 2011.

3. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, vol. 13:147–269, 2004.
4. Hans-Joachim Bungartz, Alexander Heinecke, Dirk Pflüger, and Stefanie Schraufstetter. Option

pricing with a direct adaptive sparse grid approach. Journal of Computational and Applied
Mathematics, 236(15):3741–3750, 2011. online Okt. 2011.

5. Hans-Joachim Bungartz, Dirk Pflüger, and Stefan Zimmer. Adaptive sparse grid techniques
for data mining. In H.G. Bock, E. Kostina, X.P. Hoang, and R. Rannacher, editors, Modelling,
Simulation and Optimization of Complex Processes 2006, Proc. Int. Conf. HPSC, Hanoi,
Vietnam, pages 121–130. Springer-Verlag, 2008.

6. G. Buse, R. Jacob, D. Pflüger, and A. Murarasu. A non-static data layout enhancing parallelism
and vectorization in sparse grid algorithms. In 11th International Symposium on Parallel and
Distributed Computing, ISPDC 2012, Munich, Germany, June 25-29, 2012. Proceedings, pages
195–202, Munich, 2012. IEEE.

7. Daniel Butnaru, Dirk Pflüger, and Hans-Joachim Bungartz. Towards high-dimensional com-
putational steering of precomputed simulation data using sparse grids. In Proceedings of the
International Conference on Computational Science (ICCS) 2011, volume 4 of Procedia CS,
pages 56–65. Tsukaba, Japan, Springer-Verlag, 2011.

8. P. Butz. Effiziente verteilte Hierarchisierung und Dehierarchisierung auf vollen Gittern. http://d-
nb.info/1063333806, 2014. Bachelor’s thesis, University of Stuttgart.

9. C Feuersänger. Sparse Grid Methods for Higher Dimensional Approximation. PhD thesis,
Universität Bonn, 2010.

10. Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In In Proc. 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, pages 285–297. IEEE Computer Society Press, 1999.

11. J Garcke. Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen
Gittern. PhD thesis, Universität Bonn, 2004.

12. Jochen Garcke and Michael Griebel. On the parallelization of the sparse grid approach for
data mining. In Svetozar Margenov, Jerzy Waśniewski, and Plamen Yalamov, editors, Large-
Scale Scientific Computing, volume 2179 of Lecture Notes in Computer Science, pages 22–32.
Springer Berlin Heidelberg, 2001.

13. E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng, J. Touriño, and K. Yelick.
Communication avoiding and overlapping for numerical linear algebra. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 100:1–100:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

14. M. Griebel and H. Harbrecht. On the convergence of the combination technique. In Sparse
grids and Applications, volume 97 of Lecture Notes in Computational Science and Engineering,
pages 55–74. Springer, 2014.

A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm 29

15. M. Griebel and W. Huber. Turbulence simulation on sparse grids using the combination
method. In N. Satofuka, J. Periaux, and A. Ecer, editors, Proceedings Parallel Computational
Fluid Dynamics, New Algorithms and Applications CFD 94, Kyoto, pages 75–84, Wiesbaden
Braunschweig, 1995. Vieweg.

16. M. Griebel, W. Huber, and C. Zenger. Numerical turbulence simulation on a parallel computer
using the combination method. In Flow simulation on high performance computers II, Notes
on Numerical Fluid Mechanics 52, pages 34–47, 1996.

17. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse
grid problems. In Iterative Methods in Linear Algebra, pages 263–281. IMACS, Elsevier, 1992.

18. M. Griebel and V. Thurner. The efficient solution of fluid dynamics problems by the combination
technique. Int. J. Num. Meth. for Heat and Fluid Flow, 5:51–69, 1995.

19. Michael Griebel. The combination technique for the sparse grid solution of PDE’s on multipro-
cessor machines. In Parallel Processing Letters, pages 61–70, 1992.

20. B. Harding and M. Hegland. A robust combination technique. In CTAC-2012, volume 54 of
ANZIAM J., pages C394–C411, 2013.

21. Markus Holtz. Sparse Grid Quadrature in High Dimensions with Applications in Finance and
Insurance., volume 77 of Lecture Notes in Computational Science and Engineering. Springer,
2011.

22. Jia-Wei Hong and Hsiang-Tsung Kung. I/O complexity: The red-blue pebble game. In
Proceedings of STOC ’81, pages 326–333, New York, NY, USA, 1981. ACM.

23. P. Hupp. Communication Efficient Algorithms for Numerical Problems on Full and Sparse
Grids. PhD thesis, ETH Zurich, 2014.

24. P. Hupp. Performance of unidirectional hierarchization for component grids virtually maxi-
mized. In 2014 International Conference on Computational Science, volume 29 of Procedia
Computer Science, pages 2272–2283. Elsevier, 2014.

25. P. Hupp, M. Heene, R. Jacob, and D. Pflüger. Global communication schemes for the numerical
solution of high-dimensional PDEs. in preparation., 2014.

26. P. Hupp, R. Jacob, M. Heene, D. Pflüger, and M. Hegland. Global communication schemes for
the sparse grid combination technique. In Parallel Computing - Accelerating Computational
Science and Engineering (CSE), volume 25 of Advances in Parallel Computing, pages 564–573.
IOS Press, 2014.

27. Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput., 64(9):1017–1026, 2004.

28. Riko Jacob. Efficient regular sparse grid hierarchization by a dynamic memory layout. In
Jochen Garcke and Dirk Pflüger, editors, Sparse Grids and Applications - Munich 2012,
volume 97 of Lecture Notes in Computational Science and Engineering, pages 195–219.
Springer International Publishing, 2014.

29. Christoph Kowitz and Markus Hegland. The sparse grid combination technique for computing
eigenvalues in linear gyrokinetics. Procedia Computer Science, 18(0):449 – 458, 2013. 2013
International Conference on Computational Science.

30. M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of
blocked algorithms. SIGPLAN Not., 26(4):63–74, 1991.

31. A. Maheshwari and N. Zeh. A survey of techniques for designing I/O-efficient algorithms. In
Ulrich Meyer, Peter Sanders, and Jop Sibeyn, editors, Algorithms for Memory Hierarchies,
volume 2625 of Lecture Notes in Computer Science, pages 36–61. Springer Berlin Heidelberg,
2003.

32. A. Murarasu, J. Weidendorfer, G. Buse, D. Butnaru, and D. Pflüger. Compact data structure and
scalable algorithms for the sparse grid technique. In Proceedings of the 16th ACM symposium
on Principles and practice of parallel programming, PPoPP, pages 25–34. ACM, 2011.

33. A. F. Murarasu, G. Buse, D. Pflüger, J. Weidendorfer, and A. Bode. fastsg: A fast routines
library for sparse grids. Procedia CS, 9:354–363, 2012.

34. C. Pflaum. Convergence of the combination technique for second-order elliptic differential
equations. SIAM Journal on Numerical Analysis, 34(6):2431–2455, 1997.

35. C. Pflaum and A. Zhou. Error analysis of the combination technique. Numerische Mathematik,
84(2):327–350, 1999.

30 Philipp Hupp and Riko Jacob

36. D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. PhD thesis,
Institut für Informatik, Technische Universität München, 2010.

37. D. Pflüger, H.-J. Bungartz, M. Griebel, F. Jenko, T. Dannert, M. Heene, A. Parra Hinojosa,
C. Kowitz, and P. Zaspel. Exahd: An exa-scalable two-level sparse grid approach for higher-
dimensional problems in plasma physics and beyond. In Euro-Par 2014: Parallel Processing
Workshops, volume 8806 of Lecture Notes in Computer Science, pages 565–576. Springer-
Verlag, 2014.

38. Harald Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute of
Technology, 1999.

39. Christoph Reisinger. Analysis of linear difference schemes in the sparse grid combination
technique. IMA Journal of Numerical Analysis, 33(2):544–581, 2013.

40. S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Mathematics, Doklady, 4:240–243, 1963.

41. C. Zenger. Sparse grids. In Parallel Algorithms for Partial Differential Equations, volume 31
of Notes on Numerical Fluid Mechanics, pages 241–251. Vieweg, 1991.

	A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm
	Philipp Hupp and Riko Jacob
	Introduction
	Related Work
	Sparse Grid Definitions and the Unidirectional Hierarchization Algorithm
	Divide and Conquer Hierarchization
	Correctness
	Complexity Analysis
	Hybrid Algorithms
	Parallelization

	Experimental Evaluation
	Setup and systems
	Compared Algorithms
	Parameter Study and Heuristics
	Strong Scaling
	Anisotropic Grids
	Speedup over Unidirectional ICCS Code
	Increase Grid Size
	GENE

	Conclusions
	References

