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Abstract. Lehman’s second law of software evolution suggests that un-
der certain conditions software “becomes more difficult to evolve”. Simi-
larly, Technical Debt (TD) is often considered as technical compromises
that render future changes of software more costly. But how does one ac-
tually assess if modifying software becomes more difficult or costly? So
far research studied this question indirectly by assessing internal struc-
tural complexity of successive software versions arguing that increasing
internal complexity renders evolution tasks more difficult and costly too.
Our goal is to assess complexity of evolution tasks directly. Therefore,
we present an algorithm and tool that allows to automatically assess
Contribution Complexity (CC), which is the complexity of a contribu-
tion respecting difficulty of integration work. Our initial evaluation sug-
gests that our proposed algorithm and readily available tool are suit-
able to automatically assess complexity of contributions to software in
Git repositories and the results of applying it on 8 686 contributions to
two open-source systems indicate that evolution tasks actually become
slightly more difficult.

1 Introduction

Software is usually evolving to adapt to changing environments or requirements,
to correct errors, to address “problems . . . that are not carried out adequately
during . . . development” [18], etc. Software is said to become increasingly diffi-
cult to evolve over time unless it is continuously refactored to decrease internal
complexity. For example, Lehman’s second law of software evolution says: “As
[software] is changed its complexity increases and [it] becomes more difficult to
evolve unless work is done to maintain or reduce the complexity.” [14] Similarly,
the term technical debt is used to describe software constructs that render future
contributions increasingly complex. For example, the participants of Dagstuhl
Seminar 16162 agreed to define TD as: “a collection of design or implementation
constructs that are expedient in the short term, but set up a technical context that
can make future changes more costly or impossible.” [3].

But how does one actually assess if software “becomes more difficult to evolve”
or if “future changes [are] more costly”? Either human developers possess a skill
allowing them to assess if modifying existing software becomes more difficult,
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managers unearth such knowledge from business/process data, or such assess-
ments are conducted indirectly by assessing complexity of successive versions
of software. For example, researchers apply various complexity metrics, such as,
size in LOC, cyclomatic (McCabe) complexity [16], coupling of functions or mod-
ules [12] to assess change of internal complexity of software over time and argue
by induction that more complex systems are more complex to evolve. Using these
metrics researchers invalidate Lehman’s second law, see [10] for an overview or,
e.g., [2].

To the best of our knowledge, there is no research or tool available that allows
to directly and automatically assesses if the actual work of evolving a software
system is getting more difficult/complex. In this paper we present an algorithm
that allows to directly asses if evolution work becomes more complex and thereby
more costly. Our Contribution Complexity (CC) algorithm computes a score
that indicates mainly how difficult it is to integrate work (a set of commits)
into an existing software system. The CC score is computed on basic size-based
and entropy-based metrics on commit and file level, i.e., number of modified
lines/files, degree of scattered work across files/methods, etc. Together with this
paper, we publish a tool (https://pypi.org/project/contribution-complexity/) that
implements the proposed algorithm. The tool can be used by practitioners to
enhance CI/CD chains and by researchers to study software evolution and TD.

The contributions of this paper are a) presentation of an algorithm to au-
tomatically assess CC of contributions to Git repositories (Sec. 3), b) imple-
mentation of that algorithm in a readily installable open-source tool, c) initial
evaluation of the CC demonstrating its suitability for the task (Sec. 4), and d) to-
gether with initial results of applying CC to two open-source database systems
(Sec. 4.2), we provide a corresponding dataset containing CC scores together
with the tool.

2 Background, Terminology, and Motivation

In this section we explain the terminology that we use in the remainder of the
paper and motivate our CC score. In this and the following sections we refer to ex-
amples from development of the graph database Gaffer, which is created mainly
by the British Government Communications Headquarters (GCHQ). More de-
tails about Gaffer and why it appears in this paper follow in Sec. 4.

Terminology: Work in software projects is often organized via issue trackers,
e.g., Atlassian’s Jira(https://www.atlassian.com/software/jira) or Github’s integrated
issue tracker, and work on files is handled via VCS like Git.

Tickets in issue trackers describe work, such as, perfective or adaptive main-
tenance task, new features, etc. Tickets may be resolved without any contribution
to the developed software. For instance, unwanted features or not reproducible
bugs are marked accordingly and respective tickets are closed without modifi-
cation of the software. Other tickets get resolved by implementing a required
change via one or more commits to a VCS repository. Commonly, a commit
refers to a corresponding ticket via a ticket identifier in the commit message,

https://pypi.org/project/contribution-complexity/
https://www.atlassian.com/software/jira
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Fig. 1. A contribution resolving a ticket. The contribution consists of three commits
with in total four modifications (file changes) over time.

i.e., multiple commits can refer to one ticket. To present a clean development
history(https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History) multiple commits
are sometimes squashed into a single commit when merging branches. Conse-
quently, there exists a one to many relation between tickets and commits.

Each commit consists of zero or more file modifications where conflict-free
merges contain zero modifications. The term modification is synonymous to a
change of a file, see Spadini et al. [20]. Modifications can be considered as edit
deltas even though Git stores commits as snapshots of entire files. Most Git

tools present modifications as deltas or patches too, see e.g., commit ee3e2a in the
Gaffer repository on Github. Modifications carry information about the kind
of change that was applied. For example, Git records if a file is added, deleted,
modified, copied, or renamed.

In this paper, we call one or more commits to a Git repository, which consist
of one or more modifications a contribution. Contributions, contain the work
that eventually resolves tickets. Fig. 1 shows a conceptual illustration of tickets,
contributions, commits, and modifications, where two file modifications (A to A´
and B to B´) form commit 1, commits 2 and 3 are formed by one file modification
respectively, and the three commits form a contribution that resolves a ticket.

Complexity: This work is based on two conceptions of complexity. Basili [4],
describes complexity as the difficulty a developer faces when performing tasks
like coding, debugging, or modifying software. Clearly, different kinds of work
on existing software are differently complex. For example, implementing a new
feature in an object-oriented system via inheritance and conformance to interface
specifications is less complex than implementing a feature for which existing
abstractions have to be refactored or a patch has to be woven into existing classes
and methods. This varying cognitive complexity of tasks is described by Dörner
via the “. . . existence of many independent variables in a given system. The
more variables and the greater their interdependence, the greater that system’s
complexity. Great complexity places high demands on a planner’s capacities to
gather information, integrate findings, and design effective actions.” [6] The
exemplary extension of an object-oriented system via inheritance deals with a low
amount of independent variables (conformance to class interfaces and interface
specifications provide a low number of integration points) compared to a higher

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5
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amount of strongly interdependent variables when integrating scattered changes
during refactoring of existing abstractions.

We believe that besides the inherent complexity of a contribution (conceptual
difficulty of realizing it), the complexity of integration work (scattered changes
to integrate a solution into an environment) characterizes to a large degree the
complexity of a contribution. We call the complexity of a contribution respecting
the work of integrating it into existing software Contribution Complexity (CC).
Motivational example: Before formally defining CC in the next section, we
illustrate it on three examples from the Gaffer project:

Ticket gh-1808 describes a bug which prevents release of a package to the Maven
Central package store.

Ticket gh-2228 specifies that copyright headers in all code files need to be up-
dated to point to the correct time range.

Ticket gh-190 asks to refactor Gaffer’s storage engine to be better encapsulated
and more descriptive.

Gaffer’s Git repository contains a single commit (31e23a) that refers to ticket
gh-1808, another commit (ee3e2a) that refers to ticket gh-2228, and 21 commits that
refer to ticket gh-190. Of the 21 commits, 17 contain modifications and 4 are empty
merge commits. Due to constrained space, we refer to the online representations
of the respective contributions (https://github.com/gchq/Gaffer/commits). The bug
fix that resolves ticket gh-1808 excludes a conflicting dependency from a file with
project meta-information (pom.xml). The contribution is of low complexity since
it consists only of six contiguous lines, which are added in a single commit to a
single file. More complex than this minuscule contribution is the update of all
copyright headers (ticket gh-2228 with commit ee3e2a). Even though conceptually
only four digits need to change, they are changed across 1 975 code files replacing
1 977 lines with a new line. Note, Git operates with lines as smallest unit of
change. Even changing one character of a line in a file, first deletes that entire
line and subsequently adds its new version.

Certainly the most complex contribution of the three examples, is the refac-
toring of Gaffer’s storage engine (ticket gh-190). Over multiple commits multiple
hundreds of lines in dozens of files are modified and the changes are scattered
within files and across methods, see e.g., commit 2874da.

These three examples shall illustrate that traditional complexity metrics,
such as, size of change in LOC/number of files or change of McCabe complexity
alone are not suitable to assess CC. For example, size-wise the largest contri-
bution (modifying 1 977 lines in 1 975 files) updates the copyright headers, see
commit ee3e2a. Contrary, only some dozens of files with some hundreds of lines
are modified to refactor the storage engine. However, these changes are scattered
within files and across methods (high entropy). When considering complexity as
the difficulty of performing tasks like coding or software modification [4], then
only the high entropy of the modifications in refactoring of the storage engine
suggests higher complexity than the size-wise bigger copyright header update.
Furthermore, complexity measures like McCabe complexity would not yield in-
sightful results for the three examples. Either it is not applicable to relevant

https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/issues/2228
https://github.com/gchq/Gaffer/issues/190
https://github.com/gchq/Gaffer/commit/31e23af223db190d9fc73ecdf474ce2c8c9d37eb
https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5
https://github.com/gchq/Gaffer/issues/2228
https://github.com/gchq/Gaffer/issues/190
https://github.com/gchq/Gaffer/commits
https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/issues/2228
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5
https://github.com/gchq/Gaffer/issues/190
https://github.com/gchq/Gaffer/commit/2874da50c0c1eb33238170962ef54d6afd158a4b
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5
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artifacts (McCabe complexity of a pom.xml file?), not all relevant changes are
analyzed by it (update of copyright headers), or it ’overlooks’ complexity caused
by distributed nature of changes.

To overcome these restrictions of traditional complexity metrics when as-
sessing complexity of contributions, we develop an algorithm that should mimic
human intuitions as presented above. We implement it in a tool and we call both
the algorithm in the next section and the tool uniformly Contribution Complex-
ity (CC).

3 Computing Contribution Complexity

In this section we describe how to compute a discrete Contribution Complexity
(CC) score (ccontrib) for a set of commits using basic metrics on modification,
commit, and contribution level. A priori, we decided that a CC score should
map a contribution to the discrete values low, moderate, medium, elevated, or
high. To facilitate presentation, we use the following notation: C denotes the set
of all commits of a contribution and M denotes the set of all modifications of
all commits of a contribution. The CC score is computed in two stages. First,
a set of metrics is applied to modifications, whose results are aggregated and
subsequently merged with the results of metrics computed for commits. Our
presentation follows these two stages.

Per modification (m ∈ M), i.e., per modified file in a commit, the following
basic metrics are computed:

Number of lines added (ml+(mod)) The total number of lines added to the
file in this modification.

Number of lines removed (ml−(mod)) The total number of lines removed
from the file in this modification.

Number of hunks (mh(mod)) The total number of blocks that are modified
contiguously. For example, A´´ in Fig. 1 contains two hunks and C´ contains
one hunk. The number of hunks indicates how scattered a change is and
thereby how difficult is it to integrate it into the file.

Number of modified methods (mmth(mod)) In case a modified file contains
programming language source code, the number of modified methods (or
functions) is counted. For non-programming language artifacts the met-
ric evaluates to zero. Similar to mh(mod), the rationale is that work with
changes scattered over multiple methods is more difficult. Note, since our
tool depends internally on pydriller(https://pydriller.readthedocs.io/) which
uses the lizard(https://github.com/terryyin/lizard) tool to parse source code,
the number of methods can only be non-zero for the 16 languages that are
currently supported by lizard.

Modification kind (mmk(mod)) This metric returns the kind of file modifica-
tion in Git terms, i.e., one of the values added, deleted, modified, copied, or
renamed.

https://pydriller.readthedocs.io/
https://pydriller.readthedocs.io/
https://github.com/terryyin/lizard
https://github.com/terryyin/lizard
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Before the final CC score is computed, a separate modification complexity
score (cmod) is computed for each modification (mod) separately. It is defined as
the arithmetic mean of the lines added complexity (cl+), the lines removed com-
plexity (cl−), the hunk complexity (ch), and the method complexity (cmth), see
Eq. 1. In case a file is deleted or copied in a commit, its modification complexity
is low, since there is no ’real’ work behind all the removed or newly added lines.

cmod =

{
low if mmk(mod) = deleted|added
1
4 × (cl+(ml+(mod)) + cl−(ml−(mod)) + ch(mh(mod)) + cmth(mmth(mod))) if otherwise

(1)

The lines added and the lines removed complexity (cl+ and cl− respectively)
are computed via the same model as in Eq. 2, i.e., cl+(l) = cl−(l), and only the
former is presented here. The hunk and the method modified complexity (ch and
cmth) are both computed via the mapping in Eq. 3, i.e., ch(n) = cmth(n), and
only ch(n) is presented here. Note, that we assume that the complexity values
low to high are equivalent to the numerical values 1 to 5, so that we can use
them in calculations.

cl+(l) =



low if 0 ≤ l ≤ 15

moderate if 15 < l ≤ 30

medium if 30 < l ≤ 60

elevated if 60 < l ≤ 90

high if l > 90

(2) ch(n) =



low if 0 ≤ n ≤ 2

moderate if 2 < n ≤ 5

medium if 5 < n ≤ 7

elevated if 7 < n ≤ 9

high if n > 9

(3)

Rationale for the modification complexity models: The line modification com-
plexity models (cl+ and cl−) are adapted from Visser et al. [22], where the authors
argue that maintainable methods shall contain less than 15 LOC and higher val-
ues render a method progressively more complex. We re-use their thresholds
only extending them by a fifth level for high complexity. The hunk and method
complexity model (ch and cmth) are based on Miller [17] who argues that human
short-term memory usually deals well with is 7 ± 2 entities. Visser et al. use
similar thresholds [22], e.g., for assessing complexity of method signatures.

All modification complexities cmod contribute to the CC score (ccontrib) not
individually but in aggregated form. First, the frequencies of all modification
complexity values are collected into a set of pairs (K = hist ([cmod(m) : m ∈M])).
For example, K = {(low, 12), (moderate, 14), (medium, 5), (elevated, 3), (high, 0)}
would mean that a contribution consists of 12 modifications with low complexity,
14 with moderate complexity, etc. The modification complexity frequencies are
aggregated into a single value c∀mod as a weighed average of all the frequency
pairs c∀mod = 1

5 ×
∑

(i,j)∈K ii × j. The exponential weights (ii) are inspired by

using Fibonacci numbers for time estimation [21]. We use exponentials to ex-
press that it is way harder to work on high complexity modifications than low
complexity modifications.

To compute the overall CC score, the following metrics are computed over
all commits (c ∈ C), i.e., for the entire contribution:
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Number of modified files in commit (m|f |(c)) The total number of files that
were either added, deleted, modified, copied, or renamed in a commit.

Number of lines in commit (m|l|) The sum of all added and removed lines
in all modifications of a commit.

The CC score (ccontrib) is defined as the arithmetic mean of the modified
files complexity (c|f |), changed lines per file complexity (cl/f ), modification kind
complexity (cmk), and the overall modification complexity (c∀m), see Eq. 4.
There, nfiles is the total number of modified files in all commits (nfiles =∑

nf∈{m|f|(c):c∈C} nf ), nlines is the total number of modified lines in all commits

(nlines =
∑

nl∈{m|l|(c):c∈C} nl), and the cardinality of all work kinds (nmk =

|{mmk(m) : m ∈M}|) encodes the variety of work in a contribution. nmk ranges
from 1 to 5 denoting, e.g., if files were only added or only modified (nmk = 1)
or if files were added, deleted, renamed, copied, and modified (nmk = 5).

ccontrib = 1
4 × c|f |(nfiles) + cl/f

(
nlines

nfiles

)
+ cmk(nmk) + c∀m(c∀mod) (4)

The modified files complexity model (c|f |) and the changed lines per file com-
plexity (cl/f ) use the same thresholds as the line modification complexity models
cl+ and cl−, see Eq. 2, and are therefore omitted here. The modification kind
complexity (cmk), and the overall modification complexity (c∀m) are computed
via the mappings in Eq. 5 and Eq. 6 below.

cmk(n) =



low if n = 1

moderate if n = 2

medium if n = 3

elevated if n = 4

high if n = 5

(5)
c∀m(n) =



low if 0 ≤ n ≤ 195

moderate if 195 < n ≤ 390

medium if 390 < n ≤ 781

elevated if 781 < n ≤ 1562

high if n > 1562

(6)

Computation example: For brevity, we illustrate calculation of CC on
a small contribution to Gaffer. Consider ticket gh-2304, which reports a bug on
lost status information when certain exceptions are caught and re-raised. The
contribution resolving the issue consists of a single commit (291111) that modifies
two files, i.e., nfiles = 2. In both files, in total 29 lines are modified (nlines = 29).
In the first file 5 lines of a method are replaced by two new lines in one hunk,
i.e., ml+(mod) = 2, ml−(mod) = 5, mh(mod) = 1, and mmth(mod) = 1. In
the second file 20 lines of a method, and two new import lines are newly added
over three hunks, i.e., ml+(mod) = 22, ml−(mod) = 0, mh(mod) = 3, and
mmth(mod) = 1. That is, we have one modification (cmod 1) of low and another
one (cmod 2) of moderate modification complexity, see below.

cmod 1 =
cl+(2) + cl−(5)) + ch(1) + cmth(1)

4
=

1 + 1 + 1 + 1

4
=

4

4
= 1 = low

cmod 2 =
cl+(22) + cl−(0)) + ch(3) + cmth(1)

4
=

2 + 1 + 2 + 1

4
=

6

4
= 1.5 = moderate

K = [(low, 1), (moderate, 1), (medium, 0), (elevated, 0), (high, 0)]

c∀mod =

∑
(i,j)∈K ii × j

5
=

11 × 1 + 22 × 1 + 33 × 0 + 44 × 0 + 55 × 0

5
=

5

5
= 1 = low

(7)

https://github.com/gchq/Gaffer/issues/2304
https://github.com/gchq/Gaffer/commit/291111c0385a611d2f80a785bcb203a9169078ac
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Since both files exist before the contribution the only modification kind is
modified, i.e., nmk = 1. That leads to a contribution of low CC via the final
ccontrib formula.

ccontrib =
c|f |(2) + cl/f

(
29
2

)
+ cmk(1) + c∀m(1)

4
=

4

4
= low (8)

4 Evaluation

In this section, we evaluate to which degree the CC scores that our tool computes
are aligned with human assessment of complexity of selected contributions and
we provide results of an initial experiment of distribution of CC scores of all
contributions to two open-source case systems.

Case Systems: To evaluate our CC score and for initial experimentation, we
need software projects as cases that have publicly available Git repositories and
issue trackers so that we can compute CC scores of actual contributions. Fur-
thermore, these cases should be of a certain size and age so that contributions of
various complexities exist. Due to our work for the Research Center for Govern-
ment IT at IT University of Copenhagen, we are interested in studying software
that is developed and deployed at public agencies. To identify possible case sys-
tems, we manually search Github’s list of public agencies that use the platform
for development(https://government.github.com/community). There, we identify Gaffer

(https://gchq.github.io/gaffer-doc) as a suitable case. It is a graph database, that is
created mainly by the British signals intelligence agency GCHQ. A first version
of it was open-sourced in 2015 (with 125 releases since then), and the project’s
issue tracker is available on Github(https://github.com/gchq/Gaffer/issues). Since we
cannot identify a software project from the same domain on the mentioned list,
we choose Apache Cassandra (https://cassandra.apache.org) as a second case. It is
an open-source, distributed, wide-column store, NoSQL DBMS that was origi-
nally developed by Facebook [13]. It was open-sourced in 2008 (with 265 releases
since then). The project uses Jira(https://issues.apache.org/jira/projects/CASSANDRA)
as issue tracker. Both systems are written mainly in Java, are licensed under
Apache License 2.0, and their sources are available as Git repositories (https:
//github.com/gchq/Gaffer, https://github.com/apache/cassandra.

Even though, Gaffer (version 1.9.1) and Cassandra (version 3.9) consist of
approximately the same amount of files (2 294 and 2 316 respectively), Cassandra
is circa twice as large as Gaffer (588 017 lines with 424 733 LOC versus 291 071
lines with 199 816 LOC). Statistics are generated with the Succinct Code Counter
tool (version 2.13.0) https://github.com/boyter/scc.

Dataset Creation: With two Python scripts, we export all tickets, ticket iden-
tification keys, ticket resolution dates, etc., from the respective issue track-
ers. Using our tool, we compute a mapping from ticket identifiers to com-
mits. The mapping is created by matching ticket identifiers via regular expres-
sions in commit messages. For example, the regular expression for Gaffer is
(Gh |gh-)<issue key>( |$) and for Cassandra it is CASSANDRA-<issue key>( |$),

https://government.github.com/community
https://gchq.github.io/gaffer-doc
https://github.com/gchq/Gaffer/issues
https://github.com/gchq/Gaffer/issues
https://cassandra.apache.org
https://issues.apache.org/jira/projects/CASSANDRA
https://issues.apache.org/jira/projects/CASSANDRA
https://github.com/gchq/Gaffer
https://github.com/gchq/Gaffer
https://github.com/apache/cassandra
https://github.com/boyter/scc
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where <issue key> is an integer in both cases. We identify these regular ex-
pressions by brief manual inspection of the commit histories, and via the con-
tribution guidelines of the respective project. The resulting dataset with all
tickets and corresponding contributions contains 2 403 tickets for Gaffer, of
which 2 300 are resolved and 820 of these are resolved with contribution, i.e.,
with at least one commit attached to the respective ticket. For Cassandra, the
dataset includes 16 485 tickets, of which 14 158 are resolved, and 7 866 are re-
solved with contribution. We let our CC tool compute the a CC score for each
resolved ticket with contribution from both projects. The resulting datasets
are stored as CSV files and are available online (https://raw.githubuserconten
t.com/HelgeCPH/contribution-complexity/master/data/cassandra contrib compl.csv, https:

//github.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer contrib compl.csv).
For the manual evaluation, see Sec. 4.1, we sample 25 contributions (five from

each possible CC score) from Cassandra and 23 for Gaffer (five from each CC
score except for high, where there are only three contributions). The author of
this paper manually classifies the CC scores for each of these 48 contributions,
that consist in total of 247 commits. Thereafter, we compare our manually clas-
sified CC scores with those created by the tool. The protocols, for this step are
available online too (https://github.com/HelgeCPH/contribution-complexity/blob/master/data
/cas evaluation tab.md, https://github.com/HelgeCPH/contribution-complexity/blob/master/data/g

af evaluation tab.md).
Note, the entire experiment setup with dataset creation and data reproduc-

tion is automatically reproducible via a Shell script in the experiment directory
in the CC tool’s repository. We provide a replicable environment specification
for a virtual machine on DigitalOcean via a Vagrant file.

4.1 Manual Evaluation Results

In 36 cases (75%) our manual classification is equal to the tool’s CC score. For
the remaining 25% of the cases, most often (8 cases ≈ 17%) our assessment is one
level higher than the score computed by the tool and in 4 cases (≈ 8%) the tool’s
assessment is one level higher than our classification. Discrepancies between our
classification and tool’s score is actually most frequent around the two scores
moderate and medium. In six cases (12.5%) we assigned a moderate CC and
the tool a medium score or vice versa. The second most frequent discrepancy is
between medium and elevated scores (in 3 cases ≈ 6%).

That is, our classification differs from the tool’s assessment always only by
one level and in most cases on those centered around medium contribution com-
plexity. Our experience during manual classification, was also that we found it
hardest to distinguish complexities on closely related levels. That is, we found
coarse-grained assessment into three levels (low, medium, and high) more easy
than deciding between more fine-grained five levels of CC.
Threats to Validity: The manual classification of the CC score would likely
have been more accurate if performed by developers from the Gaffer and Cassandra

projects. Since we do neither know the design or architecture of the systems our
assessments are prone to be too high. We try to mitigate this risk by carefully

https://raw.githubusercontent.com/HelgeCPH/contribution-complexity/master/data/cassandra_contrib_compl.csv
https://raw.githubusercontent.com/HelgeCPH/contribution-complexity/master/data/cassandra_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/cas_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/cas_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaf_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaf_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity
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Fig. 2. Development of complexities (CC) of all contributions of Apache Cassandra

(left) and Gaffer (right), with linear regression model (yellow line).

examining each contribution and the corresponding modifications. Our classifi-
cation might be biased since the author performing it also developed and im-
plemented the CC score. We tried to minimize this risk by running the manual
classification first 10 days after the last modification to the CC score, which
should be sufficient with regards to memory retention [15].

Here, we evaluate if CC scores correspond to human assessment of complex-
ity of contributions. We do not evaluate to which degree the CC metric assesses
the actual complexity of contributions. Even though not a software quality met-
ric, a thorough and more rigid evaluation of the CC metric along the lines of
the validation criteria of IEEE 1061 Standard for a Software Quality Metrics
Methodology [1], should complement the provided initial evaluation in future.

4.2 Contribution Complexities of Two Open-source Systems

Fig. 2 illustrates the distribution of CC scores over time. Each blue dot is a
resolved ticket with contribution (ticket closing times on x-axis). Obviously, the
different complexity levels are not equally distributed. Tab. 1 shows the frequen-
cies of the various complexity levels per system. For Cassandra, the amount of
contributions with a low CC is highest. 67.0% of all contributions possess that
complexity and frequencies decrease for higher CC scores. Only five contribu-
tions (0.1%) are of high CC. For Gaffer moderately complex contributions are
most frequent (44.3%) followed by low complexity contributions (35.5%) and
from medium to high frequencies decrease, though with higher ratios compared
to Cassandra.

The yellow lines in Fig. 2 are linear regression models that should provide
an impression of development of CC over time, i.e., if software “becomes more
difficult to evolve”. For Cassandra it suggests that contributions become more
complex, whereas for Gaffer it suggest the opposite. To accommodate for the
impact of location of the contributions with high CC on the regression models,
we also compare the first full year of contributions with the last full year of
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low moderate medium elevated high

Gaffer 291 35.5% 363 44.3% 91 11.1% 72 8.8% 3 0.4%

Cassandra 5 273 67.0% 2 055 26.1% 363 4.6% 170 2.2% 5 0.1%

Table 1. Absolute and relative (rounded) frequencies of contribution complexity scores.

contributions per system. In 2016, Gaffer has 194 contributions with avg. CC
1.91 (std 0.91) and median CC moderate versus 37 contributions with avg. CC
2.08 (std 0.83) and median CC moderate in 2020. In 2010, Cassandra has 606
contributions with average CC 1.51 (std 0.74) and median CC low versus 461
contributions with avg. CC 1.59 (std 0.73) and median CC low in 2020. These
numbers suggest, that there is actually a slight increase in CC for less work in
both systems.

5 Related Work & Discussion

There exists a plethora of software complexity metrics, see e.g., Zuse’s overview [23]
over many of them. Usually, these assess internal structural complexity of pro-
grams, e.g., how many branch points there are [16], how difficult programs are
to understand [19], how well structured they are [12], their size [9], etc. Based
on these metrics, higher level models are developed, such as, the SIG Maintain-
ability Model (SIG-MM) [8], which combines multiple such complexity metrics
to compute a maintainability score for software.

The Contribution Complexity score described in this paper is different to,
e.g., the SIG-MM in that it is not constrained to analyzing complexity of source
code artifacts. In essence, it is an aggregate of multiple basic size- and frequency-
based metrics (number of changed lines per modification/commits, number of
hunks per modifications, number of changed files per commits, etc.), which yields
useful results for any textual artifacts including configuration files, build scripts,
schema files, documentation, etc. The contributions to Gaffer and Cassandra that
we studied (Sec. 4.1) contain modifications of such files. However, computation
of CC (Sec. 3) is inspired by SIG-MM [8,22] in that results of basic metrics are
aggregated and mapped to a single score.

By counting frequencies of hunks, of changed methods per modification, and
number of changed files per commit, our CC includes a measure of entropy. This
is similar to Hassan’s Code Change Models [7] that consider scattered changes
across files to be highly entropic. Hassan equates high entropy changes with com-
plexity and our work follows the same reasoning. However, Hassan operates only
on the level of file changes. Our approach is more fine-grained since it includes,
e.g., number of hunks and number of changed methods. Unlike Hassan, who aims
to predict faults from patterns of frequently changing files, we are interested in
the complexity of contributions to enable research of software evolution. Also
Hindle et al. [11] compute complexity of changes, i.e., of commits instead of en-
tire systems or modules. They compute the complexity of source code patches
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(modifications in our terminology) based on indentation-levels of code, which
they demonstrate to be similarly expressive as, e.g., McCabe complexity. Our
work is similar to Hindle et al. in that we provide a language agnostic and simple
–in the sense of underlying basic metrics– solution that operates mostly on syn-
tactic properties of modifications. However, in case a modification’s source code
is in a supported programming language, our solution incorporates the number
of changed methods too.

The Delta Maintainability Model (DMM) by di Biase et al. [5] assesses how
much a commit in-/decreases the maintainability of a software system, which
is based on multiple structural complexity metrics, such as, McCabe complex-
ity, coupling, size, etc., The DMM can be considered an adaptation of SIG-
MM [8] to commit level instead of system level. Our CC score is different than
both whitespace-complexity [11] and DMM [5] since both of them are concerned
about assessing the internal structural complexity of commits. By including en-
tropy measures (number of hunks, changed method/files) our CC score captures
complexity of integration work too. Also, Hassan and di Biase et al. study only
certain kinds of changes “Feature Introduction modifications” and bug fixes, re-
quests for enhancement, and improvements respectively. We consider our CC
score more universal since it is applicable to any kind of change including work
on documentation, tests, etc., which all are part of the initial experiment in
Sec. 4.2.

Unfortunately, CC scores of different systems are currently not directly com-
parable since our algorithm consumes absolute numbers, see Sec. 3. The main
reason for not relying on normalized values yet, is that the absolute numbers of
files/methods that would serve as denominator in normalization are not fixed per
contribution. They can change with every single modification. Hassan suggests
to resort on the number of recently changed files as denominator instead. We
consider such time-/period-based normalization future work. Another concern
about our CC tool might be that the thresholds of the complexity classification
models (c∗) that map input values to discrete scores (Sec. 3) appear arbitrary
and do not fit across domains. To mitigate this risk, all these functions are
user configurable in the tool and we present in this paper the default models.
Similarly, weights of certain aggregation functions may be adapted in the tool.

Implications for practitioners: Next to this paper, we provide a readily in-
stallable open-source tool (usable as Python library and CLI tool), which can be
integrated into development processes, e.g., in CI/CD chains, to automatically
assess and report on development of CC of contributions to Git repositories.
That would not only allow for more accurate assessment of which work tasks
(tickets) are most difficult to work on and thereby guide potential refactorings
but it would also allow to gradually adjust time and effort estimations when
planning new tasks that are similar to resolved ones.

Note however, that our tool analyses local Git repositories only. It does not
have any dependency to platforms like Github of Gitlab and can therefore not
assess richer knowledge that might be present there. For example, Github tracks
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related commits of remote repositories, which cannot be assessed by our tool
unless explicitly merged with the respective repository.
Implications for researchers: With our work it is now possible to study
for example Lehman’s second law of software evolution [14] or implications of
TD [3] directly. Previous work, see e.g., [10], studied development of certain
internal complexity metrics on successive versions of entire systems or modules
and thereby invalidated Lehman’s second law of software evolution. But our
results for Gaffer and Cassandra (Sec. 4.2) suggest a slight increase in difficulty of
evolving software, i.e., they support Lehman’s second law. It would be interesting
to replicate previous studies and compare indirect complexity metrics with CC
over time to understand if previous results are only due to indirect assessment
of complexity.

6 Conclusions

Our goal with this work is to create, implement, and evaluate an algorithm and
tool to automatically assesses complexity of contributing a change into an exist-
ing software system. We present the Contribution Complexity (CC) algorithm
(Sec. 3) and we provide a readily installable tool for it. To evaluate our CC algo-
rithm and tool, we compare the tool computed CC scores of 48 randomly sampled
contributions from two open-source systems (Gaffer and Cassandra) with manu-
ally assessed CC scores of the same contributions (Sec. 4). Our results show that
in 75% of the cases the automatic assessment matches the human assessment
and we interpret the remaining cases to be due to the tool’s superiority when
assessing finer-grained complexity differences.

To illustrate applicability of our solution, we present an initial empirical
analysis of 8 686 contributions from two open-source systems. Our results show
that the average CC scores of both systems are slightly increasing with decreas-
ing contribution frequency, which might hint at, that Lehman’s second law of
software evolution is not invalid when complexity of evolution tasks is directly
assessed instead of indirectly as in previous work.

In future work we plan to extend the study of in-/decrease of difficulty of evo-
lution tasks with the help of our CC to identify root causes of TD. Furthermore,
we plan to conceptually extend CC to better distinguish inherent complexity of
a contribution versus complexity of integration work.
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