
The Impact of Continuous Code Quality
Assessment on Defects

Rolf-Helge Pfeiffer
IT University of Copenhagen

Copenhagen, Denmark
ropf@itu.dk

Abstract—Continuous Code Quality Assessment (CCQA) tools
promise that increasing code quality leads to fewer defects, i.e.,
that software quality from the user view can be increased by
increasing quality of the product. Currently, there is limited
evidence on that application of CCQA tools, such as, SonarCloud
(SC), during software development actually reduces the amount
of defects over time. In this paper we study five open-source
projects that adopt SonarCloud (SC) for CCQA and we compare
frequencies of defect reports before and after adoption of SC. For
only one project (Apache Ratis), we find a statistically significant
decrease of defects after adoption of the tool. After closer
investigation we find, that this decrease is likely just a coincidence
and not caused by the adoption of SC and adherence to its code
quality recommendations. In general, we find no evidence for
that application of a CCQA tool increases product quality.

I. INTRODUCTION

Delivering high-quality software is usually the goal of
organizations and stakeholders that are involved in software
development. For example, the Apache Software Foundation
(ASF) has the declared goal “to create high quality software
that leads the way in its field”1, practitioners strive to identify
ways of ensuring software quality [1], and managers show an
increasing interest in improvement of software quality [2].

However, creating quality software is not easy and there are
many aspects to consider. Previous studies demonstrate the
impact of various aspects on software quality. For example,
organizational aspects, such as, organizational structure [3],
code ownership [4], or adherence to processes [5], [6] impact
defect rates. Socio-technical aspects, such as, code review
coverage and code review participation [7], applied branching
strategies during development [8], or deployment schedules,
hardware configurations, and software platforms [9] impact
defect rates, requests for assistance, or user-perceived quality.
Technical aspects, such as, size of software [10] or the
application of certain design patterns [11] impact defects or
customer perceived software quality.

To make things more complicated, there is not one kind
of software quality but multiple perspectives on it [12].
Kitchenham et al. [12] describe five perspectives on software
quality. The two perspectives that are relevant in this paper
are the “user view [that] sees quality as fitness for purpose”
and the “product view [that] sees quality as tied to inherent
characteristics of the product”.

Recently, CCQA tools like SonarQube (SQ) promise to
increase software quality from the user view by increasing

quality in the product view [13]. That is, it is promised that
increasing code quality (product view) will result in fewer
defects (user view). Practitioners apply such tools under the
same assumption2,3. However, it is unclear to which degree
application of CCQA tools during development actually im-
pacts the amount of reported defects over time. Previous work
on static analysis tools, such as, FindBugs for Java [14], [15]
suggest that such tools are potentially suitable to decrease
defects. But other studies that actually link the product view
(code quality) with user view (defect rates) show either no
impact of such tools [16] or they argue for their limited
suitability since “at least 45 percent of all defects [are]
undetectable using code analysis” [17].

The goal of this paper is to investigate empirically the
research question (RQ): Does the application of a CCQA tool
(SC) in five open-source projects actually reduce the number
of defects that are reported for software products? We present
initial results (Sec. IV) for the five ASF projects Daffodil, Groovy,
Hadoop Ozone, Karaf, and Ratis, which recently adopt SC.

Only for two projects (Hadoop Ozone and Ratis) we find a
decrease of the number of reported defects from the year
before introduction of SC to the year after. Only for Ratis this
decrease is statistically significant.

A closer inspection of the SC quality issues that Ratis

developers rectify together with associated tickets and commits
suggests, that the statistically significant decrease of defects is
not due to application of CCQA but due to an unknown factor.
Generally, our results do not provide evidence for that adoption
of the CCQA tool SC leads to increased software quality from
the user’s view (Sec. VI).

The main contribution of this paper is the –to a large degree
automated– empirical case study of the impact of SC to defect
rates in five ASF projects. A reproduction kit with all code and
data is available online4.

II. BACKGROUND

Terminology: In this paper, defects are software failures that
are experienced and reported either by end-users or by other
developers. Developers can be users too, e.g., in case of
libraries, programming languages, etc. Therefore, we consider
all tickets in a project’s issue tracker that are labeled as bug
to be defects.

SonarQube (SQ) is a Continuous Code Quality Assessment
(CCQA) tool, a kind of automatic static analysis (ASA) tool



that is applied continuously to a software repository. Sonar-
Cloud (SC) is an SQ instance that is hosted in the “cloud”.
The Apache Infrastructure team operated a SQ instance5 for
all ASF projects until mid-2019. That SQ instance is now
deactivated and ASF projects switched to SC. SC assesses
quality issues in the categories code smell, vulnerability, and
bug. SC defines a bug as “An issue that represents something
wrong in the code. If this has not broken yet, it will, and
probably at the worst possible moment. This needs to be fixed.
Yesterday.”6 In the remainder, we call these SC-bugs. SC-
bugs are not defects. Instead, they are patterns in code that
match certain static code analysis rules which are aggregated
under a label bug7. These rules are configurable, since de-
velopers may disagree if matching instances in code actually
constitute a problem. Code smells in SC are considered to be
maintainability-related issues in the code, which are expected
to increase maintenance effort and potentially provoke errors.
Vulnerabilities are security-related issues that open backdoors
for attackers.

In the remainder, we refer to issues in an issue tracker
as tickets and we call the issues that SC reports (bugs,
vulnerabilities, and code smells) quality issues.
Related Work: Prior work presents inconsistent results re-
garding the impact of application of ASA tools to defects. For
example, Wagner et al. [16] apply FindBugs and PMD in two
industrial case studies. They demonstrate that the tools cannot
detect field defects that are stored in an issue tracker. Also
Cuoto et al. [18] do not find a correspondence between ASA
issues and field defects when applying FindBugs to Rhino, the
AspectJ compiler, Lucene, and 30 other ASF projects. However,
they find a moderate correlation between ASA issues and
defects, i.e., projects with more static analysis issues have
usually more defects. Contrary, Plösch et al. [19] who apply
PMD and FindBugs to the sources of the Eclipse SDK, report
statistically significant correlations between ASA issues and
defects from issue trackers. Boogerd et al. [20] report mixed
results from an industrial case study where they investigate
the impact of the MISRA C coding standard via the QA-C

tool. They find that a small subset of static analysis rules can
predict fault locations but they also find that application of the
default ASA ruleset may actually increase defect probability.
Similarly, Zheng et al. [15] find that the number of ASA issues
can indicate fault-prone modules. However, their results do not
allow to confirm a positive impact of application of ASA tools
to increased product quality from the user perspective. Finally,
Lauesen et al. [17] report that at least 45% of all defects are
undetectable with ASA tools, since these defects are connected
to requirements that are un- or wrongly-specified. The authors
state that the case company can only find less than 10% of
reported defects with the help of ASA tools.

Others study the impact of ASA tools on pre-release defects,
i.e., defects that are revealed during testing (product view).
For example, when applying proprietary ASA tools during
development of Windows Server 2003, Nagappan et al. [21]
find a correlation between the amount of ASA issues of
components and the number of pre-release defects that are

identified via testing. When applying FindBugs to multiple
hundreds of academic Java projects Vetro et al. [22], find that
a small subset of the ASA rules can predict pre-release defects.

Only Digkas et al. [23] study how developers address quality
issues from SC in 57 ASF projects. However, they do not study
the impact of this remediation work to defects.

Since we cannot identify studies that assess the impact of
CCQA tools, such as, SC, to defects, we conduct this study
to extend the prior body of knowledge.

III. METHOD

In this section we describe how we select suitable software
projects and how we assess the impact of CCQA on quality
from the user perspective.

Many ASF projects apply SC for CCQA. A list of these
projects is available online.8 From this list, we select all those
projects that: a) are neither incubator nor retired projects, b)
for which at least one SC code quality assessment is available,
c) that have exactly one SC assessment dashboard, and d) that
use either Apache’s Jira or Bugzilla9 as issue trackers.

SC assessments are usually conducted on Git repositories.
With criterion c), we exclude projects from our study that
organize their sources in more than one repository. For exam-
ple, the REST framework Sling10 organizes its more than 300
components in separate repositories11, which leads to more
than 300 assessment dashboards on SC. That hinders direct
comparison of issue tracker data (one issue tracker per project)
and quality assessment data.

From the 455 projects that are listed on SC (Jun. 1st 2021),
20 fulfill the four criteria above. We retain only those projects,
which do not apply SQ prior to SC, since quality assessments
from ASF’s previous SQ instance are not accessible anymore
for our study. Commit messages that match the regular expres-
sion [Ss]onar with a commit date more than a month before
the first SC assessment are considered a sign prior use of SQ.

The following five projects (alphabetical order) fulfill all
criteria above and adopt CCQA first with SC 12:

Daffodil is an implementation of the Data Format Description
Language (DFDL) [24], which converts fixed format data
to, e.g., XML or JSON. It is mainly written in Scala with
ca. 161KLOC.13

Groovy is a dynamic and optionally typed JVM language. It is
mainly written in Groovy and Java and ca. 444KLOC in
size.

Hadoop Ozone is a distributed object store for Hadoop, with ca.
356KLOC of mainly Java.

Karaf is an application container and runtime, with ca.
182KLOC of mainly Java.

Ratis is a ca. 63KLOC (mainly Java) implementation of the
Raft consensus algorithm [25].

For these five projects, we clone the respective Github
repositories14 and export all tickets labeled as bug, i.e. defects,
from the respective issue trackers15. From that data, we com-
pute the weekly defect creation rates (WDCRs) per project.
WDCRs, are the number of newly created defect reports per
week in the respective issue tracker.



Figure 1: Weekly defect creation rates per project over time. Orange lines indicate introduction of SonarCloud.

Per project, we automatically scrape quality assessments
including timestamps and frequencies of quality issues from
SC. From that data, we determine the SC adoption date as
the date of the first accessible quality assessment. Based on
adoption dates, we compute statistics over the WDCRs per
project in the year before and after SC adoption. We compute
arithmetic means –with corresponding standard deviations
(σ)– of WDCRs in the year before (µb) and after (µa) adoption
of SC. For the same periods we compute the medians of
WDCRs (x̃b and x̃a respectively), see Tab. I.

Since CCQA tools promise to improve software quality
(user view) by increasing code quality (product view), see
Sec. I, we hypothesize that introduction of a CCQA tool and
work on code quality improvement will reduce the amount of
defect reports over time. We compute the Kruskal-Wallis H-
test [26]16 (with significance level of 5%) on WDCRs with
the null hypothesis that medians of WDCRs are equal in the
two consecutive years before and after adoption of SC and the
alternative hypothesis that these medians diverge. We choose
this test since it does not assume a certain distribution in the
underlying data.

We generate statistics over tickets to understand how de-
velopers work with SC and how they address the reported
quality issues. Per project, we count the number of tickets in
the issue trackers that mention the terms sonar, smell, bug,
or vulnerability via a corresponding regular expression over
ticket descriptions.

Semi-automatically, we examine commits, tickets, and qual-
ity issues for projects with decreasing WDCRs and for which
the Kruskal-Wallis H-test yields statistically significant results.
The purpose is to understand if the rectified SC quality issues
can explain the decrease in reported defects, i.e., the increase
in quality from user perspective. The following results are
based on data that is collected and interpreted on the Jun.
14th 2021, the reference date.

Table I: Descriptive statistics of weekly defect creation rates.

µb µa x̃b x̃a H p

Daffodil 3.0 σ : 1.8 2.6 σ : 1.9 2 2 → 2.26 0.13
Groovy 4.5 σ : 3.0 6.1 σ : 2.7 4 5 ↑ 9.43 0.002
Hadoop Ozone 15.1 σ : 8.1 12.3 σ : 5.8 15 12 ↓ 2.88 0.09
Karaf 2.6 σ : 1.3 2.8 σ : 1.5 2 2 → 0.23 0.63
Ratis 4.0 σ : 2.8 2.2 σ : 1.4 3 2 ↓ 15.42 8.5× 10-5

IV. RESULTS

Fig. 1 illustrates the development of weekly defect creation
rates (WDCRs) for the five projects (blue lines). Orange lines
indicate the SC adoption dates, see Tab. II (SC Adopt. Date).

Per project, Tab. I lists the arithmetic means (µb and µa)
with standard deviations (σ), medians (x̃b and x̃a), and the
Kruskal-Wallis H statistic (H) with corresponding p-values (p)
for the WDCRs for the years before and after adoption of SC.
Arrows symbolize in-/decreasing or unchanged median values
of both periods. Bold arrows indicate statistically significant
changes with p-values below 0.05.

Only for Hadoop Ozone and Ratis the median of WDCRs
decrease from the year before adoption of SC to the year
after. For the other three projects, they either increase (Groovy)
or remain unchanged (Daffodil and Karaf). We reject the null
hypothesis of equal medians WDCRs only for Ratis and Groovy.
Both possess p-values smaller than 0.05 (8.5× 10-5 and 0.002
respectively). For the remaining three projects we do not
reject the null hypothesis, i.e., WDCRs do not change in a
statistically significant way.

Tab. II lists statistics over SC related tickets. The first
block lists the SC adoption dates and the second block lists
the number of tickets in Jira that mention the terms sonar,
smell, bug, or vulnerability respectively (#x Tickets), how
many of these are resolved at the reference date (#x Tickets
Resolved), and how many tickets are created since adoption
of SC (#Tickets since Adopt.).

Obviously, the amount of SC related tickets is low for Daffodil,
Groovy, and Karaf (Tab. II). Manual inspection of these tickets
reveals that they are either about set-up and configuration of
SC or false-positives, e.g., code examples like toJSONArray

that match our case-insensitive regular expression (sonar).

Table II: Statistics over SC related tickets and commits.

Daffodil Groovy H. Ozone Karaf Ratis

SC Adopt. Date 02/27/20 03/22/20 11/14/19 10/05/20 05/28/20

#SC Tickets 4 4 119 2 20
#SC Tickets Resolved 3 4 96 2 12
#Smell Tickets 0 1 5 0 3
#Smell Tickets Resolved 0 0 3 0 0
#Bug Tickets 31 65 129 15 23
#Bug Tickets Resolved 17 34 101 11 17
#Vuln. Tickets 0 3 1 0 3
#Vuln. Tickets Resolved 0 2 1 0 2
#Tickets since Adopt. 247 660 2842 304 433



Deeper Analysis: Given the relatively high numbers of SC
related tickets, it seems that only Hadoop Ozone and Ratis devel-
opers are actively addressing the quality issues reported by
SC. Since only Ratis shows a statistically significant decrease
in WDCR, we focus our following detailed analysis only on it.
Due to constrained space, all mentioned tickets and commits
are linked in our protocol online.17

For Ratis, we manually inspect all tickets from Tab. II. We
find, that the 20 SC related tickets (#SC Tickets) are all about
SC, i.e., no false-positives. Five of these (R940, R948, R1306,
R1311, and R1314), are about setup and configuration of SC
and the remaining 15 are about SC quality issues, mainly SC-
bugs (9). Our manual inspection reveals four new tickets that
do not match any of the search terms from Sec. III. These
are sub-tasks of R1054 that describe four different SC-bugs.
The three tickets that mention code smells (#Smell Tickets:
R955, R956, R1314) also mention the term sonar, i.e., they are
included in the 20 tickets above. Two of the three tickets that
mention the term vulnerability mention also the term sonar

(R953, R954). Ticket R1342, is newly identified. It is not
about a SC quality issue but about updating a dependency
due to a detected vulnerability. Of the 23 tickets that mention
a bug (#Bug Tickets), nine also mention the term sonar. Of
the remaining, 13 describe defects, i.e., faults or unintended
behavior, not SC-bugs. Ticket R1232 is a false-positive, an
improvement that describes adjustment of debug levels.

After deduplication of these tickets and after adding the
manually identified sub-tasks of R1054, we identify in total
24 tickets from Ratis that are either about configuration of
SC or about quality issues. Twelve of these are resolved and
describe rectification of quality issues. We identify 11 commits
that link via a ticket identifier in a commit message to these
12 tickets. These 11 commits rectify 105 SC quality issues.
The majority of rectified SC quality issues (ca. 75%) are in
exception handling, e.g., in 40 cases handling of Throwable

objects18 is rectified, and in 39 cases handling of interrupted
threads19 is rectified.

To understand if the rectified quality issues cause the
decrease of WDCRs, we automatically identify all commits
from the year before SC adoption that apply a change similar
to the commits that rectify the 79 SC quality issues. In the year
before SC adoption, there are no defects that are resolved via
commits that correct exception handling of Throwable objects
or incorrect handling of interrupted threads.
Discussion: Based on the results presented above, we do
not believe that the rectified quality issues are the cause for
decreasing WDCR in Ratis. There are no defects in the year
before SC adoption that are caused by a corresponding quality
issue. To substantiate our belief, we ask the Ratis developers via
their mailing list on their opinion on the effect of adoption of
SC to WDCRs or if they are aware of alternative explanations
for decreasing WDCRs. Unfortunately, we did not receive
feedback on our questions yet.

It seems as if only Hadoop Ozone and Ratis developers work
actively with SC and the reported quality issues. For the other
three systems, it seems as if developers just enable SC but

do not really take its quality reports into consideration (see
Tab. II), which would be inline with previous results that
indicate that CCQA is not really applied in practice [27]. It
is noteworthy, that Hadoop Ozone and Ratis are the two projects
with decreasing WDCR in the year after SC adoption. The
readiness of the developers of Hadoop Ozone and Ratis (the
youngest projects in our study) to work with SC and the
reported quality issues might indicate that the developers of
these projects are in general more aware about software quality
and thereby produce code that results in fewer defects in the
long run.

V. THREATS TO VALIDITY

For calculation of statistics of development of WDCR
(Fig. 1 and Tab. I), we rely on that tickets are correctly labeled
as bugs in the issue trackers. We believe that this problem
is negligible, since the amount of defects per project is quite
large (Daffodil: 1403, Groovy: 6571, Hadoop Ozone: 2055, Karaf: 3104,
Ratis: 533). Consequently, we believe that a certain amount of
wrongly labeled tickets do not affect the trends in the data.

We identify SC related tickets (Tab. II) via case-insensitive
regular expressions for the terms sonar, code smell,
vulnerabilit[iy], or bug. Based on these we identify corre-
sponding commits via ticket identifiers in commit messages.
Thereby, we likely do not identify all relevant tickets and
commits. That is, all presented values represent lower bounds.
Via our manual inspection (Sec. IV), we identify relevant
tickets (20%) that are linked as sub-/super-tasks to any of the
automatically identified ones. Additionally, we contact the Ratis

developers via their email list on Jun. 15th 2021. We ask if
there are relevant tickets and commits that we should have
included in our study. Unfortunately, we do not receive their
reply prior to the paper deadline.

For Karaf, our data covers only ca. nine months of data –
instead of a year– (Tab. II). That might impact our results and it
may explain why there are only two tickets (#SC Tickets) that
explicitly mention sonar. However, we decide to include Karaf

in our study since it fulfills all selection criteria, see Sec. III.
In future, we will execute the study again on updated data and
will report diverging results.

Since we conduct our study in a non-lab environment,
we cannot account for possible effects of other ASA tools
that projects may apply. For example, during our manual
investigation, we find that Ratis also relies on FindBugs. In
future, we plan to extend this study to isolate potential effects
of other tools.

We believe that we adequately represent the user view on
software quality via defect reports in issue trackers. Prior work
on ASA [16], [18], [19] does so too.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we study the impact of applying the Continu-
ous Code Quality Assessment tool SonarCloud in five ASF
projects. We compare statistically the numbers of reported
defects (weekly defect creation rates (WDCRs)) in the years
before and after SC adoption. To understand if the decrease

https://issues.apache.org/jira/browse/RATIS-940
https://issues.apache.org/jira/browse/RATIS-948
https://issues.apache.org/jira/browse/RATIS-1306
https://issues.apache.org/jira/browse/RATIS-1311
https://issues.apache.org/jira/browse/RATIS-1314
https://issues.apache.org/jira/browse/RATIS-1054
https://issues.apache.org/jira/browse/RATIS-955
https://issues.apache.org/jira/browse/RATIS-956
https://issues.apache.org/jira/browse/RATIS-1314
https://issues.apache.org/jira/browse/RATIS-953
https://issues.apache.org/jira/browse/RATIS-954
https://issues.apache.org/jira/browse/RATIS-1342
https://issues.apache.org/jira/browse/RATIS-1232
https://issues.apache.org/jira/browse/RATIS-1054


is caused by the developers’ work on SC’s quality issues,
we inspect tickets and commits for the only project with
statistically significant decrease of WDCR (Ratis).

We conclude that adoption of SC in the five studied ASF
projects either does not lead to a decrease of WDCR (Daffodil,
Groovy, Karaf), does not lead to a statistically significant decrease
of WDCR (Hadoop Ozone), or in case of a statistically significant
decrease (Ratis) our thorough inspection of tickets and commits
does not reveal evidence for that the decrease is actually
caused by addressing SC quality issues. Consequently, we
cannot find evidence for that increasing code quality (product
view) leads to an increase of software quality from the user’s
view, as promised by SC [13].

In future, we plan to collect structured feedback from
the developers, especially from Ratis, on their opinions about
impact of SC on software quality. Also, we aim to identify the
underlying reason for Ratis’ decreasing WDCR. Additionally,
we want to study systematically to which degree defects occur
that are identified by any of SC’s static analysis rules and we
plan to extend our thorough investigation to Hadoop Ozone.

REFERENCES

[1] “How to develop high-quality software,” Vector In-
formatik GmbH, Tech. Rep., 05 2020. [Online].
Available: https://www.coderskitchen.com/wp-content/uploads/2020/05/
How-to-Develop-High-Quality-Software CK.pdf

[2] J. Luftman, R. Kempaiah, and E. H. Rigoni, “Key issues for it executives
2008.” MIS Quarterly Executive, vol. 8, no. 3, 2009.

[3] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality,” in 2008 ACM/IEEE 30th International
Conference on Software Engineering. IEEE, 2008, pp. 521–530.

[4] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code! examining the effects of ownership on software quality,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, 2011, pp.
4–14.

[5] J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, and D. Zubrow, “Ben-
efits of cmm-based software process improvement: Initial results,”
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGI-
NEERING INST, Tech. Rep., 1994.

[6] M. Diaz and J. Sligo, “How software process improvement helped
motorola,” IEEE software, vol. 14, no. 5, pp. 75–81, 1997.

[7] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014, pp. 192–
201.

[8] E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching strate-
gies on software quality,” in Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement, 2012,
pp. 301–310.

[9] A. Mockus, P. Zhang, and P. L. Li, “Predictors of customer perceived
software quality,” in Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005. IEEE, 2005, pp. 225–233.

[10] M. Lavallée and P. N. Robillard, “Why good developers write bad
code: An observational case study of the impacts of organizational
factors on software quality,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 677–687.

[11] F. Khomh and Y.-G. Guéhéneuc, “Do design patterns impact software
quality positively?” in 2008 12th European Conference on Software
Maintenance and Reengineering. IEEE, 2008, pp. 274–278.

[12] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target
[special issues section],” IEEE software, vol. 13, no. 1, pp. 12–21, 1996.

[13] G. A. Campbell and P. P. Papapetrou, SonarQube in action. Manning
Publications Co., 2013, ch. 1, p. 4.

[14] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm sigplan notices,
vol. 39, no. 12, pp. 92–106, 2004.

[15] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE transactions on software engineering, vol. 32, no. 4,
pp. 240–253, 2006.

[16] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb,
“An evaluation of two bug pattern tools for java,” in 2008 1st Inter-
national Conference on Software Testing, Verification, and Validation.
IEEE, 2008, pp. 248–257.

[17] S. Lauesen and H. Younessi, “Is software quality visible in the code,”
IEEE software, vol. 15, no. 4, pp. 69–73, 1998.

[18] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static
correspondence and correlation between field defects and warnings
reported by a bug finding tool,” Software Quality Journal, vol. 21, no. 2,
pp. 241–257, 2013.

[19] R. Plosch, H. Gruber, A. Hentschel, G. Pomberger, and S. Schiffer, “On
the relation between external software quality and static code analysis,”
in 2008 32nd Annual IEEE Software Engineering Workshop. IEEE,
2008, pp. 169–174.

[20] C. Boogerd and L. Moonen, “Evaluating the relation between coding
standard violations and faultswithin and across software versions,” in
2009 6th IEEE International Working Conference on Mining Software
Repositories. IEEE, 2009, pp. 41–50.

[21] N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre-
release defect density,” in Proceedings. 27th International Conference
on Software Engineering, 2005. ICSE 2005. IEEE, 2005, pp. 580–586.

[22] A. Vetro, M. Morisio, and M. Torchiano, “An empirical validation
of findbugs issues related to defects,” in 15th Annual Conference on
Evaluation & Assessment in Software Engineering (EASE 2011). IET,
2011, pp. 144–153.

[23] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in
the apache ecosystem?” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018, pp. 153–163.

[24] R. E. McGrath, “Data format description language: Lessons learned,
concepts and experience,” Tech. Rep., 2011.

[25] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[26] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583–621, 1952.

[27] C. Vassallo, F. Palomba, A. Bacchelli, and H. C. Gall, “Continuous
code quality: are we (really) doing that?” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 790–795.

REFERENCED URLS
1https://apache.org/
2https://svenbayer.blog/2015/08/09/maintaining-high-code-quality-with-sonarqube/
3https://www.triology.de/en/blog-entries/statistical-code-analysis-with-sonarqube
4https://github.com/HelgeCPH/ccqa effect study
5https://cwiki.apache.org/confluence/display/INFRA/SonarQube+Analysis
6https://docs.sonarqube.org/latest/user-guide/concepts/
7https://rules.sonarsource.com/java/type/Bug/
8https://sonarcloud.io/organizations/apache/projects
9https://issues.apache.org/jira, https://bz.apache.org/bugzilla

10https://github.com/apache/sling-aggregator
11https://github.com/apache/sling-aggregator/blob/master/docs/modules.md
12https://daffodil.apache.org, https://groovy.apache.org, https://ozone.apache.org,

https://karaf.apache.org, https://ratis.apache.org
13size and languages assessed via the Succinct Code Counter (SCC) tool (version

2.13.0) https://github.com/boyter/scc
14https://github.com/apache/daffodil (d0cb60), https://github.com/apache/groovy

(b3bba1), https://github.com/apache/ozone (d45819), https://github.com/apache/karaf
(394dff), https://github.com/apache/ratis (a73155)

15https://issues.apache.org/jira/projects/DAFFODIL , https://issues.apache.org/
jira/projects/GROOVY , https://issues.apache.org/jira/projects/KARAF , https:
//issues.apache.org/jira/projects/HDDS , https://issues.apache.org/jira/projects/RATIS

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
17https://github.com/HelgeCPH/ccqa effect study/blob/master/notebooks/Analysis.

ipynb
18https://rules.sonarsource.com/java/RSPEC-1181
19https://rules.sonarsource.com/java/RSPEC-2142

https://www.coderskitchen.com/wp-content/uploads/2020/05/How-to-Develop-High-Quality-Software_CK.pdf
https://www.coderskitchen.com/wp-content/uploads/2020/05/How-to-Develop-High-Quality-Software_CK.pdf
https://apache.org/
https://svenbayer.blog/2015/08/09/maintaining-high-code-quality-with-sonarqube/
https://www.triology.de/en/blog-entries/statistical-code-analysis-with-sonarqube
https://github.com/HelgeCPH/ccqa_effect_study
https://cwiki.apache.org/confluence/display/INFRA/SonarQube+Analysis
https://docs.sonarqube.org/latest/user-guide/concepts/
https://rules.sonarsource.com/java/type/Bug/
https://sonarcloud.io/organizations/apache/projects
https://issues.apache.org/jira
https://bz.apache.org/bugzilla
https://github.com/apache/sling-aggregator
https://github.com/apache/sling-aggregator/blob/master/docs/modules.md
https://daffodil.apache.org
https://groovy.apache.org
https://ozone.apache.org
https://karaf.apache.org
https://ratis.apache.org
https://github.com/boyter/scc
https://github.com/apache/daffodil
https://github.com/apache/daffodil/tree/d0cb60d38d7dbbd421470800e192ddc1e5aa5456
https://github.com/apache/groovy
https://github.com/apache/groovy/tree/b3bba1c4190c1ab028c1a9a8fd48399c2788172b
https://github.com/apache/ozone
https://github.com/apache/ozone/tree/d45819f7eb79590ddd445cadb87bd21b8eae336c
https://github.com/apache/karaf
https://github.com/apache/karaf/tree/394dffc65a4ba4d2572d12fef3fa53b049a0914f
https://github.com/apache/ratis
https://github.com/apache/ratis/tree/a7315511bddcc12dc4acea25f2d0d71608a8591c
https://issues.apache.org/jira/projects/DAFFODIL
https://issues.apache.org/jira/projects/GROOVY
https://issues.apache.org/jira/projects/GROOVY
https://issues.apache.org/jira/projects/KARAF
https://issues.apache.org/jira/projects/HDDS
https://issues.apache.org/jira/projects/HDDS
https://issues.apache.org/jira/projects/RATIS
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
https://github.com/HelgeCPH/ccqa_effect_study/blob/master/notebooks/Analysis.ipynb
https://github.com/HelgeCPH/ccqa_effect_study/blob/master/notebooks/Analysis.ipynb
https://rules.sonarsource.com/java/RSPEC-1181
https://rules.sonarsource.com/java/RSPEC-2142

	Introduction
	Background
	Method
	Results
	Threats to Validity
	Conclusions & Future Work
	References

