
DaSEA – A Dataset for Software Ecosystem Analysis
Petya Buchkova

pebu@itu.dk
IT University of
Copenhagen

Copenhagen, Denmark

Joakim Hey
Hinnerskov
jhhi@itu.dk

IT University of
Copenhagen

Copenhagen, Denmark

Kasper Olsen
kols@itu.dk

IT University of
Copenhagen

Copenhagen, Denmark

Rolf-Helge Pfeiffer
ropf@itu.dk

IT University of
Copenhagen

Copenhagen, Denmark

ABSTRACT
Software package managers facilitate reuse and rapid construc-
tion of software systems. Since evermore software is distributed
via package managers, researchers and practitioners require ex-
plicit data of software dependency networks that are opaquely
formed by dependency relations between software packages. To
reason about increasingly complex software products and ecosys-
tems, researchers and practitioners rely either on publicly available
datasets like the seemingly unattended libraries.io [14] or they mine
problem-specific data from software ecosystems repeatedly and
non-transparently. Therefore, we present the DaSEA dataset, which
contains metadata of software packages, their versions, and de-
pendencies from multiple ecosystems (currently six programming
languages and five operating system package managers). Alongside
the dataset, we provide an extensible open-source tool under the
same name that is used to create updated versions of the DaSEA
dataset allowing studies of evolution of software ecosystems.

1 INTRODUCTION
Contemporary development and provision of software relies heav-
ily on software reuse. Software is usually build with the help of
reusable components, which we call packages in this paper. Soft-
ware ecosystems [17] emerge usually around specific package man-
agers (PMs), which download and setup required dependencies
from package registries [22]. For example, Alire1, FPM2, Nimble3, Cargo4,
or vcpkg

5 and Conan
6 are PMs for the Ada, Fortran, Nim, Rust, and the

C/C++ programming languages respectively. Homebrew, Chromebrew, Ports,
or PkgSrc are PMs for operating systems (OSs), likemacOS, ChromeOS,
FreeBSD/OpenBSD, or NetBSD and others.

Nowadays, software reuse via dependency on external packages
is so fundamental to development that some consider it a “crime
to start writing code before you investigate what packages you can
reuse” [22] and software quality models, such as, the SIG/TÜViT
Evaluation Criteria for Trusted Product Maintainability [1] recom-
mend using “libraries and frameworks over ’homegrown’ implemen-
tations of standard functionality” [25]. However, the advantages
of software reuse are attended by drawbacks, such as, security
or legal issues [9, 24]. Practitioners and researchers require data
about dependency networks in ecosystems to build tool support
and to study effects of software reuse. For example, nexB’s ScanCode

or CAST Highlight’s transitive license checker require package de-
pendency information7,8 to check for issues arising from software
reuse. Likely, such products rely on problem-specific collection of
dependency data from various ecosystems. Problem-specific one-
off collection of software dependency data exists in research too,

e.g., [3, 15, 16, 20, 21]. However, this is problematic since it strains
resources and might impair reproducibility.

Research of software ecosystems, see e.g., [2, 5–8, 12, 18, 23,
26, 27], relies heavily on the libraries.io [14] dataset. However, that
dataset has not been updated in more than two-years (researchers
request an updated dataset9 since start 2021), it never followed a
regular release schedule10, it does not appear to be properly main-
tained anymore (issues remain unresolved and unanswered11), it
lacks actual dependency links for some ecosystems (e.g., for Nimble
packages), not in all cases the dataset can be directly traced back
to the information sources (e.g., for Maven12), and importantly, it
cannot be reproduced or updated only with the help of the provided
tool13 and documentation14, see Sec. 2.

Additionally, researchers and practitioners request specifically
dependency data for the C/C++ ecosystem, see e.g. [18]15, for which
currently no public dataset seems to exist. To alleviate the burden
of repeated problem-specific mining of software ecosystem data
and to address the issues with the libraries.io dataset, we create the
DaSEA dataset16 (CC BY-SA 4.0 licensed) to provide dependency
network data for system programming languages and OS package
managers. Alongside the dataset, we provide an extensible tool
under the same name17 (AGPL-3.0 licensed). The tool can be used
to create updated versions of the DaSEA dataset allowing studies on
evolution of software ecosystems. In the remainder, we illustrate
the DaSEA data model and distribution format in Sec. 3, we present
the data collection process and information sources in Sec. 4, we
sketch potential use cases of the dataset (Sec. 5), and we discuss
limitations and future improvements of the dataset in Sec. 6.

2 RELATEDWORK & BACKGROUND
We require software ecosystem metadata, like versions of packages,
their licenses, origin, dependencies etc., e.g., to research license
incompatibilities in system programming language ecosystems and
to study critical projects [18]. Such metadata might be inferred from
previously released datasets, e.g., GHTorrent [13], which mirrors
event streams and persistent data of GitHub, Debsources [4], which
organizes historical source code and metadata of Debian source
packages, or the Software Heritage Graph Dataset [19], which captures
the development history of projects on GitHub, GitLab, Debian, and
PyPI. However, neither it is directly clear which parts of a software
project from a forge like GitHub or GitLab form a package that is
distributed on a PM, e.g., multiple packages might be built from one
source code repository, nor if sources form a reusable package at all.
Additionally, besides Debian source packages exist binary packages
with metadata that potentially diverges from their source version.

The libraries.io dataset [14] is driving research of software ecosys-
tems, e.g., [2, 5–8, 12, 18, 23, 26, 27]. However, besides thementioned

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Petya Buchkova, Joakim Hey Hinnerskov, Kasper Olsen, and Rolf-Helge Pfeiffer

(a) Schema of the data model in UML (b) Excerpts from Alire ecosystem data in CSV serialization syntax.

Figure 1: The schema of the DaSEA data model and a concrete instance in serialization syntax.

challenges like the lack of updates and attention, see Sec. 1, meta-
data from system programming language ecosystems like C/C++,
Fortran, Ada, etc. is absent, only one OS ecosystem is included
(Homebrew), and for some ecosystems dependency links are missing
(Nimble). Additionally, the libraries.io dataset is ill-suited for study-
ing certain aspects of ecosystem evolution, since most package
metadata is provided only for the latest version of a package.

Since the libraries.io tool13 is open-source (AGPL-3.0), we try to
create an updated dataset and we attempt to extend it to include
data from system programming language ecosystems. However,
our attempts fail. Given the official documentation14, the project’s
source code, and ca. 60 man-hours distributed over three persons,
we reach only to instantiate a functionally incomplete instance
of the libraries.io web-application. That requires over 30 manual
steps, of which only 11 are currently documented. For example, we
experience issues with, failing download of sample data, incomplete
instructions of system initialization, or failing and undocumented
data collection tasks, etc. Since we and others18,19 fail to create an
updated libraries.io dataset, and since contributions of data for new
ecosystems are not necessarily merged into the tool20, we decide
to create a minimal and extensible tool that allows to create and
update a dataset similar to libraries.io. Our focus on reproducibility
and updatability sets the DaSEA dataset and tool apart from previous
work.

3 DATA MODEL
The schema of the DaSEA data model is illustrated as an UML class
diagram in Fig. 1a. Per ecosystem (abstract class), the dataset stores
metadata about Packages, Versions, Dependency links, and their Kind. Pack-
ages are uniquely identifiable in an ecosystem (idx), they carry a
name, and refer to the PM of origin (pkgman). Each Version of a Package

is uniquely identifiable (idx), refers to the package of which it is
a version (pkg_idx), and it is characterized by a name and a version
specification (version). Due to heterogeneity of version schemes, e.g.,
numbers, dates, etc., version specifications are stored as strings.
Additionally, a version’s license, description, homepage, repository, author,
and maintainer are stored if available. Dependency links connect specific
Versions of packages (source_idx) with the required package (target_idx).
source_version stores the version specification of the dependent pack-
age (usually a precise version number like 22.0.0) and target_version

stores the version constraint of the package that is required (of-
ten a version range like ˆ21). Additionally, the names of the Package

and the Version that are connected by a dependency link are stored
(target_name and source_name respectively). Dependency Kinds are stored
via values of an enumeration (only an excerpt is illustrated), e.g., a
dependency exists at, build-, run-, development-time, etc.

The data model is implemented in an object-oriented style, that
facilitates extension with ecosystem-specific fields, e.g., location of
bug-trackers, creation time of a version, etc. Instances of the data
model are store and distributed as CSV files, since this versatile for-
mat can be easily imported, processed, and analyzed by a plethora
of tools, see the examples in Sec. 5.

The dataset is distributed as a BZip2 compressed TAR archive16,
which contains directories named after PMs (in minuscule), e.g.,
alire, conan, etc. Each directory contains three CSV files named
<package_manager>_[packages|versions|dependencies]_<date>.csv, where <date> is
formatted as %m-%d-%Y. Fig. 1b illustrates the naming scheme of the
CSV files for the Alire ecosystem together with an excerpt of data. It
shows, that each of the three versions of ada_language_server, libadalang
_tools, and lal_highlight have a build-time dependency to libadalang,
either to its precise version 22 (ada_language_server and libadalang_tools)
or to any minor version above 21 (lal_highlight: ˆ21).

Some data is duplicated across the classes Package, Version, and
Dependency. For example, Versions duplicate a package’s name and Dependency

links duplicate the names and version information from the linked
entities. Though redundant, such a representation allows users
of the dataset to focus analysis on certain aspects of the dataset
without joining CSV files or database tables. For instance, the first
example in Sec. 5 illustrates how packages with many dependents
can be identified via SQL without the need to join database tables.

Unlike the libraries.io dataset, we decide to store information
about licenses, authors, etc. on Version instances, since that permits
to study evolution of packages over time.

4 DATA GATHERING
The DaSEA dataset is created by mining metadata from various
PMs and registries, which usually constitute ecosystems [22]. Per
ecosystem, Python scripts21 collect metadata of packages, their
versions, and dependencies from suitable sources, convert it into
the uniform data model (Sec. 3), and serialize it to CSV files. We

DaSEA – A Dataset for Software Ecosystem Analysis MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

call these Python scripts miners. Except of the shared data model,
miners are completely independent of each other.

The DaSEA dataset is gathered from heterogeneous sources in
various ways. The miners for vcpkg, FPM, and Homebrew parse the
respective package registries, which are conveniently distributed
in JSON format via web-APIs22,23,24. The Nimble miner works sim-
ilarly. First, it receives the package registry as JSON object via a
web-API call25, second, it shallowly clones package repositories
that are referenced in the package registry, and third, it parses nimble

files, that store version and dependency related metadata from
these repositories. The process is staged, since the Nimble package
registry does not store information about versions of packages and
their dependencies centrally.

Alire26 and Chromebrew27 are mined by cloning the package reg-
istries (organized as Git repositories) and by parsing metadata re-
spectively from TOML and Ruby files. Similarly, the Conan miner
clones the Git repository that holds the package registry28, parses
package-related metadata from YAML files, and extracts version
and dependency-related metadata from the output of the conan CLI
tool.

TheCargominer converts the daily database dump from crates.io29,
which is distributed as a set of CSV files, into the DaSEA data model.

On Free-30 andOpenBSD31, the current ports trees and onNetBSD32

the current pkgsrc tree are downloaded and extracted. In these ecosys-
tems, metadata is stored in Makefiles, which respective miners extract
with the OS-specific version of the make tool. Ports and pkgsrc trees are
mined in virtual machines (VMs) since the make tools are slightly
different across the BSDs. The DaSEA tool manages VMs via vagrant

33

and VirtualBox
34.

Metadata from packages and their versions, like names, version
numbers/constraints, authors, repositories, etc. are dumped directly
from the respective data source into the corresponding fields of
the data model (Fig. 1a) and are serialized to CSV without further
processing. The rationale behind this decision is: most PMs provide
unchecked free-form fields for such data. For example, the authors
of ada_language_server, libadalang_tools, and lal_highlight provide links to
release archives instead of links to VCS repositories, see Fig. 1b,
or authors identify themselves inhomogeneously via real names,
email-addresses, nicks, or combinations of these. Since we want to
preserve highest degree of utility of the gathered data and since we
cannot anticipate potential applications of the DaSEA dataset, we
leave processing of such raw data to the users. However, miners
enrich the gathered metadata by explicitly creating dependency
links, see class Dependency in Sec. 3. Usually, PMs express dependency
links via string references, which our miners interpret according to
official documentation. Internally, miners construct lookup tables to
convert string-based package and version identifiers to integers, see
all *idx fields in Fig. 1a. Besidesminingmetadata from heterogeneous
sources, first class dependency links are the main feature of the
DaSEA dataset. They facilitate ecosystem analysis as illustrated by
the following examples.

5 USAGE EXAMPLES
In this section, we present four examples that illustrate how various
tools can be applied to query the DaSEA dataset, to reason about
it, and to visualize it. All code examples are in Python, they are

optimized for space usage and not for coding style, and they are
explained in more detail in the official documentation35.
a) SQL: Identify relevant packages

Number of dependents is a basic metric for assessing the relevance
of a package in an ecosystem. In Lst. 1, we demonstrate how to
identify the pkgsrc package (onNetBSD) with most direct dependents
via an SQL query (lines six to eight).

For brevity, Dependency CSV data is imported into an SQLite in-
memory database with Pandas’ to_sql function. The latter creates the
database schema automatically. The actual SQL query identifies the
node with the highest in-degree in the dependency network by
searching for the most frequent target_name of all dependency links.
Grouping by a Dependency’s target_name (line seven), encodes the search
for the number of dependent packages instead of the number of
dependent versions.

The query yields pkgtools/cwrappers as the package with most de-
pendents. 18,228 of the 18,231 packages depend directly on it.

1 import pandas as pd, sqlalchemy as sl

2
3 ddf = pd.read_csv("ports/netbsd9/netbsd9_dependencies_01-27-2022.csv")

4 db_engine = sl.create_engine('sqlite://') # in memory DB

5 ddf.to_sql("Dependency", db_engine)

6 query = """SELECT target_name, COUNT(target_name) AS indegree FROM Dependency

7 GROUP BY target_name ORDER BY indegree DESC

8 LIMIT 1;"""

9 print(pd.read_sql(query, db_engine))

Listing 1: SQL query to identify most required package.

b) Pandas: Identify license changes
Changing licenses between package versions may pose legal

issues for dependents36. In Lst. 2, we show how to leverage the
data analysis library Pandas

37 to infer those packages from the Conan
ecosystem that possess more than one license over their version
history (line four). Pandas DataFrames (line three) are a tabular data
representation comparable to spreadsheets. They can be queried in
a similar fashion (line four).

The code of line five organizes the query results for display. The
results in Lst. 3 show, that 12 Conan packages change licenses across
versions. The respective package names are listed to the left and an
unordered set of corresponding licenses is listed to the right. Note,
ordering the changing licenses chronologically, would require a
modification of Lst. 2.

1 import pandas as pd

2
3 df = pd.read_csv("conan/conan_versions_01-27-2022.csv")

4 rdf = df.groupby("pkg_idx").filter(lambda x: len(set(x.license)) > 1)

5 print(rdf.groupby("name").apply(lambda x: set(x.license)))

Listing 2: Pandas query to identify Conan packages that
change licenses over versions.

1 bzip2 {['bzip2-1.0.6'], ['bzip2-1.0.8']}

2 freetype {['MIT'], ['bzip2-1.0.8']}

3 gtk {['MIT'], ['LGPL-2.1-or-later']}

4 mbedtls {['GPL-2.0', 'Apache-2.0'], ['Apache-2.0']}

5 mosquitto {['MIT'], ['EPL-2.0']}

6 opencv {['MPL-2.0', 'LGPL-3.0-or-later'], 'Apache-2.0']}

7 openssl {['OpenSSL'], ['Apache-2.0']}

8 poco {['Apache-2.0'], ['bzip2-1.0.8']}

9 proj {['MIT'], ['GPL-2.0']}

10 rmlui {['MIT'], ['bzip2-1.0.8']}

11 sentry-crashpad {['OpenSSL'], ['Apache-2.0']}

12 zbar {['LGPL-2.1'], ['LGPL-2.1-only']}

Listing 3: Conan packages with changing licenses.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Petya Buchkova, Joakim Hey Hinnerskov, Kasper Olsen, and Rolf-Helge Pfeiffer

c) NetworkX: Compute a centrality metric
Various centrality metrics encode various notions of importance

of a node in a graph. Packages that –if removed– would affect
the Conan ecosystem the most can be detected via Betweenness
Centrality [10]. Amongst others, the Python library NetworkX

38 offers
an implementation of a betweenness centrality algorithm. The
DaSEA dataset has to be converted into a format that is accessible
by NetworkX. Lst. 4 shows, how to convert the Conan Dependency data
into an adjacency list, a text file of space separated node identifiers
(lines three to six). Out of this, NetworkX constructs a directed graph for
which the betweenness centrality is computed (lines eight and nine).
The script prints package identifiers (pkg_idx) and the respective
centrality score for the three most central packages (lines 10 and
11). The results (not illustrated) indicate that openssl, libcurl, and
at-spi2-core are the packages with highest betweenness centrality
in the Conan C/C++ ecosystem. The prominent position of openssl in
the ecosystem hints at the impact of the Heartbleed bug39 in 2014.

1 import pandas as pd, networkx as nx, numpy as np

2
3 ddf = pd.read_csv("conan/conan_dependencies_01-27-2022.csv")

4 ddf = ddf[(~ddf.pkg_idx.isnull()) & (~ddf.target_idx.isnull())]

5 adjl = ddf[["pkg_idx", "target_idx"]].to_numpy()

6 np.savetxt("/tmp/conan.adjl", adjl, fmt="%u", delimiter=" ")

7
8 g = nx.read_adjlist("/tmp/conan.adjl", nodetype=int, create_using=nx.DiGraph)

9 betweennes_ranks = nx.betweenness_centrality(g)

10 print(list(sorted(betweennes_ranks.items(), key=lambda item: item[1],

11 reverse=True))[:3])

Listing 4: Computation of Betweenness Centrality with
NetworkX.

d) Gephi: Visualize an ecosystem
Fig. 2 illustrates the vcpkg C/C++ ecosystem with a Fruchter-

man–Reingold layout [11]. Nodes are scaled to Eigenvector Cen-
trality, which indicates the high influence of the packages vcpkg-cmake

and vcpkg-cmake-config (center). Highlighted are dependents of these
two. Visual inspection of ecosystem dependency networks allows
to get acquainted with certain properties of the ecosystem, e.g.,
the amount of independent packages (mainly outer ring in Fig. 2),
cliques of packages (center ring to the left and right), etc.

Figure 2: Visualization of the vcpkg C/C++ ecosystem. Nodes
are scaled to Eigenvector Centrality.

Gephi40 is a network visualization tool. It can import CSV files
that contain a graph’s nodes and edges. Indexes of nodes and rela-
tion ends have to be stored in columns labeled Id, Source, and Target

respectively. Lst. 5 converts the DaSEA package and dependency
CSV files from vcpkg accordingly.

1 import pandas as pd

2
3 pdf = pd.read_csv("vcpkg/vcpkg_packages_01-27-2022.csv")

4 pdf.rename(columns={"idx": "Id", "name": "Label"}, inplace=True)

5 pdf.to_csv("/tmp/vcpkg_gephi_nodes.csv", index=False)

6
7 ddf = pd.read_csv("vcpkg/vcpkg_dependencies_01-27-2022.csv")

8 ddf = ddf[(~ddf.pkg_idx.isnull()) & (~ddf.target_idx.isnull())]

9 ddf.pkg_idx = ddf.pkg_idx.astype(np.uint)

10 ddf.rename(columns={"pkg_idx": "Source", "target_idx": "Target"}, inplace=True)

11 ddf.to_csv("/tmp/vcpkg_gephi_edges.csv", index=False)

Listing 5: Conversion of data for visualization with Gephi.

6 LIMITATIONS & IMPROVEMENTS
Currently, packages and their versions are indexed per ecosys-
tem, i.e., cross-ecosystem analyses have to first harmonize indexes
accordingly. Only the data for Alire, Conan, FPM, and Cargo contains infor-
mation about historical versions of packages, due to how package
registries and PMs provision metadata. For the other ecosystems,
the most recent package versions at the time of mining are provided.
We plan to release a script, that allows to merge updated versions
of the DaSEA dataset into a single one.

As the datamodel in Fig. 1a illustrates, dependencies in theDaSEA
dataset link versions of a package to required packages accompanied
by a version constraint (target_version). That is, dependency links do
not link versions of packages directly. This mimics how dependency
links are modeled in the libraries.io dataset. If required, users have
to programmatically create version-to-version dependency links
by interpreting the provided version constraints.

In future, we plan to extend the DaSEA dataset with dependency
networks from more ecosystems. Currently, we are working on
implementing miners for Nix, APT on Ubuntu, Gentoo’s portage, and Maven

with Maven Central. Additionally, we hope that the open nature of
the DaSEA tool encourages contributions from the community.

To conclude, in this paper, we present the DaSEA dataset. We
are not aware of a similar dataset that contains metadata including
package dependencies for the Conan and vcpkg (C/C++), Alire (Ada), FPM
(Fortran), Nimble (Nim), Chromebew (ChromeOS) and the three BSDs in
a unified format. The Rust (Cargo) metadata in the DaSEA dataset
substantially updates the information provided by libraries.io.

Lastly, we aim at releasing continuous updates of the DaSEA
dataset semiannually.

REFERENCES
[1] [n. d.]. SIG/TÜViT Evaluation Criteria Trusted Product Maintainability, Version

12.0. https://www.softwareimprovementgroup.com/wp-content/uploads/2020-
SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability.pdf. Accessed:
2020-10-27.

[2] Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. 2020. On
the impact of using trivial packages: An empirical case study on npm and pypi.
Empirical Software Engineering 25, 2 (2020), 1168–1204.

[3] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst, Krzysztof
Czarnecki, Andrzej Wąsowski, and Steven She. 2014. Variability mechanisms
in software ecosystems. Information and Software Technology 56, 11 (2014),
1520–1535.

https://www.softwareimprovementgroup.com/wp-content/uploads/2020-SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/2020-SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability.pdf

DaSEA – A Dataset for Software Ecosystem Analysis MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

[4] Matthieu Caneill, DanielMGermán, and Stefano Zacchiroli. 2017. TheDebsources
Dataset: two decades of free and open source software. Empirical Software
Engineering 22, 3 (2017), 1405–1437.

[5] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution of
technical lag in the npm package dependency network. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 404–414.

[6] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th International Conference on Mining Software Repositories. 181–191.

[7] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24, 1 (2019), 381–416.

[8] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency versioning in the wild. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 349–359.

[9] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Iden-
tifying open-source license violation and 1-day security risk at large scale. In
Proceedings of the 2017 ACM SIGSAC Conference on computer and communications
security. 2169–2185.

[10] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry (1977), 35–41.

[11] Thomas MJ Fruchterman and Edward M Reingold. 1991. Graph drawing by force-
directed placement. Software: Practice and experience 21, 11 (1991), 1129–1164.

[12] Mehdi Golzadeh. 2019. Analysing socio-technical congruence in the package
dependency network of Cargo. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 1226–1228.

[13] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a firehose. In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 12–21.

[14] Jeremy Katz. 2020. Libraries.io Open Source Repository and Dependency Metadata.
https://doi.org/10.5281/zenodo.3626071

[15] Maria Kechagia, Diomidis Spinellis, and Stephanos Androutsellis-Theotokis. 2010.
Open source licensing across package dependencies. In 2010 14th Panhellenic
conference on informatics. IEEE, 27–32.

[16] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-
ture and evolution of package dependency networks. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 102–112.

[17] Mircea Lungu, Michele Lanza, Tudor Gîrba, and Romain Robbes. 2010. The
small project observatory: Visualizing software ecosystems. Science of Computer
Programming 75, 4 (2010), 264–275.

[18] Rolf-Helge Pfeiffer. 2021. Identifying Critical Projects via PageRank and Truck
Factor. In 2021 IEEE/ACM 18th International Conference on Mining Software Repos-
itories (MSR). 41–45. https://doi.org/10.1109/MSR52588.2021.00017

[19] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The Software
Heritage graph dataset: public software development under one roof. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, 138–142.

[20] Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, Darius Foo, An-
drew E Santosa, Asankhaya Sharma, and David Lo. 2021. Out of sight, out of
mind? How vulnerable dependencies affect open-source projects. Empirical
Software Engineering 26, 4 (2021), 1–34.

[21] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2013. The maven repos-
itory dataset of metrics, changes, and dependencies. In 2013 10th Working Con-
ference on Mining Software Repositories (MSR). IEEE, 221–224.

[22] Diomidis Spinellis. 2012. Package management systems. IEEE software 29, 2
(2012), 84–86.

[23] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens Dietrich. 2020. Technical Lag
of Dependencies in Major Package Managers. In 2020 27th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 228–237.

[24] Christopher Vendome. 2018. Assisting Software Developers With License Com-
pliance. (2018).

[25] Joost Visser, Sylvan Rigal, Rob van der Leek, Pascal van Eck, and Gijs Wijnholds.
2016. Building Maintainable Software, Java Edition: Ten Guidelines for Future-
Proof Code.

[26] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. 2018. An empirical analysis of technical lag in npm package
dependencies. In International Conference on Software Reuse. Springer, 95–110.

[27] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona.
2019. On the diversity of software package popularity metrics: An empirical
study of npm. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 589–593.

REFERENCED URLS
1https://alire.ada.dev/
2https://fpm.fortran-lang.org/en/index.html

3https://nimble.directory/
4https://doc.rust-lang.org/cargo/ and the package registry https://crates.io/
5https://vcpkg.io/
6https://conan.io/
7https://github.com/golang/go/issues/36785#issuecomment-683388282
8https://www.castsoftware.com/products/highlight/capabilities#Software-Composition-Analysis
9https://github.com/librariesio/libraries.io/issues/2744
10https://libraries.io/data
11https://github.com/librariesio/libraries.io/pull/2130
12https://github.com/librariesio/libraries.io/blob/main/app/models/package_manager/maven.rb
13https://github.com/librariesio/libraries.io
14https://github.com/librariesio/libraries.io/blob/main/docs/development-setup.md
15https://github.com/ossf/criticality_score/issues/53#issuecomment-748556336
16https://zenodo.org/record/6369420
17https://github.com/DaSEA-project/DASEA/blob/main/README.adoc
18https://github.com/librariesio/libraries.io/issues/2835
19https://github.com/librariesio/libraries.io/issues/2820
20https://github.com/librariesio/libraries.io/issues/2043
21https://github.com/DaSEA-project/DASEA/tree/main/dasea/miners
22https://vcpkg.io/output.json
23https://raw.githubusercontent.com/fortran-lang/fpm-registry/master/index.json
24https://formulae.brew.sh/api/formula.json
25https://raw.githubusercontent.com/nim-lang/packages/master/packages.json
26https://github.com/alire-project/alire-index/tree/stable-1.1/index
27https://github.com/skycocker/chromebrew/tree/master/packages
28https://github.com/conan-io/conan-center-index
29https://static.crates.io/db-dump.tar.gz
30received with portsnap, which fetches from https://cgit.freebsd.org/ports
31https://cdn.openbsd.org/pub/OpenBSD/6.9/ports.tar.gz
32ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz
33https://www.vagrantup.com/
34https://www.virtualbox.org/
35https://github.com/DaSEA-project/DASEA/blob/main/docs/using_the_dataset.md
36https://www.theregister.com/2021/03/25/ruby_rails_code/
37https://pandas.pydata.org/
38https://networkx.org/
39https://nvd.nist.gov/vuln/detail/CVE-2014-0160
40https://gephi.org/

https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.1109/MSR52588.2021.00017
https://alire.ada.dev/
https://fpm.fortran-lang.org/en/index.html
https://nimble.directory/
https://doc.rust-lang.org/cargo/
https://crates.io/
https://vcpkg.io/
https://conan.io/
https://github.com/golang/go/issues/36785#issuecomment-683388282
https://www.castsoftware.com/products/highlight/capabilities#Software-Composition-Analysis
https://github.com/librariesio/libraries.io/issues/2744
https://libraries.io/data
https://github.com/librariesio/libraries.io/pull/2130
https://github.com/librariesio/libraries.io/blob/main/app/models/package_manager/maven.rb
https://github.com/librariesio/libraries.io
https://github.com/librariesio/libraries.io/blob/main/docs/development-setup.md
https://github.com/ossf/criticality_score/issues/53#issuecomment-748556336
https://zenodo.org/record/6369420
https://github.com/DaSEA-project/DASEA/blob/main/README.adoc
https://github.com/librariesio/libraries.io/issues/2835
https://github.com/librariesio/libraries.io/issues/2820
https://github.com/librariesio/libraries.io/issues/2043
https://github.com/DaSEA-project/DASEA/tree/main/dasea/miners
https://vcpkg.io/output.json
https://raw.githubusercontent.com/fortran-lang/fpm-registry/master/index.json
https://formulae.brew.sh/api/formula.json
https://raw.githubusercontent.com/nim-lang/packages/master/packages.json
https://github.com/alire-project/alire-index/tree/stable-1.1/index
https://github.com/skycocker/chromebrew/tree/master/packages
https://github.com/conan-io/conan-center-index
https://static.crates.io/db-dump.tar.gz
https://cgit.freebsd.org/ports
https://cdn.openbsd.org/pub/OpenBSD/6.9/ports.tar.gz
ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz
https://www.vagrantup.com/
https://www.virtualbox.org/
https://github.com/DaSEA-project/DASEA/blob/main/docs/using_the_dataset.md
https://www.theregister.com/2021/03/25/ruby_rails_code/
https://pandas.pydata.org/
https://networkx.org/
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://gephi.org/

	Abstract
	1 Introduction
	2 Related Work & Background
	3 Data Model
	4 Data Gathering
	5 Usage examples
	6 Limitations & Improvements
	References

