
Computer arithmetics:
integers, binary floating-point,

and decimal floating-point

Peter Sestoft
BSWU First-Year Project

Thursday 20 February 2020

x+1
< x

y != y

z+1 == z

v+w
-w

!=
v

p == n && 1/p != 1/n

n !
= 0

 &&
 -n

 ==
 n

1

www.itu.dk

Computer arithmetics
• Computer numbers are cleverly designed,

but
– Very different from high-school mathematics
– There are some surprises

• Choose representation with care:
– When to use int, short, long, byte, …
– When to use double or float
– When to use decimal floating-point

2

www.itu.dk

Overview, number representations
• Integers

– Unsigned, binary, hexadecimal
– Signed

• Signed-magnitude
• Two’s complement (Java and C# int, short, byte, …)

– Arithmetic modulo 2n

• Floating-point numbers
– IEEE 754 binary32 and binary64

• Which you know as float and double in Java and C#

– IEEE 754 decimal128
• and also C#’s decimal type
• and also Java’s java.math.BigDecimal

3

Unsigned integers, binary representation

• Decimal notation
80510 = 8*102 + 0*101 + 5*100 = 805
A place is worth 10 times that to the right

• Binary notation
11012= 1*23 + 1*22 + 0*21 + 1*20 = 13
A place is worth 2 times that to the right

• Positional number systems:
– Base is 10 or 2 or 16 or …

• Any non-positional number systems?

20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256

4

www.itu.dk

Binary numbers

• A bit is a binary digit: 0 or 1
• Easy to represent in electronics

– Some base-10 hardware in the 1960es
– A Russian base-3 computer in the 1950es

• Counting with three bits:
000, 001, 010, 011, 100, 101, 110, 111

• Computing:
1 + 1 = 10
010 + 011 = 101

“There are 10 kinds
of people: those
who understand binary
and those who don’t”

5

www.itu.dk

Hexadecimal numbers
• Hexadecimal numbers have base 16
• Digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F

32516 = 3 * 162 + 2 * 161 + 5*160 = 805

Each place is worth 16 times that ...
• Useful alternative to binary

– Because 16 = 24

– So 1 hex digit = 4 binary digits (bits)
• Computing in hex:

A + B = 15
AA + 1 = AB
AA + 10 = BA

160 1

161 16

162 256

163 4096

164 65536

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

6

www.itu.dk

Overview, number representations
• Integers

– Unsigned, binary, hexadecimal
– Signed

• Signed-magnitude
• Two’s complement (Java and C# long, int, short, …)

– Arithmetic modulo 2n

• Floating-point numbers
– IEEE 754 binary32 and binary64

• Which you know as float and double in Java and C#

– IEEE 754 decimal128
• and also C#’s decimal type
• and also Java’s java.math.BigDecimal

7

www.itu.dk

Signed integers: negative and positive
• Signed magnitude: A sign bit and a number

– Problem: Then we have both +0 and -0
• Two’s complement: Negate all bits, add 1

• Only one zero
• Easy to compute with
• Requires known size of number, e.g. 4, 8, 16, 32, 64 bits

• Examples of two’s complement, using 4 bits:
-3 is represented by 1101 because 3 = 00112 so

complement is 1100; add 1 to get -3 = 11012

-1 is represented by 1111 because 1 = 00012 so
complement is 1110; add 1 to get -1 = 11112

-8 is represented by 1000 because 8 = 10002 so
complement is 0111; add 1 to get -8 = 10002

8

www.itu.dk

Check: Two's complement
• What decimal number does the 8-bit two's

complement number 100010012 represent?
A) 137 = 27 + 23 + 20

B) -118 = -(26 + 25 + 24 + 22 + 21)
C) 119 = 26 + 25 + 24 + 22 + 21 + 20

D) -119 = -(26 + 25 + 24 + 22 + 21 + 20)

9

Integer arithmetics modulo 2n

• Java and C# int is 32-bit two’s complement
– Max int is 231-1 = 2147483647
– Min int is –(231) = –2147483648
– If x = 2147483647 then x+1 = –2147483648 < x
– If n = –2147483648 then –n = n

00000000000000000000000000000000 = 0
00000000000000000000000000000001 = 1
00000000000000000000000000000010 = 2
00000000000000000000000000000011 = 3
01111111111111111111111111111111 = 2147483647
11111111111111111111111111111111 = -1
11111111111111111111111111111110 = -2
11111111111111111111111111111101 = -3
10000000000000000000000000000000 = -2147483648

10

www.itu.dk

An obviously non-terminating loop?
int i = 1;
while (i > 0)
i++;

System.out.println(i);

Does terminate!

Values of i:

1
2
3
…

2147483646
2147483647

-2147483648

11

www.itu.dk

Overview, number representations
• Integers

– Unsigned, binary, hexadecimal
– Signed

• Signed-magnitude
• Two’s complement (Java and C# int, short, byte, …)

– Arithmetic modulo 2n

• Floating-point numbers
– IEEE 754 binary32 and binary64

• Which you know as float and double in Java and C#

– IEEE 754 decimal128
• and also C#’s decimal type
• and also Java’s java.math.BigDecimal

12

www.itu.dk

Binary fractions
• Before the point: …, 16, 8, 4, 2, 1 ●
• After the point: ● 1/2, 1/4, 1/8, 1/16, …

• But
– how many digits are needed before the point?
– how many digits are needed after the point?

• Answer: Binary floating-point (double, float)
– The point is placed dynamically

0.5 = 0.12

0.25 = 0.012

0.75 = 0.112

0.125 = 0.0012

2.125 = 10.0012

7.625 = 111.1012

118.625 = 1110110.1012

13

www.itu.dk

Check: Binary fractions
• Binary 1110110.1012 represents 118.625
• What does 11101101.012 represent?

A) 237.250 = 118.625 * 2
B) 59.3125 = 118.625 / 2
C) 1186.25 = 118.625 * 10
D) 11.8625 = 118.625 / 10

14

www.itu.dk

Check: Binary fractions
• What is 27.375 represented as a binary

fraction?
A) 11010.0112

B) 11011.0112

C) 11011.1012

D) 11011.0012

15

www.itu.dk

Some nasty fractions
• Some numbers are not representable as

finite decimal fractions:
1/7 = 0.142857142857142857…10

• Same problem with binary fractions:
1/10 = 0.00011001100110011001100…2

• Quite unfortunate:
– Float 0.10 is 0.100000001490116119384765625
– So cannot represent 0.10 krone or $0.10 exactly
– Nor 0.01 krone or $0.01 exactly

• Do not use binary floating-point
(float, double) for accounting!

16

www.itu.dk

An obviously terminating loop?
double d = 0.0;
while (d != 1.0)
d += 0.1;

Values of d:
0.10000000000000000000
0.20000000000000000000
0.30000000000000004000
0.40000000000000000000
0.50000000000000000000
0.60000000000000000000
0.70000000000000000000
0.79999999999999990000
0.89999999999999990000
0.99999999999999990000
1.09999999999999990000
1.20000000000000000000
1.30000000000000000000

Does not
terminate!

d never equals 1.0

17

www.itu.dk

Overview, number representations
• Integers

– Unsigned, binary, hexadecimal
– Signed

• Signed-magnitude
• Two’s complement (Java and C# int, short, byte, …)

– Arithmetic modulo 2n

• Floating-point numbers
– IEEE 754 binary32 and binary64

• Which you know as float and double in Java and C#

– IEEE 754 decimal128
• and also C#’s decimal type
• and also Java’s java.math.BigDecimal

18

www.itu.dk

History of floating-point numbers
• Until 1985: Many different designs, anarchy

– Difficult to write portable (numerical) software
• Standard IEEE 754-1985 binary fp

– Implemented by all modern hardware
– Assumed by modern programming languages
– Designed primarily by William Kahan for Intel

• Revised standard IEEE 754-2008
– Binary floating-point, much as in IEEE 754-1985
– Decimal floating-point, new

• IEEE = “Eye-triple-E” = Institute of Electrical
and Electronics Engineers (USA)

19

IEEE floating point representation
• Signed-magnitude

– Sign, exponent, significand: number = s * 2e-b * (f + 1)

• Representation:
– Sign s (0=positive, 1=negative), exponent e, fraction f

Java, C# bits
e

bits
f

bits
range bias b sign.

digits

float,
binary32 32 8 23 ±10-44 to ±1038 127 7

double,
binary64

64 11 52 ±10-323 to ±10308 1023 15

Intel
extended 80 15 64 ±10-4932 to ±104932 16635 19

s eeeeeeee fffffffffffffffffffffff
0 01111111 00000000000000000000000 = 1.0

float

20

Understanding the representation
• Normalized numbers

– Choose exponent e so the significand is 1.ffffff…
– Hence we need only store the .ffffff… not the 1.

• Exponent is unsigned but a bias is subtracted
– For 32-bit float the bias b is 127

s eeeeeeee fffffffffffffffffffffff
0 00000000 00000000000000000000000 = 0.0
1 00000000 00000000000000000000000 = -0.0
0 01111111 00000000000000000000000 = 1.0
0 01111110 00000000000000000000000 = 0.5
1 10000101 11011010100000000000000 = -118.625
0 01111011 10011001100110011001101 = 0.1
0 01111111 00000000000000000000001 = 1.0000001

21

www.itu.dk

A detailed example
• Consider x = -118.625
• We know that 118.625 = 1110110.1012

• Normalize to 26 * 1.1101101012

• So
– exponent is 6, represented by e = 6+127 = 133
– significand is 1.1101101012

– so fraction f = .1101101012

– sign is 1 for negative

s eeeeeeee fffffffffffffffffffffff
1 10000101 11011010100000000000000 = -118.625

22

www.itu.dk

The normalized number line

• Representable with 2 f bits and 2 e bits:
(If bias = 1, then exponent is -1, 0, 1, or 2)

• Same relative precision for all numbers
• Lower absolute precision for large numbers

23

1.002 x 2-1 = 0.5
1.012 x 2-1 = 0.625
1.102 x 2-1 = 0.75
1.112 x 2-1 = 0.875
1.002 x 20 = 1
1.012 x 20 = 1.25
1.102 x 20 = 1.5
1.112 x 20 = 1.75

1.002 x 21 = 2
1.012 x 21 = 2.5
1.102 x 21 = 3
1.112 x 21 = 3.5
1.002 x 22 = 4
1.012 x 22 = 5
1.102 x 22 = 6
1.112 x 22 = 7

www.itu.dk

Units in the last place (ulp)
• The distance between two neighbor numbers

is called 1 ulp = unit in the last place

• A good measure of
– relative representation error
– relative computation error

• Eg java.lang.Math.log documentation says
"The computed result must be
within 1 ulp of the exact result."

•
24

s eeeeeeee fffffffffffffffffffffff
0 01111111 00000000000000000000000 = 1.0
0 01111111 00000000000000000000001 = 1.0000001

1 ulp
difference

www.itu.dk

Check: floating-points numbers
• If 27.375 is represented as the binary

fraction 11011.0112, what is the 32-bit
floating point representation of -27.375?

s eeeeeeeee fffffffffffffffffffffff

A 0 0000001002 = 4 10110110000000000000000

B 1 1000000112 = 131 10110110000000000000000

C 0 1000001012 = 5 10110110000000000000000

D 1 1000000102 = 130 10110110000000000000000

E 1 1000000102 = 2 10110110000000000000000

25

Special “numbers”
• Denormal (and zero) numbers, resulting from underflow
• Infinite numbers, resulting from 1.0/0.0, Math.log(0), …
• NaNs (not-a-number), resulting from 0.0/0.0, Math.sqrt(-1), …

Exponent e-b Represented number
–126...127 Normal: ±10-38 to ±1038

–127 Denormal, or zero: ±10-44 to ±10-38, and ±0.0
128 Infinities, when f=0…0
128 NaNs, when f=1xx…xx

s eeeeeeee fffffffffffffffffffffff
1 10000101 11011010100000000000000 = -118.625
0 00000000 00010000000000000000000 = 7.346E-40
0 11111111 00000000000000000000000 = +Infinity
1 11111111 00000000000000000000000 = -Infinity
s 11111111 10000000000000000000000 = NaN

26

Why denormal numbers?
• To allow gradual underflow, small numbers
• To ensure that x–y==0 if and only if x==y
• Example denormal result in float:

– Smallest non-zero normal number is 2-126

– So choose x=1.012*2-126 and y=1.002*2-126:
s eeeeeeee fffffffffffffffffffffff
0 00000001 01000000000000000000000 = x
0 00000001 00000000000000000000000 = y
0 00000000 01000000000000000000000 = x-y

• What would happen without denormal?
– Since x-y is 2-128 it is less than 2-126

– So result of x-y would be represented as 0.0
– But clearly x != y, so this would be confusing

27

www.itu.dk

Why infinities?
• 1: A simple solution to overflow

– Math.exp(100000.0) gives +Infinity
• 2: To make “sensible” expressions work

– Example: Compute f(x) = x/(x2+1.0)
– But if x is large then x2 may overflow
– Better compute: f(x) = 1.0/(x+1.0/x)
– But if x=0 then 1.0/x looks bad, yet want f(0)=0
Solution:
– Let 1.0 / 0.0 be Infinity
– Let 0.0 + Infinity be Infinity
– Let 1.0 / Infinity be 0.0
– Then 1.0/(0.0+1.0/0.0) gives 0 as should for x=0

28

www.itu.dk

Why NaNs?
• An efficient way to report and propagate error

– Languages like C do not have exceptions
– Exceptions are 10,000 times slower than (1.2+x)

• Even weird expressions must have a result
0.0/0.0 gives NaN
Infinity – Infinity gives NaN
Math.sqrt(-1.0) gives NaN
Math.log(-1.0) gives NaN

• Operations must preserve NaNs
NaN + 17.0 gives NaN
Math.sqrt(NaN) gives NaN
... and so on

29

www.itu.dk

What about double (binary64)?
• The same, just with 64=1+11+52 bits instead of 32

• Double 0.1 is really this exact number:
0.1000000000000000055511151231257827021181583404541015625

s eeeeeeeeeee ff
0 00000000000 00 = +0.0
1 00000000000 00 = -0.0
0 01111111111 00 = 1.0
0 01111111110 00 = 0.5
1 10000000101 110110101000 = -118.625
0 11111111111 00 = +Infinity
1 11111111111 00 = -Infinity
s 11111111111 1000 = NaN
0 00000000000 000100 = 1.39E-309
0 01111111011 1001100110011001100110011001100110011001100110011010 = 0.1
0 01111111110 11 = 0.999...9

0.1+0.1+0.1+0.1+0.1+
0.1+0.1+0.1+0.1+0.1,
clearly not equal to 1.0

30

IEEE addition

31

IEEE subtraction

32

IEEE multiplication

33

IEEE division

34

IEEE equality and ordering

• Equality (==, !=)
– A NaN is not equal to anything, not even itself
– So if y is NaN, then y != y, and vice versa

• Ordering: –∞ < –2.0 < –0.0 == 0.0 < 2.0 < +∞
– All comparisons involving NaNs give false

35

Java and C# mathematical functions

sqrt(-2.0) = NaN sqrt(NaN) = NaN

log(0.0) = -Inf log(NaN) = NaN

log(-1.0) = NaN

sin(Inf) = NaN sin(NaN) = NaN

asin(2.0) = NaN

exp(10000.0) = Inf exp(NaN) = NaN

exp(-Inf) = 0.0

pow(0.0, -1.0) = Inf pow(NaN, 0.0) = 1 in Java

• In general, functions behave sensibly
– Give +Infinity or –Infinity on extreme arguments
– Give NaN on invalid arguments
– Preserve NaN arguments, with few exceptions

36

www.itu.dk

Rounding modes
• High-school: round 0.5 upwards

– Rounds 0,1,2,3,4 down and rounds 5,6,7,8,9 up
• Looks fair
• But dangerous: may introduce drift in loops

• IEEE-754:
– Rounds 0,1,2,3,4 down and rounds 6,7,8,9 up
– Rounds 0.5 to nearest even number (or more

generally, to zero least significant bit)
• So both 1.5 and 2.5 round to 2.0

37

www.itu.dk

Basic principle of IEEE floating-point

• So the machine result of x*y is the rounding
of the “real” result of x*y

• This is simple and easy to reason about
• … and quite surprising that it can be

implemented in finite hardware

“Each of the computational operations … shall be
performed as if it first produced an intermediate
result correct to infinite precision and unbounded
range, and then rounded that intermediate result to
fit in the destination’s format”
(IEEE 754-2008 §5.1)

38

www.itu.dk

Check: IEEE surprises
• For which values of x is 1.0 + x = 1.0 with

32-bit floating point arithmetic?
A) 1.0x10-6

B) 1.0x108

C) 1.0x10-8

D) 1.0x106

Hint: log10(223) ≈ 6.92 significant digits

39

www.itu.dk

Loss of precision 1 (ex: double)
• Let double z=253, then z+1.0==z

– because only 52 digits in fraction
0 10000110100 00=z
0 10000110100 00=z+1

40

Loss of precision 2 (ex: double)
Catastrophic cancellation

• Let v=9876543210.2 and w=9876543210.1
• Big and nearly equal; correct to 16 decimal places
• But their difference v–w is correct only to 6 places
• Because fractions were correct only to 6 places

v = 9876543210.200000
w = 9876543210.100000
v-w = 0.10000038146972656

Garbage,
why?

0 10000100000 0010011001011000000010110111010100011001100110011010 = v
0 10000100000 0010011001011000000010110111010100001100110011001101 = w

0 01111111011 1001100110011010000000000000000000000000000000000000 = v-w

Would be non-zero in full-precision 0.1
41

v = 9876543210.20000076293945312500
w = 9876543210.10000038146972656250
v-w = 0.10000038146972656250

The exact
actual

numbers

www.itu.dk

Case: Solving a quadratic equation
• The solutions to ax2 + bx + c = 0 are

a
dbx

21
+-

=
a
dbx

22
--

=

when d = b2 – 4ac > 0.
• But subtraction -b±Öd may lose precision

when b2 is much larger than 4ac; in this case
the square root is nearly b.

• Fix: Since Öd >= 0, compute x1 first if b<0,
else compute x2 first

• Then compute x2 from x1; or x1 from x2

42

www.itu.dk

Bad and good quadratic solutions

• When a=1, b=109, c=1 we get
– Bad algorithm: x1 = -1.00000e+09 and x2 = 0.00000
– Good algorithm: x1 = -1.00000e+09 and x2 = -1.00000e-09

double d = b * b - 4 * a * c;
if (d > 0) {

double y = Math.sqrt(d);
double x1 = (-b - y)/(2 * a);
double x2 = (-b + y)/(2 * a);

}

double d = b * b - 4 * a * c;
if (d > 0) {

double y = Math.sqrt(d);
double x1 = b > 0 ? (-b - y)/(2*a) : (-b + y)/(2*a);
double x2 = c / (x1 * a);

} else ...

Bad

Good

Bad

43

Case: Linear regression
• Points (2.1, 5.2), (2.2, 5.4), (2.4, 5.8) have

regression line y = a + b x with a = 1 and b = 2

y = 2x + 1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5
44

Bad way to compute a and b

• This recipe was used for computing by hand
• OK for scattered points near (0,0)
• But otherwise may lose precision because it

computes difference between large similar
numbers SSX and SX*SX/n

double SX = 0.0, SY = 0.0, SSX = 0.0, SXY = 0.0;
for (int i=0; i<n; i++) {

Point p = ps[i];
SX += p.x;
SY += p.y;
SXY += p.x * p.y;
SSX += p.x * p.x;

}
double beta = (SXY - SX*SY/n) / (SSX - SX*SX/n);
double alpha = SY/n - SX/n * beta;

Large and
nearly

identical

Large and
nearly

identical

45

Better way to compute a and b
double SX = 0.0, SY = 0.0;
for (int i=0; i<n; i++) {

Point p = ps[i];
SX += p.x;
SY += p.y;

}
double EX = SX/n, EY = SY/n;
double SDXDY = 0.0, SSDX = 0.0;
for (int i=0; i<n; i++) {

Point p = ps[i];
double dx = p.x - EX, dy = p.y - EY;
SDXDY += dx * dy;
SSDX += dx * dx;

}
double beta = SDXDY/SSDX;
double alpha = SY/n - SX/n * beta;

• Mathematically equivalent to previous one,
but much more precise on the computer

46

Example results

Move Bad Good Correct

0
a 1.000000 1.000000 1.000000

b 2.000000 2.000000 2.000000

10 M
a 3.233333 -9999998.99 -9999999.00

b 1.000000 2.000000 2.000000

50 M
a 50000005.47 -49999999.27 -49999999.00

b -0.000000 2.000000 2.000000

• Consider (2.1, 5.2), (2.2, 5.4), (2.4, 5.8)
• And same with 10 000 000 or 50 000 000

added to each coordinate

Wrong

Very
wrong!!

47

www.itu.dk

Numerical analysis, neat intro
• Compact, easy to read,

by a real expert
• Focus on linear algebra,

matrix inversion,
condition number, …

• For misprints, see my
review at amazon.com

48

An accurate computation of sums
• Let double[] xs = { 1E12, -1, 1E12, -1, … }
• The true array sum is 9,999,999,999,990,000.0

double S = 0.0;
for (int i=0; i<xs.length; i++)

S += xs[i];

double S = 0.0, C = 0.0;
for (int i=0; i<xs.length; i++) {

double Y = xs[i] - C, T = S + Y;
C = (T - S) - Y;
S = T;

}

20,000 elements

Naïve sum,
error = 992

Kahan sum,
error = 0

C is the error
in the sum S

Note that C = (T-S)-Y = ((S+Y)-S)-Y may be non-zero
49

www.itu.dk

Floating-point tips and tricks
• Do not compare floating-point using ==, !=

– Use Math.abs(x–y) < 1E-9 or similar
– Or better, compare difference in ulps (next slide)

• Do not use floating-point for currency ($, kr)
– Use C# decimal or java.math.BigDecimal
– Or use long, and store amount as cents or øre

• A double stores integers <= 253-1 ≈ 8*1015 exactly
• To compute with very small positive numbers

(probabilities) or very large positive numbers
(combinations), use their logarithms

52

www.itu.dk

Approximate comparison
• Often useless to compare with "=="
• Fast relative comparison: difference in ulps
• Consider x and y as longs, subtract:

53

static boolean almostEquals(double x, double y, int maxUlps) {
long xBits = Double.doubleToRawLongBits(x),

yBits = Double.doubleToRawLongBits(y),
MinValue = 1L << 63;

if (xBits < 0)
xBits = MinValue - xBits;

if (yBits < 0)
yBits = MinValue - yBits;

long d = xBits - yBits;
return d != MinValue && Math.abs(d) <= maxUlps;

}

1.0 == 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 is false
almostEquals(1.0, 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1, 16) is true

www.itu.dk

Transcendental function surprise
• The exp() function changed unexpectedly:

• Indeed, the two numbers differ by 1 ulp:

• ... and are on either side of the precise result:

55

Math::Exp(float64) ændrer opførsel med applikation af KB3083185 og KB3098785
...
double c = 0.22211390926973425;
double x = -1.5045649238845;
double calc = Math.Exp(x);
...
Bygget med release x64 […] bliver c og calc ens før bemeldte updates, mens de
efter er minimalt forskellige […]”

Troels Damgaard 16 Nov 2015

0 01111111100 1100011011100011101010000100001001100110110110011011 = 0.22211390926973426
0 01111111100 1100011011100011101010000100001001100110110110011100 = 0.22211390926973429

0.22211390926973426
< 0.22211390926973427457...
< 0.22211390926973429

EXP-lanation from Microsoft
”The underlying implementation of some of the math
functions changed due to an update in the CLR
between .net versions 4.5.1. and 4.5.2 some of the
base math implementation is licensed code from Intel
and AMD and periodic changes are incorporated to
facilitate more performant operations on newer chip
sets – there may be a marginal change in
accuracy but MS ensure this stays within +-1ulp.

The following may have marginal differences between
versions within -+1ULP: cos, cosf, exp, expf, log,
log10, log10f, logf, pow, powf, sin, sinf, tan, and
tanf. […]”

56

Mail from Holly Muenchow via Mads Torgersen, 18 Nov 2015

www.itu.dk

What is that number really?
• Java's java.math.BigDecimal can display

the exact number represented by double d:

57

new java.math.BigDecimal(d).toString()

double 0.125 = 0.125
float 0.125f = 0.125

double 0.1
is 0.1000000000000000055511151231257827021181583404541015625

float 0.1f
is 0.100000001490116119384765625

double 0.01
is 0.01000000000000000020816681711721685132943093776702880859375

float 0.01f
is 0.00999999977648258209228515625

References
• David Goldberg: What every computer scientist should know

about floating-point arithmetics. ACM Comp Surv 23 (1) 1991.
http://www.itu.dk/people/sestoft/bachelor/IEEE754_article.pdf

• Ole Østerby: Numerical analysis. Aarhus University 2002
http://daimi.au.dk/~oleby/notes/nae.pdf

• R. Mak: Java Number Cruncher: The Java Programmer's Guide to
Numerical Computing. Prentice-Hall 2002.

• Java example code and more:
http://www.itu.dk/people/sestoft/bachelor/Numbers.cs
http://www.itu.dk/people/sestoft/bachelor/Numbers.java
http://www.itu.dk/people/sestoft/javaprecisely/java-floatingpoint.pdf
http://www.itu.dk/people/sestoft/papers/numericperformance.pdf

• http://en.wikipedia.org/wiki/IEEE_754-1985
• William Kahan notes on IEEE 754:

http://www.cs.berkeley.edu/~wkahan/ieee754status/
http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

• General Decimal Arithmetic (Mike Cowlishaw, IBM)
http://speleotrove.com/decimal/

• C# specification (Ecma International standard 334):
http://www.ecma-international.org/publications/standards/Ecma-334.htm

• How to compare floating-point numbers (in C):
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

59

http://www.itu.dk/people/sestoft/bachelor/Numbers.cs
http://www.itu.dk/people/sestoft/bachelor/Numbers.java
http://www.itu.dk/people/sestoft/javaprecisely/java-floatingpoint.pdf
http://www.itu.dk/people/sestoft/papers/numericperformance.pdf
http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.cs.berkeley.edu/~wkahan/ieee754status/
http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html
http://speleotrove.com/decimal/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

