Deterministie

Randomized Min

Outlook 000

Fragile Complexity of Comparison-Based Algorithms

Würzburg, Informatik-Kolloquium, Sept. 26, 2019 Best Paper Track A ESA 2019

Riko Jacob IT University of Copenhagen, DK

Joint work with

Peyamn Afshani, Rolf Fagerberg, David Hammer, Irina Kostitsyna, Ulrich Meyer, Manuel Penschuck, Nodari Sitchinava

Deterministic

Randomized Min

Outlook 000

Setup

Deterministic

Randomized Min

Deterministic

Randomized Min

Outlook 000

Destructive Comparisons

• sports competition

Deterministic

Randomized Min

Outlook 000

Destructive Comparisons

- sports competition
- comparing beers

Randomized Min

Outlook 000

Fragile Complexity

Algorithm

• Comparison Based (sorting, minimum, median/selection)

Fragile Complexity

- f(n) maximal number of comparisons any single element participates in
- $f_m(n)$ number of comparisons the minimum/selected element participates in
- $f_{rem}(n)$ like f(n), bound for any element
 - w(n) work, total number of comparisons

Observe: All of them between 1 and n-1

Deterministi 00 Randomized Min

Outlook 000

Questions

Sorting

Deterministi 00 Randomized Min

Outlook 000

Questions

Sorting

• Deterministic: AKS sorting networks

Deterministi 00 Randomized Min

Outlook 000

Questions

Sorting

- Deterministic: AKS sorting networks
- Randomized merge sort

Deterministi 00 Randomized Min

Outlook 000

Questions

Sorting

- Deterministic: AKS sorting networks
- Randomized merge sort

Minimum Protect the winner!

Deterministi 00 Randomized Min

Outlook 000

Considered Variants

Deterministic

Randomized

- The reported result is always correct (Las Vegas)
- expected value E[f_m(n)]
- $E[f_{rem}(n)]$ (expectation of max, **NOT** max of expectation)

Determinist 00 Randomized Min

Outlook 000

Overview Results

Problem		Upper		Lower
		<i>f</i> (<i>n</i>)	w(n)	f(n)
MINIMUM	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
WIINIMUM	Rand.	$\left< \mathcal{O}(1)^{\dagger}, n^{arepsilon} ight>$		
		$\langle \mathcal{O}(\log_{\Delta} n)^{\dagger}, \mathcal{O}(\Delta + \log_{\Delta} n)^{\dagger} \rangle$	$\mathcal{O}(n)$	$\langle \Omega(\log_\Delta n)^\dagger, \Delta angle$
		$egin{aligned} &\langle O(\log_\Delta n \log\log\Delta),\ O(\Delta + \log_\Delta n \log\log\Delta) angle^{\ddagger} \end{aligned}$	$\mathcal{O}(n)$	$\Omega(\log \log n)^{\ddagger}$
SELECTION	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
	Rand.	$ \left\langle \mathcal{O}(\log \log n)^{\dagger}, \mathcal{O}(\sqrt{n})^{\dagger} \right\rangle \\ \left\langle \mathcal{O}\left(\frac{\log n}{\log \log n}\right)^{\dagger}, \mathcal{O}(\log^2 n)^{\dagger} \right\rangle $	$\mathcal{O}(n)^{\dagger}$	$\left< \Omega(\log_\Delta n)^\dagger, \Delta \right>$

f(n) – fragile complexity; w(n) – work; $\langle f_m(n), f_{rem}(n) \rangle$ – fragile complexity for the selected element (minimum/median) and the remaining elements, respectively; † – holds in expectation, ‡ – holds with high probability.

Deterministic

Randomized Min

Outlook 000

Deterministic Minimum

 $\Theta(\log n)$ fragile complexity (for the min)

- Balanced Tournament Tree
- Adversary

Deterministic

Randomized Min

Outlook 000

Overview Results

Problem		Upper		Lower
		<i>f</i> (<i>n</i>)	w(n)	f(n)
MINIMUM	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
MINIMUM	Rand.	$\left< \mathcal{O}(1)^\dagger, n^arepsilon ight>$		
		$\langle \mathcal{O}(\log_{\Delta} n)^{\dagger}, \mathcal{O}(\Delta + \log_{\Delta} n)^{\dagger} \rangle$	$\mathcal{O}(n)$	$\langle \Omega(\log_\Delta n)^\dagger,\Delta angle$
		$egin{aligned} &\langle O(\log_\Delta n \log\log\Delta),\ &O(\Delta+\log_\Delta n \log\log\Delta) angle^{\ddagger} \end{aligned}$	$\mathcal{O}(n)$	$\Omega(\log \log n)^{\ddagger}$
SELECTION	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
	Rand.	$ \left\langle \mathcal{O}(\log \log n)^{\dagger}, \mathcal{O}(\sqrt{n})^{\dagger} \right\rangle \\ \left\langle \mathcal{O}\left(\frac{\log n}{\log \log n}\right)^{\dagger}, \mathcal{O}(\log^2 n)^{\dagger} \right\rangle $	$\mathcal{O}(n)^{\dagger}$	$\left< \Omega(\log_\Delta n)^\dagger, \Delta \right>$
		$\left\langle \mathcal{O}\left(\frac{\log n}{\log \log n}\right), \mathcal{O}(\log^2 n)^{\dagger} \right\rangle$		

f(n) – fragile complexity; w(n) – work; $\langle f_m(n), f_{rem}(n) \rangle$ – fragile complexity for the selected element (minimum/median) and the remaining elements, respectively; † – holds in expectation, ‡ – holds with high probability.

Determinist 00 Outlook 000

Overview Results

Problem		Upper		Lower
		f(n)	w(n)	f(n)
MINIMUM	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
MINIMUM	Rand.	$\left< \mathcal{O}(1)^\dagger, n^arepsilon ight>$		
		$\left\langle \mathcal{O}(\log_\Delta n)^\dagger, \mathcal{O}(\Delta + \log_\Delta n)^\dagger \right\rangle$	$\mathcal{O}(n)$	$\langle \Omega(\log_\Delta n)^\dagger, \Delta angle$
		$egin{aligned} &\langle O(\log_\Delta n \log\log\Delta),\ &O(\Delta + \log_\Delta n \log\log\Delta) angle^{\ddagger} \end{aligned}$	$\mathcal{O}(n)$	$\Omega(\log \log n)^{\ddagger}$
SELECTION	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
	Rand.	$ \left\langle \mathcal{O}(\log \log n)^{\dagger}, \mathcal{O}(\sqrt{n})^{\dagger} \right\rangle \\ \left\langle \mathcal{O}\left(\frac{\log n}{\log \log n}\right)^{\dagger}, \mathcal{O}(\log^2 n)^{\dagger} \right\rangle $	$\mathcal{O}(n)^{\dagger}$	$\left< \Omega(\log_\Delta n)^\dagger, \Delta \right>$
		$\left\langle O\left(\frac{\log n}{\log \log n}\right), O(\log^2 n) \right\rangle$		

f(n) – fragile complexity; w(n) – work; $\langle f_m(n), f_{rem}(n) \rangle$ – fragile complexity for the selected element (minimum/median) and the remaining elements, respectively; † – holds in expectation, ‡ – holds with high probability.

Deterministi 00 Randomized Min

Outlook 000

Simple Sampling Algorithm

Algorithm to compute rank 1 and 2 elements

- Sample elements independently p = 1/2: Q (non-sampled O)
- Recursively find m_Q (rank 1) and s_Q (rank 2) elements in Q
- Filter O with s_Q : $O' = \{x \in O \mid x < s_Q\}$
- Find two smallest m_O, s_O elements of O' (directly)
- Comparison of m_Q and m_O , and s identifies output

Analysis

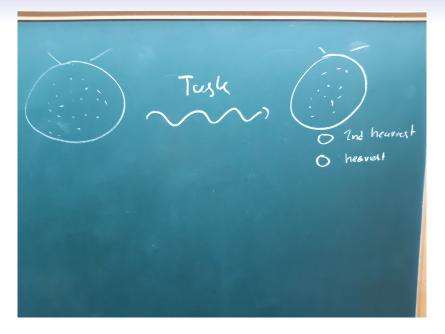
•
$$E[|O'|] = \sum_{i} 1/2^{i} = O(1)$$

•
$$f_m(n) = |O'| + \sum_i 1/2^i = O(1)$$

Tight Analysis

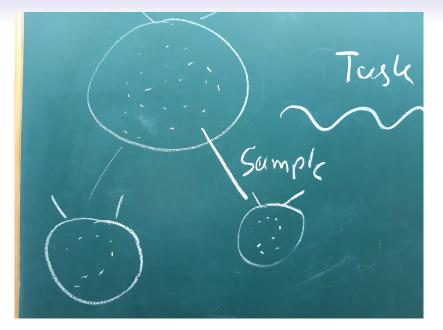
- $E[f(n)] = \Theta(n)$
- $\Pr[f_m(n) > .5 \log n] = \Omega(n^{-.5})$

Deterministic

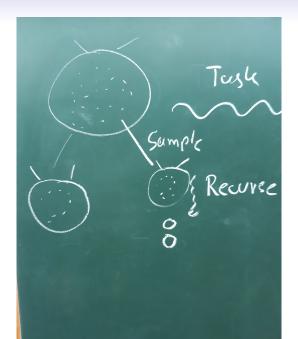

Randomized Min

- Same size

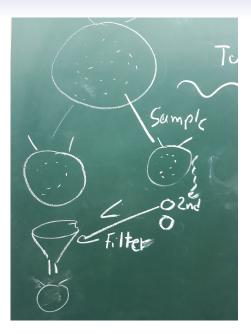
- Comparison Colacing on scales) damages - heaviest?


Deterministic

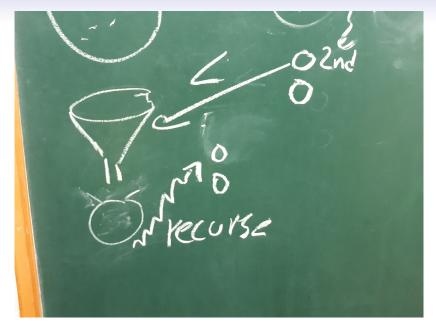
Randomized Min


Deterministic

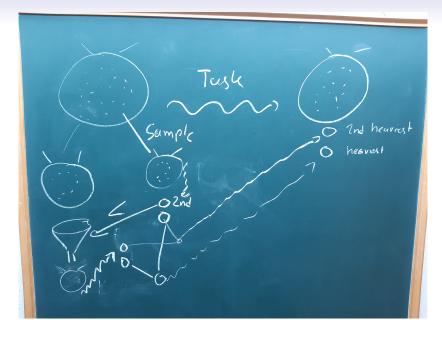
Randomized Min


Deterministic

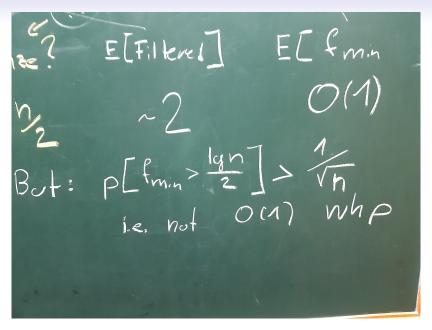
Randomized Min

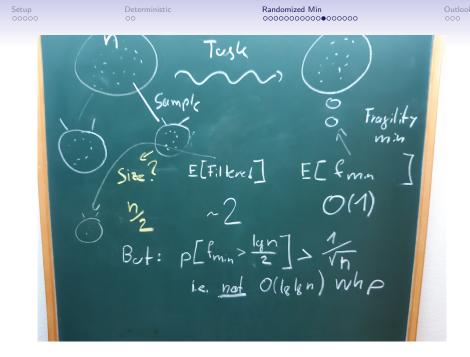

Deterministic

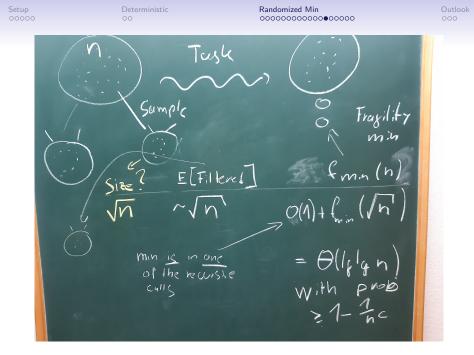
Randomized Min



Deterministic


Deterministic




Deterministic

1 ray 11 ECEmin E[Filterel] ~7 times sampled + log (Filtered) Ħ $\frac{1}{2i} + O(1)$ $E[P_{m:n}] = \sum$

Deterministi 00

Deterministie

Randomized Min

C Fragility Sumple Imin = I h E[fmin] Algorithm (Sample SWi) log h 01 V1/2 O(lelen Ollalyn Alternate (lglgn O(1

Randomized Min

Outlook 000

Saving the Other Elements

Fragile complexity of the second smallest

The second smallest sampled element is in $\Omega(n)$ comparisons

Algorithm with $f(n) \leq \Delta$

- Randomly Partition into Δ sets S_i of size n/Δ
- solve S_i recursively, leading to $M = \{m_1, \ldots, m_\Delta\}$
- Find min(*M*) using the above algorithm

Analysis

- $E[f_m(n)] = O(\log_{\Delta} n) O(1)$ per recursion
- $f(n) \leq \Delta$ "other element" only once

Deterministi 00 Randomized Min

Outlook 000

Examples for Δ

$$\begin{split} f_{rem}(n) &\leq \Delta = n^{-d} \\ E[f_m(n)] &= \mathcal{O}(\log_{\Delta}(n)) = \mathcal{O}(1), \text{ still optimal} \\ \Delta &= \log n / \log \log n \\ E[f_m(n)] &= \mathcal{O}(\log_{\Delta} n) \leq_{a.e.} f_{rem}(n) \leq \Delta, \text{ everybody } \omega(\log n) \end{split}$$

Determinist 00 Randomized Min

Outlook 000

Overview Results

Problem		Upper		Lower
		f(n)	w(n)	f(n)
MINIMUM	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
MINIMUM	Rand.	$\left< \mathcal{O}(1)^\dagger, n^arepsilon ight>$		
		$\left\langle \mathcal{O}(\log_\Delta n)^\dagger, \mathcal{O}(\Delta + \log_\Delta n)^\dagger \right\rangle$	$\mathcal{O}(n)$	$\langle \Omega(\log_\Delta n)^\dagger, \Delta angle$
		$egin{aligned} &\langle O(\log_\Delta n \log\log\Delta),\ &O(\Delta + \log_\Delta n \log\log\Delta) angle^{\ddagger} \end{aligned}$	$\mathcal{O}(n)$	$\Omega(\log \log n)^{\ddagger}$
SELECTION	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
	Rand.	$ \left\langle \mathcal{O}(\log \log n)^{\dagger}, \mathcal{O}(\sqrt{n})^{\dagger} \right\rangle \\ \left\langle \mathcal{O}\left(\frac{\log n}{\log \log n}\right)^{\dagger}, \mathcal{O}(\log^2 n)^{\dagger} \right\rangle $	$\mathcal{O}(n)^{\dagger}$	$\left< \Omega(\log_\Delta n)^\dagger, \Delta \right>$

f(n) – fragile complexity; w(n) – work; $\langle f_m(n), f_{rem}(n) \rangle$ – fragile complexity for the selected element (minimum/median) and the remaining elements, respectively; † – holds in expectation, ‡ – holds with high probability.

Deterministie

Randomized Min

Outlook 000

Lower Bound in this Trade-off

Given Δ $f_m(n) = \Omega(\log_{\Delta} n)$ (matching the algorithm)

Main Lemma

. . .

Minimum Element must be compared to a value in $(\frac{1}{100\Delta}, 1)$ with constant probability because indistinguishable from large value on first comparison ... in $(\frac{1}{(100\Delta)^2}, \frac{1}{100\Delta})$ with constant probability ... in $(\frac{1}{(100\Delta)^3}, \frac{1}{(100\Delta)^2})$ with constant probability

Linearity of expectation!

Determinist 00 Randomized Min

Outlook •00

Overview Results

Problem		Upper		Lower
FIUDIEIII		<i>f</i> (<i>n</i>)	w(n)	f(n)
MINIMUM	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
WIINIMOM	Rand.	$\left< \mathcal{O}(1)^\dagger, n^arepsilon ight>$		
		$\left\langle \mathcal{O}(\log_{\Delta} n)^{\dagger}, \mathcal{O}(\Delta + \log_{\Delta} n)^{\dagger} \right\rangle$	$\mathcal{O}(n)$	$\langle \Omega(\log_\Delta n)^\dagger,\Delta angle$
		$egin{aligned} &\langle O(\log_\Delta n \log\log\Delta),\ O(\Delta + \log_\Delta n \log\log\Delta) angle^{\ddagger} \end{aligned}$	$\mathcal{O}(n)$	$\Omega(\log\log n)^{\ddagger}$
Selection	Determ.	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\Omega(\log n)$
	Rand.	$ \left\langle \mathcal{O}(\log \log n)^{\dagger}, \mathcal{O}(\sqrt{n})^{\dagger} \right\rangle \\ \left\langle \mathcal{O}\left(\frac{\log n}{\log \log n}\right)^{\dagger}, \mathcal{O}(\log^2 n)^{\dagger} \right\rangle $	$\mathcal{O}(n)^{\dagger}$	$\left< \Omega(\log_\Delta n)^\dagger, \Delta \right>$
		$\left\langle \mathcal{O}\left(\frac{\log n}{\log\log n}\right), \mathcal{O}(\log^2 n)^{\dagger} \right\rangle$		

f(n) – fragile complexity; w(n) – work; $\langle f_m(n), f_{rem}(n) \rangle$ – fragile complexity for the selected element (minimum/median) and the remaining elements, respectively; † – holds in expectation, ‡ – holds with high probability.

Determinist 00 Randomized Min

Outlook 000

Further Results

Randomized Median / Selection

So far more complicated algorithms, almost similar bounds: Fragile complexity of median is like the minimum, the other elements somewhat worse Lower Bounds inherited from minimum by padding.

Merge Sort

Randomized Merge sort achieves fragile complexity of $O(\log n)$

Randomized Min

Outlook 000

Future Work and Open Questions

- Geometric Problems: Predicates (or something else?)
- Simple deterministic solution for sorting?
- Simpler and improved Median Algorithms!
- Data Oblivious Algorithms?
- Other comparison based problems?