IT UNIVERSITY BFNP SPRING 2016

Assignment 8 for Tuesday 15 March 2016
Version 1.0 of 2016-03-18 sestoft@itu.dk

These exercises concern computation expressions (or monads) in F#, and
more precisely, the expression evaluator example.

You should build on the lecture's example code, found in file
http://www.itu.dk/people/sestoft/bachelor/computationexpression.fs

Exercise 1. Extend the expression language and monadic evaluators with
single-argument functions such as ABS(el) which evaluates el and
produces its absolute value. Do this by adding a new case Priml of
string * expr to the expr datatype. Create suitable variants of all
the monadic evaluators; you should not have to change the monad
definitions (OptionBuilder, SetBuilder, TraceBuilder) at all.

Abstract out the action of ABS on its argument in new auxiliary
functions opEvalOptl, opEvalSetl and opEvalTracel similar to the
existing functions opEvalOpt, opEvalSet and opEvalTrace for
two—-argument primitives. Try the new evaluators on eg these

expressions:

let exprl@ = Prim1("ABS", Prim("+", CstI(7), Prim("x", CstI(-9), CstI(10))))

let exprll = Priml1("ABS", Prim("+", CstI(7), Prim("/", CstI(9), CstI(0@))))

let expr12 = Prim("+", CstI(7), Prim("choose", Prim1("ABS", CstI(-9)), CstI(10)))

Exercise 2. Extend the expression language and the monadic evaluators
with a three-argument function such as +(el, e2, e3) that is basically
two applications of "+", as in, +(+(el,e2),e3). Do this by adding a
new constructor Prim3 of string x expr * expr * expr to the expr type.

You may alternatively add a more general facility for functions with
n>=1 arguments, such as SUM(el, ..., en), adding a suitable
constructor to the expr type.

Implement evaluation of such three-argument (or multi-argument)
constructs in the monadic evaluators.

Exercise 3. Create a new family of evaluation functions
optionTraceEval. These evaluators should combine the effect of the
original optional evaluator (optionEval) and the original tracing
evaluator (traceEval).

This can be done in several ways, for instance corresponding to (A)
return type int trace option, for an evaluator that returns no trace
if a computation fails; or (B) the result type int option trace, for
an evaluator that returns a partial trace up until some computation
(eg division by zero) fails.

3.1: Make both a standard explicit version of (A) and a monadic
version. You need to create a new monad OptionTraceABuilder, among
other things.

3.2: Make both a standard explicit version of (B) and a monadic
version. You need to create a new monad OptionTraceBBuilder, among
other things.



