YIIHAW
An aspect weaver for .NET

IT University

of Copenhagen

Rasmus Johansen Stephan Spangenberg

Supervisor:
Peter Sestoft

IT University of Copenhagen
28/02/2007

YITHAW - An aspect weaver for .NET

Abstract

This thesis has examined various aspect weavers that exist for the .NET platform with the
purpose of investigating their applicability for generating specialized programs and weaving
performance-critical applications. Neither of these aspect weavers turned out to be usable for
these purposes, as they added too much runtime overhead or lacked the basic features needed
for implementing the proper aspects. Aspect.NET performed better than the other weavers
in terms of efficiency of the generated code, but with its lack of support for introductions
and interceptions of instance methods it turned out to be too limited to be of any use.

We have proposed a different implementation for an aspect weaver that uses inlining of
the IL-instructions when applying advice methods to a target assembly. Using this approach,
many of the unnecessary constructs that other aspect weavers add to the generated assem-
blies can be avoided, such as assembly references and copies of the advice methods. This
means that the program structure defined by the user in the target assemblies are completely
maintained once the weaving has been performed.

The implemented prototype supports various features required for implementing advanced
AOP-constructs, such as introductions and typestructure modifications. The aspect language
provides a simple and intuitive programming model for implementing aspects. The weaver
performs typechecking on all constructs, guaranteeing that only valid assemblies are gene-
rated, i.e. assemblies that are verifiable by the Common Language Runtime.

We consider the prototype to be highly usable for constructing such program-generators
that cannot be implemented using any of the aspect weavers examined during this thesis.
Empirical tests show that the weaver prototype does not introduce any runtime overhead
in the generated assemblies, making it suitable for applying aspects to performance-critical
applications.

Contents

21

2.2

2.3

24

3.1

3.2
3.3

3.4

3.5

3.6

Introduction

Problem definition

AOP in modern programmingol
2.1.1 Pointcuts and join points Lo
2.1.2 Interceptions L e
2.1.3 Introductions
2.1.4 Typestructure modifications,
The need for a high-performing aspect weaver
2.2.1 Case study: C5 collection library
Insufficiency of existing aspect weavers
2.3.1 Existing aspect weavers o e
2.3.2 Defining the tests L
233 Testsetup
2.34 Testresults
Preliminary goals for a high-performing aspect weaver

Problem analysis

Inside Aspect. NET
3.1.1 Intercepting a method call
3.1.2 Advicereturn type
3.1.3 Using arguments L Lo e
3.1.4 Thelessons learned L L L Lo
Binding mode
Applying aspects L
3.3.1 Source code weaving
3.3.2 Direct advice invocation L L L Lo L
3.3.3 Inlining advice
Implementing aspects L
3.4.1 Introductions
3.4.2 Interceptions
3.4.3 'Typestructure modifications Lo
Pointcut specification
3.5.1 Writing the pointcuts L L Lo L
3.5.2 The pointcut language Lo oL
353 Wildcardso
3.5.4 Complex expressions
Summaryo e

© 0o I

10
10
11
11
12
12
13
17
17
19

CONTENTS YITHAW - An aspect weaver for .NET

4 Common Intermediate Language
4.1 What is CIL? e e
4.1.1 Assembly, modules and metadata
4.1.2 Instructions and operands Lo oo
4.1.3 Flow control e
4.1.4 Datatypeso
4.1.5 Thestack e e
4.1.6 Exception handling L o

5 Working with CIL
5.1 Microsoft Phoenix
5.1.1 Is Phoenix the right choice? L.
5.2 Cecil e e
5.2.1 Is Cecil the right choice? o oL

6 The complexity of advice inlining
6.1 Advicesyntax
6.2 Invoking Proceed L
6.2.1 Handling void
6.2.2 Injecting the target method’sbody
6.3 Merging local variables
6.4 Mapping IL-instructions Lo o
6.5 Checking references L
6.5.1 Handling references to constructs outside the aspect assembly
6.5.2 Handling references to constructs in the aspect assembly
6.5.3 Handling references to local constructs
6.6 Referring to the declaring type of the target method
6.6.1 Handling calls to GetTarget()
6.6.2 Accessing constructs of the declaring type

7 Pointcut specification
7.1 Defining the pointcut language o L.
7.1.1 The pointcut file
7.1.2 Targeting constructs L oo
7.1.3 The pointcut languageo
7.2 Scanning the input fileo
7.2.1 Identifying keywords and special tokens
7.3 Parsing the pointcuts.
7.3.1 Storing the pointcut statements,
7.3.2 Handling errors

8 Identifying targets and aspects
8.1 Locating constructs in the target and aspect assemblies
8.2 Locating the proper advice method 0oL
8.2.1 Invocation kind of the advice methods

9 The weaving process
9.1 Introducing constructso
9.1.1 The need for a two-pass approach
9.1.2 Storing constructs in a mapping-table 00000 L
9.2 Modifying the typestructure

41
41
41
42
42
43
43
43

46
46
47
47
47

48
48
50
50
51
93
53
93
o4
95
95
56
o8
o8

59
99
99
99
61
63
63
64
65
65

66
66
66
67

CONTENTS YITHAW - An aspect weaver for .NET

10

11

12

13

14

T Q49 #H O Q " >

-

9.2.1 Verifying the availability of the basetypes and interfaces 71

9.2.2 Checking the definition of methods and properties 71

9.2.3 Updating references L Lo 71
9.3 Handling interceptionso 72

9.3.1 Thejoinpoint API 72

9.3.2 Merging the targets and advice Lo 73
9.4 Using YIIHAW o e 75
Partial functional testing 76
10.1 The test frameworko 76
10.2 The testcases e e e e 77

10.2.1 Atestsample 7
Measuring the runtime performance 78
11.1 Test setup o o e e e e e 78
11.2 Comparing YITHAW to code written by hand 78
11.3 Implementing a generator for a collection library 78

11.3.1 Test scenario e 79

11.3.2 Test results e 80
Evaluation 81
12.1 Runtime performance of the generated assemblies 81
12.2 The aspect language L L L 83
Future work 85
13.1 Support for further introductions 85
13.2 Handling typestructure modifications 85
13.3 Further possibilities in the join point context APT. 85
13.4 Compatibility with older releases of NET 85
13.5 Accessing generic parameterso i e e e 86
13.6 Support for generics in the pointcut language 86
13.7 YIIHAW on the web e 86
Conclusion 87
Usage guide for YITHAW 92
Pointcut grammar 101
Short form notation for the pointcut language 103
Class diagram 104
Source code for tests - Basecode 105
Source code for tests - Coded by hand 109
Source code for tests - Aspect DNG 113
Source code for tests - Aspect.NET 116
Source code for tests - NKalore 118

CONTENTS

YITHAW - An aspect weaver for .NET

J Source

K Source

L Source

M Source

N Source

Source

Source

& O v O

Source

05}

Source

T Source

U Source

V Source

W Source

X Source

code for tests - Rapier LOOM

code for tests - YIIHAW

code for collection tests - Aspect DNG
code for collection tests - YITHAW

code for collection tests - Coded by hand
code for collection tests - Basecode

code for collection tests - Test program

Partial functional testing overview

code for partial functional testing
code for YITHAW - API

code for YITHAW - Exceptions
code for YITHAW - Output

code for YITHAW - Pointcut
code for YITHAW - Controller

code for YITHAW - Weaver

122

129

131

141

149

160

168

170

173

216

219

221

229

258

297

Chapter 1

Introduction

Aspect Oriented Programming (AOP) is a paradigm that has received a lot of attention during
the last couple of years. This is due to the nature of AOP that directly addresses some of
the shortcomings in traditional programming paradigms, such as object oriented programming
(OOP) and procedural programming. These programming paradigms do not fully support the
handling of so-called cross-cutting concerns and thus often fall short when expressing these types
of interests.

AOP offers features for implementing and handling cross-cutting concerns (named aspects)
via a program called an aspect weaver. The Java community has been leading the field of AOP
for some time, primarily due to AspectJ [6] which was one of the first aspect weavers available
and is probably the most well-known weaver today. So far, AOP has not received the same
amount of focus in the NET world. Naturally this affects both the quantity and quality of
available weavers for the .NET platform. Most of these weavers are created as small “hobby-
projects” that do not receive any commercial support, unlike AspectJ which is developed and
distributed as part of the Eclipse project. This lack of commercial support means that these
products do not achieve a wide usage in the .NET community and are thus quickly forgotten
and abandoned. Obviously, this also affects the maturity of these products, which results in
limited support for certain features, like generics, low-level pointcut specification (see section
2.1), typestructure modifications, etc. Another problem, one that is important for this thesis, is
the performance penalty that is often incurred when using existing weavers. High performance
penalties when intercepting methods are not unusual. Obviously, this does not make the use of
AOP viable in performance-critical applications. This thesis will investigate the causes for these
performance penalties and discuss how they can be dealt with. To support these discussions a
working prototype of an aspect weaver will be developed that tries to resolve the performance
issues of existing weavers.

This thesis is highly motivated by our previous project: “Generation of specialized collection
libraries” [3]. That project examined various techniques that could be used for implementing a
generator for creating customized versions of the C5 collection library [4]. The overall conclusion
of that project was that AOP offered a high degree of code reusablity and provided a great
reduction of the complexity of the generator. Unfortunately the generated code performed
very poorly (in regard to CPU time) due to an inappropiate implementation of the aspect
weaver (AspectDNG [5]). Thus, optimal performance was presumably not considered a high
priority when that aspect weaver was designed. An aspect weaver without (or with very little)
performance overhead would be very useful for implementing such a generator [3].

Chapter 2

Problem definition

This chapter presents the problem at hand in greater detail. The following section briefly
describes what AOP is and how it can be used. This description presents the generel terms
and usage of AOP - it is not targeted specifically at the problem domain of this thesis. Having
presented the concept of AOP, some of the existing aspect weavers for .NET will be presented
with focus on their runtime performance.

2.1 AOP in modern programming

A key issue in modern programming is the design of a maintainable and extensible program
structure that allows replacement and modification of parts of the program, so that program
behaviour can be easily expanded or altered as needed. Obviously this requires the program
structure to be designed for handling such changes. Separation of concerns [13] is a classical pro-
gramming principle that suggest encapsulation of concerns (points of interest) into self-describing
and more or less autonomous entities, such as a classes, modules, components, etc. The moti-
vation for this principle is that such encapsulation result in a weaker coupling between different
concerns in the program, ensuring that the dependencies between different parts of the program
are reduced. Creating a program structure with weak coupling between different concerns is a
fundamental goal as it allows great flexibility when it comes to program modification. Concerns
that are tangled within each other and scattered over the source code are cumbersome to handle
when it comes to refactoring the code. A well-designed program structure ensures that modifi-
cations in program behaviour can easily be adapted to fit within the existing program.

Some concerns cannot easily be encapsulated or localized into separate entities or program
constructs. Such concerns are said to be cross-cutting concerns. Logging is the classical example
of a cross-cutting concern: Often statements such as Logger. Write(”entering method XXX”) are
inserted at various locations in the source code to trace program execution through the log.
Even simple applications might contain hundreds of such statements that are simply repeated
over and over. Obviously such repetition of code is tedious, not to say error-prone. AOP directly
targets such problems by allowing you to write the concern once and then apply it multiple times
- either to the compiled binary or to the source code. In the logging example described above
a single implementation of the Logger. Write(...) statement would do - this implementation can
then be inserted at various locations in the program through the use of an aspect weaver. An
aspect weaver is a program that allows merging multiple source code files or compiled binaries
into one entity. This combined entity contains the original implementation along with the im-
plemented concerns inserted at specified locations.

The main benefits that AOP offers is code reduction and code overview: A concern need to

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

be implemented only once in order to be applied at many locations. Thus, one does not need
to write the same lines of code over and over at different locations in the source code. This
issue is refered to as quantification [8]. Another central issue in AOP is that of obliviousness
[8]: The use of AOP should be transparent in the programming of the target code (the part of
the implementation where concerns should be applied), i.e. no special preparations should be
assumed. Thus, no special constructs should be created in the target code prior to applying the
implemented concerns.

2.1.1 Pointcuts and join points

Being able to implement concerns once and apply them multiple times is a key objective in
AOP. To support this feature obviously requires some means of specifying where to apply the
concerns. This is done through the use of join points and pointcuts. A join point describes a
particular point in execution of the code. Most often, a join point directly matches a specific
location in the source code, e.g. a specific method, but join points can also describe a particular
control flow event that does not directly correspond to a particular line in the source code. For
instance, one might define a join point that matches all calls to method Foo() from any instance
of class Bar. This join point cannot be described by a particular line in the source code as the
join point should only apply to method calls to Foo() that comes from Bar - calls to Foo() from
any other type of object should not be matched by this join point. This join point thus matches
a specific control flow in the execution of the program.

Pointcuts have a close relationship with join points: A pointcut is a pattern used to define
one or more join points. An example of the use of pointcuts is shown below.

pointcut loggingMethods(): call(* *.set*(..));

before(): loggingMethods()
{

Logger.write("entering " + thisJoinPoint);

Figure 2.1: A pointcut in AspectJ.

Figure 2.1 shows how to apply a logging concern at multiple locations. First, a pointcut
named loggingMethods is defined. This pointcut matches all calls to methods that return any
type (the first *’), is located in any class (the second '*’), whose name starts with ’set’ and
takes any number of arguments (the ’..” part). Once the pointcut is specified it can be used
when implementing the concern. In figure 2.1 the keyword before is used, which states that
the implementation should be applied immediately before the call to any method that matches
loggingMethods. Thus, prior to executing such a method the logging concern is executed. This
particular concern uses what is called join point context: The variable thisJoinPoint is a special
variable introduced by AspectJ, that gives access to context information about the current join
point, e.g. the signature of the original method (the method being intercepted) as it is used in
the example above. The thisJoinPoint variable can also be used to retrieve information about
the return value and arguments of the original method.

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

Dynamic pointcuts

The pointcut shown above can be determined statically, which means that the all join points
that match the pointcut can be identified at weave-time. Some aspect weavers also support
so-called dynamic pointcuts, i.e. pointcuts that describe events not known until runtime. For in-
stance, AspectJ [6] defines a dynamic pointcut event called c¢flow. This allows the user to specify
the identity of the caller when defining an interception. This is shown in the small sample below.

call (void ClassA .bar()) && cflow(call(void ClassB.foo()))

This pointcut matches all calls to ClassA.bar that occurs from ClassB.foo. This includes both
direct and indirect calls - if ClassB.foo calls another method which in turns calls ClassA.bar
this matches the pointcut as well. Calls to ClassA.bar from all other methods are not matched
and are thus not intercepted. Dynamic pointcuts, such as this one are not always determinable
at weave-time, as the cflow might match a method in another assembly that is not available
at weave-time. AspectJ thus places so-called dynamic residue in the generated code. Dynamic
residue is simply some code that performs a runtime check to see if a match is found and then
applies some code specified by the user. This approach thus defers some parts of the weaving
until runtime.

2.1.2 Interceptions

Interception is the process of adding and modifing parts of the target code by changing the
control flow. The code presented in figure 2.1 is an example of an interception: The logging
concern intercepts the methods matching the pointcut and thus alters the control flow of the
original program. The specific code that constitutes the concern of interest is refered to as advice
and is implemented in a separate method (referred to as an advice method).

Interceptions are not restricted to methods only. Many aspect weavers allow you to intercept
properties, constructors, field access (read/write), etc., thus allowing one to alter the control
flow as needed. When talking about interceptions one usually distinquish between three kinds:
Around, before and after. These can be further divided into two types: call and body.

Around

Around interception is one of the most fundamental AOP constructs and is supported by most
implementations. It basically allows modifying the control flow of an application by replacing
one or more target operations. The target operation will most often be a method in the target
code, but it could just as well be a property, a constructor or a field access. The operation to
target is determined via a pointcut.

Basically, two types of around interception exist: around body and around call. An around
body interception allows replacing the body of an existing target (which means that you can
actually discard all of the original body). An around call interception does not modify the body
of the method being intercepted, but instead modifies all calls to this method so that the advice
method is invoked instead. For both cases the original method can be invoked at some point in
the advice. Throughout the rest of this report, when referring to around interception we mean
around body interception unless explictly stated otherwise.

Even though around interception can be used to remove code from a method, most oftenly an
around interception is used to add additional code to a target. Most implementations support

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

invoking the original target from within the advice. This is usually done through a method
named Proceed() or similar. This allows you to write the logic of the advice (the additional
code) and then invoke the original target at a suitable time, e.g. as the last instruction in the
advice.

Before

Before is another type of interception. It basically allows intercepting a method by executing
the advice immediatly before returning control to the original method. As with around inter-
ception, two types of before interception exist: before call and before body. Using the former,
all invocations of the target method (the method that is being intercepted) are replaced with a
call to the advice. Using the latter, the advice is inserted into the target body. Unlike around
interception the programmer does not need to explicitly invoke a Proceed() method - the original
method is always executed.

A before interception can be implemented using an around interception instead: An around
interception that ends with the invocation of the Proceed() method simulates the effect of a
before interception. From a logical perspective they do the same (that is, they execute the same
code). However, as around interception usually suffer from a greater runtime overhead than
before interception [9], many implementations directly supports before interception, which can
often be implemented more efficiently.

After

After interception is similar to before interception, except that the advice is executed after
the original method has completed. Again, after interception can be simulated using around
interception, but this usually introduces a greater runtime overhead [9]. As before interception,
after interception can be specified to be either after call or after body.

2.1.3 Introductions

Being able to intercept control flow in an existing program is a major benefit when dealing with
cross-cutting concerns. However, sometimes you also need some way of inserting new constructs
(methods, fields, properties, classes, etc.) into an existing program. This process is referred to
as introduction. By introducing new constructs you are modifying the program structure of the
existing program so that it reflects the concerns of interest. This is useful when you need to
expand or modify the behaviour of an existing program.

2.1.4 Typestructure modifications

Some aspect weavers support the use of typestructure modifications, which means that the weaver
can alter the typestructure of an existing program. This can usually be done in two ways: Change
the superclass of a class in the target assembly or make a class implement one or more interfaces.
This process is not as widely used as introductions, but it can still be very useful in some cases.
For instance, when using AOP for generating programs one often need to add behaviour to
existing classes. It often makes sense to provide access to this behaviour through one or more
interfaces in order to achieve a low coupling between different entities in the target assembly.

10

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

2.2 The need for a high-performing aspect weaver

Object-oriented programming is a very expressive programming paradigm that allows easy en-
capsulation, modularization and code reuse. However, as mentioned in section 2.1, OOP often
falls short when it comes to handling cross-cutting concerns. Expressing such concerns often
requires a great deal of code scattering and code tangling, resulting in fragmented and repetitive
source code. This introduces the need for an aspect weaver for the .NET framework. Such an
aspect weaver should support the features required by the programmer for handling cross-cutting
concerns without introducing unnecessary runtime overhead. In many programs AOP is useless
if the concerns cannot be implemented in an efficient manner, as this would simply outweigh the
advantage of using AOP in the first place. An aspect weaver that can be used for these kind of
programs is the primary focus for this thesis. The following case study depicts a scenario where
the use of an inefficient aspect weaver would simply not be suitable.

2.2.1 Case study: C5 collection library

The C5 collection library [4] is a general-purpose collection library for .NET that provides sup-
port for datastructures not found in the standard collection library distributed as part of the
NET framework. In an earlier project [3], we examined how to make a generator for a small
sample of this collection library that can be used for customizing it for specific purposes. This
generator allows configuring which datastructures should be included in the library (linked lists,
array lists, etc.) and what features these datastructures should support (enumeration, event-
handling, etc.). A key concern is that the use of a generator should not introduce any overhead
in the library, as that would neglect the use of a generator.

As the implementation of C5 consists of roughly 27,000 lines of code [4], a well-structured
approach was needed. Simply using preprocessing directives (#if <flag> ... #endif) on the
source code was not a suitable solution, as it would be too comprehensive to generate and main-
tain preprocessor statements for all optional features in the code. Instead a different approach
was suggested: The optional features were implemented as advice and were separated from the
rest of the code. This resulted in a huge reduction in the complexity of the generator, due to
the following:

e It allowed reusing the features at many locations (through the use of pointcut specifica-
tions).

e [t made precompiling the optional features possible, which ensured that an early type-
checking was achieved.

e It allowed separating the optional features from the configuration of where these features
should be applied. The only thing that the generator would need to perform at runtime
was the generation of the configuration file and invoking the aspect weaver.

Thus, from a structural and conceptual point of view the use of AOP seems feasible for
implementing such a generator. However, a main conclusion of the project was that the choice
of which aspect weaver to use plays a significant role in regards to the amount of overhead
that is introduced. Using AspectDNG [5] the overhead incurred was as much as 5,000%! This
obviously calls for a solution that offers the basic AOP features needed, but without introducing
any overhead.

11

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

2.3 Insufficiency of existing aspect weavers

This section will present some of the aspect weavers for .NET and discuss why we believe that
they are not yet suited for handling concerns in a resource efficient manner. This discussion
will primarily be based on a number of tests that will be performed on the aspect weavers in
question. The motivation for these tests will be described as well.

2.3.1 Existing aspect weavers

Various aspect weavers exist for the .NET framwork. As it is impossible to test all of them, we
have decided to pick the ones that we consider to be the most popular. These weavers will be
used as a foundation for our tests.

AspectDNG

AspectDNG [5] is an open source aspect weaver that uses static evaluation! of all aspects. When
intercepting a method, advice is inserted into the target assembly as a method and the target
method is modified so that it invokes the advice method. After the weaving has taken place the
target assembly is completely self-contained, i.e. the target assembly is not dependent on the
advice assembly or any other assemblies.

AspectDNG supports around interceptions as well as typestructure modifications and intro-
ductions. Two choices exist when it comes to defining the pointcuts: One can either annotate the
advice methods and classes using .NET attributes or one can use an external XML configuration
file. Using the latter means that access to the source code is not required.

Aspect.NET

The Aspect.NET [15] weaver is developed at St. Petersburg University in Russia and is sup-
ported by Microsoft Research. Like AspectDNG, it is a static weaver. It uses Microsoft Phoenix
[18] for manipulating the target assembly. In the current version (2.0 at the time of writing) the
weaving is done by inserting new method calls to the advice methods in the aspect assembly at
the join points specified by the pointcuts. When using around interceptions the original method
call is removed (effectively resulting in an around call interception).

As can be seen in figure 2.2 and 2.3 the functionality in the current version is limited to only
using static methods as advice and only targeting static methods when using around intercep-
tions. There is no support for introductions and only methods can be the target of pointcuts.

Pointcuts can be specified either through the use of a specially developed Aspect.NET.ML
metalanguage or by creating attribute classes. In the former case the metalanguage file will be
automatically translated to an attribute class.

To use Aspect.NET the user needs to have Visual Studio.NET installed as the weaving is
done through a plugin inside this IDE. When using this tool it is possible to see all the join
points in the source code and to choose whether or not to include specific join points in the
weaving.

!Static evaluation means that all targets are identified only by looking at the compiled assemblies. No runtime
checks are performed. This subject will be elaborated upon in section 3.2.

12

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

Rapier LOOM

Rapier LOOM[10] is a dynamic weaver? developed at the Hasso Platner Institut at the Postdam
University in Germany. There is no public documentation available about the inner workings of
the weaver, however we know that an earlier version of the weaver used reflection to create prox-
ies for the target classes [11]. After using a debugger tool on a weaved assembly, we believe that
the weaver still works by using reflection and proxies. The pointcut language in the weaver is
based upon custom made attributes, which are set on the advice methods and the aspect classes.

As shown in figure 2.3 there are a lot of demands on the target, when using Rapier LOOM.
As the weaving is done through a factory method, it is only possible to do weaving on objects
and not on classes (i.e. static methods are not supported). Using factory methods also means
that the creation of objects should no longer be done by using new, but instead by using a special
factory method. This means that one can use both weaved and unweaved versions of the same
objects in the program if that is needed. Rapier LOOM requires that the target methods has to
be virtual or defined in an interface.

Some of the more advanced features in Rapier LOOM include the possibility of intercepting
exception throwing and introducing interfaces together with matching methods upon a target
object.

NKalore

NKalore [17] is a static weaver based on the Mono C# compiler [16]. Advice and pointcuts
are written directly inside the source files using a special metalanguage that extends C#, which
means that access to the source code is a requirement for NKalore to work. To compile the
source files, the included compiler must be used. This compiler takes care of the weaving as
well. The aspects are thus compiled directly into the assembly. There is no support for modify-
ing an existing assembly.

NKalore only supports interceptions (before, after, around and exceptions throwing). Intro-
ductions and typestructure modifications are not supported.

A summary table comparing the features of the aspect weavers presented during this section
can be seen in figure 2.2 and 2.3.

2.3.2 Defining the tests

In order to identify some of the shortcomings that exist when using typical AOP constructs in
existing weavers, a number of tests will be performed. These tests are not meant to thoroughly
exercise every possible use of aspects as this would require a project on its own. The purpose
is to determine the net effect of applying some of the most frequently used constructs, such as
interceptions, method introductions and inheritance modifications. The tests that will be used
are somewhat ad hoc; the key intention is to identify the direct consequences of using an aspect
weaver. The tests do not directly reflect real-life usage of aspects. The reason for this is simple:
Real-life applications do not give a clear indication of the overhead of using an aspect weaver,
because there is simply too much “noise”. A typical application might implement 5% of its
concerns via aspects, meaning that the overhead would only constitute a very small percentage
of the total time and memory consumption. This obviously makes it more difficult to directly

2A dynamic weaver applies the advice at runtime, just before the classes and methods in question are loaded
into memory. This subject will be elaborated upon in section 3.2.

13

Chapter 2: Problem definition

YITHAW - An aspect weaver for .NET

Aspect weaver | .NET version | Introductions | Interceptions Baset?rpe In.t erface
modif. impl.
methods
1.1 fields around body/call
AspectDNG 2.0 classes field read/write + +
interfaces
11 before call
Aspect. NET ' — after call — —
2.0
around call
before body
after body
Rapier LOOM L1 .methods around body — +
2.0 interfaces .
after returning
after throwing
11 before body
NKalore 2' 0 — after body — —
' around body

Figure 2.2: Aspect weaver comparison chart.

Pointcut Demands Binding Source code
Aspect weaver . . .
specification on target mode required
attributes .
AspectDNG config file - static —
. If using instead
ttribut ’ .
Aspect. NET artributes target method must static +
metalanguage .
be static
Methods must be
virtual or part
of an interface.
. . bject d to b .
Rapier LOOM attributes (é)reiz; E;GL O(()DI\/F dynamic +
factory and aspects
must be instantiated
by target.
Must included .
NKalore metalanguage ccl)lriplillz(z l(rll\(/:lounc?) static +

Figure 2.3: Aspect weaver comparison chart (continued).

measure the consequences of using an aspect weaver. The tests that we propose are somewhat
more synthetic; they consist of one or more simple AOP constructs that are simply repeated a
fixed number of times. These tests can be considered as a “worst-case” scenario for the weavers,
as they are designed to make as much use of the aspects as possible. This means that any
overhead added by the weavers will be very significant in these tests, as nearly all CPU cycles
are used on executing the aspects.

We compare the results of these tests to an implementation coded by hand. This implemen-
tation is used as a reference when measuring the overhead of the weavers and can be considered
as the optimal implementation, as it is naturally not dependent on any aspect weaver, which

14

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

means that no overhead exist in this implementation. All aspect weavers use the same target
assembly for applying the aspects. The tests are presented below. The implementation of the
tests can be seen in Appendix E - J. The results are presented in section 2.3.4.

Test 1: Around interception

The purpose of this test is to determine the cost of applying around interceptions. Consider a
class, Tester, that contains an instance method, ToBelntercepted(), and a static method, Main(),
as shown in figure 2.4.

class Tester

{

public static Random r = new Random /() ;

public void ToBelntercepted ()

{

r.Next(); // get a random integer

}

public static void Main(string[] args)

{

Tester t = new Tester();

for (int i = 0; i < 10000000; i++)
t.ToBelntercepted () ;

Figure 2.4: The class Tester.

public void Advice()
{

r.NextDouble(); // get a new random number using the static Random object
Proceed (); // invoke the original method

}

Figure 2.5: Advice for the around interception (pseudo-code).

The Main() method simply invokes the ToBelntercepted() method 10,000,000 times. These
two methods constitute the target code of the test. Using an around interception, the advice
code shown in figure 2.5 should be added to the ToBelntercepted() method. This advice simply
generates a random floating point number and invokes the original method (written as “Pro-
ceed()” above). The concrete syntax for implementing this kind of advice depends on the aspect
weaver used.

One might argue that implementing the ToBelntercepted() as an empty method would sim-
plify the tests even more. However, this might also trigger various code optimzations in either
the compiler or in some of the aspect weavers. The generation of random numbers were chosen
as they are not subject to any kind of optimizations, as there is no way to pre-determine a
random number or determine the effect of invoking the NextDouble() method.

15

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

Test 2: Before interception

Applying a before interception might yield better results than using an around interception
(refer to section 2.1.1). In order to determine the effect of applying a before interception, a test
similar to the one described above is performed using before interception, but without invoking
Proceed(). Apart from that the tests are similar.

Test 3: After interception

A test similar to the one described above is also performed for after interceptions.

Test 4: Around interception with method argument

Most aspect weavers support fetching method arguments during interception. This allows you
to use arguments passed to the original method within your advice. In order to test the effect
of fetching method arguments, the test presented in Test 1 is slightly modified for this test, as
can be seen in figure 2.6.

public void ToBelntercepted (Random r)

{
r.Next(); // get a random integer
}
public void Advice(Random r)
{

r.NextDouble(); // get a new random number using the Random argument
Proceed (); // invoke the original method

}

Figure 2.6: The ToBelntercepted() method and the advice (pseudo-code).

The ToBelntercepted() method now takes an instance of Random as argument. This instance
is used within the ToBelntercepted() method and the advice.

Test 5: Around interception on a static method

The previous tests have all been based on intercepting instance methods. To determine whether
intercepting static methods differs from interceptng instance methods, a test will be performed
similar to that of Test 1, with the exception that ToBelntercepted() and the advice are now
declared as being static.

Test 6: Introducing a new method

Some concerns require introducing new constructs (methods, fields, classes, etc.) into the target
assembly. Naturally, these introductions should not cause severe performance drops. To test
the effect of introducing new constructs into the target assembly, the following test is performed:

An empty class, Tester, is defined. Through the use of the aspect weavers, a method, Get-
NextInt() should be inserted into this class. This method is shown in figure 2.7.

In a separate assembly, another class is defined that invokes the GetNextInt() method

10,000,000 times and measures the elapsed time. This requires that the second assembly refers
to the assembly containing the GetNextInt() method. Using a separate assembly for invoking the

16

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

public void GetNextInt ()

{
}

r.Next () ;

Figure 2.7: The GetNextInt() method.

GetNeztInt() might seem cumbersome at first. Another approach would be to simply introduce
the new method and invoke this method by intercepting an existing method in the target code.
However, this makes it difficult to measure the mean effect of introducing a new method, as
the measurement would also include the time taken to execute the advice. To avoid this, the
invocation of GetNextInt() is implemented in a separate assembly, where the invocation can be
coded by hand.

Test 7: Typestructure modification

The last test measures the effect of changing the inheritance structure. An abstract class,
SuperClass, is defined, containing a single method, GetNeztInt(). Two subclasses are defined,
SubA and SubB, that both implement the GetNextInt() method. The implementation for both
classes are similar to the implementation of GetNextInt() in Test 6. Having defined a superclass
and two subclasses, a class, Tester, is defined that inherits SubA. The Main() method of this
class simply invokes the GetNextInt() method (which is implemented in SubA) 10,000,000 times
and measures the elapsed time. By the use of the aspect weavers the inheritance structure should
now be modified, so that class Tester extends SubB instead of SubA. This modification means
that the invocation of GetNextInt() now refers to the implementation defined in SubB.

2.3.3 Test setup

For all tests, execution time is measured (in milliseconds) as an average of 25 testruns. For each
test the average deviation in execution time is calculated as well. The average deviation can be
used to determine the degree of uncertainty in the measurements.

All tests were performed on a machine with the following specifications:
e Pentium 4 Mobile 1.2 GHz

e 512 MB RAM

e Windows XP SP 2

e NET Framework 2.0.50727

All tests are compiled as release builds with code optimization turned on.

2.3.4 Test results

The results of the tests are shown in figure 2.8. The first thing to notice when looking at the
results is the tremendous performance drop in Test 1 when using AspectDNG, NKalore and
Rapier LOOM. In all cases, a huge increase in the execution time can be seen: Rapier LOOM
is around 65 times slower than the reference implementation and NKalore is more than 460
times slower!. Recall that Test 1 used around interception on an instance method. In order
to identify the causes for these performance drops, the weaved assemblies of AspectDNG and

17

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

Aspect weaver | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7
716 716* 716* 716 719 604 747

Coded by hand (1.00) | (1.00) | (1.00) | (1.00) | (1.00) | (1.00) | (1.00)
0.25% | 0.25% | 0.25% | 0.17% | 0.24% | 0.37% | 0.53%

260119 258414 | 605 744
AspectDNG (363) - - - (359) | (1.00) | (1.00)
0.31% 0.18% | 0.30% | 0.16%
743 765 | 815%F | 791
Aspect. NET - (1.04) | (1.07) | (1.14) | (1.10) - -

0.43% | 0.31% | 0.10% | 0.19%
334464 | 83323 | 83250 | 364443 | 322408

NKalore (467) | (116) | (116) | (509) | (449) - -
0.42% | 0.56% | 0.63% | 0.50% | 0.42%
46969 | 2698 | 2904 | 48438 39150

Rapier LOOM | (65.6) | (3.77) | (4.06) | (67.6) — (54.5) -
0.32% | 0.23% | 0.23% | 0.11% 0.14%

Figure 2.8: Test results. The first number in each cell is the average execution time in milli-
seconds. The second number (in parentheses) specifies the execution time as a factor of the reference
implementation. The third number is the average deviation (in percent) from the average execution
time for each testrun.

— = The aspect weaver do not support the features required for implementing this test.

* = The results of Test 1 are simply repeated in Test 2 and Test 3, as they are similar to Test
1 when coded by hand.

** = This test is slightly modified from the original test decription, as the ToBelntercepted()
method is made static as Aspect.NET cannot handle instance methods when using around
interception.

NKalore were examined® using the Intermediate Language Disassembler (ildasm). It turned
out that both weavers made heavy use of reflection for making join point context available and
for invoking the original method. Furthermore, compared to the reference implementation, a
huge increase in the number of opcodes? were identified: For AspectDNG, the weaved version
of the ToBelntercepted() method now consisted of a total of 19 opcodes, including 5 method
calls and 1 object instantiation. NKalore used a total of 27 opcodes (7 method calls and 1
object instantiation). These figures are to be compared to the reference implementation, which
implements the ToBelntercepted() method using only 7 opcodes, including 2 method calls and 0
object instantiations. This huge increase in the number of opcodes and method calls obviously
has a great impact on the execution time.

Implementing the ToBelntercepted() method using before and after interceptions yields much
better results for NKalore and Rapier LOOM as shown in figure 2.8 (Test 2 and Test 3). For
NKalore the runtime overhead is reduced by a magnitude of 4 compared to Testl. However, the
generated code is still more than 100 times slower than the reference implementation. Rapier
LOOM actually achieves fairly good results in test 2 and test 3: Compared to test 1 the runtime

3Unfortunately, it is impossible to examine the generated code of Rapier LOOM, as it applies all aspects at
runtime.

4An opcode is an Intermediate Language instruction, such as add or call, which gets JIT-compiled and executed
by the Common Language Runtime (CLR). Chapter 4 will give greater insights into this concept.

18

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

overhead is improved by a factor 17, although the generated assemblies are still around four
times slower than the reference implementation.

Looking at the results in Test 2 and Test 3, the smallest overhead is achieved using As-
pect.NET. Aspect.NET is only around 30 and 50 milliseconds slower than the reference im-
plementation in these tests, which roughly corresponds to 4% and 7%. Using ildasm on the
Aspect.NET assemblies, it can be seen that the advice is simply implemented as a method
(called “test2Aspect”) in a separate assembly. Aspect.NET only makes two modifications to the
original assembly: The advice assembly is added as a reference and a method call to the advice
is inserted either before (Test 2) or after (Test 3) the call to ToBelntercepted(). This approach
seems to perform a lot better than the techniques used in any of the other weavers.

All aspect weavers seem to experience a small performance drop when using method argu-
ments (compare to the results of Test 1). For NKalore the result of this test is about 9% slower
than test 1, which means that the generated assembly is now more than 500 times slower than
the reference implementation! Aspect.NET is around 7% slower in this test compared to Test
2 and 3. Keep in mind that this test is implemented using static methods in Aspect.NET, as
this weaver does not support intercepting instance methods. This might have an effect on the
results. Rapier LOOM has the lowest performance drop with only 3% compared to Test 1.
AspectDNG does not support using method arguments when intercepting methods and could
thus not complete test 4.

The use of static methods instead of instance methods do not seem to make any difference
for any of the weavers. There is practically no difference between Test 5 and Test 1 in this
regard®. NKalore is actually a little bit faster than test 1, but the difference is too small to make
any general assumption based on these results.

Introducing methods (Test 6) do not seem to cause any overhead for Aspect DNG: The exe-
cution time of the generated assembly are similar to the reference implementation. Only Rapier
LOOM seem to add some runtime overhead (Rapier LOOM is more than 50 times slower than
the reference implementation). However, the dynamic nature of Rapier LOOM makes it some-
what difficult to test the execution time of an introduced method in a fair manner: The static
weavers introduce the new method into an existing assembly. This method can then be invoked
from another assembly that is coded by hand (as we have done in this test). This is not possible
with Rapier LOOM as it introduces the method runtime, i.e. the method cannot be invoked
statically from another assembly. Thus, invocation of the newly added method is performed
runtime (just after the introduction) via a proxy. This might have an impact on the result.

Only AspectDNG was able to implement Test 7. As expected, the inheritance modification
did not cause any measurable overhead.

2.4 Preliminary goals for a high-performing aspect weaver

Looking at the test results the overall conclusion is clear: Aspect.NET achieves by far the best
results in terms of runtime overhead: For all tests, the assemblies generated by Aspect.NET
lies within 14% of the reference implementations. Although these results are good, we do not
consider Aspect.NET to be viable for efficiently handling cross-cutting concerns, as we believe

®These tests are comparable as they only differ in the use of instance methods (Test 1) or static methods (Test
5).

19

Chapter 2: Problem definition YITHAW - An aspect weaver for .NET

that the use of AOP should not add any runtime overhead to the assemblies. Looking at the as-
semblies generated by Aspect.NET, it can be seen that a lot of extra instructions are added that
we believe can be avoided. We do thus not consider the output of Aspect.NET to be optimal.
Furthermore, the use of Aspect.NET imposes some limitations on the target implementation.
Most importantly, using around interceptions, Aspect. NET only supports intercepting static
methods. This is unacceptable in many applications as many methods are created as instance
methods. For example, the implementation of a generator for the C5 collection library would
not be possible using Aspect.NET, as the implementation of C5 relies heavily on the use of in-
terfaces, class interitance and polymorphism, which cannot be implemented using static methods.

Throughout the rest of this report we will focus on implementing an aspect weaver that di-
rectly addresses the shortcomings of Aspect.NET. Most importantly, we consider Aspect.NET’s
lack of support for making around interceptions of instance methods a crucial drawback. Around
interception of instance methods should thus be supported by our aspect weaver. An important
issue in this regard is to avoid any runtime performance penalties - the runtime performance
should be directly comparable to an implementation coded by hand. The aspect weaver should
be able to intercept methods, properties, class constructors and instance constructors as these
are all required for implementing a generator for C5.

Another shortcoming of Aspect.NET is the lack of support for introductions. Introductions
are important for expressing various types of interests. Our aspect weaver should thus support
introducing various constructs, such as classes, methods, fields, etc.

At this time it is difficult to define any further requirements for our aspect weaver, as it
requires more in-depth knowledge of the problems encountered when implementing an aspect
weaver. In the next chapter we will thus analyze the various facets of the problem at hand and
continously determine more detailed requirements for the aspect weaver. At the end of the next
chapter all of the requirements will be settled.

Throughout the rest of this report we will refer to our aspect weaver as YITHAW, which is a

recursive abbreviation which stands for YITHAW Is an Intelligent and High-performing Aspect
Weaver.

20

Chapter 3

Problem analysis

During this chapter we will investigate the main issues involved in implementing a high-performing
aspect weaver. The next section briefly describes the inner workings of Aspect.NET, evaluat-
ing the applicability of the techniques used herein. The subseeding sections analyzes some of
the key concerns of aspect weaving and defines more detailed requirements for our own aspect
weaver. Throughout this chapter we will assume that the reader is familiar with the Common
Intermediate Language (CIL) of NET. Consult chapter 4 for details about CIL.

3.1 Inside Aspect.NET

As shown in figure 2.8 Aspect.NET had a runtime overhead between 4 and 14%. To learn
how Aspect.NET achieves this good result it is interesting to take a deeper look at the inner
workings of the weaver. Aspect.NET is only available as a compiled program and it is therefore
not possible to get the understanding from the source code!. What we will do instead is to
try some of the different features of the weaver and then take a look at the CIL code that is
generated.

3.1.1 Intercepting a method call

The possible interception semantics of Aspect. NET are before call, after call and instead (around
call). In all three cases the implementation is very simple: The weaver transforms, not the class
that contains the target method, but the methods that call the target method. For before and
after interceptions a call to the advice method is placed right before or right after the call to the
target method, as can be seen in figure 3.1(a) and 3.1(b). In the case of an instead interception
the call to the target method is removed and a call to the advice method is inserted, see figure
3.1(c).

So the mechanism used is both very simple and powerful. However, as can be seen later in
this section, this solution has some problems when the advice becomes a bit complicated. As
Aspect.NET uses call interceptions this requires that the weaver has access to the locations from
where the method is called. As new calls can come from external assemblies, i.e. assemblies not
known at weave-time, this makes it impossible to guarantee that the advice will be called in all
cases. Also, after the weaving there is still a dependency on the advice assembly as the weaver
only inserts calls to the advice into the target assembly.

"'We have been in e-mail contact with the developers of Aspect.NET and amongst other we asked if we could
build this project as an extension to Aspect.NET or if they could give us any documentation regarding the design
of the weaver. Both requests were unfulfilled[21].

21

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

a) "Before” advice weaved in before the call to the target method
call void [TestAspects] TestAspects. TestAspects:: Aspect ()
call void TestClass.Program:: Target ()

b) 7After” advice weaved in after the call to the target method
call void TestClass.Program:: Target ()
call void [TestAspects] TestAspects. TestAspects:: Aspect ()

c) 7"Instead” advice weaved in instead of the call to the target method
call void [TestAspects] TestAspects. TestAspects:: Aspect ()

Figure 3.1: Aspect.NET interceptions.

3.1.2 Advice return type

For advice methods it might not always be appropriate that the method is able to return some-
thing. In Aspect.NET it is always possible to let an advice method return something. In these
cases, the weaver does not perform any checking on the return type or what happens to the
returned value, but leaves all typechecking to the user. The weaver just inserts the call as shown
in section 3.1.1. For before interception this means that if the advice method returns anything,
it is up to the programmer to make sure that something is done with this return value (which is
not possible in a normal high-level language, when the advice is inserted the way it is). For after
interception it would make sense to let the advice method use the value returned from the target
method and possibly overwrite this value. However, in Aspect. NET the advice cannot handle
the returned value from the target, which means that any value returned from the target method
would be left on the stack, thereby generating the same problem as for before interception.

When it comes to instead it should of course be possible for the advice to return something,
if the method it replaces returns something. This is clearly possible with Aspect.NET, but there
is no check whether the return type is the same for the two methods. Furthermore, it is also
possible to use an advice method with return type woid for replacing a method that returns
something. This can be seen in figure 3.2.

//The original method calls method Target, which returns an int.
//The returned value is popped from the stack

call int32 TestClass.Program:: Target ()

pop //removes the top item from the stack

//Here the target of the method call has been changed to the Aspect() method
//The Aspect () method does not return anything.

//The following pop will try to remove the returned value from the stack.
//This program cannot run. A System.InvalidProgramException is thrown.

call void [TestAspects] TestAspects. TestAspects:: Aspect ()

pop //Removes the top item from the stack — but there is none!

Figure 3.2: Aspect.NET return types.

3.1.3 Using arguments

The last feature of Aspect.NET that we will look into, is the possibility of using an advice method
that takes arguments. The only way an advice method can access arguments in Aspect.NET is

22

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

by using the same arguments as the target method. When creating the advice one can specify
whether it should use none of the arguments, all of the arguments or specific arguments from
the target method. There is however no typechecking on the argument types.

Using before and after, Aspect.NET copies the opcodes for loading the arguments onto the
stack and inserts them before the call to the advice method, as can be seen in figure 3.3. How-
ever, Aspect. NET’s copying is incorrect in more complex cases. An example of this is shown in
figure 3.4. In this example the instructions that load the locals (which are used as arguments
when invoking ArgMethod) are copied, but not the instructions that initially stores something
into the locals. The loaded locals do therefore not contain the right values.

Sometimes the weaver is not able to perform the weaving, especially if calls to methods are
inserted directly as arguments (like Foo(Bar())). In these cases an exception is thrown which
does not indicate what the problem is. So it seems that the weaver is very primitive when it
comes to deciding on the amount of instructions to copy, which is not good enough for all cases.
Furthermore, one has to be aware that when the argument is a reference type the same object
is used in both the advice and target method, but when it is a value type they get two different
copies.

//Here a before advice is weaved in and the two instructions that load the
arguments onto the stack are copied in before the call to the advice method.

ldc.i4 .2

Idstr "teststring”

call void [TestAspects] TestAspects. TestAspects:: beforeArgAspect (int32 ,
string)

//The original method starts here, which loads the two arguments and then calls

ArgMethod ()
ldc.i4 .2
ldstr "teststring”
call void TestClass.Program:: ArgMethod (int32, string)
ret

Figure 3.3: Aspect.NET passing simple arguments

When using instead the semantic is more clear, as the original method call is just changed -
there is no need to copy any instructions. However, if it has been specified that only parts of the
arguments should be passed to the advice method, then it is not certain that all the unnecessary
instruction will be deleted, which might again result in Aspect.NET constructing an unverifiable
program.

3.1.4 The lessons learned

Starting with the goal of figuring out why the output of Aspect.NET had such good results in
the performance tests, we now believe that the insertion of calls to the advice method is the
main reason. The small overhead that might be incurred by performing an extra method call is
not very significant in the tests that we have performed. Furthermore, we have discovered that
the solution used by Aspect.NET might be fast, but it also has a lot of drawbacks: The weaver
is to simple when it comes to handling method arguments and return types. We believe that a
different approach is needed when applying aspects in order to avoid the problems encountered
when using Aspect.NET. Starting with the next section we will analyze various facets related to
implementating an efficient aspect weaver that avoids many of the shortcomings of Aspect.NET.

23

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

//This is the high level language code of the target method

Random r = new Random () ;

int b = r.Next();

int a = 2;

ArgMethod (a+b, "teststring”); //This call is intercepted by Aspect.NET

//The following is the full method in CIL after the weaving. It is split up to
show the orginal parts and the weaved part.

//The method has three local variables: A Random object and two ints.
.locals init (class [mscorlib]System.Random r,

int32 b,

int32 a)

//The original method starts here. The Random object is instantiated and is
stored in a local wvariable.

newobj instance void [mscorlib]System.Random::. ctor ()

stloc .0

//The instructions inserted by the weaver start here. The first four of the
instructions are copied from the original method by the weaver. They start
by loading two local variables onto the stack. However, none of these two
locals has been initialized yet, as the instructions that store values in
them have not been copied by the weaver. This means that the code is not
verifiable .

ldloc .2

ldloc .1

add

Idstr "teststring”

call void [TestAspects] TestAspects. TestAspects:: beforeArgAspect (int32 ,
string)

//And here is the rest of the orginal method.

ldloc .0

callvirt instance int32 [mscorlib]System.Random:: Next ()
stloc.1

ldc.i4 .2

stloc .2

ldloc .2

ldloc .1

add

ldstr "teststring”

call void TestClass.Program:: ArgMethod (int32, string)
ret

Figure 3.4: Aspect.NET incorrectly passing composite arguments. The copied instructions loads
the value of locals which has not been initialized yet.

24

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

3.2 Binding mode

Having looked at Aspect.NET, we now focus on how our own aspect weaver can be implemented.
This section briefly discuss the types of weavers that exist and how they apply the aspects.

Basically two approaches exist when it comes to weaving aspects: Static weaving and dy-
namic weaving (also referred to as runtime weaving in some litterature).

Static weaving analyzes the targets and aspects and applies the aspects immediately as
specified via the pointcuts. Having performed the weaving, the target assembly can be used
immediately without any further processing. All aspects are applied at once to the target as-
sembly. This is the technique used in Aspect. NET, AspectDNG and NKalore.

Dynamic weaving uses a different approach: Targets and aspects are written in a manner
similar to that of static weaving, but the aspects are not applied until just before load-time.
The aspect weaver inserts code into the target that applies the aspects on a Just-In-Time basis,
i.e. the aspects are applied before the specific target is loaded into memory. This is a more
flexible approach than static weaving, as it allows specifying pointcuts that can be varied be-
tween each program run or even while the program is running. This is useful if your aspects
should be applied according to some events that are not known until runtime. However, this
flexibility comes at a cost: As the weaving is performed runtime, it is naturally going to result
in a runtime overhead compared to static weaving [7]. The significance of the overhead depends
on the targets, the aspects and on how the actual weaving is performed. For some applications
the performance overhead can be neglected.

A hybrid of the two techniques can actually be defined: Recall from section 2.1.1 that a
static aspect weaver can use dynamic pointcuts, i.e. pointcuts that are determined at runtime.
Such aspect weavers shares some features with dynamic weavers.

We believe that the use of AOP should be as efficient as possible and be directly comparable
to that of an implementation coded by hand. The “Generation of specialized collection libraries”
project [3] is a good example of a case where an aspect weaver generating efficient code is needed.
Dynamic weaving will not be suitable for ensuring this requirement, as it introduces runtime
overhead - no matter how efficiently the weaver is implemented, dynamic weaving will always
require performing some operations at runtime. This means that runtime overhead cannot be
avoided using this approach. Focusing on the runtime performance, static weaving thus seems to
be preferable as it allows for an implementation where no (or very little) runtime overhead is in-
curred. We believe that the flexibility that is lost when choosing a static approach is neglectable
in most situations as one would rarely need the kind of dynamic behaviour that dynamic weaving
offers in performance-critical applications anyway. For instance, the “Generation of specialized
collection libraries” project would have no use for dynamic weaving, as all requirements can be
determined statically. For these reasons, we choose to implement a static aspect weaver.

A static aspect weaver that supports dynamic pointcuts offers the best of the two approaches:
The user can decide whether he wants to apply only static advice or if he is willing to accept
the runtime overhead of dynamic advice and use this instead. However, support for dynamic
pointcuts makes the implementation of the aspect weaver much more complex as it requires
that two different types of weaving are handled. As limited time is available for this project, we
choose not to support dynamic pointcuts in our aspect weaver.

25

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

3.3 Applying aspects

The previous section stated that we consider static weaving to be the most suitable approach for
implementing an efficient aspect weaver. With that in mind the following section looks deeper
into how such a weaver can actually be implemented. Various techniques can be used for this
purpose. Throughout this section we will describe the techniques we find the most interesting
and analyze their applicability.

3.3.1 Source code weaving

Applying aspects directly to the source code is an obvious approach when handling aspects: By
writing the targets and aspects in separate source files the aspect weaver can merge the files
together, constructing one single entity. The aspect weaver should of course merge the files on
the basis of some pointcuts defined by the user. This is illustrated in figure 3.5.

Target source code Pomtecut specification
m alpha language \
Aspect Weaver Weaved source
code malpha
Aspect source code =4 language
in an alpha P
language variant

Figure 3.5: Source code weaving. Source code as input and output.

Working at a source code level allows the user to immediately see the changes applied, as
the output is based on the same high-level language as the target code. This means that it
is possible for the user to directly verify that the output is as expected and compile the code
himself, using whatever compiler settings he prefer. Unlike most of the weavers presented in the
previous chapter (which weaved at the assembly-level), it is thus fairly easy to track the aspects
applied to the target. Furthermore, as the user is able to compile the output himself, it is even
possible to debug the generated code using a standard debugger. This is not possible using any
of the other weavers, as they directly manipulate the binary assembly, causing inconsistencies
between the assembly definition and the debug file (PDB file).

Preprocessing

A variant of source code weaving can be defined: Preprocessing weaving. It uses the same
principle as that of source code weaving, but outputs a compiled assembly instead of source
code. This can be done by applying the aspects to the target code, which are then handed
over to the compiler. The intermediate source code produced by the weaver is only used by
the compiler and is thus not subject to further manipulation by the user. This principle is
used in AspectC++ [12], where one can write aspects in the AspectC++ language. Using the
AspectC++ weaver, which works both as a weaver and a translator of the AspectC++ language,
a weaved C++ program is output. NKalore uses a similar approach.

26

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

CodeDom

As a specific solution for implementing source code (and preprocessing) weaving the CodeDom
classes in .NET are an interesting case. The System.CodeDom namespace in the .NET frame-
work contains classes which can be used to represent a program as an abstract syntax tree
(AST). It is possible to traverse this AST by the nodes and leaves, which represents the different
constructs in the program. An aspect weaver could alter the program either by changing the
original AST or by introducing new code, by adding new nodes or leaves. When done weaving
it is possible to either compile the program directly from the AST structure (useful for imple-
menting a preprocessing weaver) or use a code generator to generate source code in the preferred
language. CodeDom thus seems as a viable solution for implementing a source code or prepro-
cessing aspect weaver.

The main drawback of using CodeDom is that even though there is an interface for it, there
are no parsers to translate from source code to the CodeDom AST. As it does not make much
sense to require the user to write his programs directly as a CodeDom AST (which is very
cumbersome), it would be necessary to initially create a parser for the language of choice, as
no such parsers exist at the time of writing [3]. Furthermore, not all constructs specified in the
Common Language Specificaton are supported[19], which might turn out to be too restrictive
when implementing an aspect weaver.

Is source code weaving the right choice?

Using source code (and preprocessing) weaving obviously requires that the source code for the
target is available. In most cases this is not a problem, but for some applications this is unac-
ceptable. Furthermore, creating a source code weaver also means that the weaver will be bound
to one particular .NET language, whereas a lower-level weaver can be used for the whole family
of .NET languages (as most of the weavers presented in the previous chapter). We consider
source code weaving to be too restrictive in this regard.

Using source code weaving also means that there are no guarantees that typechecking has
been performed on the code by a compiler prior to weaving the aspects. This means that the
weaver is responsible for performing this typechecking in order to make sure that the aspects
are valid in the new context. This check will be very cumbersome and errorprone to implement,
as there will be no restrictions on the input from the user.

Another main problem with source code weaving, as we see it, is that it simply does not solve
the key objective addressed by AOP: How to handle cross-cutting concerns efficiently. Injecting
aspects into the target source code still produces code scattering and code tangling - it is just
being introduced by an external program instead of by the user. Once the weaving has taken
place the source code can be manipulated by the user in any way he likes, which means that he
need to consider all of the concerns that has been introduced when working with the generated
code. This is a problem, as all the cross-cutting concerns that was initially factored out in order
to avoid code repetition are now included in the source code. This means that they cannot be
said to have been encapsulated into an independent entity - they are rather defined once and are
then applied as an advanced “search-and-replace” feature that does not respect the “separation
of concerns” principle. Preprocessing weaving does not have the same problem, as it produces
binary code instead of source code, effectively preventing the user from making any further
modifications to the output. This means that a clearer separation of the targets and aspects are
achieved. However, we still believe that the requirements of source code access and the strong
binding to one specific .NET language are simply too restrictive, as they prevent the user from

27

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

taking an arbitrary assembly or source code file and apply whatever aspects he wants. We do
therefore not consider source code or preprocessing weaving to be suitable solutions.

3.3.2 Direct advice invocation

In order to avoid the problems mentioned in the previous section, it makes sense to focus on
a technique that can be used for working at the assembly-level, as this allows for a language
independent approach. An obvious idea is to use the same approach as found in AspectDNG and
Aspect.NET when handling interceptions®: A method call is inserted into the target methods at
appropiate locations (which depends on the pointcut) that directly invokes the advice methods
or, alternatively, invokes a version of the advice methods that has been modified slightly by the
aspect weaver in order to fit into the new context. This concept is shown in figure 3.6: A target
method, SomeMethod(), is defined which returns an integer. Furthermore, an advice method,
Advice(), is defined which prints a message to the console, invokes the original method (Proceed)
and returns the integer 7. Using the direct advice invocation approach, the aspect weaver cre-
ates two new methods: One for the first part of the advice (ModifiedAdviceFirstPart()) and one
for the second part (ModifiedAdviceSecondPart()). These advice methods can either be inserted
directly into the target assembly (as in AspectDNG) or simply be referred to from the target
assembly via an assembly reference. The only modification that needs to be performed on the
target method is that it should call the two new advice methods. This modification is fairly
simple, as one only needs to change a few of the instructions in the target method. Most of the
instructions can be ignored.

int Advice()
int SomeMethod()
Console.WriteLine(“entering advice...”);
before Console.WriteLine(“SomeMethod here...”); Proceed();
weaving return 3; } return 7;
void ModifiedAdviceFirstPart()
Console.WriteLine(“entering advice...”);
int SomeMethod() }
after ModifiedAdviceFirstPart();
weaving Console.WriteLine(“SomeMethod here...”);

return ModifiedAdviceSecondPart(); int ModifiedAdviceSecondPart()
} {

return 7;

}

Figure 3.6: Direct advice invocation (using around body interception).

2Introductions are not important for this discussion as there is no alternative to inserting them directly into the
target assembly. Likewise for typestructure modifications: There is no way to make a typestructure modification
without actually going into the target assembly and modify the target classes. Thus, the only important feature
when discussing assembly-level aspect weaving are interceptions.

28

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

An alternative solution to modifying the body of the target method is to modify the actual
calls to the target methods instead, making them refer to the new advice methods. Using this
approach the body of the target method does not need to be modified at all. This implies
that around call interception (see section 2.1.2) is used instead of around body interception. As-
pect.NET uses this approach.

As both targets and advice are compiled prior to invoking the aspect weaver, typechecking is
somewhat simplified compared to source code weaving, as using compiled assemblies guarentees
that they are verifiable. Basic checks on advice return type and advice arguments still need to
be performed though, such as ensuring that the return type of an advice method is compatible
with the method that it intercepts. All these checks should of course be performed statically in
order to avoid runtime overhead.

Is direct advice invocation the right choice?

Although this approach might at first seem very useful, it does have some problems. First of all,
directly invoking the advice methods means that these advice methods must either be inserted
into the target assembly or be placed in a separate assembly that is then referred to from the
target assembly. We believe that the appearance of advice methods within the context of the
target assembly is a rather messy approach, as it clutters up the target assembly: It only makes
sense to invoke the advice methods from within one of the intercepted target methods, but
nothing prevents the user of the target assembly from invoking these methods himself outside
their intended context. This might lead to strange behaviour. We believe that the use of inter-
ceptions should not introduce any unwanted constructs within the target assembly - it should
be impossible to see if interceptions has been applied to the assembly or not. This cannot be
implemented using direct advice invocation.

A second problem is the small overhead incurred when inserting the extra calls to the advice
methods. Method calls will always take a small amount of time to execute, even though this
amount may in most cases be so small that it is not significant (as the results of Aspect.NET
also showed in the previous chapter). However, we believe that the use of interceptions should
not result in any runtime overhead at all. For these reasons, we do not consider the use of direct
advice invocation to be a proper solution.

3.3.3 Inlining advice

The previous discussion created the need for a technique that operates at the assembly-level,
but does not introduce any unwanted constructs in the target assembly. One such approach is
to inline the advice within the target method. This concept is illustrated in figure 3.7.

As can be seen, the aspect weaver should merge the two methods, creating one combined
method that substitutes the intercepted target (thus performing an around body interception).
This means that the actual weaving is done on the basis of the IL-instructions found in the
target and advice assemblies.

As shown in figure 3.7, using inlining usually requires some means of modifying the advice and
target methods, making them fit into the new context. Some IL-instructions will be redundant
(such as the return instruction of SomeMethod() in the example shown in figure 3.7) and should
be removed. Other instructions need to be modified in order to be compatible with the new
context. The weaver should be able to make these transformations and produce a valid .NET
program, containing the combined functionality of the target and the advice methods.

29

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

int SomeMethod() ldstr “SomeMethod here...”
call void WriteLline (string)
Console.WriteLine(“SomeMethod here...”); ldc.i4.3
return 3; ret
before)
weaving
int AdVICe() ldstr “entering advice...”
. . “ i . N call void WriteLine (string)
Console.WriteLine(“entering advice...”); 1darg.0
Proceed(); call instance void Proceed()
return 7; 1dc.i4.7
} ret
int SomeMethod() ldstr “entering advice...”
after { call void WritelLine (string)
weaving Console.WriteLine(“entering advice...”); ldstr “SomeMethod here...”
Console.WriteLine(“SomeMethod here...”); call void WriteLine(string)
return 7; ldc.i4.7
} ret

Figure 3.7: Inlining the advice within the target method. Shown to the right is the IL assembler
representation of the source code.

Is advice inlining the right choice?

An inlining approach is obviously more cumbersome to implement than using direct advice in-
vocation. However, we believe that this technique allows us to achieve the fine-grained control
needed for implementing an efficient aspect weaver: Being able to control the generated output
down to a single IL-instruction allows for great optimization when weaving the advice and tar-
get, as it makes it possible to handpick each instruction that should be woven into the target.

Another main advantage obtained from using an inlining approach, is that unnecessary con-
structs can be avoided altogether in the output assembly: There is no need to insert any auxiliary
methods into the output assembly, which means that the woven methods will be completely self-
contained. We consider the introduction of these unneeded constructs in the output assembly to
be one of the biggest problems in many of the other aspect weavers, as it breaks the program-
structure defined by the user. We believe, that the aspect weaver should respect the structure
defined by the user and apply the advice in a non-interruptive way.

For these reasons, we consider the use of advice inlining to be the most suitable approach
for implementing a high-performing aspect weaver. Throughout the rest of this chapter we will
further analyze how such an approach can be implemented in practice and identify some of the
key objectives in this regard.

30

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

3.4 Implementing aspects

Having defined which technique should be used for implementing the aspect weaver, the follow-
ing section discusses some preliminary ideas of what the aspect language should look like, i.e.
how the actual aspects should be implemented by the user and how the user should instruct the
weaver to do as desired.

An important facet of an aspect weaver is that it should support the features that the user
wants while keeping the implementation of the aspects as simple as possible. The implementation
of the aspects should be as transparent and direct as possible: The user should not need to learn
a whole new programming model or be forced to implement things in a different manner than he
is used to. The implementation of the aspects should be comparable to the implementation of
any ordinary program - no special actions or precautions should be made when writing the code.
In order to support this requirement, care has to be taken when designing the aspect weaver.

3.4.1 Introductions

As mentioned in section 2.4, YIITHAW should support introducing new constructs, such as meth-
ods, fields, delegates, etc. into the target assembly. No special syntax should be used when
defining these constructs - all constructs should be defined as in any ordinary .NET program,
e.g. a delegate that you want to insert could be defined like this:

public delegate int MyDelegate(string s, int i);

Having defined this delegate, it should be targetable by a pointcut description (discussed in
section 3.5). The aspect weaver should support introducing any type of construct, i.e. the defi-
nition of the constructs should not be restricted to certain types or notations or require the use
of special annotations within the code.

Inserting new constructs should trigger the weaver to typecheck all references within those
constructs, as they may themselves refer to other constructs that do not exist in the target
assembly at the time of weaving. Consider the following code sample:

public int NewMethod ()
{

AnotherMethod (); // invoke AmnotherMethod — the aspect weaver should check that
this method exist within the target assembly

In this case, the aspect weaver should check that AnotherMethod() already exist within the
target assembly or that it will be inserted at some point (i.e. that the user has instructed the
weaver to insert it via a separate pointcut statement). If none of these requirements are met,
the weaving should be cancelled as the call to AnotherMethod() in that case makes no sense in
the new context (and would result in a runtime error when executing the program). A similar
check has to be made for any other construct (field, property, delegate, etc.) that is referred to
from within the constructs that are introduced into the target assembly. Of the aspect weavers
examined in the previous chapter, only NKalore make this kind of typechecking.

31

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

3.4.2 Interceptions

The process of intercepting methods is probably the most important feature of AOP, as it is
what basically allows handling the cross-cutting concerns, which is the key motivator for using
AOP in the first place. The aspect weaver should allow the user to achieve a fine-grained control
of the interception process while still hiding as many of the problems of inlining IL-instructions
as possible. For instance, the user should not need to be concerned about how a local variable
within the advice gets translated into the target assembly or how the advice method is aligned
within the method that is intercepted. Such details should be isolated as much as possible from
the user and be handled by the weaver.

Types of interceptions

Section 2.1.2 stated that three kind of interceptions can be defined: before, after and around.
These can be further divided into call and body. Recall that a call interception only modifies
calls to the target method - it does not modify the target body itself. We believe that call
interceptions are not as efficient as body interceptions, as call interceptions in most cases imply
that at least two method calls has to be performed instead of one: One to invoke the advice
and one to invoke the original target. Furthermore, using call interceptions it will in some cases
not be possible to intercept all references to a specific target as these references cannot always
be determined statically: The target might be invoked from another assembly after the point
of weaving, in which case the reference will not have been intercepted by the weaver. Using
body interceptions this issue is avoided, as the target is always modified. This means that all
references to the intercepted target will automatically invoke the modified target after the point
of weaving. For these reasons, we choose to implement interceptions using an around body ap-
proach.

From a logical perspective, before and after are redundant as they can be simulated using
around. However, they are often supported to improve the runtime performance. We believe
that the use of advice inlining makes it possible to avoid the performance penalty of around
interceptions, as it allows a low-level control of both targets and advice. This low-level control
can be used to handle the weaving process directly at the instruction-level, which means that
we are not restricted to using higher-level methods, such as reflection, method calls or gener-
ation of proxies. For this matter, we will not implement support for making before and after
interceptions, as we consider them to be redundant.

Handling the join point

Implementing advice often requires access to information related to the method that is being
intercepted. Most weavers support some way of getting various information about the current
join point, such as the name of the method, it’s return type, the access specifier, etc. Having
access to this kind of information is essential if one must implement a logging advice, which is
one of the most common cross-cutting concerns of AOP. If the user cannot require information
about the current join point, there is little use for a logging advice in the first place, as one
cannot log which method was entered. To accommodate these requirements YIIHAW should
provide access to the following join point information:

e Method signature (name, parameters and return type).
o If the method uses any generic type parameters, these should be available as well.

e Access specifier of the method (public, private, etc.).

32

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

e Invocation kind (static or instance).

Having access to this kind of information allows the user to write pseudo-advice such as this
this:

public void Advice()
{

Logger. Write(”entering method: ” + MethodSignature);
invoke the orginal method

Of the weavers presented in the previous chapter, only AspectDNG does not support this
feature.

Interacting with the target method

The most common use of interceptions is to add additional code to an existing method. This
means that at some point in the advice the original target method will be invoked by the user.
Most aspect weavers support invoking the original method, usually via a method called Pro-
ceed(). Calling this method allows the user to invoke the original method and acquire whatever
value was returned. This value can then be subject to further manipulation or can be returned
directly. The small pseudo-code sample shown below illustrates the typical usage of Proceed().

public class X

{

public int TargetMethod ()

{

return 3;

}

public int Advice()

{
some advice code
int result = Proceed(); // invoke target method and store its result
return result; // return the same value as the target method returned

}
}

Aspect. NET is the only weaver that does not directly support the use of Proceed(). Instead
the user has to invoke the original method directly from within the advice. We believe this
approach makes it difficult to make generic advice as one has to know which method is being
intercepted and use that knowledge to invoke the correct method. Using the other weavers,
one can just invoke Proceed() and let the weaver make the decision on which method to call.
Furthermore, invoking the target method directly would not be appropriate for anything but
static methods (which is the only type of methods that Aspect. NET can intercept), as invoking
an instance target method would require a reference to the correct object instance within the
advice in order to make the call. This is shown in the small sample below.

public class X

{

public int TargetMethod ()

{

return 3;

}

public int Advice()

33

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

some advice code

X original_object = Target; // get a reference to the object containing the
target method

int result = original_object.TargetMethod(); // invoke the target method using
the obtained reference and store the value returned

return result; // return the same value as the target method returned

}
}

This advice is obviously more errorprone to write than the one shown previously, as the
user is responsible for invoking the correct method. We believe that the implementation of the
advice should be as simple as possible for the user. Providing a Proceed() method makes sense,
as it simplifies the users interaction with the target method and allows for more generic types
of interceptions. YITHAW should thus support such an approach.

Accessing the arguments of the target methods is another important issue. The weaver
should support access to these arguments, as it is often necessary to use them within the advice.
Except for AspectDNG, all of the weavers presented in the previous chapter support accessing
the arguments of the target method. Basically, two approaches are common for handling this:

1. Provide constructs for fetching the arguments: Create a method or property that can
be used to retrieve the arguments. For instance, create a method, GetArguments() that
returns an array of objects. The user can then typecast the arguments to the correct type
and use them within the advice.

2. Use shadow methods: Create the advice method with the same signature as the target
method and use the arguments directly within the advice. The aspect weaver is then
responsible for translating references from advice.argumentX to target.argumentX.

The former approach is obviously less typesafe than the latter: By operating on an array of
objects the user is responsible for typecasting the arguments to the correct type. This typecast
cannot be checked by the compiler. Instead, the weaver should try to typecheck the casts and
see if they make sense by comparing them to the actual types of the arguments in the target
method. Even worse, ref and out arguments cannot be supported using this approach, as there
is no way to store these type of references in an array. Furthermore, all value types will need to
be boxed when stored in an array - this obviously leads to runtime overhead (albeit very small
for most cases). We also consider this approach to be much different from the usual way of
handling arguments, as it requires the user to apply a whole different way of thinking when it
comes to dealing with method arguments.

We believe that using shadow methods is a better approach, as it ensures type safety and an
easier programming model. Furthermore, using this approach actually simplifies the weaver as
well, as it does not need to typecheck the usage of the arguments - all of this is handled by the
compiler.

Weaving the target and the advice

The advice samples shown so far in this chapter have all been somewhat simplified in order to
focus on the details that are interesting for the discussion and leave out the irrelevant ones. As
mentioned earlier in this section, we require that the implementation of the advice should hide
as many of the low-level details from the user as possible. Consider the sample advice shown
below (this sample is equal to the one shown earlier).

34

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

public class X

{

public int TargetMethod ()

{

return 3;

}

public int Advice()

{
some advice code
int result = Proceed(); // invoke target method and store its result
return result; // return the same wvalue as the target method returned

}
}

This advice simply invokes the Proceed() method, stores the return value in a variable, re-
sult, and then returns the value of result. Notice that the return type of the target method, the
advice method and the Proceed() method conveniently happens to be of the same type (int).
This is because this sample has been simplified for the sake of discussion. Obviously, in general,
methods do not just return int - they can return any kind of object (or void). The aspect weaver
should of course be able to handle other types as well. A somewhat more “general” implemen-
tation syntax might look like this:

public class X

{ public int TargetMethod ()
{
return 3;
}
public T Advice ()
{
some advice code
T result = Proceed(); // invoke the target method and store the wvalue returned
return result; // return the same value as the target method returned
}
}

Notice that the return type of the advice method and the Proceed() method have now been
modified to return any type, T, instead of int. They have been “generalized” in order to support
any type of return type of the target method (which is still int in this example). The reason
behind this syntax is as follows: By making the advice and Proceed() method return any type,
they can intercept any kind of target. The user does not need to worry about the return type of
the target method when making this kind of interception. The return type could be int, string,
1Collection or even wvoid - for all cases the implementation looks the same. This makes sense
as the user should be able to make an advice method that can intercept all methods, regardless
of the return type. We believe that this kind of implementation offers the best solution for the
user when it comes to hiding the details behind the interception. AspectDNG uses a similar
approach for hiding the details of which type is returned from the advice.

When our weaver sees this kind of advice it should replace the return type of the advice
method and the Proceed() method with the correct return type (which is the return type of the
target method) when generating the CIL code. This ensures that no runtime casts need to be
performed. So the weaver should translate the advice into a proper context that fits whatever
method is being intercepted. This way, the user never needs to worry about how to write an
advice method for at specific return type - this problem should be handled by the weaver. No

35

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

aspect weaver that we are aware of makes this kind of optimization.

Accessing the receiving object

A similar problem is how to handle the receiver of a target instance method (the object contain-
ing the method): Most aspect weavers support some way of getting a reference to the object that
is being intercepted. This is useful if you want to call methods or access field or properties on
the target object. As the target object and the advice object are completely independent at the
time of declaration, there must be some way to get a reference to the original object from within
the advice. This is usually supported via some method or property called Target or similar. The
sample below shows how one can get a reference to the original object (pseudo-code):

public class X

{

public int TargetMethod ()

{

return 3;

}

public void SomeMethod ()
{

}
}

public class Aspects

{

public int Advice()

{

some advice code

X original_object = Target; // get a reference to the object containing the
target method

original_object .SomeMethod(); // invoke a method on the original object
some advice code

The advice method uses a property called Target, which returns a reference (of type X in this
sample) to the original object and invokes SomeMethod(). This type of operation is supported by
most weavers and should be supported by our weaver as well, as such an implementation is often
needed. However, when weaving this kind of advice the weaver should make some optimizations:
First of all, as the weaving effectively merges the two methods there is no need to invoke a special
property in the CIL code when acquiring a reference to the current object. When the weaving
takes place this property invocation should thus be replaced by a direct reference to the object
(the this reference). This is possible at weave-time as the two methods are effectively combined
into one. Futhermore, the weaver should check that the enclosing type of the target method
is actually of type X. If this is not the case, the weaving should be aborted. By making these
optimizations during weave time no runtime overhead is added. No other aspect weaver that we
are aware of uses such optimizations.

Note that although the problem described above does share some characteristics with the
Proceed problem described previously, they cannot be solved in the same manner. When using
Proceed, one often does not want to consider the actual type being returned. This was the key
intention behind using generics for handling this problem: By specifying that the advice method
returns 7T means that the weaver should infer the actual type being intercepted and replace T

36

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

with that type. This is not the case when referring to the receiver of the intercepted target
method, as one should always know the concrete type of the receiver: It makes no sense to
invoke a method or update a property on the receiver without specifying the actual type, as the
methods and properties are not available on a generic type. The compiler would naturally reject
such an attempt to use unavailable methods or properties.

Typechecking references

At last, the aspect weaver should typecheck all references within the advice body. In the advice,
one might invoke other methods or other constructs, such as properties, fields, delegates, etc.
All of these references should be checked by the weaver in order to determine if the reference
“makes sense” in the new context. Consider the following example:

public class Aspects

{
public void SomeMethod ()
{
}
public T Advice ()
{
SomeMethod () ; // invoke SomeMethod ()
return Proceed(); // invoke the original method (not shown here) and return it
}
}

The advice invokes a method called SomeMethod(). The compiler has no trouble compiling
this because SomeMethod() is declared in the same class as the advice method. However, when
weaving the advice into the target method the aspect weaver should check that SomeMethod()
exists within the target class. This check is complicated by the fact that SomeMethod() might
itself be subject for insertion: The user might want to insert this method within the target
class (specified via pointcut) and then invoke it. This should be accepted by the weaver. If the
method is not defined within the target class and is not subject for insertion into the target
class, the aspect weaver should abort the weaving process and show an error.

3.4.3 Typestructure modifications

YITHAW should support making modifications of the typestructure as well. Two types of mod-
ifications should be supported:

e Changing the inheritance tree.

e Implementing one or more interfaces.

Changing the inheritance tree allows the user to change which type a target type should
extend. Similarily, the weaver should support changing target types so that they implement
one or more interfaces. This is also useful when generating programs via AOP. When changing
the superclass or implementing an interface, the weaver should check that interface and abstact
methods are implemented by the target class.

Of the aspect weavers described in the previous chapter, only AspectDNG supports changing
the typestructure of the target classes.

37

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

3.5 Pointcut specification

The pointcut language is one of the most important parts of an aspect weaver. It is the pointcut
language that determines which constructs can be targeted and how the aspects can be applied.
Thus, the pointcut language serves as the users primary means of interacting with the weaver.
In this section we will discuss some of the key issues involved in designing a pointcut language.
At this point focus will be kept on some of the higher-level issues; details will be deferred to
later.

3.5.1 Writing the pointcuts

Before designing the pointcut language one must decide where the pointcuts should be written.
Generally, two approaces are used in the aspect weavers presented previously: Annotate the
aspects or targets using .NET attributes or define the pointcuts in a separate file.

Using .NET attributes, the user can directly annotate either the target or the aspects with a
pointcut description. AspectDNG and Rapier LOOM supports defining the attributes in the tar-
get code. This approach obviously requires access to the source code of the target. Aspect.NET
supports defining the attributes directly on the aspects, i.e. inside the aspects assembly.

Another approach is to define the pointcuts in a separate file. This allows for a total separa-
tion of the aspects, the target and the definition of where to apply the aspects. This approach
is supported by AspectDNG and Aspect.NET.

The advantage of using the annotation approach is that it forces the user to clearly define
where the aspects apply within the source code for the target or aspects. This obviously makes
the code somewhat easier to understand, as it is explictly stated which aspects apply where.
On the other hand, using a separate file for the definition of the pointcuts require that the user
must himself estimate where the aspects apply by looking at the pointcut file and possibly the
source code. However, we believe that the annotation approach does have some drawbacks that
make it less suitable than using a separate file: Defining the pointcuts directly on the target
(as it is done in AspectDNG and Rapier LOOM) requires that the source code for the target is
available. Acquiring the source code is not always possible. Using this approach thus demands
that the target assembly must be explicitly aware of the aspects that is going to be applied to it,
hereby breaking the principle of obliviousness. This means that you cannot take some arbitrary
assembly and extend it with whatever functionality you want, as this assembly will in most cases
not support the use of aspects (or at least not the aspects that you want). We consider this to
be huge drawback.

Annotating the aspects assembly is a better approach, as it does not enforce any requirements
on the target assembly. Of course, annotating the aspects assembly require that the source code
for the aspects are available. However, this is in most cases not a problem, as the aspects are
often created ad hoc on the basis of some target; very rarely would you use some arbitrary
aspect assembly when applying aspects. However, we still believe that annotation of the aspect
assembly has one major problem: Writing aspects in this manner requires that all pointcuts
must be defined at the point of compilation. You cannot modify or extend the pointcuts once
the aspects have been compiled. Using a separate pointcut file allows greater flexibility, as it
makes it possible to implement and compile the aspects separatly and postpone the decision on
where to apply the aspects. This approach is very useful if you need to define the pointcuts
based on some events or settings that are not known at the time of implementation. The
“Generation of specialized collection libraries” project [3] uses such an approach: All aspects

38

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

are implemented and compiled once and for all, while the pointcuts are generated on the basis
of a configuration file. This reduces the complexity of the aspects dramatically, making the
handling of dynamically created pointcuts much easier. For this reason, we believe that defining
the pointcuts in a separate file is the most appropiate implementation.

3.5.2 The pointcut language

The pointcut language should be able to express all types of constructs that the user may wish
to target while still being as simple and easy to understand as possible. This implies that the
pointcut language should support a coarse-grained syntax that allows the user to match many
constructs using one statement, while still supporting the use of a more fine-grained syntax when
ever this is needed.

Generally, three types of elements should be supported by the pointcut language: Intercep-
tions, introductions and typestructure modifications. At the least, the pointcut language should
be able to support the following expressions:

e Intercepting methods.

e Introducing methods.

Introducing fields.

Introducing classes.

Modifying the typestructure.

These expressions are the most commonly used and should thus be supported by our pointcut
language.

3.5.3 Wildcards

All aspect weavers described in the previous chapter support the use of wildcards. Wildcards
allow the user to match all constructs using a special syntax (most oftenly a *’). This allows
great flexibility when targeting many constructs using one statement, e.g. when implementing a
“catch-all” logging advice. As the use of wildcards greatly reduces the amount of repetitive text
that needs to be written, our pointcut language should be able to support these on all target
constructs as well.

3.5.4 Complex expressions

Some aspect weavers support the use of complex expressions in the pointcut containing many
conditions in one statement, such as:

(A and (B or C)) or D

This kind of syntax allows the user to achieve a very fine-grained control of what should
be targeted by the pointcut. However, such expressions are most oftenly used when describing
dynamic pointcuts, such as cflows, where they are useful for describing the scope of the construct
that should be targeted. Complex expressions are seldom used for describing static pointcuts,
as no scope needs to be defined for these types of pointcuts. As our aspect weaver will be purely
static, we do not consider it relevant to support these kind of expressions.

39

Chapter 3: Problem analysis YIIHAW - An aspect weaver for .NET

3.6 Summary
The requirements for our aspect weaver are summarized below.

e The weaver should support static binding only, i.e. all constructs must be determinable
statically (section 3.2)

o All advice should be inlined within the target methods (section 3.3.3)
e Only around body interceptions should be supported (section 3.4.2 - Types of interceptions)

e The weaver should typecheck all references in order to make sure that they are valid in
the new context (section 3.4.2 - Typechecking references)

e The weaver should provide access to various join point information (section 3.4.2 - Handling
the join point)

e Shadow methods should be used for accessing method arguments of the target methods
(section 3.4.2 - Interacting with the target method)

e The weaved assemblies should be completely self-contained once the aspects have been
applied, i.e. the generated assemblies should not be dependent on any external aspect
assemblies or the presence of any aspect constructs (section 3.3.3)

o All pointcuts should be defined in a separate file (section 3.5.1)
e The pointcut language should support the use of wildcards where possible (section 3.5.3)

e The weaver should support interceptions, introductions and typestructure modifications
(section 3.4)

e When modifying the typestructure, the weaver should check that all interface methods
and abstract methods are implemented by the target class (section 3.4.3)

e The use of Proceed should be supported, as it simplifies the advice syntax (section 3.4.2 -
Interacting with the target method)

e The aspect language should provide a convenient syntax for writing advice methods that
can be used for implementing “catch-all” interceptions. In this regard, the weaver should
map all returns types into their proper type (section 3.4.2 - Weaving the target and the
advice)

e Accessing the intercepted objects should be supported by the aspect language (section
3.4.2 - Accessing the receiving object)

40

Chapter 4

Common Intermediate Language

Based on the choice of using advice inlining, which we decided on in the previous chapter, we will
in this chapter take a look at the Common Intermediate Language, which is the intermediate
language representation that all .NET languages are compiled into. Furthermore, we will also
describe how the CIL code is executed through the Common Language Runtime.

4.1 What is CIL?

Instead of compiling programs directly to the assembler language of one specific computer ar-
chitecture, the choice made when designing .NET was to use an architecture independent repre-
sentation. This is called the Common Intermediate Language (CIL). Other than the portability
between architectures some of the interesting facets of CIL is that it:

e opens up for easy collaboration between the languages in .NET (language interoperability).
e is a a human readable low-level language.

e is a stack based system.

These three facets will be further elaborated upon in the following sections. Some of the
information and examples given in the following sections is based not on the actual definition
of CIL, but on the way CIL can be written in the .NET 2.0 IL Assembler (ilasm), which is
distributed along with the .NET framework and is the most commonly used compiler for CIL
code.

4.1.1 Assembly, modules and metadata

An assembly is the main output of a compilation of one or more source code files which are bound
together. When working with advice inlining, assemblies will be the input and output of the
weaver. Looking at an assembly as the root of a hierarchical structure, it contains modules which
are managed Portable Executeable (PE) files (normally .exe or .dll)!, the modules contains types,
and the types contains methods, events, fields and properties. Furthermore, the assembly and
the modules contains a lot of metadata, which amongst other uniquely identifies the assembly
and modules, states external dependencies (both resources and other assemblies) and decribes
the types, methods, events, fields and properties in the modules. It is this metadata that
makes the collaboration between languages easy, as the language independent description of the
program structure opens up for access from all the languages in the .NET family. In relation

!The PE file format is an executable format specified by Microsoft. Its main strength is that it is portable
between all 32-bit operating systems created by Microsoft.

41

Chapter 4: Common Intermediate Language YIIHAW - An aspect weaver for .NET

to aspect weaving this metadata is very useful, as the information it contains make it easy to
navigate the structure of the program and work with the dependencies of the parts that should
be interweaved.

4.1.2 Instructions and operands

What is missing in the hierarchical structure described in the previous section are the instruc-
tions that a method contains. The CIL instruction set contains a total of 218 instructions [2]
(in .NET version 2.0), and it is the possibility of working directly with these instructions that
makes it possible to use advice inlining. Each instruction consists of an opcode which indicates
the action that should be performed, and sometimes an operand that contains extra information
for the opcode, such as what local variable to use, a specific string to load, or an offset address
to jump to. Figure 4.1 shows examples of these.

Opcode | Operand | Action
ldloc.0 Loads the first local variable onto the stack.
Here the opcode holds the information on what to load.
stloc a Store the top value from the stack into local variable a.
Here the operand holds the information on where to store.
ldstr "Hello" Loads the specified string onto the stack.
br.s 1234 Branches with the offset given in the operand.
The .s indicates that this is the short version of this opcode,
which only takes an 1-byte operand.

Figure 4.1: Examples of different instructions.

The operand is in many cases a 4-byte value, but for each opcode that takes such an operand,
there also exist a short form version which takes only a 1-byte operand, and in special cases (load
of arguments, load and store of local variables, and load of constants) there are even versions
of the opcodes which does not take any operand. An aspect weaver that focus on achieving as
little runtime and space overhead as possible should of course always use the most optimized
version of these opcodes, so that the program is kept as compact as possible.

4.1.3 Flow control

A special subset of the instruction set are the instructions that can change the linear flow of
program execution. Except for the ret instruction, which indicates that the execution should
return to the caller, all the flow control instructions take an operand which indicates the offset
of the branch. These instructions are specially interesting when inlining advice, as the offsets
might change when the advice and the target are weaved together. When using the IL. Assembler
(ilasm) it is possible, instead of specifying precice offsets as operands for the branch instructions,
to label specific locations in the CIL code and then use these labels as the operands of the branch
instructions. This is one of the things that makes the code more readable for humans, but it
also make it a lot easier to program, as calculating the offsets can be avoided. Of course this
can be used when the aspect weaver needs to change the operands of the branch instructions, if
the weaver uses the IL assembler.

42

Chapter 4: Common Intermediate Language YIIHAW - An aspect weaver for .NET

4.1.4 Datatypes

The primitive datatypes defined in CIL is another thing that opens up for language interop-
erability. All the .NET languages share the same primitive datatypes and thereby avoids any
problems with differences in the types between the languages. In the case of the .NET frame-
work, all the primitive datatypes are represented by classes in the System namespace and can
be reprensented both by their full signature, like System.Int32 or by their short forms like int
when using IL Assembler.

CIL also contain special datatypes, called generics. These are abstract datatypes which works
as templates for fully defined types, which will be given at instantiation time. In the metadata,
a non-generic type and a generic type only differs by the list of generic parameters that the
generic type holds. So to check if a type is generic it is necessary to check the parameter list in
the metadata. Another important fact is that it is possible to put constraints on generic types,
thereby specifying that the actual type given at instantiation should extend and/or implement
the types that are used as constraints on the generic type.

To fully explain generic types and the special rules concerning them is not in the scope of
this text, but the facts given here are the most important ones to be aware of if generics should
be supported by our aspect weaver.

4.1.5 The stack

As mentioned in the example in figure 4.1 the load and store instructions pushes values onto the
stack and pops values off the stack. CIL is entirely stack based, meaning that all computations
performed on the data is done through the use of a stack. The stack is not working with a specific
size for each entry, but with slots. Each slot has the size needed for the value that is stored
in it. As speciale rules apply for the use of the stack, attention is also needed when creating
an inlining aspect weaver. For example the stack always need to be empty when a method is
returning (except for a possible return value) - a rule that the Aspect. NET weaver does not
obey (as described in section 3.1.2). One of the metadata directives is .mazstack. The .mazstack
directive is used for each method definition, and it contains an indication of the maximum size
of the stack for the method in question. If the directive is not stated the default size is 8 slots.
As the weaving of two methods can change the use of the stack, it might be necessary to change
the .maxstack value after weaving. Figure 4.2 shows an example of this.

4.1.6 Exception handling

A special part of the metadata in an assembly is exception handling. FException handling is
controlled by the Common Language Runtime, guided by the exception handling metadata
specified for each method. Using the IL. Assembler the exception handling metadata can be
specified in two ways: Either it can be specified in scope form, which means that the directives
are inserted at the proper locations in the IL Assembler code where it encloses the scope of the
handler (figure 4.3(a)), or it can be placed in a section after the IL-instructions, where it must
use labels for indicating the scope (figure 4.3(b)).

43

Chapter 4: Common Intermediate Language YIIHAW - An aspect weaver for .NET

//Target method //Target method CIL code //Stack before
.maxstack 2
int Target () .locals init ([0] int32 a)
{ ldc.i4.2 []
int a = 2; stloc .0 [int]
return ax2; ldloc .0 []
} ldc.i4.2 [int]
mul [int ,int]
ret [int]
//Advice method //Advice method CIL code //Stack before
.maxstack 2
void Advice () ldc.i4 .2 []
{ call int32 Proceed() [int]
Foo(2, Proceed()); call void Foo(int, int) [int, int]
} ret (1

//After weaving
//target method replaces Proceed() and the ”ret” instruction is removed.

//The woven method //Stack before
.maxstack 3
.locals init ([0] int32 a)

ldc.i4.2]

//this is where Target() is inserted.

ldc.i4 .2 [int]

stloc.0 [int , int]
ldloc .0 [int]

ldc.i4 .2 [int , int]

mul [int , int, int]
//end of Target() insertion

call Void Foo(int, int) [int , int]

ret []

Figure 4.2: After the weaving is performed, the maxstack value needs to be higher than it was in
the target and the advice before the weaving. This is necessary as the advice puts something onto
the stack right before it inserts the target method.

44

Chapter 4: Common Intermediate Language YIIHAW - An aspect weaver for .NET

//C# code
void Foo ()

{

try

{
}
catch (Exception e)

{
}

Fun(1,2);

Console. WriteLine (e . Message) ;

A — exception handling — in scope:

.method private hidebysig instance void Foo() cil managed

{

try
{
ldc.i4 .1
ldc.i4.2
call void test.Classl::Fun(int32, int32)
leave.s IL_0017

} // end .try
catch [mscorlib]System.Exception

{
stloc.0
ldloc .0
callvirt instance string [mscorlib]System.Exception:: get_Message ()
call void [mscorlib]System. Console :: WriteLine (string)

leave .s IL_0017
} // end handler
ret
} // end of method Classl ::Foo

B — exception handling — in its own section:

.method private hidebysig instance void Foo() cil managed

{

Label_A: 1ldc.i4.1
ldc.i4.2
call void test.Classl::Fun(int32, int32)
leave.s Label_C

Label_-B: stloc.0
ldloc .0
callvirt instance string [mscorlib]System.Exception:: get_Message ()
call void [mscorlib]System. Console:: WriteLine (string)

leave.s Label _C
Label_C: ret

// Exception count 1
.try Label_ A to Label_-B catch [mscorlib]System.Exception handler Label B to
Label_C
} // end of method Classl ::Foo

Figure 4.3: Two ways of specifying exception handling. A - in scope, B - in a separate section.

45

Chapter 5

Working with CIL

As can be seen in the previous chapter there are a lot of facets to be aware of when working
with CIL. With the features that YIIHAW should support, it will be necessary to work with
many parts of CIL and we will therefore in this chapter look into how this can be handled.

The reading and writing of assembly files and the manipulation of CIL code and assemblies
in general is not a trivial task. Even though the IL Disassembler (ildasm) and the IL Assembler
(ilasm) included in the NET SDK can be helpful when it comes to reading and writing the
assemblies, there are still a lot of things that need to be controlled in order to work with more
than just simple assemblies. First of all there is the actual declaration of the assembly manifest
and its metadata, which includes defining dependencies, permissions, resources, content and
much more. Secondly, working with the IL-instructions demands a thorough knowledge of the
opcodes and how to specify their operands. The calculation of offsets can in itself be a difficult
task.

Instead of spending time on building our own tools to do the assembly and CIL manipulation,
we have chosen to take a look at two of the most feature-rich tools available today.

5.1 Microsoft Phoenix

Microsoft Phoenix [18] is the code name for a software optimization and analysis framework,
which is planned to be the foundation of all future compiler technologies from Microsoft for at
least the next 15 years. The purpose of the framework is to give developers and researchers an
environment in which compilers, programming tools, language tools and new languages can be
built in an effective manner. The framework exposes an intermediate representation(IR) as the
central building block. The IR is composed of both a high-level IR and a low-level IR, giving
the possiblity of working on different abstraction levels. Through the Phoenix API it is pos-
sible to analyze and manipulate the IR and afterwards output the IR in different output formats.

In the current release of the Phoenix Research Development Kit (May 2006 release) readers
are included for CIL and Microsoft portable executable (PE) binary image file. Likewise, the
output writers can generate CIL, PE files and COFF object files. Furthermore, project wizards
for Visual Studio are included to help create new analyzer/instrumentation tools and to help
create plug-ins to Microsoft’s Phoenix C++ compiler backend (C2.exe) [22]. The currently
supported languages are C++ and C#.

46

Chapter 5: Working with CIL YIIHAW - An aspect weaver for .NET

5.1.1 Is Phoenix the right choice?

Using the current Phoenix RDK release and the tools within it, it should be possible to build
an aspect weaver based on the Phoenix framework. This has already been accomplished in
the Aspect.NET project [15]. Based on several factors we have however chosen not to use
the framework in our project. The primary reason is the steep learning curve to get started
using the framework. Currently the documentation for the framework is based upon a dozen
of samples mainly in C++ and a help file which is rather inadequate and where most of the
code is also in C++. It should be mentioned that we prefer to implement our weaver in C#.
The documentation also focus more on how different parts of Phoenix works and not on how
to use them. Furthermore, the wizards mentioned previously did not work for C# and the
planned tutorials on the Phoenix homepage are not available at the time of writing. Also, the
intermediate representation used in the framework is almost too advanced for our needs, giving
a lot of unnecessary information that just makes it harder to find the needed data. Last but not
least, we have contacted the people behind Aspect.NET asking why many features were missing
in Aspect. NET (such as the lack of support for instance method interception and introductions).
They replied that this is due to shortcomings in Phoenix. They did not give any further details
on the cause of these shortcomings [21].

5.2 Cecil

Cecil [20] is a library written under the Mono Project [16] by Jean-Baptiste Evain. The main
functionality of Cecil is to generate and inspect programs and libraries in the CIL format. In
practice, this means that it can represent an assembly in a structure with modules, types,
methods, instructions, etc. From this structure it can generate a new assembly. It is possible
to manipulate, delete and insert objects in the structure. The structure and its objects are in
most cases equivalent with the representation of a program in CIL. When Cecil builds a new
assembly, it helps the user by taking care of practical low-level issues, like maxstack and offset
calculation, name checking on local variables (to avoid name collision on local variables) and
checking whether operands to opcodes are of a valid type. More generally it also makes sure
that the structure of the assembly is in a correct format.

5.2.1 Is Cecil the right choice?

With the possibilities in Cecil to read, manipulate, create and write new assemblies, it seems
to contain the functionality needed to build an aspect weaver. The library is also used in
AspectDNG, whose development team included the author of Cecil. As for Phoenix, useful
documentation is almost non-existing: There is only a small FAQ which shows a couple of usage
examples. However, as the library has a fairly intuitive structure and the focus of the library is
relatively narrow (at least compared to Phoenix), we believe it is possible to learn how to use it
without any documentation.

Through some small tests we have found that Cecil is relatively easy to learn and that it can
be used for at least some of the ideas we have for YIIHAW. The clear correspondence between
CIL and the internal structure built by the library also adds an extra plus to Cecil, as it allows
making low-level optimizations in the CIL code generated. Based on these observations we have
chosen to use Cecil in the development of YITHAW.

47

Chapter 6

The complexity of advice inlining

Section 3.4.2 considered how our aspect weaver should work with interceptions. This chapter
goes into further details about some of the problems incurred when inlining advice within the
target and how we believe they should be handled. All discussions here will be somewhat
theoretical; details about the actual implementation are deferred to chapter 9.

6.1 Advice syntax

In section 3.4.2 we defined the need for an advice implementation syntax that allows the user to
implement a “catch-all” advice method, i.e. an advice method that can be used for intercepting
any kind of target. This was shown by making the advice method return any type! (represented
as T in the examples shown in section 3.4.2). This syntax resembles that of AspectDNG where
advice methods should always be specified as returning object, meaning that they can be used
to intercept methods of any type (including void).

Looking deeper into what the concrete syntax should look like, one needs to carefully con-
sider what the user can actually write in an advice method. We believe that it should always be
possible to overwrite the return value of the intercepted target, as this allows for total replace-
ment of the target. This obviously means that the user should be able to return any type of
value from an advice method (as the target methods can be of any type). As mentioned earlier,
in AspectDNG this can be achieved by declaring the advice method to return object and then
return the kind of object you want, as shown in figure 6.1.

object Advice(JoinPointContext jpc)

{
object result = jpc.Proceed(); // invoke the original target
Console. WriteLine (”advice here...”);
return ”"new return value”; // return a new wvalue

Figure 6.1: An advice method written using AspectDNG syntax. The JoinPointContext object
passed as argument to the advice method is an object defined in the Aspect DNG framework, that
allows the user to obtain information about the intercepted object. In this sample, the object is used
to invoke the Proceed() method.

As can be seen, this advice method return a string with the value "new return value”. This
is allowed by the compiler, as a string is obviously also an object. The problem with this advice

'Recall that the examples shown in section 3.4.2 are written as pseudo-code and cannot be directly implemented
in any of the .NET languages.

48

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

is that it only makes sense to apply it to targets that are defined to return string: Inserting this
advice into a target that returns void would obviously result in a runtime error. The weaver
should therefore be able to figure out what type is actually being returned and make sure only
to apply the advice to targets of that type (or alternatively, terminate with an error). This kind
of typechecking can be very cumbersome to implement, not to say very errorprone. We believe
that explictly stating the return type is a better approach, as this makes the typechecking by
the weaver unnecessary. Using this approach, the sample method shown in figure 6.1 should
thus be explicitly stated as returning string instead of object.

However, explictly stating the return type removes the possibility for implementing advice
methods that can be applied to all targets, regardless of their return type. This was the key
intention behind using object as a return type in AspectDNG in the first place. As implementing
a “catch-all” advice method is often needed (for example, when implementing a logging advice),
this feature must obviously be supported by our weaver as well. Thus, a supplemental syntax is
needed for these cases. We propose using generics when representing “catch-all” advice methods,
as illustrated in figure 6.2.

T Advice<T>()
{

T result = Proceed<T>(); // invoke the original target
Console. WriteLine (”advice here...”);
return result; // return the result from the original target

}

Figure 6.2: A “catch-all” advice method written using generics.

As can be seen, this advice can be used to intercept any target, regardless of the return type.
The main difference between this syntax and the one of AspectDNG, is that using generics im-
poses some restrictions on what can be returned from this method: Trying to return a string
with the value "new return value” would be illegal in this context and would be discarded by the
compiler. The only valid constructs that can be returned from this context are Proceed() and
default(T)?. All return types are checked by the compiler, which makes the implementation of
the aspect weaver much simpler.

One thing to note about the syntax is that the signature of the advice method is modified
slightly, so that the parameter T is explicitly defined on the advice method. This is made in
order to avoid complaints from the compiler. The generic type is of course not restricted to be
named T - the user can choose whatever name he likes. Similarily, the signature of the Proceed()
method is modified, so that it is also defined using a type parameter. Again, this is needed in
order for the compiler to accept the code. Besides these minor changes, the syntax in figure 6.2
is identical to that found in section 3.4.2.

We believe that the use of generics yields a simple and efficient implementation syntax for
the advice methods, as it provides the user with an early typechecking (by the compiler) that
catches any attempt to return a type that is incompatible with the target: It is simply not
possible to return a specific type on an advice method declared using generics®. This makes

2This is actually not completely true, as other usages of T can be implemented. However, for the sake of
argument assume that no other valid constructs exist at this point. In chapter 9 we will come back to this issue
and discuss other uses of the generic type.

3This is actually possible if a constraint is set on the generic type. However, defining such constraints means
that the advice methods can no longer be used for intercepting any kind of type. Setting a constraint on a generic
type is thus the same as explictly defining a specific return type on the advice method.

49

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

sense, as you should never be able to overwrite the return value in a “catch-all” advice method,
as it is simply impossible to return a type compatible with all targets. If the user needs to
overwrite the return type this can still be done by explicitly defining a return type on the advice
method. This advice method is then used only for intercepting targets with that return type.

6.2 Invoking Proceed

Invoking the Proceed() method should trigger the weaver to inject the original target at the
specified location. This is somewhat complicated by the fact that the weaver need to consider
the context in which the original target is injected. Consider the advice shown in figure 6.3.

T Advice<T>()
{
T result = Proceed<T>();
Console. WriteLine (‘ ‘advice here...’7);
return result ;

}

.locals init ([0] !!T result)

ldarg .0

call instance !!0 YIHAW:: Proceed <!10>()

stloc.0

ldstr ?entering advice...”

call void [mscorlib]System. Console:: WriteLine (string)
ldloc .0

ret

Figure 6.3: An advice method represented as C# code (top) and IL Assembler language (bottom).

The advice method invokes Proceed() and stores the result in a variable named result of type
T. As the advice method is declared to return a generic parameter, it can be used for intercepting
any kind of target. However, when applying this advice to the intercepted method it no longer
makes sense to store the result in a generic parameter, as this generic parameter only exists
in the advice method. In most cases it would actually result in a runtime error if the generic
parameter is introduced within the target method, as the generic parameter will most likely not
be defined within the declaring type of the target method. The generic parameter should thus
be replaced with the actual type of the target method being intercepted. Intercepting a method
that returns an int should thus trigger the weaver to modify the local variable result from type
T to type int. All other local variables that store the result of Proceed() should be modified as
well. These modifications should of course be made for all types.

6.2.1 Handling void

Special care needs to be taken when handling interception of target methods that returns void.
It makes no sense to modify the generic parameter to be of type void, as this is not a valid
type. Thus, a different approach is needed when handling these methods. As a target method of
type void obviously never returns anything, it makes sense to skip the assignment to the generic
parameter altogether. This also implies that loading the value of the generic parameter at a
later stage should also be skipped, as it will not have been assigned a value in the first place.
Figure 6.4 shows a modified version of the advice from figure 6.3, transformed by the aspect
weaver in order to handle void methods.

50

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

ldarg.0

call instance !!0 Weaver:: Proceed <!10>()

ldstr ”entering advice...”

call void [mscorlib]System. Console:: WriteLine (string)
ret

Figure 6.4: An advice method modified by the aspect weaver in order to handle interception of
target methods that returns void.

As can be seen, the stloc and Idloc instructions have been skipped. There is no need for
them when intercepting a void method, as there is no value to store and load. Similarily, as the
variable result is no longer needed, this can be skipped as well. There is no need for introducing
a variable into the intercepted target method that is never used. The advice method shown in
figure 6.4 is still valid, i.e. the CLR will have no problem executing it, even though some of the
instructions have been removed. These instruction were only used for storing and loading the
result of Proceed() anyway. However, as we know that the intercepted target method returns
void, we also know that the call to Proceed() will place no value on the stack. Thus, when
reaching the return statement (ret) no value is left on the stack, which is just what is intended
when intercepting a void method.

6.2.2 Injecting the target method’s body

So far, we have only discussed how the advice method should be modified in order to fit into
the context of the methods being intercepted. When handling a call to Proceed() the weaver
should do more than just changing the type of the variables that store the result returned from
Proceed(). Invoking Proceed() is actually a cue to the weaver that it should at this point inject
the original target method’s body into the code being generated, substituting the call to Pro-
ceed(). Consider the sample target method in figure 6.5. Intercepting this method using the
advice shown in figure 6.3 should result in a new target method, consisting of the advice method
merged together with the original target method, as shown in figure 6.6.

int Target ()

{

System .Random random = new System .Random /() ;
return random.Next () ;

}

.locals init ([0] class [mscorlib]System.Random random)
newobj instance void [mscorlib]System.Random::. ctor ()
stloc.0

ldloc .0

callvirt instance int32 [mscorlib]System.Random:: Next ()
ret

Figure 6.5: A target method represented as C# code (top) and IL Assembler language (bottom).

The generated code is fairly simple: As the intercepted method returns an int, the local
variable result is set to be of this type as well and the variable is introduced into the intercepted
target method (as can be seen in the .locals directive). The call to Proceed() is replaced with
all instructions from the original target method. Following the last instruction of the original
target method, is a stloc.0 instruction that takes the int value returned from the original target

o1

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

.locals init ([0] int32 result, [1] class [mscorlib]System.Random random)
newobj instance void [mscorlib]System.Random::. ctor ()
stloc.1

ldloc .1

callvirt instance int32 [mscorlib]System.Random:: Next ()
ret

stloc.0

ldstr ‘‘advice here...’’

call void [mscorlib]System. Console:: WriteLine (string)
ldloc .0

ret

Figure 6.6: The result of weaving the target method of figure 6.5 using the advice of figure 6.3.

method and stores it in variable 0 (named result). This variable is then loaded again later on
and is returned.

Handling return statements

One major problem exist in the code shown in figure 6.6: Two return (ret) instructions exist in
the generated output. This is a valid .NET program, but it will lead to undesired behaviour, as
the method would return as soon as it reached the first of these two ret instructions. This means
that all instructions following the original target method will never be executed. This problem
is due to the ret instruction located in the original target method, which is also inserted into
the generated output along with the other instructions. As the new target method should never
return before all the advice instructions have been executed, it is necessary to remove these ret
instructions and defer returning until reaching the end of the new target method. However,
this has to be done with care, as simply moving the ret instructions significantly changes the
behaviour of the original target method. Figure 6.7 shows an example of this: Removing the
ret instruction would cause the execution to fall-through to the ldstr instruction and print “b is
not true” no matter what the value of b is. This is clearly not what was intended, so another
approach is needed.

void SomeMethod (bool b)

if (b)

return;

Console. WriteLine (‘‘b is not true’’);

}

ldarg.1

brfalse.s label

ret

label: ldstr ”b is not true”

call void [mscorlib]System. Console:: WriteLine(string)
ret

Figure 6.7: A method represented as C# code (top) and IL Assembler language (bottom).

We propose replacing all ret instructions within the original target method with a br instruc-
tion, that unconditionally branches to the instruction following the last instruction of the original

52

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

target method. This effectively prevents any premature returns that changes the behaviour of
the original target.

6.3 Merging local variables

Figure 6.6 showed the generated output when applying the advice of figure 6.3 to the target
method defined in figure 6.5. Merging the local variables is actually a bit more complex than
illustrated in this figure, as it is necessary to update all references to these variables as well.
Notice how the references (stloc and ldloc instructions) from the target method have been up-
dated to refer to the new index of the random variable in figure 6.6. This needs to be done for
all variables whenever local variables are merged together from the advice and from the original
target. The weaver should use the short version of these instructions whenever possible in order
to optimize the generated code.

An important issue when merging the local variables is that the variables from the original
target method should only be included in the generated code if Proceed() is invoked at some
point within the advice method. If the Proceed() method is never invoked this means that the
user intend to completely replace the intercepted target method. In this case, it makes no sense
to include the local variables of the original target, as they will never be used.

6.4 Mapping IL-instructions

During the previous sections we have discussed various modifications that need to be performed
on the target methods being intercepted and on the advice methods applied to them. These mod-
ifications affect not only the instructions that are directly manipulated - they also affect other
instructions that refer to these modified instructions. Consider the example shown in figure 6.8:
A boolean variable, b, is introduced which gets assigned a value (the actual value is irrelevant
for this discussion). If b is true the Proceed() method is invoked. In IL Assembler language,
such an expression is implemented using a branching instruction (brfalse.s in this sample) that
branches to a particular instruction if the proper condition is met. In figure 6.8 the instruction
that is targeted by the branching instruction is illustrated using a label. However, the actual IL
code generated does not contain any labels. Instead this instruction is calculated as an offset to
the branching instruction. This poses a problem when replacing the call to Proceed() with the
actual instructions of the target method, as this naturally changes the offset of the instruction
that should be branched to as well.

In order to solve this problem a mapping needs to be maintained: When modifying an
instruction, a reference to the old instruction and the modified instruction should be stored
in memory. Having modified the instructions, all branching instructions should be updated
according to the mapping. This way, no “dangling” references exist that might result in runtime
exceptions when invoking the generated assembly.

6.5 Checking references

In the examples shown so far we have not considered how to handle references to different kinds
of constructs (methods, fields, classes, etc.) from within the advice methods. These references
have to be checked by the weaver to make sure that they are valid within their new context.
Consider the sample code shown in figure 6.9: The call to SomeMethod() should be checked by
the weaver in order to make sure that this method is available from the target assembly. If this

93

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

public T Advice<T>()

{
bool b = GetBool () ;

if (b)
Proceed<T>();

Console. WriteLine (”advice here...”);
return default(T);

}

.locals init ([0] bool b,
[1] 1T CS$0$0000)

ldarg.0

call instance bool Aspects:: GetBool()
stloc.0

ldloc .0

brfalse.s label

call 110 YOHAW :: Proceed <!10>()

pop

label: ldstr "advice here...”

call void [mscorlib]System. Console:: WriteLine (string)
ldloca.s CS$0$0000

initobj 1T

ldloc .1

ret

Figure 6.8: An advice method represented as C# code (top) and IL Assembler language (bottom).
Replacing the call to Proceed() with the instructions of the target methods requires that the brfalse.s
instruction is modified so that it points to the correct offset.

check is not performed, this call might result in a runtime exception being thrown by the CLR
when executing the program. This type of checking is somewhat complicated by the fact that
the action that should be taken by the weaver depends on the context in which the construct is
used: Three different types of contexts can be defined. These will be discussed in the following
sections.

class Aspects

{
T Advice<T>()

{
Foo .SomeMethod () ;

}
}

Figure 6.9: An advice method that invokes a static method, SomeMethod() on class Foo.

6.5.1 Handling references to constructs outside the aspect assembly

Consider the sample shown in figure 6.9. If the class Foo is located outside the aspect assembly
(i.e. outside the assembly in which the advice method is defined) the aspect weaver should check
that this class is available from the target assembly. This implies that the weaver should check
that the assembly in which Foo is defined is available from the target assembly. This can easily
be checked, as the manifest of the target assembly should contain a reference to this assembly.

54

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

It this is not the case, the weaver should add a reference to the assembly, as the call would
otherwise result in a runtime exception being thrown when invoking the program. A similar
action should be performed when handling references to fields, properties, classes, interfaces and
delegates.

6.5.2 Handling references to constructs in the aspect assembly

Special consideration should be taken when handling references to constructs within the aspect
assembly itself. As all constructs within the aspect assembly might be subject for insertion into
the target assembly (via the pointcut), this means that ambiguous references might be encoun-
tered. Assume that the class Foo of figure 6.9 is defined within the aspect assembly instead and
the call to SomeMethod() from the advice method refers to this class. The user might instruct the
aspect weaver to insert SomeMethod() into all classes in the target assembly. This is a perfectly
legal pointcut. However, this might result in a scenario where SomeMethod() suddenly exists in
30 different classes in the target assembly. There is no way for the aspect weaver to determine
which of these 30 classes to use when invoking SomeMethod() - the reference is ambiguous in
the new context. It does not make any sense to just add a reference to the aspect assembly and
refer to SomeMethod() defined in this assembly, as this would mean that the target assembly is
now dependent on the aspect assembly when invoking the program. This type of dependency
should be avoided, as the aspect assembly is created as an ad hoc assembly that should only be
used by the aspect weaver - it makes no sense on its own.

We propose the following solution: The aspect weaver should check whether SomeMethod()
is instructed to be inserted into the target assembly. If this is not the case, the weaver should
terminate with an error, as this means that SomeMethod() is not available at all from the target
assembly. If SomeMethod() on the other hand is subject for insertion, the weaver should check
the number of locations in which the method is inserted. If the method is only inserted into one
class, this means that the reference is not ambiguous and the weaver should replace all calls to
SomeMethod() with its new location within the target assembly. If the method is inserted at
multiple locations, the weaver should terminate with an error, as this obviously means that the
reference is ambiguous. Similar action should be performed for other constructs refered to from
the advice methods.

6.5.3 Handling references to local constructs

Consider the sample shown in figure 6.10. This sample is similar to that of figure 6.9, except
that the call to SomeMethod() is now a local call, i.e. SomeMethod() is defined within the same
class as the advice method.

Methods (and properties) often refer to other local constructs defined within the same object
as the method itself. In figure 6.10 the method SomeMethod() updates the value of the local
field . Such references to local constructs should be maintained when applying the aspects.
This implies that the invocation of SomeMethod() shown in figure 6.10 should be mapped to the
local version of this method within the target class. Figure 6.11 shows the result of applying the
advice to a target method.

As can be seen, the local field z and the local method SomeMethod() have been inserted into
the target class?. The method that was intercepted (TargetMethod()) invokes the local version

“Here we assume that these constructs were targeted by the pointcut defined by the user. If the user does
not explicitly state that these constructs should be introduced within the target assembly, the weaver should
terminate with an error, as the references to these constructs would be invalid.

95

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

class Aspects

{

int x;

void SomeMethod ()

{

x = T,

}

T Advice<T>()

SomeMethod () ;
}

Figure 6.10: An advice method that invokes a local method, SomeMethod() which updates the
field z.

class Target

{

int x; // field inserted by the aspect weaver

void SomeMethod () // method inserted by the aspect weaver

{

void TargetMethod () // method intercepted by the aspect weaver

{
}

SomeMethod () ; // call the local version of SomeMethod()

}

Figure 6.11: The result of applying the advice method of figure 6.10 to a method in the target
assembly. All local references within the aspect assembly are maintained in the target assembly.
(Note that this example is only shown in C#, as it is easier to understand. The weaver never
produces source code, as it operates at the assembly-level.)

of SomeMethod(). This is an important thing to notice. The method SomeMethod() might be
subject for insertion into many locations in the target assembly. However, local references within
the advice methods should always be mapped to local references within the target assembly as
well. This means that SomeMethod() might be inserted at 30 different locations within the target
assembly. This is no problem (that is, the reference is not ambiguous) as long as all references
to this method are local references. Local references thus form an exception to what was defined
in the previous section, which stated that if a construct is inserted at multiple locations, the
references to it are ambiguous. The weaver should be able to make these transformations of
local references.

6.6 Referring to the declaring type of the target method

When implementing an advice method, one often need to access the declaring type of the method
being intercepted, e.g. to access fields or invoke methods on this type. Such a scenario is de-
picted in figure 6.12.

o6

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

class TargetClass

{

int x = 5; // this field should be accessible from the advice method

int TargetMethod () // this method should be intercepted and the wvalue of 'z’
should be returned instead
{

}

return 3;

}

Figure 6.12: A class containing one method, TargetMethod(), that should be intercepted. The
advice that should be applied need to access the field .

As can be seen, the declaring type of the method that should be intercepted, TargetClass,
contains an instance field, z. The advice method should be able to access this field and use
it (either to read the value or update the value) within the advice. In many aspect weavers,
including the ones examined in chapter 2, this can be achieved by accessing a special property
(most often named Target, DeclaringType or something similar). As the declaring type of the
method being intercepted can obviously be of any type, these properties are defined to return
object in order to be able to support all declaring types. As one often need to access methods or
fields specific to the type being intercepted a typecast need to be performed. This is illustrated
in figure 6.13.

object Advice(JoinPointContext jpc)

{

TargetClass target = (TargetClass)jpc.RealTarget; // get a reference to the
declaring type of the target method and typecast it

S 0

return target.x; // return the value of the field 'z

}

Figure 6.13: An advice method written using AspectDNG syntax that access the declaring type of
the method being intercepted and returns the value of the instance field .

We consider this kind of syntax to be a bad approach, as the use of typecasts adds runtime
overhead. In our case, the only purpose of the typecast would be to please the compiler: As
the advice gets merged with the original target method at weave-time, all constructs referred to
from the advice methods are directly available in the new context. This means that the typecast
is completely unnecessary once the weaver has applied the advice. For this reason, we propose a
different syntax: Use generics to specify the type of the target class. This is shown in figure 6.14.

T Advice()
{

TargetClass target = GetTarget<TargetClass >(); // get a reference to the
declaring type of the target method

))

return target.x; // return the wvalue of the field 'z

}

Figure 6.14: An advice method that performs the same operation as shown in figure 6.13 by using
a syntax based on generics.

o7

Chapter 6: The complexity of advice inlining YIIHAW - An aspect weaver for .NET

The GetTarget() method is defined to take a type parameter of the same type as the the
target class. This syntax resembles that of Proceed() described earlier. The GetTarget() method
returns the instance of the target class that is being intercepted. No typecasts are needed for
accessing fields and methods of the declaring object, as the type is explicitly defined when in-
voking the method.

6.6.1 Handling calls to GetTarget()

At weavetime, all calls to GetTarget() should simply be replaced with a Idarg.0 instruction, i.e.
a this pointer. This is possible, as our weaver uses an inlining approach that effectively transfers
all instructions of the advice methods into the target methods. In this new context a reference to
the declaring object can be obtained directly via a this pointer. The use of GetTarget() should
obviously only be allowed when intercepting instance methods. This should be checked by the
weaver. Similarily, the weaver should check that the type specified when invoking GetTarget()
is equal to the actual declaring type of the method being intercepted. If this is not the case the
weaver should terminate with an error.

6.6.2 Accessing constructs of the declaring type

As the target and the advice methods are located in separate assemblies, one problem exists
with the syntax proposed in figure 6.14: All constructs that should be available from the advice
methods need to be accessible outside the assembly in which they are defined. Constructs de-
fined as being public obviously poses no problem, as these can be accessed from any class in any
assembly. However, constructs defined as internal, protected or private are somewhat more diffi-
cult to handle, as these cannot be directly accessed from another assembly. No perfect solution
exist for this problem, as it is bounded by a fundamental design decision in the .NET framework.
An obvious solution would be to change the access specifier to public for constructs that need
to accessed from the advice methods. However, such an approach is not always suitable, as this
would break the principle of encapsulation. For these cases, we propose changing the access
specifier of the constructs to internal or internal protected instead and use the Internals Visible-
ToAttribute attribute®, specifying that the aspect assembly should be able to access internals
in the assembly. This way, all access to the constructs are prohibited outside the declaring as-
sembly, except by the aspect assembly. This is the same approach as used in the “Generation of
specialized collection libraries” project [3]. This problem exist in AspectDNG, Aspect.NET and
Rapier LOOM as well. NKalore does not have this problem, as it uses preprocessing weaving,
i.e. the advice is applied before compiling which eliminates the problem.

®http://msdn2.microsoft.com/en-gb/library /system.runtime.compilerservices.internalsvisibletoattribute.aspx

o8

Chapter 7

Pointcut specification

So far, all discussions have focused on various facets of implementing a high-performing aspect
weaver. However, these discussions have all been somewhat theoretical in the sense that they
did not describe any concrete implementation details. Starting with this chapter, focus is now
directed towards the actual implementation of our aspect weaver. This chapter is going to
present details related to the implementation of the pointcut parser. All discussions will be
based on the ideas described throughout the preceeding chapters. A class diagram showing the
main entities and relations can be seen in appendix D.

7.1 Defining the pointcut language

One of the most important things to consider when implementing a pointcut parser is defining
what the pointcut language should look like. The pointcut language serves as the user’s primary
way of interacting with the weaver, as it is what basically allow the user to specify which aspects
should be applied to the target assembly.

7.1.1 The pointcut file

Recall from section 3.5 that we consider using a separate file for the pointcuts to be the best
approach, as this allows greater flexibility when it comes to defining the pointcuts. An issue in
this regard is deciding on the format of the pointcut file. An obvious idea is to use XML for
writing the pointcuts, as it is well-structered and fairly easy to read and write. Aspect DNG uses
XML for defining the pointcuts. However, we believe that XML adds too much “noise” when
writing the pointcuts: Looking at a typical input file for AspectDNG, more than half of the input
consist of the definition of tags and properties that are necessary' to include in order to specify
the real concern, namely the pointcut itself. We consider using an ad hoc aspect language to be
a more suitable approach, as this allows for a syntax where the definition of these unnecessary
constructs can be avoided. Aspect.NET also uses such an approach.

7.1.2 Targeting constructs

Section 3.5.2 looked at some of the expressions that should be supported by our weaver. Three
types of expressions should be supported: Interceptions, introductions and typestructure modi-
fications.

'The sample pointcut files in appendix G gives an idea of what the AspectDNG pointcut files look like.

99

Chapter 7: Pointcut specification YIIHAW - An aspect weaver for .NET

Interceptions

As mentioned in chapter 3, our weaver should only support around body interceptions. To give
the user a fine-grained control of which constructs should be targeted the pointcut language
should support the specification of the following properties on the target constructs:

e Access specifier

Invocation kind (instance/static)

Return type

Name of the method

e Arguments

e Declaring type of the construct (namespace and class)

These properties allow the user to match the following method by a pointcut statement:

declaring type
invocation kind

return type
pule.c class Target /
{

public static void Foo(string s, int i) { ... }
e N
access name of the method arguments
specifier

As the user should be able to write a single pointcut that targets many constructs, the use
of wildcards should be supported on all these properties.

Introductions

The weaver should support introducing various types of constructs into the target assembly.
The following constructs should be supported by the pointcut language:

e Methods
e Properties
e Fields

o (Classes

e Delegates
e Events

e Attributes

e Enumerations

60

Chapter 7: Pointcut specification YIIHAW - An aspect weaver for .NET

Classes, attributes and enumerations can be inserted into an existing namespace or class
(which means that they are nested inside the specified class) in the target assembly. All the
other constructs can only be inserted into an existing class. The pointcut language should
support the specification of the following properties on the constructs:

e Construct type (one of six types listed above)

e Access specifier

Invocation kind (instance/static)

Return type (methods, properties, fields, events and delegates only)

Declaring type of the construct (namespace and possibly class)

Declaring type of the target class or namespace (the location where the construct should
be introduced)

As for interceptions, the use of wildcards should be supported on these properties.

Typestructure modifications

The weaver should support two types of typestructure modifications: Interface implementation
and changing the superclass of an existing class. The following properties should be supported
by the pointcut language:

e Declaring type of the target class (the class that should be modified)
e Type of modification (implementation of an interface or changing the superclass)

e Declaring type of the new interface or superclass

Once again, the use of wildcards should be supported.

7.1.3 The pointcut language

The grammar for the pointcut language that we propose can be seen in appendix B. Figure
7.1 shows the syntax that can be derived from this grammar. Figure 7.2 shows examples of the
pointcut syntax. As the pointcut syntax is easier to grasp than a complete grammar, we will
use this as a foundation when describing the pointcut language.

around

All interception-statements start with the keyword around. Properties declared before the key-
word do describes the target methods to intercept. Properties succeeding the keyword do de-
scribe the advice method to use. Wildcards are only allowed when specifying the target methods
- specification of the advice method should always match the name of a specific method. A single
method can be targeted multiple times (using multiple statements). In that case, the method is
intercepted in the same order as the statements are declared.

The access property allows specifying the access specifier for the method to intercept. Pos-
sible values are: public, private, protected, internal or *.

61

Chapter 7: Pointcut specification YIIHAW - An aspect weaver for .NET

The invocation kind property can be used for specifying the invocation kind of the method
to intercept. Possible values are: static, instance or *.

Types and arguments must be fully qualified (namespace and class). An exception to this
rule is the primitive datatypes found in the .NET framework, such as integers, string, chars,
etc. These can be written using a short form notation similar to the syntax of C#. Details
about these notations can be found in appendix C. If more than one argument is specified on
the target method, arguments must be separated with a comma. Alternatively, one can use a
wildcard (*) to match any number and any types of arguments.

The inherits keyword is an optional property that allows specifying restrictions on the
superclass of the declaring type of the target method. Figure 7.2(b) shows a sample usage
of the interhits keyword that matches all methods whose declaring type inherits from Sys-
tem. Collections. Hashtable. Leaving out the specification of the inherits property is the same as
writing inherits *.

Notice that the advice method is specified in a different manner than the target methods.
As can be seen in figure 7.1, the access specifier, invocation kind, return type and arguments
are not specified for advice methods. The reason for this is as follows: The weaver allows the
user to write multiple advice methods with the same name (of course, the signature must be
unique, as the code would otherwise not be compilable). When probing the target and aspect
assemblies for methods that matches the pointcut, the weaver automatically picks the advice
method whose signature provides the best match for each target method. This means that the
user can write a single pointcut that matches many (even all) methods in the target assembly
and apply different advice for each target (depending on the number and the type of advice
methods he has implemented). We will go into further details about this subject in the next
chapter.

insert

Introductions start with the keyword insert. Properties preceeding the keyword into describe
the construct that should be inserted. This construct must be located in the aspect assembly.
The property succeeding the keyword into specify where the construct should be inserted.

The property construct is used to specify the type of construct that should be inserted. Pos-
sible values are: method, property, field, event, delegate, enum, attribute and class. No wildcards
are allowed on this property.

The properties access, invocation kind and return type are similar to the ones defined for
interceptions. The return type property should not be specified when introducing a class, enum
or attribute (as these do not have any return type). For all other constructs the return type
must be specified. Wildcards are not allowed on this property.

The aspect type and aspect name properties must be fully qualified. No wildcards are al-
lowed on these properties, as the user should always specify a concrete construct that should be
inserted.

The last property (type) defines the type in which the construct should be inserted. Wildcards
are allowed on this property, which means that the user can instruct the weaver to insert a
construct at various locations in the target assembly using one single statement (see figure
7.2(e) for an example of this).

62

Chapter 7: Pointcut specification YIIHAW - An aspect weaver for .NET

modify

Typestructure modifications are defined using the modify keyword. The type property specifies
the type to modify. This type must be fully qualified and must be located in the target assembly.

The action property defines the type of action to perform. The possible values are: inherit
and implement. If the former is chosen, the aspect type property must define a fully qualified
class within the aspect assembly. If the action property is set to implement, the aspect type
property must define a fully qualified interface in the aspect assembly. The weaver will check if
all methods and properties of that interface are defined within the target type. If this is not the
case, the weaver will terminate.

Interceptions:

around <access> <invocation kind> <return type> <type>:<method(arguments)>
[inherits <type>] do <advice type>:<advice method>;

Introductions:
insert <construct> <access> <invocation kind> [return type]

<aspect type>:<aspect name[(arguments)]> into <type>;

Typestructure modifications:

modify <type> <action> <aspect type>;

Figure 7.1: Syntax for the pointcut language. Constructs in square brackets are optional. Con-
structs in angle brackets are mandatory.

7.2 Scanning the input file

Having defined the pointcut language, we now turn focus towards the actual implementation of
the pointcut parser. Recall from previous discussions that all pointcuts should be defined in a
separate textfile. This obviously requires that the file at some point gets loaded into memory
and that the content is divided into smaller fragments that can be parsed. Usually such a task is
handled by a tokenizer. Unfortunately the .NET framework does not include a tokenizer, so we
had to build one of our own (see appendix V for the source code). The tokenizer (fully qualified
name in the source code: YITHAW.Pointcut. Lexical Analysis. Tokenizer) is very simple: It splits
the text into tokens and determines its type. The type can be either FOF (END-OF-FILE),
WORD (string) or NUMBER. If the token is of type WORD the string value can be fetched
using the property Sval. If the token is a NUMBER the integer value can be fetched using the
Nuval property.

7.2.1 Identifying keywords and special tokens

Having only three types of tokens when implementing a parser means that various checks have
to be performed in the parser in order to identify keywords and other constructs. This type
of checking is repetitive and error-prone. A suitable solution for this problem is to identify all
special tokens (keywords and strings) prior to parsing the content. This process is refered to as

63

Chapter 7: Pointcut specification YIIHAW - An aspect weaver for .NET

Interceptions:

(a) around public static void TargetNamespace.TargetClass:Foo(int,string)
do AdviceNamespace.AdviceClass:AdviceMethod;

(b) around * * *:%(*) inherits System.Collections.Hashtable
do AdviceNamespace.AdviceClass:AdviceMethod;

Introductions:

(c) insert method public * int Namespace.AspectClass:Foo(string,System.Object)
into TargetNamespace.Class;

(d) insert class Namespace.AspectClass into TargetNamespace;

(e) insert delegate Namespace.AspectClass:MyDelegate(int,string)
into TargetNamespace.*;

Typestructure modifications:

(f) modify TargetNamespace.Class inherit Namespace.AspectClass;

(g) modify TargetNamespace.Class implement Namespace.AspectInterface;

Figure 7.2: Examples of the pointcut syntax.

scanning [14].

We have implemented a scanner (fully qualified name: YIIHAW.Pointcut. Lexical Analysis.-
Scanner) that takes care of identifying all special tokens. Two types of tokens exist: Keywords
(such as around, insert, do, etc.) and special characters (such as ”(”, ”)”, 7", 7", 7*” etc.). In
total, 31 types of tokens exist in the pointcut language (refer to the source code in appendix
V for details about these tokens). All of these tokens are defined as values of an enum value
(called TokenType), which means that the parser can determine the type of token by looking at
the value of this enum - the parser does not need to identify the type of token itself.

A special type of token called NAME exist: This token contain a string literal used by the
user to identify a construct in the target or aspect assembly (for example, the return type of a
method). For these tokens, acquiring the token type is not enough; the parser must be able to
fetch the actual string literal of the token as well. This can be done using the Sval property of
the scanner.

7.3 Parsing the pointcuts

Having defined the pointcut grammar and identified all tokens, the implementation of the parser
is fairly simple: A parsing method [14] is defined for each nonterminal symbol? in the pointcut

2A nonterminal symbol is a special kind of symbol that can be resolved (often recursively) as one or more
terminals (strings). Nonterminals are only used for making it easier to define and implement a grammar. They
can never appear in the text entered by the user - only terminals can.

64

Chapter 7: Pointcut specification YIIHAW - An aspect weaver for .NET

grammar. As the pointcut grammar contain 22 nonterminals this means that 22 parsing methods
are defined within the parser (fully qualified name in the source code: YITHAW.Pointcut. Parser).
For details regarding these methods, refer to the source code in appendix V.

7.3.1 Storing the pointcut statements

As the parser is not responsible for performing the actual weaving of the aspects, this means
that the pointcut statements must somehow be stored for later retrieval by the weaver. Three
structures which represents the abstract syntax for the pointcut language, are defined for this
purpose: Around, Insert and Modify. These structures contain fields and properties for storing
and retrieving the details of a single pointcut statement. For instance, the Around structure
contain properties, such as Access, ReturnType, TargetType, etc. for storing details related to an
interception statement. Every single statement gets stored into one of these structures (which
structure obviously depends on the type of pointcut statement). Once the parsing has been per-
formed the pointcuts can be retrieved using the properties AroundStatements, InsertStatements
and ModifyStatements on the parser object. Each of these properties return a strongly typed
collection.

7.3.2 Handling errors

As the user does not always specify valid pointcut statements the parser must obviously be able
to identify and handle invalid input. Each parsing method checks that the current token is as
expected. If the parser at any point identifies a token that was not expected an exception is
thrown. A sample exception might be: Expected ’;’, but found ’insert’. All exceptions
thrown by the parser are catched and handled by the weaver.

65

Chapter 8

Identifying targets and aspects

Having parsed all the pointcut statements the process of identifying the constructs that match
these statements can begin. This is handled by three different classes: InsertHandler, Modify-
Handler and InterceptHandler (all located in the namespace YIIHAW.Controller). The source
code for these classes can be seen in appendix W.

8.1 Locating constructs in the target and aspect assemblies

Locating constructs in the target and aspect assemblies is fairly simple, as Cecil directly exposes
all of the necessary properties that describe these constructs. For instance, the MethodDefinition
class from the Cecil API provides access to various information related to a single method, such
as the name of the method, its return type, type of arguments, etc. Similar classes exists for
other types of constructs (fields, classes and so on). By looping over all constructs in the target
and aspects assemblies, constructs that match the pointcut statements can easily be located
by comparing these properties to the pointcut statements. If the aspect construct cannot be
located, an exception is thrown.

8.2 Locating the proper advice method

As mentioned in the previous chapter, no signature is specified for the advice methods when
writing interception statements - only the declaring type and name of the advice method are
specified. This allows the user to match multiple target methods using a single statement, while
still being able to achieve fine-grained control of the interception process (by defining alternative
advice methods that specifically match the signature of some of the target methods). An advice
method can match a target method in two ways: By the return type and/or by the method argu-
ments. Matching the return type always takes precedence over the method arguments. Consider
the following advice methods:

public static int Advice() { ... }
public static T Advice<T>(string s, double d) { ... }
public static T Advice<I>() { ... }

The first advice method would match all target methods that return an integer regardless of
their arguments (as this advice method directly match the return type of such target methods,
and an advice with zero arguments always matches any number and any type of arguments of
the target methods). The second advice method matches target methods that take a string and

66

Chapter 8: Identifying targets and aspects YIIHAW - An aspect weaver for .NET

a double as the first two arguments (possibly followed by one or more arguments). This advice
method would thus match the following target methods:

public double TargetA (string s, double d) { ... }

public string TargetB(string s, double d, int i, float f) { ... }

The third advice method would match all target methods not matched by any of the first
two advice methods.

The InterceptHandler class identifies all target methods that match the signature specified in
the pointcut statements. For each match, it determines which advice method should be applied
to it. A warning is shown if no suitable advice method can be found.

8.2.1 Invocation kind of the advice methods

The invocation kind of the advice method also has an impact on the process of locating the cor-
rect advice method for a given target method. Advice written as an instance method can only
be used for intercepting targets that are instance methods, as one might otherwise encounter
references that make no sense in the new context. Consider the following example:

public class Aspects

{
public void Foo { ... }

public T Advice<T>()
{

Foo ()

This advice method invokes method Foo (which is an instance method). The method Foo
should obviously be inserted into the target assembly so it can be invoked from the intercepted
methods. However, if the method being intercepted is a static method, invoking Foo would pro-
duce illegal code, as you cannot invoke a local instance method from a static context. For this
reason, instance advice methods should only be used for intercepting instance methods. Static
advice methods does not have this problem, as you can never invoke a local instance method
from a static advice method. This means that static advice methods can be used for intercepting
both instance and static methods.

When determining which advice method to apply to a given target method, the Inter-

ceptHandler class make sure that invocation kind of the advice method are compatible with
the target method.

67

Chapter 9

The weaving process

The previous chapter described how targets and aspects are identified. This chapter goes into
details about how the actual weaving takes place. All discussions are based on the preliminary
ideas described throughout this report. All source code related to the implementation of the
weaver can be found in appendix X.

9.1 Introducing constructs

Introducing a construct within the target assembly obviously requires the weaver to insert the
construct at the specified location. This process is not as simple as it may sound, as the weaver
has to take care of references to other constructs inside the inserted construct. For instance,
a method might refer to some method declared within the same class as the method itself.
Consider the example shown in figure 9.1.

class Aspects

{

public void Foo()

{

Bar(); // invoke method Bar(), which is located in the same class as Foo()

public void Bar ()

{

}
}

ldarg .0
call instance void AspectNamespace.Aspects::Bar()
ret

Figure 9.1: A method, Foo(), represented as C# code (top) and IL Assembler language (bottom).

The method Foo() invokes method Bar(), which is located within the declaring type of
Foo(). Looking at the IL Assembler code generated, it can be seen that this method call is
fully specified: The CLR is instructed to invoke method AspectNamespace.Aspects::Bar(). How-
ever, this call makes no sense in the new context, as AspectNamespace.Aspects is not available
in the target assembly. For this reason, YIIHAW needs to translate all references into the
proper context. The method call shown in figure 9.1 should thus be modified to < TargetName-
space. TargetClass>::Bar() prior to inserting it into the target assembly. This also requires that

68

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

a check is made in order to determine whether the method Bar() is available from the target
assembly, i.e. if Bar() is itself subject for insertion. If this is not the case, the weaving should
be aborted.

9.1.1 The need for a two-pass approach

Simply translating references into the proper context is not enough in all cases, as some methods
or properties might contain mutually dependent references. Consider the example shown in figure
9.2.

class Aspects

{

public void Foo(int x)

{
Bar(x) ;

}

public void Bar(int x)

if(x > 5)
Foo(——x);

Figure 9.2: Two methods that are mutually dependent.

Method Foo() and Bar() are mutually dependent, as they refer to each other. This is a
problem, as Cecil requires that all constructs need to be defined before they can be referenced.
This means that method Foo() must be defined, before it can be referenced by Bar(). Similarily,
Bar() must be defined before it can be referenced by Foo(). This requirement would cause the
weaver to deadlock, as there is no way to implement both methods at the same time.

In order to circumvent this problem, we use a two-pass approach when introducing new
constructs into the target assembly. On the first pass the construct is defined within the target
assembly, but no references to other constructs are inserted into the construct. For methods
and properties this means that the construct is created in the target assembly, but none of the
IL-instructions are added at this point and their return types are not defined or updated, thereby
avoiding references to other constructs. In the second pass the IL-instructions are inserted into
the methods and properties created in the first pass. Furthermore, all references are translated
to their new context. This is possible, as all constructs exist at this point, which means that
deadlocks are avoided.

9.1.2 Storing constructs in a mapping-table

At the first pass, all constructs that are created within the target assemly are added to two
mapping-tables. Storing all constructs in mapping-tables allows for easy retrieval of these con-
structs at a later point. This is useful, as introduced constructs are often referenced from advice
methods (or from other methods or properties that are subject for insertion). This means that
the weaver must be able to retrieve these constructs again at some point.

69

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

Local mapping

Recall from section 6.5.3 that references to local constructs (constructs defined within the same
class as the referrer) should be maintained. This implies that one construct defined within the
aspect assembly might be inserted at 30 different locations in the target assembly. Each local
reference to such a construct should be substituted with a reference to the local version of this
construct.

A special class, called LocalMapper< T> (fully qualified name in the source code: YITHAW.-
Weaver. LocalMapper< T>) is defined for handling this. The generic parameter T, specifies the
kind of construct to map (we only use the types defined within the Cecil API, such as Method-
Definition, FieldDefinition, etc.). Given a reference to the target type and a reference to the
construct defined in the aspect assembly, the Lookup() method returns a reference to the corre-
sponding construct in the target assembly:

(TargetType, AspectConstruct) — TargetConstruct

A combined key is thus used when invoking the Lookup() method. This is necessary as
the substituted refererence depends on both the type in which the reference is defined and the
construct that is referenced. Using this mapper it is possible to substitute all references to local
constructs with the appropriate construct in the target assembly.

Global mapping

Constructs that refer to constructs defined outside their own declaring type, but inside the as-
pect assembly should be handled as well. We use the term global references for describing these
references. However, global references pose a problem as they cannot always be evaluated as
unambiguous references. Consider the example shown in figure 9.3.

class Aspects

public T Advice<T>()
{

Aspects2.Foo();

}
}

class Aspects2

{

public static void Foo()

{

}
}

Figure 9.3: An advice method that might result in an ambiguous reference.

The advice method invokes the static method Foo() located in class Aspects2. Using a point-
cut statement, the user might instruct the method Aspects2.Foo() to be inserted at multiple
locations within the target assembly. This is a problem, as it is impossible to determine which
method should be invoked - the method call is ambiguous. This problem does not exist for
references to local constructs, as they can always be mapped locally.

70

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

For handling this problem, we have defined a global mapper (called YIIHAW.Weaver.-
GlobalMapper<T>). All constructs introduced wihtin the target assembly are added to this
mapper. Given a reference to the aspect construct, the Lookup() method of this mapper returns
a reference to a target construct and a flag indicating if the construct is ambiguous:

AspectConstruct — (TargetConstruct, I sAmbiguous)

A construct is considered ambiguous if it is introduced at multiple locations within the target
assembly. If a construct is only introduced once, resolving the reference to the construct is no
problem. This means that the user is able to introduce constructs within the target assembly
and refer to these constructs (either from advice methods or from other constructs), but only if
these constructs are defined once within the target assembly. Constructs that are not referenced
anywhere from the aspect assembly can be introduced at as many locations as the user wants.

The implementation of the introduction handling can be found in appendix W. The imple-
mentation of the mappers can be found in appendix X.

9.2 Modifying the typestructure

The user can modify the typestructure of the target classes in two ways: By changing the
basetype or by implementing one or more interfaces. For either case, the action that should be
performed are very similar.

9.2.1 Verifying the availability of the basetypes and interfaces

The weaver checks that new basetypes or new interfaces are available in the target assembly.
This means that the user must explicitly introduce these classes into the target assembly himself
(using the pointcut specification). YITHAW does not introduce any constructs automatically, as
we believe that the user should be in absolute control of the weaving process.

Typestructure modifications are always applied after all constructs have been introduced into
the target assembly. This means that checking whether the new classes or interfaces are available
in the target assembly is fairly simple, as the global mapper can be used for this purpose. If a
class or interface cannot be found an error is shown and the weaving is aborted.

9.2.2 Checking the definition of methods and properties

Instructing a class to implement an interface makes no sense if the class does not implement the
methods, properties and events defined in the interface. YIIHAW checks that all methods and
properties of the interface are implemented in the target classes. A similar check is performed
for abstract methods when setting a new basetype. If a target class does not implement all the
necessary methods and properties the weaving is aborted.

9.2.3 Updating references

When setting a new basetype the weaver needs to update references to the old basetype. Consider
the following example:

public class BaseClass

{
}

71

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

public class TargetClass : BaseClass

{

public TargetClass () : base() // default constructor

{
}
}

A class, TargetClass, is defined which inherits the class BaseClass. The default constructor
of TargetClass would look something like this:

ldarg .0
call instance void BaseClass::. ctor
ret

The constructor invokes the base constructor (on class BaseClass). This poses a problem when
setting a new basetype, as the constructor should no longer refer to BaseClass.

To make sure that all references to the basetype of a class are valid, the weaver updates all
references to the old basetype in methods, properties, etc.

The implementation for typestructure modifications can be found in appendix X.

9.3 Handling interceptions

Interceptions are the most interesting and at the same time the most complex feature of an
aspect weaver. Throughout this report we have discussed various ideas of how to handle inter-
ceptions. Based on these ideas, the following section describes the actual implementation of the
interception handling.

9.3.1 The join point API

As the user should be able to interact with the weaver from the advice methods, a special join
point API need to be defined. This API should allow access to various join point information,
as described in section 3.4.2. We have defined this information using a number of properties and
methods (defined in the class YITHAW.API. JoinPointContext - see appendix S). The properties
and methods are listed in figure 9.4.

Property/method | Type | Action

AccessSpecifier string | ldstr <access specifier for the target method>
Arguments string | ldstr <comma-separated list of arguments>
DeclaringType string | ldstr <declaring type of the intercepted object>
GetTarget<T>() T ldarg.0 (this-pointer)

IsStatic bool | ldc.i4.0 or ldc.i4.1

Name string | ldstr <name of target method>

Proceed<T>() T inject original target method body
ReturnType string | ldstr <return type>

Figure 9.4: The join point API. The column 'Type’ specifies the type of the property/method in the
API. The column ’Action’ specifes the action taken by YITHAW when handling this property/method.

72

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

Using these properties and methods the user has access to various information about the
method or object that is being intercepted. The example below shows how a simple logging
advice can be implemented.

public T Advice<T>()
{
Console. WriteLine (”entering method:
JoinPointContext .Name) ;
return JoinPointContext.Proceed<T>(); // invoke the original method and return
the same result

”

+ JoinPointContext.DeclaringType + 7:7 +

Calling an intercepted method would produce output like the following:
entering method: TargetNamespace.TargetClass:TargetMethod

As YIIHAW should add no runtime overhead, all use of these properties are determined stat-
ically and replaced with the proper action. For instance, the DeclaringType property is replaced
with a ldstr instruction that specifies the declaring type of the method being intercepted. Thus,
the calls to these properties only exist in the advice methods - they are not included in the
generated assembly and do therefore not cause any unnecessary overhead.

As it makes no sense to invoke the properties or methods from the JoinPointContext outside
their intended context (i.e. outside an advice method) the default implementation of these
constructs simply throw an exception. That way, the constructs cannot be misused in regular
methods (non-advice methods). As these constructs are always replaced at weave-time, there is
no problem in using them from an advice method.

9.3.2 Merging the targets and advice

Merging the targets and advice is performed as the last step of the weaving process. This way,
all constructs of the aspect assembly that are subject for insertion are available in the mapping
tables. This is necessary, as the advice methods might refer to some of these constructs.

The weaver applies the advice to one target method at a time. Multiple advice may be applied
to the same target method, if specified so by the user (via the pointcut). The rest of this section
describes the approach used for intercepting a single target method. This approach is repeated
for each interception statement and for each target method. For the concrete implementation,
refer to class YITHAW. Weaver.Interception in appendix X.

Preparing the original target method for insertion

Prior to performing any merging of the advice and the target method a copy of all instructions
of the target method is created. For the sake of disussion, we will refer to this copy as original
body throughout the rest of this section. Recall from previous discussions that the user is not
required to keep the original implementation of the method being intercepted: If the user does
not invoke the Proceed method at any time, this means that he wishes to completely ignore the
original implementation. The weaver should thus not operate on the assumption that the orig-
inal implementation should be maintained. Creating a copy of the body of the target method
allows us to subsequently delete all instructions of the target method. This way, the instructions
of the advice method can just be copied one by one to the target method without worrying
whether they fit into any existing method body. Whenever a call to the Proceed method is made

73

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

in the advice method, the weaver simply copies all instructions from the original body into the
target method. This will be elaborated upon later in this section.

Before the original body can be inserted into the target method, a couple of things need to be
performed. Recall from section 6.2.2 that return statements should be handled with care: Any
ret instructions in the original body would cause the target method to return prematurely. In
order to handle this, the weaver inserts a nop instruction at the end of the original body. It then
scans all instructions of the original body and replaces all ret instruction with an unconditional
branch to this nop instruction. Branching to a nop instruction is necessary at this point, as the
last instruction of the original body might be a ret instruction.

Another thing that needs to be performed on the original body is updating all references
to local variables. Locals variables of the advice method are always inserted into the target
methods, which means that all references in the original body will probably refer to the wrong
index value. The weaver scans all instructions of the original body and updates the index value
for all instructions that refer to local variables.

Transferring instructions

Once the original body has been updated the actual weaving process begins. The weaver runs
sequentially through all instructions found in the advice method and copies each instruction to
the target method. If the instruction contain a reference to a construct that has been introduced
at a previous stage, the weaver consults the local mapper and the global mapper (defined in
section 9.1.2) for translating these references into their proper context.

As some instructions are replaced by others (such as the ret instructions of the original body,
which get replaced with a branch instruction as shown earlier), a mapping-table needs to be main-
tained for instructions as well. The weaver defines a special class, RecursiveDictionary<T> (fully
qualified name: YITHAW. Weaver. RecursiveDictionary< T>), for this purpose. Given a reference
to an instruction the mapper returns a reference to its substitute:

OldInstruction — NewlInstruction (recursive)

As the substitute itself might be replaced by another instruction the mapper is made recur-
sive. The RecursiveDictionary class can be seen in appendix X.

Handling Proceed

If an instruction is a method call to the Proceed method, special action needs to be taken.
Invoking Proceed is actually a cue to YIIHAW that specifies that the original body should be
inserted at this point. As the original body has already been prepared for insertion into the tar-
get method at a previous stage, the weaver simply copies all instructions into the target body.
However, handling calls to Proceed is actually a bit more complicated than that, as the type of
the variable storing the result of the call to Proceed needs to be updated at this point as well if
a generic type is used. Recall from section 6.2 that the type of the variable storing the return
value should be substituted for the actual type of the method being intercepted. The weaver
updates the type of this variable as well as any other variable that refer to this variable (or
removes them if the target method is of type void). For instance, this is necessary when weaving
assemblies compiled in debug-mode, as some of the Microsoft .NET compilers often generate an
extra variable (i.e. a variable not explicitly defined in the source code) for storing and retrieving

74

Chapter 9: The weaving process YIIHAW - An aspect weaver for .NET

the return value when compiling in this mode. These variables should be updated as well.

As the type of a generic advice method is replaced with the actual return type of the
method being intercepted, YITHAW does not allow using this type for anything but invok-
ing Proceed<T> () or default(T). If the advice method make any other use of the generic type,
YITHAW will abort the weaving process and show an error, as it makes no sense to use the
generic type outside the advice methods.

Updating references

When all instructions have been transferred to the target method, the weaver scans all of these
instructions, looking for dangling code addresses and unoptimized instructions. A dangling code
address might occur if an instruction refers to another instruction that has been removed. For
instance, instructions that load or store the return value are either modified or removed by the
weaver, as described previously. If a reference exist to such an instruction it will be invalid at
this point. The weaver updates all such references using the mapping-table for instructions.
Similarily, the weaver check each instruction in order to see if modifying it to a short-form is
possible (such as modifying Idloc to ldloc.s).

Handling try, catch and finally

Try, catch and finally handlers are added to the target method when all instructions have been
validated. In Cecil, these handlers are represented as instances of the class Mono.Cecil.Cil.-
EzceptionHandler. Each instance contains a reference to the first and the last instruction for
which the handler applies. As some instructions might have been removed or modified, the
weaver use the mapping-table for instructions when adding these handlers in order to make sure
that the handlers apply to the correct instructions.

9.4 Using YIIHAW

See appendix A for details on how to use YITHAW.

75

Chapter 10

Partial functional testing

Generating valid assemblies is a fundamental requirement for any aspect weaver: If the weaver
generates assemblies that cannot be executed due to invalid metadata or inconsistent type dec-
larations there is no reason for using an aspect weaver in the first place. In this chapter we will
examine the assemblies generated by YIIHAW in order to determine if they contain any form of
abnormalities that will cause them to be unverifiable by the CLR.

10.1 The test framework

Even though YIIHAW has generated an assembly and a look through the generated code via
ildasm shows that the code has been altered as expected, it does not mean that YITHAW will
generate valid assemblies for all cases. To verify the correctness of the assemblies, we have built
a test framework and a number of testcases that takes care of validating the assemblies. The
source code for the framework and the tests can be seen in appendix R.

When invoking the test framework, an assembly name can be specified. The framework
invokes all methods in this assembly that are annotated using the TestableMethod attribute and
whose declaring class are annotated using the TestableClass attribute. A test method can use
the framework API to perform various tasks, such as creating a pointcut file and invoking the
weaver. When invoking the weaver, the test framework captures the output generated by YI-
THAW and checks if the weaving was successful. This is done by scanning the output text from
YITHAW and looking for any indications that an error occurred. Sometimes it is useful to be
able to check that a given exception was thrown by the weaver. The framework API supports
defining the expected output from YIIHAW. This is compared to the actual output and an error
is reported if they differ.

To verify that the assembly behaves as expected, the framework API can execute a method
in the generated assembly and compare the returned value with an expected value. Even though
this kind of test is very simple, we believe it to be valuable, as some well considered tests can
make up for this simplicity.

For validating the assemblies, the framework uses the PEVerify tool that is included in the
.NET framework. The framework invokes PEVerify on the generated assembly after executing

the test method. If PEVerify returns an error this is captured by the test framework.

When all test methods have been executed and the generated assemblies have been verified,
all errors that were encountered are printed to the console.

76

Chapter 10: Partial functional testing YIIHAW - An aspect weaver for .NET

10.2 The testcases

The testcases that we have defined are designed to test a wide range of the functionality provided
by YIIHAW. Of course the tests covers the three main types of actions supported by YIITHAW:
Introductions, interceptions and modifications. For interceptions, the main focus of the tests
have been on the different possibilities regarding the return types of the advice methods, such
as specific types, void, and generic types. Furthermore, the tests make use of all properties and
methods found in the YIIHAW join point API.

The pointcut language is also subject for various tests that cover the different possibilities
for each type of statement. We have created tests where the aspects contain opcodes that we
know can be troublesome for the weaver to handle, such as opcodes that refer to types, methods,
fields, etc. and opcodes that refer to variables and arguments. A full scheme for the tests can
be seen in appendix Q.

10.2.1 A test sample

In figure 10.1 one of the tests are depicted. Looking at the test method Test2(), it can be seen
that it is annotated using the TestableMethod attribute. On this attribute, the target file is
specified. This is used by the framework when it performs the verification of the target file.
The method starts by instructing the test framework to create a new pointcut file. Afterwards
the test framework is instructed to perform the actual weaving of the target assembly using
YIIHAW. In the third and fourth statements the arguments to the EzpectedReturnOnCall()
method are created, which are used for comparing the return value of a given method with the
expected value. These arguments need to be passed as an object array, as the test framework
uses reflection to call the method. In this specific example the expected value is “Hello Hello”.

//The advice method
public string AdviceTest2(string a)

{
}

//The target method
public string TargetTest2(string a)

{
}

//The test method
[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test2()

return JoinPointContext.Proceed<string>() + 7 7 + a;

return a;

{
API. CreatePointcutFile (7around public x % x*.target.Target: TargetTest2(string)
do Aspect.Aspect: AdviceTest2;”, ”pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll1”, 7../../../ Aspect/bin/
Release/Aspect. dll”, "pointcutfile”);
object [|] args = new object[1];
args [0] = "Hello”;
API. ExpectReturnOnCall (”Hello Hello”, ”?Target”, "Test2”, args);
}

Figure 10.1: An example of a testcase, showing the advice, target, and the actual test method
which includes calls to the CreatePointcutFile and FxpectReturnOnCall methods of the test API.

77

Chapter 11

Measuring the runtime performance

The overall objective of YITHAW is to apply aspects in an efficient manner, i.e. the runtime
overhead on the woven code should be kept at a minimum. For this reason, it is interesting to see
how YITHAW performs compared to other aspect weavers and handwritten code. This chapter
examines the runtime performance of the generated assemblies by applying various aspects to a
number of target assemblies. We will evaluate on these results in the next chapter.

11.1 Test setup

The execution time is measured in milliseconds as an average of 50 testruns for all tests. The
average deviation in execution time is calculated as well. All tests are compared to an imple-
mentation coded by hand, which can be considered as the optimal implementation.

All tests are performed on a machine with the same specifications as in section 2.3. All tests
are compiled as release builds with code optimization turned on.

11.2 Comparing YITHAW to code written by hand

Section 2.3 examined the runtime performance penalties incurred when using some of the ex-
isting aspect weavers. This was done on the base of seven small tests that had the purpose of
measuring the mean effect of applying various aspects to a target assembly. In order to measure
the efficiency of our weaver it makes sense to implement these tests in YIIHAW as well. The
results of these tests can be seen in figure 11.1. The source code and the pointcuts for the
implementation of these tests in YIITHAW can be seen in appendix K.

Recall that YITHAW does not support the use of before and after interception. However,
as these can be simulated using around interception, Test 2 and 3 are identical to Test 1 when
implemented in YITHAW (and when coded by hand as well). For this reason, the results of Test
2 and 3 are not shown in the test results.

Even though the implementation coded by hand have already been tested once (in chapter
2), all tests have been performed once again in order to minimize any uncertainty factors.

11.3 Implementing a generator for a collection library

The test described above are all somewhat “synthetical”: They are very simple, as they only
measure one single action at a time, such as intercepting or introducing a single method. As

78

Chapter 11: Measuring the runtime performance YIIHAW - An aspect weaver for .NET

Aspect weaver | Test 1 | Test 4 | Test 5 | Test 6 | Test 7
718 717 720 605 744
Coded by hand (1.00) | (1.00) | (1.00) | (1.00) | (1.00)
0.36% | 0.15% | 0.20% | 0.36% | 0.59%
717 716 720 605 744
YITHAW (1.00) | (1.00) | (1.00) | (1.00) | (1.00)
0.32% | 0.15% | 0.22% | 0.30% | 0.36%

Figure 11.1: Test results. The first number in each cell is the average execution time in millisec-
onds. The second number (in parentheses) specifies the execution time as a factor of the reference
implementation. The third number is the average deviation (in percent) from the average execution
time for each testrun.

described throughout this report, the primary motivation for building YIIHAW was to create
an efficient aspect weaver that can be used for the generation of specialized programs. In order
to provide a more “real life usage” of the weaver, we will perform some tests that are somewhat
more complex, as they apply various constructs that are intertwined within eachother. This
means that YITHAW must be able to resolve cross-references between various constructs and be
able to efficiently merge the aspects into the target assembly. The tests will be based upon the
same tests that we made in the project “Generation of specialized collection libraries” [3].

11.3.1 Test scenario

A target assembly is defined, which contain two collection classes, ArrayList and LinkedList.
The ArrayList class uses an array for storing elements. The LinkedList class uses a linked list
for storing elements. Using an aspect weaver, support for events and enumeration should be
added to the assembly.

Supporting events requires that:

e An event (of type System.EventHandler) is introduced into both classes.

e A method (named OnChanged) is introduced into both classes. This method uses the
event that is inserted.

e Methods that update the collections (such as the Add and Remove methods) should be
intercepted, making them invoke the OnChanged method.

Supporting enumeration requires that:

Two interfaces, IEnumerator and IEnumerable, are introduced into the assembly.
e A field (named stamp) is introduced into both classes.

e An enumerator class is introduced as a nested class into both classes.

Both classes implement the interface IEnumerable and the corresponding method, GetEnu-
merator, is introduced.

Methods that update the collections should be intercepted, making them update the in-
serted field stamp.

79

Chapter 11: Measuring the runtime performance YIIHAW - An aspect weaver for .NET

e The Equals method of the ArrayList should be completely replaced with a new implemen-
tation that uses an enumerator for looping through items in the LinkedList class.

An ad hoc program is used for performing the tests. This program performs a number of
operations, such as adding and removing a fixed number of items to the collections, enumerating
the collections and comparing the collections. The program make use of all constructs that are
modified or introduced by the aspect weaver. The source code for the test program can be seen
in appendix P.

11.3.2 Test results

The results of the tests are shown below.

Aspect weaver | Events | Enumerations
8547 602
Coded by hand (1.00) (1.00)
0.42% 0.36
8545 600
YITHAW (1.00) (1.00)
0.28% 0.36%
13941 30247
AspectDNG (1.63) (50.2)
0.09% 0.53%

Figure 11.2: Test results. The first number in each cell is the average execution time in milli-
seconds. The second number (in parentheses) specifies the execution time as a factor of the reference
implementation. The third number is the average deviation (in percent) from the average execution
time for each testrun.

AspectDNG is included in the test results, as this is the aspect weaver that were used during
the original tests. The results for AspectDNG are only included in order to show the effect of
applying the aspects using another weaver than YIIHAW. When evaluating the performance of
YITHAW in the next chapter, we will compare the results to the implementation coded by hand,
as this yields the most interesting comparison.

The source code and pointcuts for Aspect DNG, YIIHAW and the implementation coded by

hand can be seen in appendix L - N. The source code for the target assembly can be seen in
appendix O.

80

Chapter 12

Evaluation

For all tests defined in appendix R the test framework returns no errors or warnings. This
means that all assemblies generated by YITHAW in these tests are valid according to PEVerify
and returns whatever value was expected when invoking the applied aspects. Even though these
tests do not provide an exhaustive check of all possible combinations of input (pointcut, target
and aspects), we are confident that they cover the most important and critical parts related to
generating an assembly.

As mentioned in section 10.2 some of the tests focus on checking instructions that contain
operands referring to types, methods, fields, etc. These operands are interesting, as it is essential
that they are mapped correctly by YIIHAW in order to generate valid output. The tests do not
cover every single use of such operands (as it is practically impossible to test all of them), but
only a representative subset of them. However, during the implementation of YITHAW we have
checked that every single type of operand that refers to other constructs® are explicitly handled
by the weaver. We do therefore not expect that any operand are left unchecked by YITHAW.

12.1 Runtime performance of the generated assemblies

Looking at the test results in section 11.2 the overall conclusion is clear: For all cases, the as-
semblies generated by YITHAW is identical to the implementation coded by hand in terms of
runtime efficiency. In some cases, the generated assemblies are actually a bit faster than the
reference implementation, although this cannot be generalized as the differences are simply too
small (1 millisecond). Looking at the assemblies via ildasm shows that all methods intercepted
are directly comparable to that of the reference implementation - the only difference is the ad-
dition of a single nop instruction just before the last ret instruction. This nop is added due to
the way return statements of the original target method are handled by YIIHAW (refer to the
discussion of this issue in section 6.2.2 and 9.3.2). However, as nop instructions use practically
no CPU-time, they do not have any effect on the results. Adding methods (Test 6) and changing
the superclass (Test 7) yields exactly the same output as the reference implementation and does
therefore obviously not introduce any overhead.

The tests described in section 11.3 provide a more "real-life” usage of an aspect weaver, as
they apply multiple, mutually dependent aspects at once. These tests are thus somewhat more
complex to handle by the weaver, as it must be capable of mapping these aspects into the new
context without generating any runtime overhead. Looking at the test results it can be seen

'These operands were identified by consulting the total list of opcodes found in the Common Langugage
Specification [2].

81

Chapter 12: Evaluation YITHAW - An aspect weaver for .NET

that the execution time of the assembly generated by YITHAW is comparable to the implemen-
tation coded by hand: For both tests the generated assembly are two milliseconds faster than
the reference implementation. Again, this cannot be generalized, as the difference is too small.

Examining the generated assemblies using ildasm, it can be seen that the only overhead
added by YITHAW is the loading and storing of the return values and possibly a single nop
instruction. Figure 12.1 shows an example of this: The original Add(int,object) method found
in the target assembly returns the value true (which is represented as a ldc.i4.1 instruction in
CIL). Adding support for events requires that the OnChanged() method is invoked at the end
of the method. This means that the advice method? invokes the original method (using Pro-
ceed()), stores the result in a variable, invokes the OnChanged() method and finally returns the
original return value (which was previously stored in a variable). Comparing the instructions of
the reference implementation and the generated assembly in figure 12.1 it can be seen that the
only difference is the additional nop instruction (instruction no. 7), the storing of the return
value (instruction no. 8) and the loading of the return value when returning (instruction no.
12). Besides these three instructions the implementations are completely identical. This result
applies to all other methods that were intercepted as well. We consider this to be the optimal
output, as avoiding these extra instructions would be nearly impossible: It would require very
complex analysis and modifications of the target and advice method by the weaver, as all IL-
instructions would have to be restructured in order to get the right return value on the stack
before returning. We consider such an approach to be too advanced compared to the very small
performance improvement that might be achieved.

All constructs introduced by YIIHAW are identical to those found in the reference imple-
mentation. Similarily, modifying the typestructure does not yield any difference compared to
the reference implementation.

YITHAW: Coded by hand:
dup dup
1dfld 1dfld
ldc.i4.1 ldc.i4.1
add add
stfld stfld
ldc.i4.1 ldarg.0
nop 1ldsfld
stloc.0 callvirt
ldarg.0 ldc.i4.1
ldsfld ret
callvirt

ldloc.0

ret

Figure 12.1: The bottommost instructions of method Add(int,object) of class ArrayList. To the left
can be seen the the output generated by YITHAW. To the right can be seen the implementation coded
by hand. The callvirt instruction found at the end invokes the OnChanged() method. Operands are
left out, as they are not relevant for this discussion.

2Refer to appendix M for the concrete implementation of this advice method.

82

Chapter 12: Evaluation YITHAW - An aspect weaver for .NET

The poor results achieved by AspectDNG is due to the use of reflection: AspectDNG does
not map references to constructs in the aspect assembly. This means that the only way to refer
to such constructs is by using reflection, which obviously has a significant runtime overhead.

12.2 The aspect language

There are significant differences when comparing the implementation of the aspects in YITHAW
and AspectDNG. YITHAWSs mapping of local and global constructs greatly simplifies the code
that needs to be written and provides a much more typesafe approach than AspectDNG. Figure
12.2 shows the aspect code for implementing support for events in AspectDNG. Figure 12.3
shows the corresponding implementation in YITHAW. The OnChanged() method shown in these
examples refer to the field changed (which should be inserted into the target assembly along with
the OnChanged() method). As AspectDNG does not perform any mapping of such references,
the use of reflection is needed for accessing this field. This has a huge impact on the runtime
overhead. Furthermore, you loose the typesafety normally ensured by the compiler.

class OnChangedMethodsLinkedList

{
public event EventHandler changed;
public void OnChanged(System.EventArgs e)
{

object _this = this;

FieldInfo field = ((Collections.LinkedList)_this).GetType().GetField(”
changed”, BindingFlags.Public | BindingFlags.Instance | BindingFlags.
NonPublic); // reflectively get the ”Changed” eventhandler

if (field != null)

EventHandler handler = (EventHandler)field .GetValue(this); // cast
the ”Changed” field to a System.FEventHandler
if (handler != null)
handler (this, e);
}
}
}

Figure 12.2: Implementation of the event aspect in AspectDNG.

For methods, properties and events a better approach can be used in AspectDNG: Define
a wrapper-interface instead and typecast to this interface whenever you need to access such
constructs®. However, this is still a very messy approach, as you add interfaces to the target
assembly that are only needed to please AspectDNG - they make no sense once the aspects have
been applied. Where possible, we have used this approach when implementing the aspects in
AspectDNG, as it does not incur as much overhead as reflection.

The implementation of the event aspect is much simpler in YITHAW: There is no need for
wrapper-interfaces or reflection, as all references are automatically mapped into the new context.
The user still needs to provide the pointcut for introducing the referenced constructs within the

3This is not possible with fields, as these cannot be declared in an interface.

83

Chapter 12: Evaluation YITHAW - An aspect weaver for .NET

class EventConstructs

{
public event EventHandler changed;
public void OnChanged(System.EventArgs e)
{
if (changed != null)
changed (this, e);
}
}

Figure 12.3: Implementation of the event aspect in YITHAW.

target assembly, but this task is fairly simple and does not require any special means in the
implementation. We believe that the approach used by YIIHAW provides a much more simple,
understandable and flexible approach than that of AspectDNG.

For a complete implementation of the aspects in Aspect DNG and YITHAW, refer to appendix
L and M.

84

Chapter 13

Future work

Although the current implementation of YIITHAW behaves and performs as expected there are
still a few issues that needs to be resolved in a future release.

13.1 Support for further introductions

Currently the weaver support introducing classes, methods, fields, properties and events. It
should be possible to introduce delegates, enumerations and attributes as well. The pointcut
language already support these kind of introductions, but they are not handled by the weaver.

13.2 Handling typestructure modifications

The checks performed by the weaver when handling basetype modifcations are not thorough
enough for all cases. YIIHAW updates all references to constructs in the old basetype and
make sure that they refer to the corresponding constructs in the new basetype. However, when
handling methods and properties the current implementation only check that the name of the
method or property match those declared in the old basetype. There are no checks on the return
type or type of arguments.

Similarily, the weaver should check that existing constructs found in the target class will work
when changing the basetype. For instance, methods found in the target class might assume that
the current class implements a certain interface - if the new basetype does not implement this
interface the assembly might be invalid. We expect this kind of check to be relatively complicated
to implement, as there are a lot of issues that need to be resolved in this regard.

13.3 Further possibilities in the join point context API

Most of the properties in the YIIHAW.API. JoinPointContext class are of type string. It is
possible to provide greater possibilities when using this API, as it can be expanded so that some
of the information can be returned as other types as well. For instance, returning a Type object
representing the return type of the target method would be useful, as that would allow the user
to introspect the types using reflection.

13.4 Compatibility with older releases of .NET

YITHAW has only been tested using .NET 2.0. It is possible that the weaver has trouble weaving
assemblies compiled using an older version of the .NET compiler. We do not expect this to be

85

Chapter 13: Future work YITHAW - An aspect weaver for .NET

the case though, as previous releases of .NET all contain the same subset of opcodes as .NET
2.0. However, this need to be tested in order to be sure.

13.5 Accessing generic parameters

The join point API offers various ways of getting information about the method currently being
intercepted. However, the current implementation does not support fetching any generic para-
meters on these methods. These should be accessible along with any other types of parameters.
We expect this to be a relatively simple task.

13.6 Support for generics in the pointcut language

YITHAW support intercepting and introducing generic methods and classes. However, the point-
cut language does at this point not support generics. This means that you cannot specify any
of the generic parameters of the construct you wish to target in the pointcut file. Thus, generic
constructs can only be matched by other properties (such as the name of the method, return
type, etc.).

13.7 YIIHAW on the web

YIIHAW is created as a project at http://sourceforge.net/projects/yithaw. Any future release
will be announced on this site.

86

Chapter 14

Conclusion

Throughout this thesis we have examined various aspect weavers that exist for the .NET platform
with the purpose of determining their feasibility for weaving performance-critical applications.
Our main criteria in this regard was runtime efficiency: When measuring the runtime perfor-
mance, the generated programs should be comparable to similar implementations coded by hand.
None of the aspect weavers fulfilled this requirement, although Aspect.NET achieved fairly good
results. However, Aspect.NET lacks many of the basic features needed when using AOP, such
as introductions and intercepting instance methods. Furthermore, Aspect.NET’s handling of
interceptions is somewhat primitive, which causes invalid assemblies to be generated for some
scenarios. We thus consider neither of the aspect weavers that were examined to be usable for
applying aspects to performance-critical applications (see section 2.4).

In order to provide an effective solution for handling these kind of applications, we have im-
plemented our own aspect weaver that uses an inlining-approach when handling interceptions.
This approach turned out to be very useful, as it avoids many of the common problems found in
other aspect weavers: Our weaver introduce no unnecessary constructs into the target assemblies,
which means that the program structure defined by the user is completely maintained once the
aspects have been applied. Furthermore, as all advice gets transferred into the target assembly
during weaving, this means that the generated assemblies will be completely self-contained once
the weaving has been performed - no extra assembly dependencies are introduced.

The implemented prototype yields impressive results in terms of runtime efficiency: For all
tests, the performance of the generated assemblies directly match similar implementations coded
by hand (refer to chapter 11). These tests measured the mean effect of applying various aspects
to precompiled target assemblies. Inspecting the generated assemblies, it can be seen that the
only overhead caused by the weaver is the introduction of a few nop instructions and possibly
some load and store instructions (Ildloc and stloc). Considering the nature of the test scenarios,
we consider this to be the optimal output for an aspect weaver.

We believe that the proposed aspect language provides a very flexible, intuitive and secure
interface for the weaver that makes it fairly easy to implement the constructs needed. For in-
stance, the use of introductions does not require any special preparations of the constructs that
should be introduced - any construct can be inserted into the target assembly, regardless of
how it is defined in the aspect assembly. Similarily, the syntax used for interceptions ensures
that only typesafe implementations are created that directly prevents the user from returning
types that are incompatible with the target methods. Furthermore, the weaver typechecks and
translates all references within the aspect assemblies making it practically impossible to generate
invalid assemblies. This is confirmed by the tests described in chapter 10.

87

Chapter 14: Conclusion YITHAW - An aspect weaver for .NET

The weaver support the three main AOP-features: Interceptions, introductions and type-
structure modifications, thereby supporting all of the features required for implementing program-
generators, such as the one described in our previous project: “Generation of specialized collec-
tion libraries” [3]. Even though the weaver does not currently support introducing all types of
constructs (refer to the issues discussed in the previous chapter), we do consider it to be highly
usable for implementing efficient program-generators.

88

Index

NET attributes, 38

abstract syntax tree, 27
advice, 9

advice inlining, 29, 48
advice method, 9
advice syntax, 48
after interception, 10
annotation, 38
around body, 9
around call, 9

around interception, 9
aspect language, 83
aspect weaver, 7
Aspect. NET, 12, 21
AspectC++, 26
AspectDNG, 12, 83
assembly, 41

before interception, 10
binding mode, 25

call interceptions, 21
Cecil, 47

cflow, 9

checking references, 53
CIL, 41

CIL datatypes, 43
code scattering, 11
code tangling, 11
CodeDom, 27

Common Intermediate Language, 41
Common Language Runtime, 41

cross-cutting concern, 7

debug file, 26

direct advice invocation, 28

dynamic pointcuts, 9
dynamic residue, 9
dynamic weaving, 25

exception handling, 43

flow control, 42

generator, 78
GetTarget, 57
global mapping, 70
global reference, 70

IL Assembler, 41, 46
IL Disassembler, 46
instead, 21
instruction, 42
intercepted target, 48
interception, 9, 72
introduction, 10, 68

join point, 8, 72
join point context, 8

local mapping, 70
local reference, 70

merging local variables, 53
metadata, 41

module, 41

mutual dependent reference, 69

obliviousness, 8
opcodes, 18
operand, 42

parsing method, 64
PDB file, 26
Phoenix, 46

pointcut, 8, 38, 59
pointcut grammar, 61
pointcut language, 61
pointcut parser, 64
pointcut specification, 59
pointcut syntax, 61
preprocessing, 26
proceed, 9, 50, 74

quantification, 8

Rapier LOOM, 13
recursive dictionary, 74
runtime performance, 78

89

INDEX YITHAW - An aspect weaver for .NET

scanner, 63

separation of concerns, 7
source code weaving, 26
stack, 43

static evaluation, 12
static weaving, 25

target code, 8

target method, 10

test, 77

test framework, 76

token, 63

tokenizer, 63

two-pass introduction, 69
typestructure modification, 10, 71

weaving, 68
wildcard, 39
wrapper interfaces, 83

90

Bibliography

[1] Jason Bock: “CIL Programming: Under the hood of .NET”, Apress, 1st edition, 2002,
ISBN: 1590590414

[2] Serge Lidin: “Expert .NET 2.0 IL Assembler”, Apress, 1st edition, 2006, ISBN: 1590596463

[3] Rasmus Johansen & Stephan Spangenberg: “Generation of specialized collection libraries”,
2006, http://itu.dk/people/spangenberg/main.pdf

[4] The C5 Generic Collection Library for C# and CLI, 2005, http://www.itu.dk /research/c5/
[5] AspectDNG, http://www.dotnetguru.org/sarl/aspectdng/
[6] AspectJ, http://www.eclipse.org/aspect]/
[7] Daniel Lohmann et al: “A quantitative analysis of aspects in the eCos kernel”, 2006
[8] Tzilla Elrad, Robert E. Filman & Atef Bader: “Aspect-oriented programming”, 2001
[9] Bruno Dufour et al: “Measuring the dynamic behaviour of AspectJ programs”, 2004
[10] Rapier LOOM, http://www.dcl.hpi.uni-potsdam.de/research/loom/

[11] Wolfgang Schult, Peter Troeger and Andreas Polze: “LOOM .NET- An Aspect Weaving
Tool”, 2003

[12] AspectC++, http://www.aspectc.org/
[13] Edsger W. Dijkstra: “EWD 447: On the role of scientific thought”, 1974

[14] Peter Sestoft: “Grammars and parsing with Java”, 1999,
http://www.dina.kvl.dk/~sestoft /programmering/parsernotes.pdf

[15] Aspect.NET, http://www.msdnaacr.net/curriculum/pfv.aspx?ID=6595
[16] The Mono Project, http://www.mono-project.com/

[17] NKalore, http://aspectsharpcomp.sourceforge.net/

[18] Microsoft Phoenix ®), http://research.microsoft.com/phoenix

[19] Howard Kim, “AspectC#: An AOSD implementation for C#.”, master thesis at Department
Of Computer Science Trinity College Dublin

[20] Cecil, http://www.mono-project.com/Cecil
[21] Personal communication with Vladimir O. Safonov, <04-11-2006>.

[22] Microsoft Phoenix C++ compiler backend C2, http://research.microsoft.com/phoenix/compiler.aspx

91

Appendix A

Usage guide for YIITHAW

(This is the same guide as found on the YITHAW homepage: http://sourceforge.net/projects/yiithaw)

Invoking YITHAW

YITHAW is implemented as a simple command-line program. The general syntax is defined like
this:

yiihaw <pointcut file> <target assembly> <aspect assembly> [output assembly] [-v]

Properties written in angle brackets are mandatory. Properties written in square brackets are
optional.

If no output assembly is specified, the name of the target assembly is used (thereby overwriting
the target assembly). Using the optional "-v” argument puts YIIHAW in verbose mode, which
means that detailed information regarding the weaving is shown.

Introducing constructs

YIITHAW currently support introducing methods, properties, classes, fields and events. There
are no restrictions on their type or how they are defined - any of these types of constructs defined
in the aspect assembly can be introduced. YIIHAW insert the constructs exactly as it is defined
within the aspect assembly. For instance, if you define a method as being "public static void” it
will remain so in the target assembly. It is not possible to instruct the weaver to insert a private
method and make it public in the target assembly.

For details about how to instruct YIIHAW to introduce constructs, see the pointcut language.

Typestructure modification

Using YITHAW you can make two types of typestructure modifications:
e change the basetype of one or more classes
e implement one or more interfaces

You can instruct a class to implement as many interfaces as you want. YIIHAW will check
that the target classes implement all the methods, properties and events of the interfaces. If
some of these constructs are not located in the target class already, you need to instruct
YITHAW to insert them first (using the pointcut language).

92

Chapter A YITHAW - An aspect weaver for .NET

For details about how to instruct YIIHAW to make these modifications, see the pointcut
language.

Intercepting methods

YITHAW can intercept any kind of method. A typical advice method might look like this:

public class Aspects

{
public int Advice(string s)
{
Console.WriteLine("value of s is: " + s);
return YIIHAW.API.JoinPointContext.Proceed<int>();
}
}

This advice method can be used for intercepting any method in the target assembly that
returns int and takes a string as the first argument. Thus, the following target methods can be
intercepted using this advice method:

public int TargetMethodA(string x)
{

public int TargetMethodB(string s, int i, float f)
{

Notice that the name of the arguments do not need to match the exact name given in the
advice method - only it’s type must match ("string” in this example). Similarily, the target
methods do not need to match the number of arguments of the advice method: As long as the
target method matches all arguments of the advice method (in the same order as defined in
the advice method), it doesn’t matter how many arguments the target methods contain. Using
arguments of the method being intercepted is as simple as using the arguments defined on the
advice methods. Use of these arguments are automatically mapped by YIIHAW to match the
intended argument in the target methods.

The original target method can be invoked using the Proceed<T>() method defined as a
static method on the YITHAW.API.JoinPointContext class. You need to add a reference to the
YITHAW.API DLL in order to invoke this method. The Proceed method takes a single generic
argument, which specifies the type of object being returned. You should always specify the same
type as the return type of the advice method (”int” in the example shown above). Using generics
allows a more typesafe approach, as this allows the compiler to typecheck the advice method.

Implementing ”catch-all” advice methods

The advice method shown above can only be used for intercepting target methods that return
an int. Sometimes you need to be able to make an advice method that can intercept any kind
of method, regardless of its type. This can be done by defining the advice method to return a
generic type:

93

Chapter A YITHAW - An aspect weaver for .NET

public class Aspects

{
public static T Advice<T>()
{
Console.WriteLine("advice method here...");
return YITHAW.API.JoinPointContext.Proceed<T>();
}
}

This advice method can be used for intercepting any kind of method. The type T is used
as a substitute for the actual return type of the target method being intercepted (the generic
parameter does not need to be named T - you can use whatever name you like). YIIHAW
automatically replaces T with the actual type when applying this advice method to a target
method. Thus, you do not need to consider the actual type being intercepted when using this
syntax. Advice methods defined using a generic parameter can take arguments as well. Consider
the following advice method:

public class Aspects

{
public static T Advice<T>(int i, string s)
{

This advice method can be used for intercepting any method that takes an int and a string
as the first two arguments.

Void methods

The Proceed method always takes a generic argument describing the type of object to return.
You should always use the same type as the return type of the advice method. If you define
an advice method with return type ”void” this poses a problem, as "void” is not a valid generic
type. For these cases, use the special "Void” class included in the YITHAW API:

public class Aspects

{
public static void Advice()
{
YITHAW.API.JoinPointContext.Proceed<YIIHAW.API.Void>();
}
}

This issue only applies to advice methods that are defined as returning "void”. It does not
apply to advice methods of type T (or any other generic parameter), even though such an advice
method can be used for interceping target methods of type void.

Invocation kind of the advice method

Advice methods defined as being static can be used for intercepting all methods (both static
and instance methods). Advice methods defined as an instance type can only be used for
intercepting instance methods. Thus, define the advice method as being static if you need to be
able to intercept any target method.

94

Chapter A YITHAW - An aspect weaver for .NET

Storing the result of Proceed

You don’t need to return the result of Proceed immediatly. You can store the result in a variable
and return it later (or even return something else):

public class Aspects

{
public static T Advice<T>(Q)

{
T result = YIIHAW.API.JoinPointContext.Proceed<T>();

return result;
}
}

You can even use the result in whatever way you like:

public class Aspects

{
public static int Advice()

{
int result = YIIHAW.API.JoinPointContext.Proceed<int>();

return result * 7;

}
}

This advice method invokes the original target methods, takes it return value, multiplies it
by 7 and returns the new value (effectively overriding the original return value).

The YIIHAW API

You have already seen how to use the Proceed method. Below can be seen a complete list of all
properties and methods defined in the YITHAW API.

Property/method | Type | Action

Access specifier string | Returns the access specifier of the method being intercepted

Arguments string | Returns a comma-separated list of all arguments of the target method
DeclaringType string | Returns the name of the declaring type of the method being intercepted
GetTarget<T>() T Returns a reference (this-pointer) to the object being intercepted
IsStatic bool Returns a boolean value indicating if the target method is static or not
Name string | Returns the name of the method being intercepted

Proceed<T>() T Injects the original target method and returns its value

ReturnType string | Returns the return type of the method being intercepted

Using this API you can write an advice method that logs all methods that are invoked:

95

Chapter A YITHAW - An aspect weaver for .NET

using YITHAW.API;

public class Aspects

{
public static T Advice<T>()
{
Console.WriteLine("entering method: " + JoinPointContext.DeclaringType + ":" +
JoinPointContext.Name) ;
return JoinPointContext.Proceed<T>();
¥
}

This advice method would produce output like the following:
entering method: TargetNamespace.TargetClass:TargetMethod

All of these properties are determined statically and replaced with the proper action. This
mean that they do not add any runtime overhead (that is: they are not determined runtime).

Referring to the intercepted object

Using the GetTarget method you can obtain a reference to object that you are intercepting:

using YITHAW.APTI;

public class Aspects

{
public static T Advice<T>()
{
TargetClass original_target = JoinPointContext.GetTarget<TargetClass>();
original_target.SomeMethod () ;
return JoinPointContext.Proceed<T>();
b
X

This example fetches a reference to the intercepted object (of type "TargetClass”) and invokes
a method on it (assume that TargetClass contains a method called "SomeMethod”). Obtaining
such a reference obviously requires that you add a reference to your target assembly from the
aspects assembly before the code will be compilable. Note that the GetTarget method is only
valid when intercepting instance methods (it does not make sense to get a reference to the object
containing a static method). YIIHAW will check this for you.

The pointcut language

All pointcuts are defined in a separate text-file. There are no restrictions on the name or
extension of this file - you can name it whatever you like. YIIHAW defines three types of
pointcut statements:

e introductions

e interceptions

96

Chapter A YITHAW - An aspect weaver for .NET

e typestructure modifications
The general syntax for these statements are as follows:
Interceptions:

around <access> <invocation kind> <return type> <type>:<method(arguments)>
[inherits <type>] do <advice type>:<advice method>;

Introductions:

insert <construct> <access> <invocation kind> <return type>
<aspect type>:<aspect name[(arguments)]> into <type>;

Typestructure modifications:
modify <type> <action> <aspect type>;

Statements in angle brackets are mandatory. Statements in square brackets are optional. All
statements must be terminated with a semi-colon.

Interceptions

An interception statement start with the keyword ”around” (YIIHAW only supports around
interception). All properties between ”around” and ”do” describe the methods in the target
assembly which should be intercepted. You can use wildcards (*) for all of these properties if
you like. The properties following the keyword ”do” describe the advice method(s) to use. Some
examples:

(a) around public static void TargetNamespace.TargetClass:Foo(int,string)
do AdviceNamespace.AdviceClass:AdviceMethod;

(b) around * * * *.*:*(x) inherits System.Collections.Hashtable
do AdviceNamespace.AdviceClass:AdviceMethod;

The first statement (a) matches all methods that:

e are public

e are static

e return "void”

e are defined on the type "TargetNamespace.TargetClass”
e are named "Foo”

e takes two arguments: int and string (in that order)

The method named "AdviceMethod” defined on the type ”AdviceNamespace.AdviceClass” is
used as advice when intercepting the target methods.

The second statement (b) matches all methods that:

97

Chapter A YITHAW - An aspect weaver for .NET

99k

e has any access specifier (as a "*” is used)

e has any invocation kind (both static and instance)
e has any return type

e are defined on any type (written 7*.*”)

e has any name

e takes any number of arguments (of any type)

e inherits ”"System.Collections.Hashtable” (actually, it is the declaring type of the target
method that needs to inherit from this class)

Thus, this statement matches any method whose declaring type inherits ”System.Collections.-
Hashtable”. Leaving out the inherits property, the statement would match any method.

Notice that you do not specify the complete signature of the advice method to use - you
only specify the name of the method. This means that you can write as many advice methods
with the same name as you like (of course, they have to vary by signature, otherwise the code
will not be compilable). For each target method that are going to be intercepted, YITHAW will
pick the advice method that has the best match for that target method. Suppose you define the
following two advice methods:

public class Aspects
{
public static T Advice<T>(Q)
{
Console.WriteLine("catch-all advice method here...");
return JoinPointContext.Proceed<T>();

¥

public static int Advice()
{
Console.WriteLine("int advice method here...");
return JoinPointContext.Proceed<int>();
}
}

The advice method of type int would be used for all target methods that return “int”. The
generic advice method would be used for all other types of methods. Thus, YIIHAW always
pick the advice method that has the closest match with the signature of the target method. The
advice method can match the target methods in two ways: By the return type or/and by the
method arguments. YIIHAW will always pick the advice method that has the same return type
as the target method (if possible) and pick the advice method that has the highest number of
arguments in common with the target method. If given the choice of picking an advice method
that match all arguments or an advice method that matches the return type, YIIHAW will pick
the latter.

98

Chapter A YITHAW - An aspect weaver for .NET

Introductions

An introduction start with the keyword ”insert” followed by a property (named “construct”)
defining the type construct to insert. There are five possible values for this property:

e method

property
o field
e class

e event

All properties preceding the keyword ”into” describe the construct that should be inserted
(from the aspect assembly). No wildcards are allowed for these properties. Note that the prop-

2 7

erties "access”, "invocation kind” and "return type” should not be specified when introducing
classes (as these make no sense for classes). They are mandatory for all other constructs.

The insert-statement must match one specific construct - it must not match multiple con-
structs. The property suceeding the keyword "into” describe the type (namespace and class) in
which the construct should be inserted. Some examples:

(c) insert method public * int Namespace.AspectClass:Foo(string,System.Object)
into TargetNamespace.Class;

(d) insert class Namespace.AspectClass into TargetNamespace;

(e) insert delegate Namespace.AspectClass:MyDelegate(int,string)
into TargetNamespace.*;

The first statement (c) matches the constructs that:

e are a method

e are public

e are of any invocation kind (static and instance)
e return an integer

e are defined on the type "Namspace.AspectClass”
e are named "Foo”

e take two arguments (of type string and object)

This construct is inserted into the type "TargetNamespace.Class”.

99

Chapter A YITHAW - An aspect weaver for .NET

Typestructure modification

A typestruction modification start with the keyword "modify” followed by the type (from the
target assembly) which should be modified. The property named “action” defines what the
weaver should do with this type. There are two possible values for this property: ”inherit” or
“implement”. If the former is specified, the weaver will make the target type inherit the aspect
type specified. If the latter is specified, the weaver will make the target type implement the
aspect type specified (which must be an interface for obvious matters). YIIHAW will check that
all methods of the interface are implemented as well. If this is not the case, an error will be
shown. Some examples:

(f) modify TargetNamespace.Class inherit Namespace.AspectClass;

(g) modify TargetNamespace.Class implement Namespace.AspectInterface;

Short form notation for types

All types defined in the statements (for example, the return type of a method) must be fully
specified (namespace and class). The only exception to this rule are the standard types defined
in .NET, such as string, int, float, etc. These types do not need to be fully specified (although
you are allowed to do so).

100

Appendix B

Pointcut grammar

start = around | insert | modify

around = "around" access membertype returntype name ":"
method inherit "do" forcedname ":" forcedname
insert = "insert" introduction

introduction = typeintro | memberintro
modify = "modify" forcedname forcedinherit
typeintro = typeconstruct forcedname "into" name

typeconstruct = "class" | "attribute" | "enum" -

memberintro = memberconstructwitharg access membertype returntype forcedname ":"

forcedmethod "into" name
| memberconstruct access membertype returntype

forcedname ":" forcedname "into" name
memberconstruct = "property" | "field" | "event"
memberconstructwitharg = "method" | "delegate"
access = "public" | "private" | "protected" | "internal" | "x"
membertype = "static" | "instance" | "x"
returntype = name | "void" | "*"
name = string | "x"

forcedname = string
method = name "(" arglist ")" | "x"

forcedmethod = forcedname "(" forcedarglist ")"

101

Chapter B YITHAW - An aspect weaver for .NET

arglist = forcedarglist | "x*"

arglistopt = "," forcedname arglistopt | none
forcedarglist = forcedname arglistopt | none .
inherit = "inherits" name | none .

forcedinherit = "inherits" forcedname | "implement" forcedname

102

Appendix C

Short form notation for the pointcut

language

Fully qualified name | Short form
System.Byte byte
System.SByte sbyte
System.Int32 int
System.UInt32 uint
System.Int16 short
System.UInt16 ushort
System.Int64 long
System.UInt64 ulong
System.Single float
System.Double double
System.Char char
System.Boolean bool
System.ODbject object
System.String string
System.Decimal decimal

103

Appendix D

Class diagram

<] >laddepeson

<1>A1euondiganisinosy

uonoajjopiaddeneso

uondaasaiul

<1>Anuzieddeneqo|o

uonanponul

<l>Jleddepeqo|n

uoneslyIpoN

uonoajjopiaddepneqo|o

1AM MVHIIA

wwwwwwwwww .
Ja|pueHydaaiaul I |s1onns eep snoLeAgonns»
! SIONIIS BIEP SNOBAWIN
| erepSTUTE
«@ouBISU» odPH m i
! |
! i
! |
i |
“““““ ! «eoueIsUp
Ja|puBHLIASU| T r~=r—-
] ! «sasn» o
e e B etk I e Rinints Ittt 1asred T
«aouelsup 1 towmpan «aUeISUI».
T —
1
e |
JOIPUBHALPOW| gouersur |
|
|
1 J1asred|
«eon]
19[JOJUOD MVHIIA | T
1
| L
|
19z1UaN0L Jauuedss
pioA 1Xa1U0IUI0duUIor JanewI04Inding
IdV' MVHIIA NdINO’MVHIIA 1NJUIOd MVHIIA

J9QWINNYURIU0DIONS80Qap0ado uoneladopanoddnsion 10113

feusaiu| uonesadoeh:

PpUNOL10N1ONNSUOD

suondaax3 My

HIA

104

Appendix E

Source code for tests - Basecode

Test 1-3

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

public class Tester

{

public static Random r = new Random () ;

static void Main(string[] args)

{

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t. ToBelntercepted () ;

watch. Stop () ;

Console. WriteLine (”time: 7 + watch. ElapsedMilliseconds + 7
milliseconds”);

}

public void ToBelntercepted ()

{
}

r.Next () ;

}
Test 4

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTest4

{

public class Tester

{

public static Random r = new Random/() ;

105

Chapter E YITHAW - An aspect weaver for .NET

static void Main(string[] args)

{

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t.ToBelntercepted (r);

watch . Stop () ;

Console. WriteLine ("time: ” + watch. ElapsedMilliseconds + 7
milliseconds”);

}

public void ToBelntercepted (Random r)

{
}

r.Next();

}
Test 4 static (for Aspect.NET)

using System;
using System. Collections. Generic;
using System.Text;

namespace WeaverTest4

{

public class Tester

{

public static Random r = new Random () ;

static void Main(string[] args)
{
System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
()
watch. Start () ;
for (int i = 0; i < 10000000; i++)
ToBelntercepted(r);
watch . Stop () ;
Console. WriteLine (”time: ” + watch. ElapsedMilliseconds + ”
milliseconds”);

}

public static void ToBelntercepted (Random r)

{
}

r.Next();

}
Test 5

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTesth

{

106

Chapter E YITHAW - An aspect weaver for .NET

public class Tester

{

public static Random r = new Random/() ;

static void Main(string[] args)
{
System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0
watch. Start () ;
for (int i = 0; 1 < 10000000; i++)
Tester. ToBelntercepted () ;
watch . Stop () ;
Console. WriteLine (”time: ” + watch. ElapsedMilliseconds + 7
milliseconds”);

}

public static void ToBelntercepted ()

{
}

r.Next();

}
Test 6

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTest6

{

public class Tester

{

public static Random r = new Random () ;

public void GetNextInt ()

{
}

r.Next();

}
Test 7

using System;

using System. Collections . Generic;
using System.Text;

using DotNetGuru. AspectDNG ;

using DotNetGuru. AspectDNG. Joinpoints;

namespace WeaverTest7

{

public abstract class SuperClass

{

public static Random r = new Random () ;
public abstract int GetNextInt () ;

}

public class SubA : SuperClass

{

107

Chapter E

YITHAW - An aspect weaver for .NET

public override int GetNextInt ()

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

Console. WriteLine ("time: ” + watch. ElapsedMilliseconds + ”

{
return r.Next();
}
}
public class Tester : SubA
{
static void Main(string|[] args)
{
SuperClass t = new Tester();
0
watch. Start () ;
for (int i = 0; i < 10000000;
t.GetNextInt () ;
watch . Stop () ;
milliseconds”);
}
}

108

Appendix F

Source code for tests - Coded by
hand

Test 1-3

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTest1HW

{
class Tester
{
public static Random r = new Random/() ;
static void Main(string|[] args)
{

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t. ToBelntercepted () ;

watch . Stop () ;

Console. WriteLine (”time: ” + watch. ElapsedMilliseconds + 7
milliseconds”);

}
public void ToBelntercepted ()
{
r. NextDouble () ;
r.Next () ;
}

}
Test 4

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTest4dHW

{

109

Chapter F YITHAW - An aspect weaver for .NET

public class Tester

{

public static Random r = new Random/() ;

static void Main(string[] args)

{

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

()7

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t.ToBelntercepted (r);

watch. Stop () ;

Console. WriteLine (”time: ” 4+ watch.ElapsedMilliseconds + 7
milliseconds”);

}

public void ToBelntercepted (Random r)

{
r.NextDouble () ;

r.Next();

}
Test 5

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestoHW

{

public class Tester

{

public static Random r = new Random () ;

static void Main(string[] args)

{

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

0
watch. Start () ;

for (int i = 0; 1 < 10000000; i++)
Tester. ToBelntercepted () ;

watch . Stop () ;

Console. WriteLine ("time: ” + watch. ElapsedMilliseconds + ”
milliseconds”);

}

public static void ToBelntercepted ()

{
r.NextDouble () ;

r.Next () ;

}
Test 6

using System;

110

Chapter F YITHAW - An aspect weaver for .NET

using System. Collections . Generic;
using System.Text;

namespace WeaverTest6HW

{

public class Tester

{

static void Main(string[] args)

{

WeaverTest6. Tester t = new WeaverTest6. Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t.GetNextInt () ;

watch. Stop () ;

Console. WriteLine ("time: ” + watch. ElapsedMilliseconds + 7
milliseconds”);

}
Test 7

using System;

using System. Collections . Generic;
using System.Text;

using DotNetGuru. AspectDNG ;

using DotNetGuru. AspectDNG. Joinpoints;

namespace WeaverTest7

{

public abstract class SuperClass

{

public static Random r = new Random/() ;
public abstract int GetNextInt () ;

}

public class SubA : SuperClass

{

public override int GetNextInt ()

{
}

return r.Next () ;

}

public class SubB : SuperClass

{

public override int GetNextInt ()

{
}

return r.Next();

}

public class Tester : SubB

{

static void Main(string|[] args)

{

SuperClass t = new Tester () ;

111

Chapter F YITHAW - An aspect weaver for .NET

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
OF

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t.GetNextInt () ;

watch . Stop () ;

Console. WriteLine (”time: ” + watch. ElapsedMilliseconds + ”
milliseconds”);

112

Appendix G

Source code for tests - Aspect DNG

Test 1,5,6,7 - advice

using System;
using DotNetGuru. AspectDNG. Joinpoints ;

// WeaverTestl — around interception — pointcut specified via XML file
namespace AspectDNGWeaverTest1

{

class Aspects

{

public static object Interceptor(JoinPoint jp)

{

WeaverTestl. Tester.r.NextDouble () ;
return jp.Proceed(); // invoke original method

}

// WeaverTest2 — before interception — not possible in AspectDNG
// WeaverTest8 — after interception — not possible in AspectDNG

// WeaverTest4 — around interception with access to method arguments is not
possible in AspectDNG

// WeaverTest5 — around interception of static method
namespace AspectDNGWeaverTesth

{

class Aspects

{

public static object Interceptor (JoinPoint jp)

{
WeaverTest5. Tester.r.NextDouble () ;

return jp.Proceed(); // invoke original method

}

// WeaverTest6 — method introduction
namespace AspectDNGWeaverTest6

{

public class Methods

{

public int GetNextInt ()

{

113

Chapter G YITHAW - An aspect weaver for .NET

return WeaverTest6. Tester.r.Next () ;

}

// WeaverTest7 — typestructure modification — no implementation needed — specified
via configuration file

Test 1 - configuration file

<AspectDngConfig warnings="$(path)/Warnings.log"
weaving="$(path) /Weaving-log.xml" debug="true">

<Variables>
<Variable name="path" value="." />
<Variable name="ns" value="" />
</Variables>

<TargetAssembly>$(path)/WeaverTestl.exe</TargetAssembly>
<AspectsAssembly>$(path)/AspectDNGWeaverTestl.dl1</AspectsAssembly>
<WeavedAssembly>$(path)/Weaved.exe</WeavedAssembly>
<Privatelocations>

<PrivatePath>$(path)</PrivatePath>
</PrivateLocations>

<Advice>
<AroundBody targetXPath="//Method[match(’* WeaverTestl.Tester::ToBelntercepted(*)’)]"
aspectXPath="//Type[. = ’AspectDNGWeaverTestl.Aspects’]/Method[@Name = ’Interceptor’]" />
</Advice>
</AspectDngConfig>

Test 5 - configuration file

<AspectDngConfig warnings="$(path)/Warnings.log"
weaving="$(path) /Weaving-log.xml" debug="true">

<Variables>
<Variable name="path" value="." />
<Variable name="ns" value="" />
</Variables>

<TargetAssembly>$(path) /WeaverTest5.exe</TargetAssembly>
<AspectsAssembly>$(path) /AspectDNGWeaverTestl.d11</AspectsAssembly>
<WeavedAssembly>$(path) /Weaved.exe</WeavedAssembly>
<PrivateLocations>

<PrivatePath>$(path)</PrivatePath>
</PrivateLocations>

<Advice>
<AroundBody targetXPath="//Method[match(’* WeaverTest5.Tester::ToBeIntercepted(*)’)]"
aspectXPath="//Typel[. = ’AspectDNGWeaverTest5.Aspects’]/Method[@Name = ’Interceptor’]" />
</Advice>
</AspectDngConfig>

Test 6 - configuration file

<AspectDngConfig warnings="$(path)/Warnings.log"

114

Chapter G YITHAW - An aspect weaver for .NET

weaving="$ (path) /Weaving-log.xml" debug="true">

<Variables>
<Variable name="path" value="." />
<Variable name="ns" value="" />
</Variables>

<TargetAssembly>$(path) /WeawerTest6TargetCode.dl1l</TargetAssembly>
<AspectsAssembly>$(path)/AspectDNGWeaverTestl.d11</AspectsAssembly>
<WeavedAssembly>$ (path) /Weaved.exe</WeavedAssembly>
<PrivateLocations>

<PrivatePath>$(path)</PrivatePath>
</PrivatelLocations>

<Advice>
<Insert targetRegExp="WeaverTest6.Tester"
aspectXPath="//Type[. = ’AspectDNGWeaverTest6.Methods’]
/Method [@Name = ’GetNextInt’]"/>
</Advice>
</AspectDngConfig>

Test 7 - configuration file

<AspectDngConfig warnings="$(path)/Warnings.log"
weaving="$(path) /Weaving-log.xml" debug="true">

<Variables>
<Variable name="path" value="." />
<Variable name="ns" value="" />
</Variables>

<TargetAssembly>$(path) /WeaverTest7.exe</TargetAssembly>
<AspectsAssembly>$(path) /AspectDNGWeaverTestl.d11</AspectsAssembly>
<WeavedAssembly>$(path)/Weaved.exe</WeavedAssembly>
<PrivateLocations>

<PrivatePath>$(path)</PrivatePath>
</PrivateLocations>

<Advice>
<SetBaseType targetRegExp="WeaverTest7.Tester"
aspectXPath="//Typel[. = ’AspectDNGWeaverTest7.SubB’]"/>
</Advice>
</AspectDngConfig>

115

Appendix H

Source code for tests - Aspect.NET

Test 2

using System;
using AspectDotNet;

public class Test2 : Aspect

{
[AspectAction ("%before %call ToBelntercepted()”)]
public static void test2Aspect ()
{
WeaverTestl. Tester.r.NextDouble() ;
}
}
Test 3

using System;
using AspectDotNet;

public class Test3 : Aspect

{
[AspectAction ("%after %call ToBelntercepted()”)]
public static void test3Aspect() {
WeaverTestl. Tester.r.NextDouble () ;
}
}
Test 4

using System;
using AspectDotNet ;
using WeaverTest4;

public class Test4 : Aspect

{

[AspectAction ("%instead %call ToBelntercepted (Random) && args (..)”)]
public static void test4Aspect(Random r) {

WeaverTest4d. Tester. ToBelntercepted (r);

Random r2 = new Random () ;
r. NextDouble () ;

116

Chapter H YITHAW - An aspect weaver for .NET

}
Test 5

using System;
using AspectDotNet;
using WeaverTest5;

public class Testd : Aspect

{
[AspectAction ("%instead %call ToBelntercepted()”)]
public static void testbSAspect_ () {
WeaverTesth. Tester. ToBelntercepted () ;
Random r2 = new Random{() ;
r2.NextDouble () ;
}
}

117

Appendix I

Source code for tests

Test 1

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

public aspect AroundAspect

{

- NKalore

pointcut ToBelnterceptedPointCut void Tester.ToBelntercepted () ;

around void ToBelnterceptedPointCut ()

{

Tester.r.NextDouble() ;

proceed () ;
}
}
class Tester
{
public static Random r = new Random/() ;
static void Main(string|[] args)
{
Tester t = new Tester () ;
System . Diagnostics.Stopwatch watch
0
watch. Start () ;
for (int i = 0; i < 10000000; i++)
t.ToBelntercepted () ;
watch . Stop () ;
Console. WriteLine ("time: ” + watch
milliseconds”);
}
public void ToBelntercepted ()
{
r.Next();
}
}

118

= new System.Diagnostics.Stopwatch

.ElapsedMilliseconds + ”

Chapter 1

YITHAW - An aspect weaver for .NET

Test 2

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

}

public aspect BeforeAspect

{

}

pointcut ToBelnterceptedPointCut void Tester.ToBelntercepted () ;

before ToBelnterceptedPointCut ()

{
}

Tester.r.NextDouble() ;

class Tester

{

public static Random r = new Random () ;

static void Main(string []

{

args)

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch

()’

watch. Start () ;

for (int i = 0;
t. ToBelntercepted () ;

watch . Stop () ;

Console. WriteLine (”time:
milliseconds”);

}

public void ToBelntercepted ()

{
}

r.Next();

Test 3

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

public aspect AfterAspect

{

}

i < 10000000;

” + watch

i++)

= new System.Diagnostics.Stopwatch

.ElapsedMilliseconds + ”

pointcut ToBelnterceptedPointCut void Tester.ToBelntercepted () ;

after ToBelnterceptedPointCut ()

{
}

Tester.r.NextDouble() ;

119

Chapter 1 YITHAW - An aspect weaver for .NET

class Tester

{

public static Random r = new Random/() ;

static void Main(string[] args)

{

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

()7

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t.ToBelntercepted () ;

watch. Stop () ;

Console. WriteLine (”time: ” 4+ watch.ElapsedMilliseconds + 7
milliseconds”);

}

public void ToBelntercepted ()

{
}

r.Next();

}
Test 4

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTest4

{

public aspect AroundAspect

{

pointcut ToBelnterceptedPointCut void Tester.ToBelntercepted (Random r);
around void ToBelnterceptedPointCut (Random r)

{
Tester.r.NextDouble() ;
proceed(r);
}
}

class Tester

{

public static Random r = new Random/() ;

static void Main(string|[] args)

{

Tester t = new Tester () ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t. ToBelntercepted (1) ;

watch . Stop () ;

Console. WriteLine ("time: ” + watch.ElapsedMilliseconds + ”
milliseconds”);

120

Chapter 1

YITHAW - An aspect weaver for .NET

}

public void ToBelntercepted (Random r)

{
}

Test 5

r.Next();

using System;
using System. Collections. Generic;
using System.Text;

namespace WeaverTesth

{

public aspect AroundAspect

{

}

pointcut ToBelnterceptedPointCut void Tester.ToBelntercepted () ;

around void ToBelnterceptedPointCut ()

{

}

Tester.r.NextDouble() ;

proceed () ;

class Tester

{

public static Random r = new Random/() ;

static void Main(string []

{

}

args)

System . Diagnostics.Stopwatch watch

()5

watch. Start () ;

for (int i = 0; i < 10000000; i++)
Tester. ToBelntercepted () ;

watch . Stop () ;

Console. WriteLine ("time: ” + watch

milliseconds”);

public static void ToBelntercepted ()

{
}

r.Next();

121

= new System.Diagnostics.Stopwatch

.ElapsedMilliseconds + ”

Appendix J

Source code for tests - Rapier LOOM

Test 1
Aspect.cs
using System;
using Loom;

using System . Text;

namespace WeaverTestl

{
public class Aspectl : Loom.Aspect
{
[Loom. ConnectionPoint . Include (" ToBelntercepted”) |
[Loom. Call (Invoke.Instead)]
public void aspectl ()
{
Context . Invoke () ;
Tester.r.Next();
}
}
}
ITester.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

public interface ITester

{
}

void ToBelntercepted () ;

}

Program.cs

using System;

using System. Collections . Generic;
using System.Text;

using Loom;

namespace WeaverTestl

{

122

Chapter J

YITHAW - An aspect weaver for .NET

public class Tester ITester

{

public static Random r = new Random/() ;

static void Main(string []

{

args)

Aspectl aspect = new Aspectl();

ITester t =
aspect) ;

(ITester)Loom.Weaver. Createlnstance (typeof(Tester), null,

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

0
watch. Start () ;
for (int i = 0;
t.ToBelntercepted () ;
watch . Stop () ;
Console. WriteLine (”time:
milliseconds”);

}

public void ToBelntercepted ()

{
}

r.Next () ;

}
Test 2

Aspect.cs

using System;
using Loom;
using System.Text;

namespace WeaverTestl

{

public class Aspect2

{

i < 10000000; i++)

” 4+ watch. ElapsedMilliseconds + ”

Loom. Aspect

[Loom. ConnectionPoint . Include (" ToBelntercepted”)]

[Loom. Call (Invoke . Before)]
public void aspect2 ()

{
}

Tester.r.NextDouble() ;

}

ITester.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

public interface ITester

{
}

void ToBelntercepted () ;

123

Chapter J

YITHAW - An aspect weaver for .NET

Program.cs

using System;

using System. Collections . Generic;
using System.Text;

using Loom;

namespace WeaverTestl

{

public class Tester ITester
{
public static Random r = new Random/() ;
static void Main(string|[] args)
{
Aspect2 aspect = new Aspect2();
ITester t = (ITester)Loom.Weaver. Createlnstance (typeof(Tester), null,
aspect) ;
System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
0
watch. Start () ;
for (int i = 0; i < 10000000; i++)
t.ToBelntercepted () ;
watch . Stop () ;
Console. WriteLine ("time: ” + watch.ElapsedMilliseconds + ”
milliseconds”);
}
public void ToBelntercepted ()
{
r.Next () ;
}
}
}
Test 3
Aspect.cs

using System;
using Loom;
using System.Text;

namespace WeaverTestl

{

public class Aspect3

{

Loom. Aspect

[Loom. ConnectionPoint . Include (" ToBelntercepted”)]

[Loom. Call (Invoke. After)]
public void aspect2()

{
}

Tester.r.NextDouble() ;

}

ITester.cs

using System;

124

Chapter J

YITHAW - An aspect weaver for .NET

using System. Collections . Generic;
using System.Text;

namespace WeaverTestl

{

public interface ITester

{
}

void ToBelntercepted () ;

}

Program.cs

using System;

using System. Collections. Generic;
using System.Text;

using Loom;

namespace WeaverTestl

{

public class Tester ITester

{

public static Random r = new Random /() ;

static void Main(string[] args)

{

Aspect3 aspect = new Aspect3();

ITester t = (ITester)Loom.Weaver. Createlnstance (typeof(Tester), null,

aspect) ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

0
watch. Start () ;

for (int i = 0; i < 10000000;
t.ToBelntercepted () ;

watch . Stop () ;

Console. WriteLine (”time:
milliseconds”);

i++)

}

public void ToBelntercepted ()

{
}

r.Next();

}
Test 4

Aspect.cs

using System;
using Loom;
using System.Text;

namespace WeaverTest4

{

public class Aspectd Loom. Aspect

{

7 + watch. ElapsedMilliseconds + ”

[Loom. ConnectionPoint . Include (" ToBelntercepted”)]

[Loom. Call (Invoke. Instead)]

125

Chapter J

YITHAW - An aspect weaver for .NET

public void aspect4 (Random r)

Object [] ob = new Object [1];
ob[0] = r;
Context.Invoke(ob);
r.NextDouble () ;

}

ITester.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace WeaverTest4

{

public interface ITester

{
}

void ToBelntercepted (Random 1) ;

}

Program.cs

using System;

using System. Collections . Generic;
using System.Text;

using Loom;

namespace WeaverTest4

{

public class Tester ITester

{

public static Random r = new Random/() ;

static void Main(string[] args)

{

Aspect aspect = new Aspectd () ;

ITester t = (ITester)Loom.Weaver. Createlnstance (typeof(Tester), null,

aspect) ;

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch

0
watch. Start () ;
for (int i = 0;
t.ToBelntercepted (r);
watch . Stop () ;
Console. WriteLine (”time:
milliseconds”);

}

public void ToBelntercepted (Random r)

{
}

r.Next () ;

126

i < 10000000; i++)

” 4+ watch. ElapsedMilliseconds + ”

Chapter J YITHAW - An aspect weaver for .NET

Test 6
Aspect.cs

using System;
using Loom;
using System.Text;

namespace WeaverTest6

[Loom. Introduces (typeof(IGetNextInt))]
public class Aspect6 : Loom.Aspect, IGetNextInt

{
public void getNextInt ()
{
Tester.r.Next();
}
}
}
IGetNextInt.cs

using System;
using System. Collections. Generic;
using System.Text;

namespace WeaverTest6

{

public interface IGetNextInt

{
}

void getNextInt () ;

}

Program.cs

using System;

using System. Collections . Generic;
using System.Text;

using Loom;

namespace WeaverTest6HW

{

class Tester

{

static void Main(string[] args)
{
Aspect aspect = new WeaverTest6. Aspect6 () ;
WeaverTest6.IGetNextInt t = (WeaverTest6.1GetNextInt)Loom. Weaver .
Createlnstance (typeof(WeaverTest6. Tester), null, aspect);

System . Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch
OF

watch. Start () ;

for (int i = 0; i < 10000000; i++)
t.getNextInt () ;

watch . Stop () ;

Console. WriteLine ("time: ” + watch.ElapsedMilliseconds + ”
milliseconds”);

127

Chapter J YITHAW - An aspect weaver for .NET

128

Appendix K

Source code for tests - YITHAW

Test 1,4,5,6,7 - advice

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW.RuntimeTests

{

class Testl

{
public T Advice<T>()
{
WeaverTestl. Tester.r.NextDouble() ;
return YIIHAW.API. JoinPointContext.Proceed<T>();
}
}
class Test4
{
public T Advice<T>(Random r)
{
r.NextDouble () ;
return YIIHAW.API. JoinPointContext.Proceed<T>();
}
}
class Test)
{
public static T Advice<T>()
{
WeaverTest5. Tester.r.NextDouble () ;
return YIIHAW.API. JoinPointContext.Proceed<T>();
}
}
class Test6
{
public void GetNextInt ()
{
WeaverTest6. Tester.r.Next () ;
}
}

public class SubB : WeaverTest7.SuperClass

{

129

Chapter K YITHAW - An aspect weaver for .NET

public override int GetNextInt ()

{
}

return WeaverTest7.SuperClass.r.Next();

}

Test 1 - configuration file

around public instance void WeaverTestl.Tester:ToBeIntercepted()
do YITHAW.RuntimeTests.Testl:Advice;

Test 4 - configuration file

around public instance void WeaverTest4.Tester:ToBeIntercepted (*)
do YITHAW.RuntimeTests.Test4:Advice;

Test 5 - configuration file

around public static void WeaverTest5.Tester:ToBeIntercepted(*)
do YITHAW.RuntimeTests.Test5:Advice;

Test 6 - configuration file

insert method public * void YIIHAW.RuntimeTests.Test6:GetNextInt()
into WeaverTest6.Tester;

Test 7 - configuration file

insert class YITHAW.RuntimeTests.SubB into WeaverTest7;
modify WeaverTest7.Tester inherit YIIHAW.RuntimeTests.SubB;

130

Appendix L

Source code for collection tests -
Aspect DN G

Classes.cs

using System;
using System.Text;
using System. Reflection;

namespace AspectGenNonGeneric. Classes

{

class LinkedListEnumerator : Collections.IEnumerator
{

Collections . LinkedList lst;

Collections . LinkedList.Node curr;

int stamp;

bool valid;

object item;

public LinkedListEnumerator (Collections.LinkedList Ist)

{

this.Ist = lIst;
this.stamp = GetStampField(1st);

Reset () ;
}
public object Current
{
get
{
if (wvalid)
return item;
else
throw new InvalidOperationException () ;
}
}
public bool MoveNext ()
{
if (stamp != GetStampField(1st))
throw new InvalidOperationException(); // List modified
else if (curr != null)
{
item = curr.item;

131

Chapter L YITHAW - An aspect weaver for .NET

curr = curr.next;
return valid = true;

}

else
return valid = false;

}
public void Reset ()
{
curr = lst.first;
valid = false;
}
private int GetStampField (object o)
{

FieldInfo field = o.GetType().GetField (”stamp”,BindingFlags.NonPublic
| BindingFlags.Instance); // reflectively get the ”stamp” member
of LinkedList

if (field != null)
return (int)field.GetValue(o); // cast the ”stamp” field to an

int

else
throw new Exception(”Could not retrieve the field \”stamp\””);

}
}
class ArrayListEnumerator : Collections.IEnumerator
{

Collections . ArrayList lst;
bool valid;

int stamp;

object item;

int curr;

public ArrayListEnumerator (Collections. ArrayList lst)

{
this.lst = Ist;
stamp = GetStampField (1st); Reset();
}
public object Current
{
get
{
if (valid)
return item;
else
throw new InvalidOperationException () ;
}
}
public bool MoveNext ()
{

if (stamp != GetStampField(lst))
throw new InvalidOperationException () ;
else if (curr < lst.size)

{
item = lst [curr];
curr—+-;
return valid = true;

}

else

132

Chapter L YITHAW - An aspect weaver for .NET

return valid = false;

}

public void Reset ()
{

curr = 0;

valid = false;

}

private int GetStampField (object o)
{
FieldInfo field = o.GetType().GetField (”stamp”, BindingFlags.NonPublic
| BindingFlags.Instance); // reflectively get the ”stamp” member
of LinkedList

if (field != null)
return (int)field.GetValue(o); // cast the 7stamp” field to an
int
else

throw new Exception(”Could not retrieve the field \”stamp\””);

}
Fields.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace AspectGenNonGeneric. Fields

{
public class Fields
{
internal int stamp;
public event EventHandler Changed;
}
}
HelperInterfaces.cs

namespace AspectGenNonGeneric. Interfaces.Helper

{

internal interface IOnChanged

{
}

void OnChanged(System.EventArgs e);

}

Interceptors.cs

using DotNetGuru. AspectDNG. Joinpoints;
using System. Reflection;
using System;

namespace AspectGenNonGeneric. Interceptors

{

class Interceptors

{
public static object AddCallToOnChangedAtEnd(JoinPoint jp)

{

133

Chapter L YITHAW - An aspect weaver for .NET

object result = jp.Proceed();

object o = jp.RealTarget;

Interfaces.Helper.IOnChanged onchanged = (Interfaces.Helper.IOnChanged
)o;

onchanged . OnChanged (System . EventArgs . Empty) ;

return result;

}
public static object UpdateStamp(JoinPoint jp)
{
object result = jp.Proceed();
object o = jp.RealTarget;
// get the 7stamp’—field wusing reflection
FieldInfo field = o.GetType().GetField (”stamp”, BindingFlags.NonPublic
| BindingFlags.Instance); // reflectively get the ”stamp” member
of LinkedList
if (field != null)
int stamp = (int)field.GetValue(o); // cast the 7stamp” field to
an int
stamp—+-+;
}
else
throw new Exception(”Could not retrieve the field \”stamp\””);
return result;
}
}
}
Methods.cs

using System. Reflection;
using System;

namespace AspectGenNonGeneric.Methods

{

class IOnChangedMethodsLinkedList : Interfaces.Helper.IOnChanged

{

public void OnChanged(System.EventArgs e)

{

object _this = this;

FieldInfo field = ((Collections.LinkedList)_this).GetType().GetField(”
Changed”, BindingFlags.Public | BindingFlags.Instance |
BindingFlags.NonPublic); // reflectively get the ”Changed”
eventhandler

if (field != null)

EventHandler handler = (EventHandler)field .GetValue(this); //
cast the ”Changed” field to a System.FventHandler
if (handler != null)
handler (this, e);
}
}

}

class IOnChangedMethodsArrayList : Interfaces.Helper.IOnChanged
{

public void OnChanged(System.EventArgs e)

{

134

Chapter L YITHAW - An aspect weaver for .NET

object _this = this;

FieldInfo field = ((Collections. ArrayList)_this).GetType().GetField(”
Changed”, BindingFlags.Public | BindingFlags.Instance |
BindingFlags.NonPublic); // reflectively get the ”"Changed”
eventhandler

if (field != null)

EventHandler handler = (EventHandler) field .GetValue(this); //
cast the 7Changed” field to a System.EventHandler

if (handler != null)
handler (this, e);

class IEnumerableMethodsLinkedList : Collections. LinkedList, Collections.

IEnumerable
{
public Collections.IEnumerator GetEnumerator ()
{
return new AspectGenNonGeneric. Classes.LinkedListEnumerator (this);
}
}

class IEnumerableMethodsArrayList : Collections.ArrayList, Collections.
IEnumerable
{

public Collections.IEnumerator GetEnumerator ()

{
}

return new AspectGenNonGeneric. Classes. ArrayListEnumerator (this);

}

class LinkedListEqualsMethods

{

public override bool Equals(object that)
{
object _this = this;
if (that is Collections.IList && ((Collections.LinkedList)_this).size
— ((Collections.IList)that).Count)

{
Collections . LinkedList .Node thisnode = ((Collections.LinkedList)
_this).first;
Collections.IEnumerator thatenm = ((Collections.IEnumerable)that).
GetEnumerator () ;
while (thisnode != null)
{
if (!thatenm.MoveNext())
throw new Exception(”Impossible: LinkedList<T>.Equals”);
// assert MoveNext() was true; // because of the above size
test
if (!thisnode.item.Equals(thatenm.Current))
return false;
thisnode = thisnode.next;
}
// assert !MoveNext(); // because of the size test
return true;
}

135

Chapter L YITHAW - An aspect weaver for .NET

else
return false;

}

PublicInterfaces.cs

namespace Collections

{
public interface IEnumerator
{
object Current { get; }
bool MoveNext () ;
void Reset () ;
}
public interface IEnumerable
{
IEnumerator GetEnumerator () ;
}
}

Enumeration - pointcut file

<AspectDngConfig warnings="$(path)/Warnings.log"
weaving="$(path) /Weaving-log.xml" debug="true">

<Variables>
<Variable name="path" value="."/>
<Variable name="ns" value=""/>
</Variables>

<TargetAssembly>$(path)/dll/Basecode.dll</TargetAssembly>
<AspectsAssembly>$(path) /AspectGenNonGeneric.d11</AspectsAssembly>
<WeavedAssembly>$(path)/d1l1l/Basecode.dll</WeavedAssembly>
<PrivatelLocations><PrivatePath>$(path)</PrivatePath></PrivatelLocations>

<Advice>
<! -- make the ICollection interface inherit IEnumerable -->
<ImplementInterface targetRegExp="Collections.ICollection"
aspectXPath="//Typel[. = ’Collections.IEnumerable’]" />
<! -- LinkedList: add the "stamp" member, add the LinkedListEnumerator class,

add the GetEnumerator() method and override the Equals() methods -->
<Insert targetRegExp="Collections.LinkedList"

aspectXPath="//Typel. = ’AspectGenNonGeneric.Fields.Fields’]
/Field[@Name = ’stamp’]"/>

<Insert targetRegExp="Collections.x*"
aspectXPath="//Typel. = ’AspectGenNonGeneric.Classes.LinkedListEnumerator’]"/>

<Insert targetRegExp="Collections.LinkedList"
aspectXPath="//Typel[. = ’AspectGenNonGeneric.Methods.IEnumerableMethodsLinkedList’]

/Method [@Name = ’GetEnumerator’]"/>

<Insert targetRegExp="Collections.LinkedList"

136

Chapter L YITHAW - An aspect weaver for .NET

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Methods.LinkedListEqualsMethods’]
/Method [@Name = ’ListEquals’]" />

<!-- Arraylist: add the "stamp" member, add the ArrayListEnumerator class,
add the GetEnumerator() method and override the Equals() methods -->
<Insert targetRegExp="Collections.ArrayList"

aspectXPath="//Typel. = ’AspectGenNonGeneric.Fields.Fields’]

/Field[@Name = ’stamp’]"/>

<Insert targetRegExp="Collections.ArrayList"
aspectXPath="//Typel. = ’AspectGenNonGeneric.Classes.ArrayListEnumerator’]"/>

<Insert targetRegExp="Collections.ArrayList"
aspectXPath="//Typel[. = ’AspectGenNonGeneric.Methods.IEnumerableMethodsArrayList’]
/Method [@Name = ’GetEnumerator’]"/>

<Insert targetRegExp="Collections.ArrayList"
aspectXPath="//Type[. = ’AspectGenNonGeneric.Methods.ArrayListEqualsMethods’]
/Method [@Name = ’ListEquals’]" />

<!-- LinkedList: add interceptor that updates the "stamp" member -->
<AroundBody targetXPath="//Method[match(’* Collections.LinkedList
::AddFirst(x)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList
::Add (%))"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :AddLast (¥)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :RemoveFirst () ’)]"

aspectXPath="//Typel. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :RemoveAt () ’)]"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :RemoveLast (¥)’)]"
aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]

137

Chapter L YITHAW - An aspect weaver for .NET

/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :Remove (*)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList
::set_Item(*)’)]"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<!-- Arraylist: add interceptor that updates the "stamp" member -->
<AroundBody targetXPath="//Method[match(’* Collections.ArrayList
:rAdd(x))]

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]

/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList

: :RemoveAt (*)’)]"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList

: :Remove (%) ’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’UpdateStamp’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList
::set_Item(*)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’UpdateStamp’]"/>
</Advice>
</AspectDngConfig>

Event - pointcut file

<AspectDngConfig warnings="$(path)/Warnings.log"
weaving="$(path) /Weaving-log.xml" debug="true">
<Variables>
<Variable name="path" value="."/>
<Variable name="ns" value=""/>
</Variables>
<TargetAssembly>$(path)/dll/Basecode.dll</TargetAssembly>
<AspectsAssembly>$(path) /AspectGenNonGeneric.d11</AspectsAssembly>
<WeavedAssembly>$(path)/d1l1l/Basecode.dll</WeavedAssembly>
<PrivatelLocations><PrivatePath>$(path)</PrivatePath></PrivateLocations>
<Advice>
<!-- add eventhandling code for LinkedList -->
<ImplementInterface targetRegExp="Collections.LinkedList"

138

Chapter L YITHAW - An aspect weaver for .NET

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interfaces.Helper.IOnChanged’]"/>

<Insert targetRegExp="Collections.LinkedList"
aspectXPath="//Type[. = ’AspectGenNonGeneric.Fields.Fields’]
/Field[@Name = ’Changed’]" />

<Insert targetRegExp="Collections.LinkedList"
aspectXPath="//Typel[. = ’AspectGenNonGeneric.Methods.IOnChangedMethodsLinkedList’]
/Method [@Name = ’0nChanged’]"/>

<!-- add calls to the OnChanged() method -->

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList::AddFirst(*)’)]"
aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]

/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList
::Add ())]

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList
::AddLast (*)’)1"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :RemoveFirst(x)’)]"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :RemoveAt (*)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :RemoveLast (¥)’)]"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList

: :Remove (x)’)]"

aspectXPath="//Typel. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.LinkedList
::set_Item(*)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

139

Chapter L YITHAW - An aspect weaver for .NET

<!-- add eventhandling code for ArrayList -—>
<ImplementInterface targetRegExp="Collections.ArrayList"
aspectXPath="//Type[. = ’AspectGenNonGeneric.Interfaces.Helper.IOnChanged’]"/>

<Insert targetRegExp="Collections.ArrayList"
aspectXPath="//Type[. = ’AspectGenNonGeneric.Fields.Fields’]
/Field[@Name = ’Changed’]" />

<Insert targetRegExp="Collections.ArrayList"
aspectXPath="//Typel[. = ’AspectGenNonGeneric.Methods.IOnChangedMethodsArrayList’]
/Method [@Name = ’0nChanged’]"/>

<!-- add calls to the OnChanged() method -->

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList
::Add ())]

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList

: :RemoveAt (*)’)]"

aspectXPath="//Typel[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList

: :Remove (¥)’)]"

aspectXPath="//Type[. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method [@Name = ’AddCallToOnChangedAtEnd’]"/>

<AroundBody targetXPath="//Method[match(’* Collections.ArrayList
::set_Item(*)’)]"

aspectXPath="//Typel. = ’AspectGenNonGeneric.Interceptors.Interceptors’]
/Method[@Name = ’AddCallToOnChangedAtEnd’]"/>
</Advice>
</AspectDngConfig>

140

Appendix M

Source code for collection tests -
YIIHAW

Enumeration.cs

using System;
using System.Text;
using System. Reflection;

namespace YIIHAW. CollectionTests . Enumeration

{

class LinkedListEnumerator : IEnumerator
{
Collections . LinkedList lst;
Collections . LinkedList.Node curr;
int stamp;
int listStamp;
bool valid;
object item;

/// <summary>

/// Constructs a LinkedListEnumerator object

/// </summary>

/// <param name="lst”>A reference to the LinkedList object for which this
enumerator should operate</param>

public LinkedListEnumerator (Collections.LinkedList lst, int stamp, ref int
listStamp)

{
this.lst = Ist;
this.stamp = stamp;
this.listStamp = listStamp;

Reset () ;

/// <summary>
/// Fetches the current item in the enumerator

/// </summary>
public object Current

{

get

{
if (wvalid)
return item;

141

Chapter M YITHAW - An aspect weaver for .NET

else
throw new InvalidOperationException () ;

}

/// <summary>
/// Skips to the next item in the enumerator

/// </summary>
/// <returns>A boolean indicating if any items are left in the enumerator

</returns>
public bool MoveNext ()

{

if (stamp != listStamp)
throw new InvalidOperationException(); // List modified
else if (curr != null)
{
item = curr.item;
curr = curr.next;
return valid = true;
}
else
return valid = false;

}

/// <summary>
/// Restarts the enumerator

/// </summary>
public void Reset ()

{

curr = lIst . first;
valid = false;
}
}
class ArrayListEnumerator : IEnumerator

{

Collections . ArrayList Ist;
bool valid;

int stamp;

int listStamp;

object item;

int curr;

/// <summary>

/// Constructs an ArrayListEnumerator object

/// </summary>

/// <param name="lst”>A reference to the LinkedList object for which this
enumerator should operate</param>

public ArrayListEnumerator (Collections. ArrayList lst, int stamp, ref int
listStamp)

{

this.lst = lst;
this.stamp = stamp;
this.listStamp = listStamp;

}

/// <summary>
/// Fetches the current item in the enumerator

/// </summary>
public object Current

{

get

142

Chapter M YITHAW - An aspect weaver for .NET

}

if (valid)
return item;
else
throw new InvalidOperationException () ;

}

/// <summary>
/// Skips to the next item in the enumerator
/// </summary>
/// <returns>A boolean indicating if any items are left in the enumerator
</returns>
public bool MoveNext ()
{
if (stamp != listStamp)
throw new InvalidOperationException () ;
else if (curr < lst.size)

{

item = st [curr];
curr—+-+;
return valid = true;
}
else
return valid = false;

}

/// <summary>
/// Restarts the enumerator

/// </summary>
public void Reset ()

{
curr = 0;
valid = false;

EnumerationConstructs.cs

using System;

using System. Collections . Generic;
using System.Text;

using YIIHAW.API;

namespace YIIHAW. CollectionTests . Enumeration

{

public class LinkedListEnumerationConstructs : Collections.LinkedList ,

{

Enumeration. [Enumerable
internal int stamp; // to be inserted into the target assembly

/// <summary>

/// Advice method that updates the stamp field that is being inserted into
the target assembly

/// </summary>

/// <typeparam name="T">The return type of the target method</typeparam>

/// <returns>The value of the original target method</returns>

public T UpdateStamp<T>()

{

143

Chapter M YITHAW - An aspect weaver for .NET

}

T result = JoinPointContext.Proceed<T>(); // invoke the original
target method

stamp++; // update the 7stamp” field

return result;

}
public IEnumerator GetEnumerator ()
{
return new LinkedListEnumerator (this, stamp, ref stamp);
}

public override bool Equals(object that)
{
object _this = this;
if (that is Collections.IList && ((Collections.LinkedList)_this).size
= ((Collections.IList)that).Count)
{

Collections . LinkedList .Node thisnode = ((Collections.LinkedList)
_this). first;

IEnumerator thatenum = ((IEnumerable)that).GetEnumerator();
while (thisnode != null)
{

if (!thatenum.MoveNext())
throw new Exception(”Impossible: LinkedList.Equals”);

if (!thisnode.item.Equals(thatenum. Current))
return false;
thisnode = thisnode.next;

}

return true;

}

else
return false;

public class ArrayListEnumerationConstructs : Collections. ArrayList ,

{

Enumeration . [Enumerable
internal int stamp; // to be inserted into the target assembly

/// <summary>
/// Advice method that updates the stamp field that is being inserted into
the target assembly

/// </summary>
/// <typeparam name="T">The return type of the target method</typeparam>

/// <returns>The value of the original target method</returns>
public T UpdateStamp<T>()

{

T result = JoinPointContext.Proceed<T>(); // invoke the original
target method

stamp++; // update the 7stamp” field

return result ;

}

public override bool Equals(object that)

{

144

Chapter M

YITHAW - An aspect weaver for .NET

object _this = this;
if (that is Collections.IList && ((Collections.ArrayList)_this).size

{

}

= ((Collections.IList)that).Count)

IEnumerator thatenm = ((IEnumerable)that).GetEnumerator () ;
for (int i = 0; i < size; i++)
{
if (!thatenm.MoveNext())
throw new Exception(”Impossible: LinkedList.Equals”);
// assert MoveNext() returned true; /// because of the size
test
if (lelems[i].Equals(thatenm.Current))
return false;
}
// assert !MoveNext(); /// because of the size test
return true;

else

}

return false;

public IEnumerator GetEnumerator ()

{

return new ArrayListEnumerator (this, stamp, ref stamp);

}
}

EnumerationInterfaces.cs

using System;

using System. Collections . Generic;
using System.Text;

namespace YIIHAW. CollectionTests . Enumeration

{

public interface IEnumerator

{

object Current { get; }
bool MoveNext () ;
void Reset () ;

}

public interface IEnumerable

{

IEnumerator GetEnumerator () ;

}
}

Event.cs

using System;

using System. Collections . Generic;
using System.Text;
using YIIHAW.API;

namespace YIIHAW. CollectionTests .Event

{

class EventConstructs

{

145

Chapter M YITHAW - An aspect weaver for .NET

public event EventHandler changed; // to be inserted into the target
assembly

/// <summary>

/// Advice method that invokes the changed event

/// </summary>

/// <typeparam name="T">The return type of the target method</typeparam>
/// <returns>The value of the original target method</returns>

public T AddCallToOnChangedAtEnd<T> ()

{
//T result = JoinPointContext. Proceed<T>(); // invoke the original
target method
OnChanged (System . EventArgs .Empty); // invoke the OnChanged() method
//return result;
return JoinPointContext.Proceed<T>();
}

/// <summary>
/// Invoke the changed event

/// </summary>
/// <param name="e”>Arguments passed to the changed event</param>

public void OnChanged(System.EventArgs e)

{
if (changed != null)
changed (this, e);

}

Enumeration - pointcut file

// enumeration - common
insert class YITHAW.CollectionTests.Enumeration.IEnumerator into Collectiomns;

insert class YITHAW.CollectionTests.Enumeration.IEnumerable into Collections;
//enumeration - linkedlist
insert field internal * int YITHAW.CollectionTests.Enumeration.LinkedList-

EnumerationConstructs:stamp into Collections.LinkedList;

insert class YIIHAW.CollectionTests.Enumeration.LinkedListEnumerator
into Collections.LinkedList;

insert method public instance IEnumerator YIIHAW.CollectionTests.Enumeration.-
LinkedListEnumerationConstructs:GetEnumerator() into Collections.LinkedList;

around public instance bool Collections.LinkedList:Equals(object)
do YITHAW.CollectionTests.Enumeration.LinkedListEnumerationConstructs:Equals;

modify Collections.LinkedList implement YITHAW.CollectionTests.Enumeration.IEnumerable;

around public * * Collections.LinkedList:Add*(*) do YITHAW.CollectionTests-
.Enumeration.LinkedListEnumerationConstructs:UpdateStamp;

146

Chapter M YITHAW - An aspect weaver for .NET

around public * * Collections.LinkedList:Remove*(*) do YITHAW.CollectionTests-
.Enumeration.LinkedListEnumerationConstructs:UpdateStamp;

around public * * Collections.LinkedList:set_Item(*) do YIIHAW.CollectionTests-
.Enumeration.LinkedListEnumerationConstructs:UpdateStamp;

// enumeration - arraylist
insert field intermal * int YIIHAW.CollectionTests.Enumeration.ArraylListEnumeration-
Constructs:stamp into Collections.ArrayList;

insert class YIIHAW.CollectionTests.Enumeration.ArrayListEnumerator
into Collections.ArrayList;

insert method public instance IEnumerator YIIHAW.CollectionTests.Enumeration.-
ArrayListEnumerationConstructs:GetEnumerator() into Collections.ArrayList;

around public instance bool Collections.ArrayList:Equals(object)
do YITHAW.CollectionTests.Enumeration.ArrayListEnumerationConstructs:Equals;

modify Collections.ArrayList implement YIIHAW.CollectionTests.Enumeration.IEnumerable;

around public * * Collections.ArrayList:Add*(x*)
do YIIHAW.CollectionTests.Enumeration.ArrayListEnumerationConstructs:UpdateStamp;

around public * * Collections.ArrayList:Remove* (*)
do YIIHAW.CollectionTests.Enumeration.ArrayListEnumerationConstructs:UpdateStamp;

around public * * Collections.ArrayList:set_Item(*)
do YITHAW.CollectionTests.Enumeration.ArrayListEnumerationConstructs:UpdateStamp;

Event - pointcut file

insert event public * System.EventHandler YIIHAW.CollectionTests.Event.-
EventConstructs:changed into Collections.LinkedList;

insert event public * System.EventHandler YIIHAW.CollectionTests.Event.-
EventConstructs:changed into Collections.Arraylist;

insert method public instance void YIIHAW.CollectionTests.Event.-
EventConstructs:0nChanged (System.EventArgs) into Collections.LinkedList;

insert method public instance void YIIHAW.CollectionTests.Event.-
EventConstructs:0nChanged(System.EventArgs) into Collections.ArrayList;

around public * * Collections.*:Add(int,object) do YITHAW.CollectionTests.-
Event.EventConstructs:AddCallToOnChangedAtEnd;

around public * * Collections.*:Remove(object) do YIIHAW.CollectionTests.-
Event.EventConstructs:AddCallToOnChangedAtEnd;

147

Chapter M YITHAW - An aspect weaver for .NET

around public * * Collections.*:RemoveAt(int) do YIIHAW.CollectionTests.-
Event.EventConstructs:AddCallToOnChangedAtEnd;

around public * * Collections.*:set_Item(*) do YIIHAW.CollectionTests.-
Event .EventConstructs:AddCallToOnChangedAtEnd;

148

Appendix N

Source code for collection tests -

Coded by hand

Collections.cs

// Generic typesafe collections in Generic C#
// This program requires .Net version 2.0.
// Peter Sestoft (sestoft@dina.kvl.dk) 2001—12—02, 2003—11—-23, 2004—07—26

// Changed by Rasmus Johansen (johansen@itu.dk) 2006—05—02.
// The changed is made, to make the collection smaller, is it is to be used in a

small project.

// NOTE: FOR SERIOUS WORK, USE THE C5 GENERIC COLLECTION LIBRARY'!
// SEE: http://wuww. itu.dk/research/c5/

// For this code, see documentation in file collections. tzt

// To create a module for wuse from other files , compile with
// csc /t:module GCollections.cs

using System;
using System.Diagnostics; // For exzceptions

namespace Collections

{

// INTERFACES

// Enumerators
#if ENUM

public interface IEnumerator {

object Current { get; }
bool MoveNext () ;
void Reset () ;

}

// Enumerables

public interface IEnumerable {
IEnumerator GetEnumerator () ;

}

#endif

// Collections

149

Chapter N YITHAW - An aspect weaver for .NET

public interface ICollection
#if ENUM
IEnumerable
#endif
{

int Count { get; }

}

// Comparing two things

public interface IComparer {
int Compare(object vl, object v2);

}

// Comparing to type T

public interface IComparable {
int CompareTo(object that);

}

// Lists, stacks and queues

public interface IList : ICollection {
bool Add(object item);
bool Add(int i, object item);
object Remove () ;
object RemoveAt(int i);
object Remove(object item);

bool Contains(object item); // using Equals
object this[int index] { get; set; }
#if EVENT

J/xxkxwnksokkk FEventCode Start ssxsssssssssk//
// An event that clients can use to be notified whenever the
// elements of the list change.
event EventHandler Changed;

#endif

}

// IMPLEMENTATIONS

// Doubly—linked lists

// Add(T) at end, Remove() from front; behaves like a queue (FIFO)

public class LinkedList : IList {

int size; // Number of elements in the list
#if ENUM
int stamp; // To detect modification during enumeration
#endif
Node first , last; // Invariant: first==null iff last==null

private class Node {
public Node prev, next;
public object item;

public Node(object item) {

this.item = item;

}

150

Chapter N YITHAW - An aspect weaver for .NET

public Node(object item, Node prev, Node next) {
this.item = item; this.prev = prev; this.next = next;

}

}
#if EVENT

J/xxkxnnnknkkkk EventCode Start ssxxssssssskkk//

// An event that clients can use to be notified whenever the
// elements of the list change.
public event EventHandler Changed;
#else
private static event EventHandler Changed = null;
#endif
// Invoke the Changed event; called whenever list changes

[Conditional ("EVENT")]
protected virtual void OnChanged (EventArgs e)

{
if (Changed != null)
Changed (this, e);

J/xxxxxxxkxxkxx EventCode End sxxkxkxxxxxx//

public LinkedList () {

first = last = null;
size = 0;
#if ENUM
stamp = 0;
#endif

}

public int Count {
get { return size; }

}

public object this[int index] {
get { return get(index).item; }
set {
get (index) .item = value;
OnChanged (EventArgs . Empty) ;
}
}

private Node get(int n) {

if (n <0 || n>= size)
throw new IndexOutOfRangeException () ;
else if (n < size/2) { // Closer to front

Node node = first ;
for (int i=0; i<n; i++)

node = node.next;
return node;
} else { // Closer to end

Node node = last ;

for (int i=size —1; i>n; i——)
node = node.prev;

return node;

151

Chapter N YITHAW - An aspect weaver for .NET

}

public bool Add(object item) {
return AddLast (item);

}
public bool AddFirst(object item) {
if (first = null) // and thus last == null
first = last = new Node(item);
else {
Node tmp = new Node(item , null, first);
first .prev = tmp;
first = tmp;
}
size++;
#if ENUM
stamp-+-+;
#endif

OnChanged (EventArgs . Empty) ;

return true;

}
public bool Add(int i, object item) {
if (i = 0)
return AddFirst(item);
else if (i = size)
return AddLast(item);
else {
Node node = get(i);
// assert node.prev I= null;
Node newnode = new Node(item , node.prev, node);
node. prev.next = newnode;
node.prev = newnode;
size++;
#if ENUM
stamp++;
#endif

OnChanged (EventArgs . Empty) ;
return true;
}
}

public bool AddLast(object item) {
if (last = null) // and thus first = null
first = last = new Node(item);
else {
Node tmp = new Node(item, last, null);
last .next = tmp;
last = tmp;

}

size—++;
#if ENUM
stamp-+-+;
#endif

152

Chapter N

YITHAW - An aspect weaver for .NET

OnChanged (EventArgs . Empty) ;

return true;

}

public object Remove() {
return RemoveFirst () ;
}

public object RemoveFirst () {

if (first = null) // and thus last == null
throw new IndexOutOfRangeException () ;
else {
size ——;
#if ENUM
stamp++;
#endif
object item = first.item;
first = first.next;
if (first = null)
last = null;
else
first .prev = null;

OnChanged (EventArgs . Empty) ;
return item;
}

}

public object RemoveAt(int i) {
Node node = get(1i);

if (node.prev = null) //node is first
first = node.next;
else
node . prev.next = node.next;
if (node.next = null) //node is last
last = node.prev;
else
node . next.prev = node. prev;
size ——;
#if ENUM
stamp+-+;
#endif

OnChanged (EventArgs . Empty) ;

return node.item;

}

public object RemoveLast () {

if (last = null) // and thus first == null
throw new IndexOutOfRangeException () ;
else {
size ——;
#if ENUM
stamp++;
#endif
object item = last.item;

153

Chapter N

YITHAW - An aspect weaver for .NET

last = last.prev;
if (last = null)
first = null;
else
last .next = null;

OnChanged (EventArgs . Empty) ;

return item;

}
}

public object Remove(object item) {
Node node = first ;
while (node != null) {
if (item.Equals(node.item)) {

if (node.prev = null)
first = node.next;
else
node. prev.next = node.next;
if (node.next = null)
last = node.prev;
else
node.next.prev = node. prev;
size ——;
#if ENUM
stamp—+-+;

#endif

OnChanged (EventArgs . Empty) ;

return node.item:;

}

node = node.next;

}
throw new ElementNotFoundException () ;

}

public bool Contains(object item) {
Node node = first;
while (node != null) {
if (item.Equals(node.item))
return true;
node = node.next;

}

return false;

}

public override int GetHashCode() {
int sum = 0;
Node node = first ;
while (node != null) {

sum = 31 % sum + node.item.GetHashCode() ;
node = node.next;

}

return sum;

}

#if ENUM
public override bool Equals(object that) {

154

Chapter N YITHAW - An aspect weaver for .NET

if (that is IList && this.size = ((IList)that).Count) {
Node thisnode = this. first ;
IEnumerator thatenm = ((IList)that).GetEnumerator();
while (thisnode != null) {
if (!thatenm.MoveNext())
throw new Exception(”Impossible: LinkedList.Equals”);
// assert MoveNext() was true; // because of the above size test

if (!thisnode.item.Equals(thatenm.Current))
return false;
thisnode = thisnode.next;

}

// assert !MoveNext(); // because of the size test

return true;
} else
return false;
}

public IEnumerator GetEnumerator () {
return new LinkedListEnumerator (this);

}

class LinkedListEnumerator : IEnumerator {
LinkedList Ist;
Node curr;
int stamp;
bool valid;
object item;

public LinkedListEnumerator (LinkedList Ist) {
this.lst = 1st; this.stamp = lst.stamp; Reset();

}

public object Current {
get {
if (valid)
return item;
else
throw new InvalidOperationException () ;

}
}

public bool MoveNext () {

if (stamp != lst.stamp)
throw new InvalidOperationException(); // List modified
else if (curr != null) {
item = curr.item;
curr = curr.next;
return valid = true;
} else
return valid = false;

}

public void Reset () {
curr = lIst.first;
valid = false;

}

}
#else
public override bool Equals(object that) {

155

Chapter N YITHAW - An aspect weaver for .NET

if (that is IList && this.size = ((IList)that).Count) {
IList thatlist = (IList)that;
Node thisnode = this. first ;
int index = 0;
while (thisnode != null)
{
if (!thisnode.item.Equals(thatlist [index]))
return false;
thisnode = thisnode.next;
index++;
}
return true;
} else
return false;
}
#endif
}

// Array lists

// Add(T) at end, Remove() from end; behaves like a stack, LIFO
public class ArrayList : IList {

int size; // Number of elements in list
#if ENUM

int stamp; // To detect modification during enumeration
#endif

object [] elems;
#if EVENT

J/kxxxxxxxxxx BventCode Start sxkkxxxxxxxx//

// An event that clients can use to be notified whenever the
// elements of the list change.
public event EventHandler Changed;
#else
private static event System.EventHandler Changed = null;

#endif

// Invoke the Changed event; called whenever list changes
[Conditional ("EVENT”)]
protected virtual void OnChanged(EventArgs e)
{
if (Changed != null)
Changed (this, e);

J/xxxxxxxxxkk EventCode End sxssssxxxxxx//

public ArrayList () {
size = 0;
#if ENUM
stamp = 0;
#endif
elems = new object [10]; // Initial capacity

}

private void reallocate (int newsize) {
object [] newelems = new object[newsize];
for (int 1=0; i<size; i++)

156

Chapter N YITHAW - An aspect weaver for .NET

newelems[i] = elems|[i];
elems = newelems;

}

public int Count {
get { return size; }
}

public object this[int index] {
get { return elems[index]; }
set { elems[index] = value;

OnChanged (EventArgs . Empty) ;

}
}

public bool Add(object item) {
return AddLast(item);
}

public bool AddLast(object item) { // Add at end
return Add(size, item);
}

public bool Add(int i, object item) { // Add at position 1
if (i<0 || i>size)
throw new IndexOutOfRangeException () ;
else {
if (size = elems.Length)
reallocate (2 * size);
// assert elems.Length > size;
for (int j=size; j>i; j——) //moving the elems above inserting index

elems[j] = elems[j—1];
elems[i] = item;
size++;
#if ENUM
stamp++;

#endif

OnChanged (EventArgs . Empty) ;
return true;

}
}

public object Remove() { // Remove last
return RemoveAt(size —1);
}

public object RemoveAt(int i) { // Remove at indezr 1
if (i<0 || i>=size)
throw new IndexOutOfRangeException () ;
else {
object item = elems|[i];
for (int j=i+1; j<size; j++)
elems[j—1] = elems[j];
elems[——size] = default(object); // To prevent space leaks
#if ENUM
stamp++;
#endif

OnChanged (EventArgs . Empty) ;

157

Chapter N YITHAW - An aspect weaver for .NET

return item;

}
}

public object Remove(object item) { // Search
for (int 1=0; i<size; i++)
if (item.Equals(elems[i]))

{

OnChanged (EventArgs . Empty) ;
return RemoveAt (i) ;
}

throw new ElementNotFoundException () ;

}

public bool Contains(object item) {
for (int 1=0; i<size; i++)
if (item.Equals(elems[i]))
return true;
return false;

}

public override int GetHashCode() {
int sum = 0;
for (int i=0; i<size; i++)
sum = 31 * sum + elems[i].GetHashCode();
return sum;

}

#if ENUM
public override bool Equals(object that) {
if (that is IList && this.size = ((IList)that).Count) {

IEnumerator thatenm = ((IList)that).GetEnumerator();
for (int i=0; i<size; i++) {
if (!thatenm.MoveNext())
throw new Exception(”Impossible: LinkedList<I>.Equals”);
// assert MoveNext() returned true; /// because of the size test
if (lelems[i].Equals(thatenm.Current))
return false;
}
// assert !'MoveNext(); /// because of the size test
return true;
} else
return false;

}

public IEnumerator GetEnumerator () {
return new ArrayListEnumerator (this);
}

class ArrayListEnumerator : IEnumerator {
ArrayList l1st;
bool valid;
int stamp;
object item;
int curr;

public ArrayListEnumerator (ArrayList lst) {
this.lst = 1lst; stamp = lst.stamp; Reset();

}

158

Chapter N

YITHAW - An aspect weaver for .NET

public object Current {
get {
if (valid)
return item;
else
throw new InvalidOperationException () ;

}
}

public bool MoveNext () {
if (stamp != lst.stamp)
throw new InvalidOperationException () ;
else if (curr < lst.size) {

item = lst [curr];

curr—+-+;

return valid = true;
} else

return valid = false;

}

public void Reset () {
curr = 0;
valid = false;

}

}
#else

public override bool Equals(object that)

{

if (that is IList && this.size =— ((IList)that).Count)

IList thatlist = (IList)that;
for (int 1 = 0; i < size; i++)

{

if (lelems[i].Equals(thatlist[i]))

return false;

}

return true;

}

else
return false;

}
#endif

}

// Exzceptions

class ElementNotFoundException : Exception {
public ElementNotFoundException() : base() { }

public ElementNotFoundException(string s) : base(s) { }

}

Y // End of namespace GCollections

159

Appendix O

Source code for collection tests -
Basecode

Collections.cs

// NonGeneric typesafe collections in C# based on GCollection by Peter Sestoft (
sestoft@dina. kvl . dk)

// This program requires .Net version 2.0.

// Rasmus Johansen (johansen@itu.dk) and Stephan Spangenberg (spangenberg@itu.dk)

// The program is only written for testing purposes, and should not be used.

// For a more fullblown collection library, use the C5 Generic Collection Library
// See: http://wuww. itu.dk/research/c5/

using System; // For exceptions

namespace Collections

{

// INTERFACES

// Collections

public interface ICollection

{
}

// Comparing two things

int Count { get; }

public interface IComparer

{
}

int Compare(object vl, object v2);

// Comparing to type T

public interface IComparable

{
}

// Lists, stacks and queues

int CompareTo(object that);

public interface IList : ICollection

160

Chapter O YITHAW - An aspect weaver for .NET

{
bool Add(object item);
bool Add(int i, object item);
object Remove();
object RemoveAt(int i);
object Remove(object item);
bool Contains(object item); // wusing Equals
object this[int index] { get; set; }
}

// IMPLEMENTATIONS

// Doubly—linked lists

// Add(T) at end, Remove() from front; behaves like a queue (FIFO)

public class LinkedList : IList

{

internal int size; // Number of elements in the list
public Node first , last; // Invariant: first==null iff last==null

public class Node

{

public Node prev, next;
public object item;

public Node(object item)

{
}

public Node(object item, Node prev, Node next)

{
}

this.item = item;

this.item = item; this.prev = prev; this.next = next;

}

public LinkedList ()
{

first = last = null;
size = 0;

}

public int Count

{

get { return size; }

public object this[int index]

{
get { return get(index).item; }
set { get(index).item = value; }

}

private Node get(int n)

{
if (n <0 || n>= size)
throw new IndexOutOfRangeException () ;
else if (n < size / 2)

161

Chapter O YITHAW - An aspect weaver for .NET

{ // Closer to front
Node node = first ;
for (int i = 0; i < n; i++)
node = node.next;
return node;

}

else

{ // Closer to end
Node node = last;
for (int i = size — 1; i > n; i—)
node = node.prev;
return node;

}

public bool Add(object item)
{

}

public bool AddFirst(object item)

{

return AddLast (item);

if (first = null) // and thus last == null
first = last = new Node(item);

else

{
Node tmp = new Node(item , null, first);
first .prev = tmp;
first = tmp;

}

size++;
return true;

}

public bool Add(int i, object item)
{
if (i = 0)
return AddFirst (item);
else if (i = size)
return AddLast (item);
else
{
Node node = get(i);
// assert nmode.prev != null;
Node newnode = new Node(item, node.prev, node);

node. prev.next = newnode;
node.prev = newnode;
size++;

return true;

}

public bool AddLast(object item)

{
if (last = null) // and thus first = null

first = last = new Node(item);
else

{

162

Chapter O

YITHAW - An aspect weaver for .NET

Node tmp = new Node(item, last ,
last .next = tmp;
last = tmp;

}

size++;

return true;

}

public object Remove()

{
}

return RemoveFirst () ;

public object RemoveFirst ()

{

if (first

null);

null) // and thus last == null

throw new IndexOutOfRangeException () ;

else
{ .
size ——;
object item = first .item;
first = first .next;
if (first = null)
last = null;
else
first .prev =
return item;

null;

}

public object RemoveAt(int i)

{
Node node = get(i);
if (node.prev =— null)

//node is first

first = node.next;
else
node. prev.next = node.next;
if (node.next = null) //node is last
last = node.prev;
else
node.next.prev = node.prev;
size ——;
return node.item;
}
public object RemoveLast ()
{
if (last = null) // and thus first == null

throw new IndexOutOfRangeException () ;

else

{

size ——;
object item = last.item;
last = last.prev;
if (last = null)
first = null;

163

Chapter O YITHAW - An aspect weaver for .NET

else
last .next = null;
return item;

}

public object Remove(object item)
{

Node node = first;

while (node != null)

{

if (item.Equals(node.item))

if (node.prev = null)
first = node.next;
else
node.prev.next = node.next;
if (node.next = null)
last = node.prev;
else
node.next.prev = node.prev;

size ——;

return node.item;

}

node = node.next;

}

throw new ElementNotFoundException () ;

}

public bool Contains(object item)

{

Node node = first ;
while (node != null)

{

if (item.Equals(node.item))
return true;
node = node.next;

}

return false;

}

public override int GetHashCode()

{

int sum = 0;
Node node = first;
while (node != null)

{

sum = 31 * sum + node.item .GetHashCode () ;
node = node.next;

}

return sum;

}

public override bool Equals(object that)

{
if (that is IList && this.size = ((IList)that).Count)
IList thatlist = (IList)that;
Node thisnode = this. first ;

164

Chapter O YITHAW - An aspect weaver for .NET

int index = 0;
while (thisnode != null)
{
if (!thisnode.item.Equals(thatlist[index]))
return false;
thisnode = thisnode.next;
index++;
}
return true;
}
else
return false;

}

// Array lists

// Add(T) at end, Remove() from end; behaves like a stack, LIFO

public class ArrayList : IList

{

public int size; // Number of elements in list
internal object[] elems;

public ArrayList ()

{
size = 0;
elems = new object[10]; // Initial capacity

}

private void reallocate (int newsize)

{

object [] newelems = new object [newsize];

for (int i = 0; i < size; i++)
newelems[i] = elems[i];

elems = newelems;

}

public int Count

{
}

public object this[int index]

{

get { return size; }

get { return eclems[index]; }
set { elems[index] = value; }

}

public bool Add(object item)

{
}

public bool AddLast(object item)
{ // Add at end

return Add(size, item);
}

public bool Add(int i, object item)
{ // Add at position i

return AddLast (item) ;

165

Chapter O YITHAW - An aspect weaver for .NET

if (i <0 || i> size)
throw new IndexOutOfRangeException () ;
else
{
if (size = elems.Length)
reallocate (2 x size);
// assert elems.Length > size;

for (int j = size; j > i; j——) //moving the elems above inserting
index
elems|[j] = elems[j — 1];

elems[i] = item;

size—++;

return true;

}

public object Remove()

{ // Remove last
return RemoveAt(size — 1);

}

public object RemoveAt(int 1)

{ // Remove at index i
if (i <0 || i>= size)
throw new IndexOutOfRangeException () ;
else
{
object item = elems[i];
for (int j =1 4+ 1; j < size; j++)
elems[j — 1] = elems][j];

elems[——size] = default(object); // To prevent space leaks
return item;

}

public object Remove(object item)
{ // Search
for (int i = 0; i < size; i++)
if (item.Equals(elems[i]))
return RemoveAt(1i);
throw new ElementNotFoundException () ;

}

public bool Contains(object item)
{
for (int i = 0; i < size; i++)
if (item.Equals(elems[i]))
return true;
return false;

}

public override int GetHashCode()

{
int sum = 0;
for (int i = 0; i < size; i++)
sum = 31 * sum + elems|[i].GetHashCode();
return sum;

}

public override bool Equals(object that)

{

if (that is IList && this.size = ((IList)that).Count)

166

Chapter O YITHAW - An aspect weaver for .NET

{
IList thatlist = (IList)that;
for (int i = 0; i < size; i++)
{
if (lelems[i].Equals(thatlist[i]))
return false;
}
return true;
}
else
return false;
}
}
// Ezceptions
class ElementNotFoundException : Exception
{

public ElementNotFoundException() : base() { }
public ElementNotFoundException (string s) : base(s) { }

}

Y // End of namespace Collections

167

Appendix P

Source code for collection

Test program

CollectionTester

using System;

using System.Text;

using Collections;

using System. Reflection;

namespace OurCollectionTesterApp

{
class Program
{
static void Main(string[] args)
{
#if EVENT

IList listl = new LinkedList ();
IList list2 = new ArrayList();
DateTime start = DateTime.Now;
for (int i = 0; i < 10000; i++)

{
list1l.Add(0, ”string”+i);
listl.Add(1, ”string” + i + 1i);
list2 .Add(0, ”string” + i);
}
for (int i = 0; i < 5000; i++)
{
list1.Remove() ;
list2 .Remove() ;
}
for (int i = 0; i < 2500; i++)
{
list1l .RemoveAt (0) ;
list2 .RemoveAt (0) ;
}
string ssss = ”ssss”;
string ss = ”ss”;
for (int i = 0; i < 10000; i++)
{
list1l.Add(ssss);
listl.Add(ss);
list2 .Add(ssss);
list2.Add(ss);

168

tests -

Chapter P

YITHAW - An aspect weaver for .NET

#endif

#if ENUM

#endif

}
for (int 1 = 0; i < 2500; i++)
{
list1l .Remove(ssss);
list2 .Remove(ssss);
}

DateTime end = DateTime.Now;
TimeSpan dif = end.Subtract(start);
Console. WriteLine ("time: ” + dif.TotalMilliseconds 4+ ” milliseconds”);

LinkedList listl_enum = new LinkedList ();
ArrayList list2_enum = new ArrayList();

for (int j = 0; j < 10000; j++)

{
listl_enum .Add("ggg” + j);
list2_enum .Add("ggg” + j);

}

DateTime start_enum = DateTime.Now;

for (int k = 0; k < 250; k++)
{

listl_enum . Equals(list2_enum) ;
list2_enum . ListEquals (listl_enum);

}

DateTime end_enum = DateTime.Now;
TimeSpan dif_enum = end_enum.Subtract(start_enum) ;
Console. WriteLine ("time: ” + dif_enum. TotalMilliseconds + 7

milliseconds”);

169

Appendix Q

Partial functional testing overview

Return semantic \ Return type Primitive String External | Target Void
Proceed — defined type 12 3 4 15 5
Proceed — generic type 17 17 17 17 11
Defined type without proceed 1 2 6 8 9
Default with proceed 18 18 18 18 18
Default without proceed 19 19 19 19 19

Figure Q.1: The tests of interception.

The interception pointcut syntax:

around <access> <invocation kind> <return type> <type>:<method(arguments)>
[inherits <type>] do <advice type>:<advice method>;

Access specification Public Private Internal Protected
Access specification 1 7 8 9 4
Invocation kind Static Instance *
Invocation kind 9 11 4
Return type Fully defined Defined as primitive *
Return type 3 1 2
Type name specification * name.name *.name Name.*
Type name specification 6 3 1 7
Method name specification * Name *name Name*

6 1 7 4
Argument definition Defined Defined as primitive
Argument definition 6 9 4
Inherit defined 15
Matching advice methods One More than one
Matching advice methods 1 4
Matching targets One More than one
Matching targets 1 4
Target which doesn't match On returntype On argument types
Target which doesn't match 5

Figure Q.2: The tests of the interception pointcut syntax.

The numbers in the tables indicates the test number.

170

Chapter Q

YITHAW - An aspect weaver for .NET

Has reference to \ introducing construct Method Field Property | Class Event
Mscorlib 12 12 12 12 12
Target assembly 13 13 13 13 13
Aspect assembly 10 15 12 10 N/A
External assembly 16 16 16 16 16
Figure Q.3: The tests of introduction.
The introduction pointcut syntax:
insert <construct> <access> <invocation kind> [return type]
<aspect type>:<aspect name[(arguments)]> into <type>;
| Method | Field | Property | Class | Event
/Access specifier = public 10 15 12 12
Access specifier = private 20 13 20 13
Access specifier = protected 16 16 16 N/A 16
Access specifier = internal 13 12 13 20
Access specifier = * 10 20 20 20
Invocation kind = static 16 13 16 13
Invocation kind = instance 12 15 13 N/A 12
Invocation kind =* 10 12 12 20
Returntype = void 11 N/A N/A N/A
Returntype = mscorlib 10 12 12 12
Returntype = target 20 13 13 N/A 13
Returntype = aspect 20 20 20 N/A
Returntype = external 16 16 16 16
Target =* 16 16 16 16 16
Target = *.xxx 13 13 13 20 13
Target = xxx.* 20 15 20 21 20
Target = Xxx.yyy 10 12 12 12 12

Figure Q.4: The tests of the introduction pointcut syntax.

Implement interface

22

Change basetype

21

Figure Q.5: The tests of modification.

The modification pointcut syntax:

modify <type> <action> <aspect type>;

Action = inherit

21

Action = implement

22

Figure Q.6: The tests of the modification pointcut syntax.

The numbers in the tables indicates the test number.

171

Chapter Q YIIHAW - An aspect weaver for .NET

Proceed<T> 1

GetTarget<T> 20
AccessSpecifier 23
Arguments 23
DeclaringType 23
IsStatic 23
Name 23
ReturnType 23

Figure Q.7: The tests of the JoinPointContext.

Use of newarr 20
Use of boxing 1
Use of unboxing 12
Use of new obj 5
Use of init obj 19
Use of call and virtcall 4
Accessing local variable 10
Accessing a field 13
Accessing an argument 6
Use of Idt_oken with reference to class, 14
method, field

Use of switch 23

Figure Q.8: The tests of special opcodes.

The numbers in the tables indicates the test number.

172

Appendix R

Source code for partial functional
testing

Tester.cs - framework’s main program file

using
using
using
using
using
using

System ;

System . Collections . Generic;
System . Text;

System . Reflection ;

System .10;

System . Diagnostics;

namespace YITHAWTester

{

/// <summary>
/// The main class of the tester framework. Used to start the testing.

/// </summary>
public class Tester

{

public static ErrorLogger errorLogger;

/// <summary>
/// Starts the testing
/// </summary>
/// <param name="args”>The arguments needed for the testing (A path and
name of an assembly containing test methods).</param>
static void Main(string[] args)
{
int numberOfTestMethods = 0;
Assembly assembly ;
errorLogger = new ErrorLogger () ;

if (args.Length > 0)
assembly = Assembly.LoadFrom(args[0]);
else //TODO: Remove — Just for easy debugging.
assembly = Assembly.LoadFrom(”../../../YIIHAWTests/bin/Debug/
YIIHAWTests. d117) ;

foreach (Type type in assembly.GetTypes())
{
object [] attributes = type.GetCustomAttributes (typeof/(
TestableClassAttribute), false);
if (attributes.Length = 0)
continue;

173

Chapter R

YITHAW - An aspect weaver for .NET

}

}

// If it does have the TestableClassAttribute
// run the tests in it
numberOfTestMethods += RunTests (type) ;

errorLogger . Print ("Number of test methods runned = "+

numberOfTestMethods) ;

Console. ReadLine () ;

/// <summary>

/// Runs the test methods in a given type.

/// </summary>

/// <param name="type”>The type which has the test methods to run.</param>
/// <returns>The number of test methods runned in the given type.</returns

>

private static int RunTests(Type type)

{

object iTestAbleObject = Activator.Createlnstance (type);
int numberOfTestMethods = 0;
foreach (MethodInfo methodInfo in type.GetMethods(BindingFlags.

{

Instance | BindingFlags.NonPublic | BindingFlags.Public))

//Check if this method is a test method by looking for the
testableMethod attribute.

object [] attributes = methodInfo.GetCustomAttributes (typeof(
TestableMethodAttribute), false);

if (attributes.Length = 0)
continue;

numberOfTestMethods++;
if (!Directory.Exists(”./outputFiles”))
Directory . CreateDirectory (”./outputFiles”);

FileInfo inputfile = new FileInfo ((attributes[0] as
TestableMethodAttribute).InputFile);

string outputfileString = ”./outputFiles/” 4+ methodInfo.Name + ”/”
+ methodInfo.Name + "Out” 4+ inputfile.Extension;

FileInfo outputfile = new Filelnfo (outputfileString);

if (!Directory.Exists(”./outputFiles/” + methodInfo.Name))
Directory . CreateDirectory (”./outputFiles/” + methodInfo.Name) ;

if (!inputfile.Exists)

Console. WriteLine ("The specified inputfile: {0}’ for test
method: {1}’ does not exist”, inputfile.Name, methodInfo.

Name) ;
errorLogger . AddError ("The specified inputfile: ’” + inputfile.
FullName 4+ 7’ for test method: ’” + methodInfo.Name + 7’
in class: ’” + type.FullName + 7’ does not exist”);
continue;

}

Console. WriteLine (”
o o o o K o S K o KR o KR o K Kok ok Ko ok K o o K o R K SR R KK oK Kk o Kk ok Kk ok kR ok)

Console. WriteLine ("Invoking testmethod : ’'{0}’\ninputfile = {1}’
\noutputfile = ’{2}’\n”, methodInfo.Name, inputfile ,
outputfile);

outputfile = null;

try

{

174

Chapter R YITHAW - An aspect weaver for .NET

type.InvokeMember (methodInfo.Name, BindingFlags.Instance |
BindingFlags. Static | BindingFlags.Public | BindingFlags.
NonPublic | BindingFlags.InvokeMethod, null,
iTestAbleObject , null);

}

catch (Exception e)

{
errorLogger . AddError(e. ToString ());
Break () ;

}

// If the test has an outputfile, do werification of the output
file.
if ((attributes [0] as TestableMethodAttribute).HasOutputFile)

outputfile = new Filelnfo (outputfileString);
if (!outputfile.Exists)
{
Console. WriteLine (”The specified outputfile: {0}’ for
test method: {1}’ does not exist”, outputfile.Name,
methodInfo . Name) ;

errorLogger . AddError ("The specified outputfile: 7 +
outputfile.FullName + 7’ for test method: ’” +
methodInfo.Name + ”’ in class: 7 4+ type.FullName + 7’
does not exist”);

continue;

}

if (!VerifyAssembly(inputfile , outputfile, type.FullName +
methodInfo .Name))

continue;
}
inputfile = null;
outputfile = null;

}

return numberOfTestMethods;

}

/// <summary>

/// PeVerifies the given outputfile, and if it fails also wverify the given
inputfile .

/// </summary>

/// <param name="inputfile”™The inputfile.</param>

/// <param name="outputfile”™ The output file.</param>

/// <param name="methodName”>The name of the method where the given files
are tested.</param>

/// <returns>A boolean indicating if the wverification was successful.</
returns>

private static bool VerifyAssembly(FileInfo inputfile, FileInfo outputfile
, string methodName)

{

string outfileOutput = DoPeverify (outputfile);

2

string outSuccesString = ”All Classes and Methods in + outputfile.
FullName 4+ 7 Verified.”;
if (!outfileOutput.Equals(outSuccesString)) //PEverify was not

successful
{

Console. WriteLine (”PeVerify on outputfile: {0}’ was not
successful , the following error was given:\n{1}”, outputfile.

175

Chapter R YITHAW - An aspect weaver for .NET

Name, outfileOutput);

//Check if inputfile could be wverified.

string infileOutput = DoPeverify (inputfile);

string inSuccesString = ”All Classes and Methods in ” 4+ inputfile.
FullName + 7 Verified.”;

if (!infileOutput.Equals(inSuccesString)) //PEverify on inputfile
was not successful

{

Console. WriteLine ("PeVerify on inputfile: {0}’ was not
successful , the following error was given:\n{l}”,
inputfile .Name, infileOutput);

errorLogger . AddError (

?The verification of outputfile: ’” 4+ outputfile.FullName
J’_

”? was not successful. Neither was the verification of the
inputfile:’” +

inputfile .FullName + ”’. This happend after test method: ’
? + methodName + ”’.\n The following messages was

returned from the verification:\n” +
?Inputfile verfication:\n” + infileOutput + ”\n” +
?Qutputfile verfication:\n” + outfileOutput);

return false;

}

else

{

errorLogger . AddError (

?The verification of outputfile: ’” 4+ outputfile.FullName
+ 7’ was not successful in test method: 7 +
methodName + 7 7.7 +

” The following message was returned from the verification
:\n” 4+ outfileOutput);
return false;
}
}

return true;

}

/// <summary>

/// Do Peverify on a given file.

/// </summary>

/// <param name="file”>The file to do the wverifications on.</param>

/// <returns>A string with the console output from the wverification.</
returns>

private static string DoPeverify (FileInfo file)

{
ProcessStartInfo startInfo = new ProcessStartInfo(”peverify”);
startInfo.Arguments = ”\”” + file.FullName + ”\” /nologo”;
startInfo.UseShellExecute = false;
startInfo.RedirectStandardOutput = true;

using (Process peverify = Process.Start(startInfo))

{

StreamReader outputReader = peverify.StandardOutput;
peverify . Start () ;

string output = outputReader.ReadLine () ;

return output;

}

/// <summary>

176

Chapter R

YITHAW - An aspect weaver for .NET

}

/// Method used to break the testing, if there is a serious error.

/// </summary>

internal static void Break()

{

errorLogger.Print ("The tester was stopped in the middle of testing”);

(
Console. ReadLine ()
Environment . Exit (0

);

APl.cs - framework api

using
using
using
using
using
using

System ;

System . Collections . Generic;

System . Text ;
System .10

System . Diagnostics;
System . Reflection ;

namespace YIITHAWTester

{

/// <summary>
/// This is the API class for the test framework.

/// </summary>

public class API

{

/// <summary>
/// Creates a pointcut file with the given name.

/// </summary>

/// <param

name="pointcut”™>The pointcut statement to be saved in the

pointcut file.</param>

/// <param

name="filename”™ The name given to the pointcut file.</param>

public static void CreatePointcutFile(string pointcut, string filename)

{

FileInfo newFile = new Filelnfo (filename);
newFile. Delete () ;

FileStream fileStream = newFile.OpenWrite () ;

TextWriter writer = new StreamWriter (fileStream);
writer . WriteLine (pointcut);
writer . Close () ;

fileStream . Close () ;

}

/// <summary>
/// Weave method, that checks if the output of the weaving is as expected.

/// </summary>

/// <param
/// <param
/// <param
/// <param

param>

name="target”™ Target of the weaving.</param>
name="aspect”™> Aspect of the weaving.</param>
name="pointcutFile”>The pointcut file to weave after.</param>
name="expectedOutput”™ The expected output to check against.</

public static void WeaveWithExpectedOutput(string target , string aspect,
string pointcutFile, string expectedOutput)

{

StringBuilder output = Weave(target , aspect, pointcutFile, true);

string outputFile = ”./outputFiles/” + getCallerIDName () + 7/” +
getCallerIDName () + ”Out.” + target.Substring (target.Length — 3);

checkWeaverExpectedOutput (output. ToString (), target, aspect,

177

Chapter R YITHAW - An aspect weaver for .NET

pointcutFile , outputFile, expectedOutput);
output = null;

}

/// <summary>

/// Weave method. Ezpects the weaving to be successful.

/// </summary>

/// <param name="target” Target of the weaving.</param>

/// <param name="aspect”™ Aspect of the weaving.</param>

/// <param name="pointcutFile”™>The pointcut file to weave after.</param>
public static void Weave(string target, string aspect, string pointcutFile

)
{
}

/// <summary>

/// The actual method that calls the weaver.

/// </summary>

/// <param name="target” Target of the weaving.</param>

/// <param name="aspect”™ Aspect of the weaving.</param>

/// <param name="pointcutFile”™>The pointcut file to weave after.</param>

/// <param name="returnWeaverOutput”™ Indicate whether the method, should
return the console output from the weaver or not.</param>

/// <returns>If the "returnWeaverOutput” parameter is true, a
StringBuilder with the console output of the weaver will be returned.
Else null.</returns>

private static StringBuilder Weave(string target, string aspect, string
pointcutFile , bool returnWeaverOutput)

{

Weave (target , aspect, pointcutFile, false);

//Build up the arguments to the main method of the weaver.

string [] args = new string[5];

args [0] = pointcutFile;

args [1] = target;

args [2] = aspect;

string outputFile = ”./outputFiles/” + getCallerIDName () + 7/” +
getCallerIDName () + ”Out.” + target.Substring (target.Length — 3);

args [3] = outputFile;

args [4] = "—v";

//Change the console.out so that il can be catched.
TextWriter oldOut = Console.Out;

StringBuilder output = new StringBuilder ();
TextWriter thisWriter = new StringWriter (output);

Console.SetOut (thisWriter); //the actual change
try

{
}

catch (Exception e)

{
}

Console.SetOut (0oldOut); //change it back after the weaving.

YIOHAW. Controller . Mediator . Main(args) ;

Tester.errorLogger.AddError(e. ToString());

if (returnWeaverOutput)
return output;

if (!checkWeaverOutput(output.ToString (), target, aspect, pointcutFile
, outputFile))

178

Chapter R YITHAW - An aspect weaver for .NET

Tester.Break () ;

Console. WriteLine (7 s#xxxxsskkkkkkxx+ Start on output from weaver
skttt ok ok kKRR sk skokk ko ok)

Console. WriteLine (output) ;

Console. WriteLine (7 sxxxxssssskkkkxx+x End of output from weaver
ok ok skskokok ok ok kR Rk Rk Rk \ 1)

return null;

}

/// <summary>

/// Checks if the weaving was successful or ended with a fatal error.

/// </summary>

/// <param name="output”™>The console output from the weaving.</param>

/// <param name="target” Target of the weaving.</param>

/// <param name="aspect”™ Aspect of the weaving.</param>

/// <param name="pointcutFile”™>The pointcut file to weave after.</param>

/// <param name="outputFile”> The name of the file which might have been
outputted by the weaving.</param>

/// <returns>A boolean indicating if the weaving ended with success or not
.</returns>

private static bool checkWeaverOutput(string output, string target, string
aspect , string pointcutFile, string outputFile)

{

if (output.StartsWith(”Fatal error”))

Tester.errorLogger . AddError (

?The weaving was unsuccesful , when weaving target: ’” + target
+ 77+

”with aspect: 7 4 aspect + ”’, by pointcut: "7 4 pointcutFile
+ 77,7+

7and with outputfile: ’” + outputFile + ”’.\n” +

”This is the output from the weaver: \n” + output);
return false;

}

return true;

}

/// <summary>

/// Checks if the console output of the weaving was as ezpected.

/// </summary>

/// <param name="output”™> The console output from the weaving.</param>

/// <param name="target” Target of the weaving.</param>

/// <param name="aspect”> Aspect of the weaving.</param>

/// <param name="pointcutFile”™The pointcut file to weave after.</param>

/// <param name="outputFile”>The name of the file which might have been
outputted by the weaving.</param>

/// <param name="expectedOutput”™ The expected output to check up against
.</param>

/// <returns>A boolean indicating if the output matched the expected
output.</returns>

private static bool checkWeaverExpectedOutput (string output, string target
, string aspect, string pointcutFile, string outputFile, string
expectedOutput)

if (output.Equals(expectedOutput, StringComparison.
CurrentCulturelgnoreCase))
return true;

Tester.errorLogger. AddError (

”The weaving was expected to be unsuccesful , when weaving
target: ’”7 4+ target + 77 7 +

179

Chapter R YITHAW - An aspect weaver for .NET

9

?with aspect: 7 4 aspect + ”’, by pointcut:
+ 77,7+
7and with outputfile: ’” + outputFile + ”’.\n” +
"But the output was not as expected.\n”+
”This is the output from the weaver: \n” + output +”\nWhile
the expected output was:\n”+expectedOutput);
return false;

+ pointcutFile

}

/// <summary>

/// Calls a method in the new assembly outputted by the weaver, and checks
if the returned object is as expected.

/// </summary>

/// <param name="expectedReturnValue”™ The value/object expected to be
returned from the call.</param>

/// <param name="className”>The name of the class in which the method is
located.</param>

/// <param mname="methodName”>The name of the method to call.</param>

/// <param name="args”>An object array with the arguments to the method
call.</param>

public static void ExpectReturnOnCall (object expectedReturnValue, string
className, string methodName, object[] args)

{

string outputFilename = System.IO.Directory.GetCurrentDirectory () + 7/
outputFiles/” + getCallerIDName() + 7/” + getCallerIDName () + ”Out

if (File.Exists(outputFilename + ”7.dl117)) //find out if the outputted
file is an exe or dll file.
outputFilename 4= 7.dl117;

else
outputFilename 4= 7 .exe”;

Assembly assembly = Assembly.LoadFile (outputFilename);
foreach (Type type in assembly.GetTypes())
{
if (!type.Name.Equals(className))
continue;

// If it is the right class, find the method.

object testClass = Activator.Createlnstance(type);

object returnValue;

try

{

returnValue = type.InvokeMember (methodName, BindingFlags.

NonPublic | BindingFlags.Instance | BindingFlags.Static |
BindingFlags.Public | BindingFlags.InvokeMethod, null,
testClass , args);

}

catch (System.MissingMethodException e)

{

Tester.errorLogger . AddError (e. Message + 7\n” +

”This happend in the test method: 7 + getCallerID () + 7 .
assembly = null;
return;

}

catch (Exception e)

{

I

Tester.errorLogger . AddError (”While running

ExpectedRuturnValue’ from test method: ’” + getCallerID ()
+ 77, the following error was thrown:\n” + e.ToString());
assembly = null;

180

Chapter R YITHAW - An aspect weaver for .NET

return;

}

assembly = null;

if ((expectedReturnValue =— null && returnValue = null) ||
expectedReturnValue. Equals(returnValue))
return;

Tester.errorLogger . AddError (

?The expected value from the call was: 7 +

expectedReturnValue + 7’ — type: 7 4 expectedReturnValue.
GetType() + 7 7,\n” +

”but the returned value from the call to ’” + className + 7:”
+ methodName + 77 7 +

"was 7 4+ returnValue + 7’ — type: ’” 4+ returnValue.GetType()
+ 77 A\n” +

”This happend in the test method: ’” 4 getCallerID () + 7’.7);

}

/// <summary>
/// Gets the ID of the method that has called the method which calls the
method. (That is two calls back).
/// </summary>
/// <returns>A string with the type:mame of the calling method.</returns>
private static string getCallerID ()
{
//Getting the caller ID
System . Diagnostics.StackFrame sf = new System.Diagnostics.StackFrame
(2);
System . Reflection . MethodBase mb = sf.GetMethod () ;
//string assemblyName = mb. DeclaringType. Assembly. GetName () . Name;
return mb. DeclaringType.Name + ”:” 4 mb.Name;

}

/// <summary>

/// Gets the name of last method in the call tree, that doesn’t start with
”Weave ”.

/// </summary>

/// <returns>The name of the method.</returns>

private static string getCallerIDName ()

{
//Getting the caller ID

int i = 2;
System . Reflection . MethodBase mb;
do

{

System . Diagnostics.StackFrame sf = new System.Diagnostics.
StackFrame (i) ;
mb = sf.GetMethod () ;
i+
}
while (mb.Name.Equals(”Weave”)) ;
return mb.Name;

181

Chapter R YITHAW - An aspect weaver for .NET

TestableClassAttribute.cs - Test class indicator attribute

using System;
using System. Collections . Generic;
using System.Text;

namespace YIITHAWTester

{
/// <summary>
/// Indicator attribute used to indicate that a class contains test methods.
/// </summary>
[AttributeUsage (AttributeTargets. Class)]
public class TestableClassAttribute : Attribute
{
}
}

TestableMethodAttribute.cs - Test method indicator attribute

using System;
using System. Collections. Generic;
using System.Text;

namespace YIIHAWTester
{
/// <summary>
/// An indicator attribute , that shows that a method is a test method
/// </summary>
[AttributeUsage (AttributeTargets.Method)]
public class TestableMethodAttribute : Attribute
{
private string _inputFile;
private bool _hasOutputFile;

public string InputFile
{ get { return _inputFile; } }

public bool HasOutputFile
{ get { return _hasOutputFile; } }

/// <summary>

/// Shows that a method is a test method.

/// </summary>

/// <param name="inputfile”™>The path and name of the inputfile which the
weaver will use.</param>

public TestableMethodAttribute (string inputfile)

{
_inputFile = inputfile;
_hasOutputFile = true;

}

/// <summary>

/// Shows that a method is a test method.

/// </summary>

/// <param name="inputfile”™The path and name of the inputfile which the
weaver will use.</param>

/// <param name="hasOutputFile”> Indication whether the weaving is expected
to create an output file.</param>

public TestableMethodAttribute (string inputfile , bool hasOutputFile)

{

182

Chapter R

YITHAW - An aspect weaver for .NET

_inputFile = inputfile;
_hasOutputFile = hasOutputFile;

}

tests.cs - the tests

using System;

using System. Collections . Generic;
using System.Text;

using YIIHAWTester;

namespace Target

{
[TestableClass ()]

public class Tests

{

/+ Test 1

x Test of:

* In advice: Return defined primitive — without proceed.

* In advice: Use of opcode "box”.

x Pointcut interception: Access specifier: Public

* Pointcut interception: Returntype: Primitive
* Pointcut interception: Type name specification : * . name

x Pointcut interception: Method name specification : Name

* Pointcut interception: Matching advice methods: One

* Pointcut interception: Matching targets: One

*/
[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Testl ()

{

API. CreatePointcutFile (”around public * int *.Interception.Target:

Testl() do Aspect.Aspect: TestlAspect;”, "pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll”, 7../../../ Aspect/
bin/Release/Aspect.dll”, "pointcutfile”);
API. ExpectReturnOnCall (42, "Target”, ”"Testl”, null);
}
/% Test 2.
x Test of:
* In advice: Return defined string — without proceed.
* Pointcut interception: Returntype: *

[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test2()

{

API. CreatePointcutFile (?around public * % *.Interception.Target: Test2(

string) do Aspect.Aspect: Test2Aspect;”, "pointcutfile”);
API. Weave(”../../../ target/bin/Release/Target.dll”, 7?../../../ Aspect/
bin/Release/Aspect.dll”, "pointcutfile”);
object [] args = new object[1];
args [0] = ”"Hello”;
API.ExpectReturnOnCall (”HelloHello”, ”Target”, ”Test2”, args);
}
/x Test 8.
Test of:
In advice: Return defined string — with proceed.

Fully defined
Name. name

Pointcut interception: Returntype:
Pointcut interception: Type name specification:

* X ¥ x

183

Chapter R

YITHAW - An aspect weaver for .NET

*/

[TestableMethod (”../../../ target/bin/Release/Target.dll”)]
private void Test3 ()

{

\
¥ K K XK X ¥ ¥ K %

*

*/

API. CreatePointcutFile (”around public static string Target.
Interception.Target: Test3 (x) do Aspect.Aspect: Test3Aspect;”,
pointcutfile”);

”

API.Weave(”../../../ target /bin/Release/Target.dll”, 7../../../ Aspect/
bin/Release/Aspect.dll”, "pointcutfile”);

string arg0 = ”"Hello World”;

object [] args = new object [1];

args [0] = arg0;

API. ExpectReturnOnCall (arg0d, ”Target”, ”"Test3”, args);

Test 4.

Test of:

In advice: Return defined external — with proceed.

In advice: Use of opcode ”call”.

Pointcut interception: Access specification : *

Pointcut interception: Invocation type: *

Pointcut interception: Method name specification : Namex

Pointcut interception: Argument definition : *

Pointcut interception: Matching advice methods: More than one

Pointcut interception: Matching targets: More than one

[TestableMethod (”../../../ target2/bin/Release/Target2.dl1”)]
private void Test4 ()

API. CreatePointcutFile (
?around * x MyTestLib.MyType *.Test4d.Test4Target: Testdx(*x) do
Aspect . Aspect: Test4Aspect;”,
"pointcutfile”);

API.Weave(”../../../ Target2/bin/Release/Target2.dl1”, 7../../../ Aspect
/bin/Release/Aspect.dll”, ”pointcutfile”);

MyTestLib.MyType expectedReturnl = new MyTestLib.MyType() ;

API. ExpectReturnOnCall (expectedReturnl , ”Target2”, ”Test4A”, null);

MyTestLib.MyType expectedReturn2 = new MyTestLib.MyType() ;
string arg0 = "Hello”;

expectedReturn2 .Name = arg0 + 7 7 + arg0;

object [] args = new object [1];

args [0] = arg0;

API. ExpectReturnOnCall (expectedReturn2, ”"Test4dTarget”, "TestdB”, args)

)

MyTestLib.MyType expectedReturn3 = new MyTestLib.MyType() ;
string argl = "World”;

expectedReturn3 .Name = arg0 + 7 7 4+ argl + 7 7 + arg0;

args = new object [2];

args [0] = arg0;

args [1] = argl;

API. ExpectReturnOnCall (expectedReturn3, ”"TestdTarget”, "TestdC”, args)
Test 5.

Test of:

In advice: Return defined void — with proceed.

Pointcut interception: Target which doesn’t match: On returntype

184

Chapter R

YITHAW - An aspect weaver for .NET

[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test5 ()

{

* ¥ X X X X

*/

API. CreatePointcutFile (”around public % % *.Interception.Target: Testd
x() do Aspect.Aspect: TestSAspect;”, "pointcutfile”);

API.Weave(”../../../ target /bin/Release/Target.dll1”, 7../../../ Aspect/
bin/Release/Aspect.dll”, "pointcutfile”);

API.ExpectReturnOnCall (null, ”Target”, ”TestbA”, null);

API. ExpectReturnOnCall (42, "Target”, ”"Test5B”, null);

Test 6.

Test of:

In advice: Return defined external — without proceed.

In advice: Use of opcode: Access an argument.

Pointcut interception: Type name specification : *
Pointcut interception: Method name specification : *
Pointcut interception: Argument definition : Defined

[TestableMethod (”../../../ target2/bin/Release/Target2.dl1”)]
private void Test6 ()

{

/

*

* X ¥ X ¥

*

*/

API. CreatePointcutFile (?around x % MyTestLib.MyType x:x(MyTestLib.

MyType) do Aspect.Aspect: Test6Aspect;”, "pointcutfile”);
API. Weave(”../../../ Target2/bin/Release/Target2.d1l1”, ”../../../ Aspect
/bin/Release/Aspect.dll”, "pointcutfile”);
MyTestLib.MyType expectedReturn = new MyTestLib.MyType() ;
expectedReturn .Name = 7 Aspect”;
object [] args = new object[1];
args [0] = new MyTestLib.MyType() ;
API. ExpectReturnOnCall (expectedReturn, ”"Test6Target”, "Test6”, args);
Test 7.
Test of:
In advice: Return defined aspect — without proceed.
— (not possible, as aspect is not introduced into the target assembly)
Pointcut interception: Access specification : Private
Pointcut interception: Type name specification : Name .
Pointcut interception: Method name specification : xname

[TestableMethod (”../../../ target3/bin/Release/Target3.dll” false)]
private void Test7()

{

I

string expectedOutput = ”"Fatal error: Unable to instantiate type
AspectType’ from ’Test7’, as ’AspectType’ is not defined in the
target assembly. If this type should be available in the target
assembly , please specify that it should be inserted into the
target assembly using the pointcut specification.\r\n”;

API. CreatePointcutFile (”around private % % Target.*:%x7() do Aspect.

Aspect: Test7Aspect;”, ”"pointcutfile”);
API. WeaveWithExpectedOutput(”../../../ Target3/bin/Release/Target3. dl1”
, 7../../../ Aspect/bin/Release/Aspect.dll”, "pointcutfile”,

expectedOutput) ;

Test 8.

Test of:

In advice: Return defined target — without proceed.

Pointcut interception: Access specification : Internal

185

Chapter R YITHAW - An aspect weaver for .NET

[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test8()

{

API. CreatePointcutFile (”around internal % % *:%8(string) do Aspect.

Aspect: Test8Aspect;”, ”"pointcutfile”);
API.Weave(”../../../ Target/bin/Release/Target.dll1”, 7../../../ Aspect/
bin/Release/Aspect.dll”, "pointcutfile”);

//Not possible to test, as the Target.Interception. Target will be of a
different kind

//when using the new outputfile.

/x Target. Interception. Target expextedOutput = new Target.Interception .
Target () ;

expertedOutput.testValue = "Aspect”;

object [] args = new object[1];

args [0] = "test”;

API. EzpectReturnOnCall (expextedOutput , "Target”, "Test8”, args);*/

/+x Test 9.

x Test of:

* In advice: Return defined wvoid — without proceed.

* Pointcut interception: Access specification : Protected

* Pointcut interception: Invocation type: Static

x Pointcut interception: Argument definition : Defined as
primitive

x Pointcut interception: Target which doesn’t match: On argument type

*/
[TestableMethod (”../../../ target/bin/Release/Target.dll”)]
private void Test9()

{

API. CreatePointcutFile (”around protected static void x.Interception.

Target: Test9x(int) do Aspect.Aspect:Test9;”, ”"pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll1”, 7../../../ Aspect/
bin/Release/Aspect. dll”, ”"pointcutfile”);
object [] args = new object[1];
args [0] = 42;
API. ExpectReturnOnCall (null, ”"Target”, ”"Test9”, args);
}
/x Test 10.
x Test of:
* In advice: Use of opcode: Accessing local wvariable.
* In advice: Use of opcode: newobj.
x Introduction: Class with reference to: Aspect Assembly
* Introduction: Method with reference to: Aspect Assembly
x Pointcut introduction: Access specifier (method): Public
x Pointcut introduction: Access specifier (method): *
x Pointcut introduction: Invocation type (method): *
x Pointcut introduction: Returntype (method): Mscorlib
x Pointcut introduction: Target (method): TTT . Yyy

*
/
[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test10 ()
{
API. CreatePointcutFile (
”insert class Aspect2.Test1l0InsertClass into Target.Test10;” +
7around public * * *:Testl0x*(x) do Aspect2.Test10Class:
Test10Aspect;” +
”insert method * % % Aspect2.Test10Class: Test10Int () into Target.
Test10. Testl0Target;” +
7insert method private * string Aspect2.Test10Class: Test10String (

186

Chapter R

YITHAW - An aspect weaver for .NET

*/

int) into Target.Testl0.Testl0Target;”,
"pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll1”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, "pointcutfile”);
API.ExpectReturnOnCall (42, ”Targetd”, ”Testl0A”, null);

object [] args = new object[1];

args [0] = 42;

API. ExpectReturnOnCall (” Aspect” + args[0], ”Testl0Target”, ”"Testl0B”,
args)

Test 11.

Test of:

In advice: Return generic type (void) — with proceed.

Pointcut interception: Invocation type: Instance

Pointcut introduction: Returntype (method): Void

[TestableMethod(”../../../ target/bin/Release/Target.dl1”)]
private void Testll ()

{

N
*

¥ X X X X X X X X X X X X K X X ¥ X ¥ X ¥ X %

*/

API. CreatePointcutFile (
7around public * * *x.TestllTarget:* (%) do Aspect2.Testl1Class:
Testl1Aspect;” +
”insert method public instance void Aspect2.Testl11Class:
Testl1Method (string) into Target.Testll.TestllTarget;”,
"pointcutfile”);

API. Weave(”../../../ target/bin/Release/Target.d1l”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, ”"pointcutfile”);

API. ExpectReturnOnCall (42, "Testl1Target”, "Testll”, null);

Test 12.

Test of:

In advice: Return defined primitive — with proceed.

In advice: Use of opcode: unbozx.

Introduction: Class with reference to: Mscorlib
Introduction: Method with reference to: Mscorlib
Introduction: Field with referemce to: Mscorlib
Introduction: Property with reference to: Mscorlib
Introduction: FEvent with reference to: Mscorlib
Introduction: Property with reference to: Aspect Assembly
Pointcut introduction: Access specifier (property): Public
Pointcut introduction: Access specifier (event): Public
Pointcut introduction: Access specifier (field): Internal
Pointcut introduction: Invocation type (method): Instance
Pointcut introduction: Invocation type (event): Instance
Pointcut introduction: Invocation type (field): *
Pointcut introduction: Invocation type (property): *
Pointcut introduction: Returntype (field): Mscorlib
Pointcut introduction: Returntype (property): Mscorlib
Pointcut introduction: Returntype (event): Mscorlib
Pointcut introduction: Target (field): TITT . Yyy
Pointcut introduction: Target (property): TTT . Yyy
Pointcut introduction: Target (class): TTT . YyYy
Pointcut introduction: Target (event): TITT . Yyy

[TestableMethod(”../../../ target/bin/Release/Target.dl17)]
private void Test12()

API. CreatePointcutFile (

187

Chapter R

YITHAW - An aspect weaver for .NET

N
*

¥ X X X X X X X X X X X X X ¥ X X ¥ ¥ X ¥

v/

7around public instance int *:Testl2(int) do Aspect2.Testl12Class:
Test12Aspect;” +
”insert method public instance int Aspect2.Test12Class:

Test12Return3 () into Target.Testl2.Testl2Target;” +
”insert class Aspect2.Testl2InsertClass into Target.Testl12.
Testl2Target;” +
?insert field internal % int Aspect2.Testl12Class:a into Target.
Test12.Test12Target;” +

”insert property public x int Aspect2.Test12Class:IntField into
Target . Test12. Test12Target;” +
”insert event public instance System.EventHandler Aspect2.
Test12Class: Testl2 into Target.Testl2.Testl2Target;”

, "pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll”, 7../../../ Aspect2/

bin/Release/Aspect2.dll”, ”"pointcutfile”);
object [] args = new object[1];
args [0] = 40;
API. ExpectReturnOnCall (40, "Testl2Target”, "Testl2”, args);
Test 185.
Test of:
In advice: Use of opcode: Accessing a field.
Introduction: Class with reference to: Target assembly
Introduction: Method with reference to: Target assembly
Introduction: Field with reference to: Target assembly
Introduction: Property with reference to: Target assembly
Introduction: FEvent with reference to: Target assembly
Pointcut introduction: Access specifier (field): Private
Pointcut introduction: Access specifier (event): Private
Pointcut introduction: Access specifier (method): Internal
Pointcut introduction: Access specifier (Property): Internal
Pointcut introduction: Invocation type (field): Static
Pointcut introduction: Invocation type (event): Static
Pointcut introduction: Invocation type (property): instance
Pointcut introduction: Returntype (field): Target assembly
Pointcut introduction: Returntype (property): Target assembly
Pointcut introduction: Returntype (event): Target assembly
Pointcut introduction: Target (method): *. TTT
Pointcut introduction: Target (field): *. TTT
Pointcut introduction: Target (property): *. TTT
Pointcut introduction: Target (event): *. TTT

[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test13()

{

API. CreatePointcutFile (

7around public instance % *:ReturnITest13 (%) do Aspect2.
Test13Class: Test13Aspect;” +

insert field private static Target.Testl3.Testl3Target Aspect2.
Test13Class:targetl3 into x.Testl3Target;” +

7insert method % * System.EventHandler Aspect2.Test13Class:
targetl3_Test1l3Event () into *.Testl3Target;” +

”insert property internal instance Target.Testl3.Testl3Target
Aspect2. Test13Class: Targetl3 into x*.Testl3Target;” +

insert class Aspect2.Test13Class.Test13NestedClass into Target.
Test13.Testl3Target;” +

”insert event private static Target.Test1l3.Testl3EventHandler

Aspect2. Test13Class: Test13AspectEvent into *.Testl3Target;”,
"pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll1”, 7../../../ Aspect2/

188

Chapter R

YITHAW - An aspect weaver for .NET

*

*

bin/Release/Aspect2.dll”, "pointcutfile”);

//Not possible to test, as the Target.Test13.1Test13 will be of a
different kind

//when using the new outputfile.

/x

object [] args = new object[1];

args [0] = new Target. Test13. Test18Target();

Target. Test13. Test13Target expected = new Target. Test13. Test13Target ()

expected. testField = 4;
API. EzpectReturnOnCall (expected, "Test13Target”, "ReturnITest13”, args
)i*/

Test 14.

This is a special test, as it has been created to test the opcode ”
ldtoken ”.

To get the opcode into a program, it was necessary to insert it
manually by writeting the needed Assembler IL codes

into an a basic assembly. There is therefor mno aspect source code for
this test.

The IL for the test looks as follows:

nop

ldtoken TempAspect. Testl}

pop

ldtoken method instance wvoid TempAspect. Classl :: Test14A ()
pop

ldtoken field int32 TempAspect. Classl::testl4field

pop

ret

So the test it testing with each kind of tokentype wusable for this
opcode.

The correctness of test is checked by peverify (automaticly) and by
usage of ildasm.

*/
[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Testl4()

{

* ¥ ¥ *x

API. CreatePointcutFile (

7around public instance int Target.Testl4d.Testl4Target: Testl4d (*) do
Aspect.Test14Class: Test14Aspect;” +

”insert method public instance void Aspect.Testl4Class:Testl14A () into
Target . Test14. Test1l4Target;” +

7insert field public * int Aspect.Test14Class:testl4field into Target.
Testl4 . Testl4Target;” +

”insert class Aspect.Testl4d into Target.Testl4d;” +

”insert method public instance int Aspect.Test14Class: Test14Aspect ()
into Target.Testld. Testl4Target;”,

"pointcutfile”);

API.Weave(”../../../ target /bin/Release/Target.dll”, ”specialtest /out.
d1l”, ?pointcutfile”);

Test 15.

Test of:

In advice: Return defined Target — with return.

Introduction: Field with referemce to: Aspect assembly

Pointcut interception: Inherit defined.

189

Chapter R YITHAW - An aspect weaver for .NET

x Pointcut introduction: Access specfier (field): Public
x Pointcut introduction: Invocation type (field): Instance
x Pointcut introduction: Target (field): TTT . *

*/
[TestableMethod (”../../../ target/bin/Release/Target.dll”)]
private void Test15 ()

API. CreatePointcutFile (
7around public instance % Target.Testl5.Testl5Target: Test15 ()
inherits Targetd.Test15] do Aspect2.Test15Class: Testl5;” +
”insert field public instance string Aspect2.Test15Class:
aspectValue into Target.Testlb.x*;”,
"pointcutfile”);

API.Weave(”../../../ target /bin/Release/Target.dll”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, ”"pointcutfile”);

}
/x Test 16.
x Test of:
* Introduction: Method with reference to: External assembly
* Introduction: Field with reference to: Ezternal assembly
x Introduction: Property with reference to: External assembly
* Introduction: Class with reference to: External assembly
* Introduction: FEvent with reference to: Ezternal assembly
* Pointcut introduction: Access specifier (method): Protected
x Pointcut introduction: Access specifier (field): Protected
x Pointcut introduction: Access specifier (property): Protected
* Pointcut introduction: Access specifier (event): Protected
x Pointcut introduction: Invocation type (method): Static
x Pointcut introduction: Invocation type (property): Static
* Pointcut introduction: Returntype (method): External assembly
x Pointcut introduction: Returntype (field): External assembly
x Pointcut introduction: Returntype (property): External assembly
x Pointcut introduction: Returntype (event): External assembly
x Pointcut introduction: Target (method): *
x Pointcut introduction: Target (field): *
* Pointcut introduction: Target (property): *
x Pointcut introduction: Target (class): *
x Pointcut introduction: Target (event): *

*
/
[TestableMethod (”../../../ target2/bin/Release/Target2.dl1”)]
private void Test16 ()
{
API. CreatePointcutFile (
7around public instance x x.Testl6.Testl6Target: Testl6() do
Aspect2. Test16Class: Test16Aspect;” +
”insert method protected static MyTestLib. Testl6External Aspect2.
Test16Class: TestMethod () into *;”7 +
”insert method protected * * Aspect2.Testl16Class:
Test16ClassTestEvent () into ;7 +
”insert property protected static MyTestLib. Testl6External Aspect2
.Test16Class: TestProperty into *;” +
7insert field protected static MyTestLib. Testl6External Aspect2.
Test1l6Class: testField into =x;” +
”insert event protected static MyTestLib.Testl6EventHandler
Aspect2. Test16Class: TestEvent into x*;” +
?insert class Aspect2.Test16Class. Testl6NestedClass into *;7,
"pointcutfile”);

API.Weave(”../../../ target2/bin/Release/Target2.d11”, 7../../../
Aspect2/bin/Release/Aspect2.dll”, "pointcutfile”);

MyTestLib. Testl6External t = new MyTestLib. Testl6External () ;

t.value = ”Aspect”;

190

Chapter R

YITHAW - An aspect weaver for .NET

Ve

* ¥ X X ¥

*/

API. ExpectReturnOnCall(t, "Testl6Target”, "Testl6”, null);

Test 17.

Test of:

In advice: Return generic type (primitive) — with proceed.
In advice: Return generic type (string) — with proceed.
In advice: Return generic type (external) — with proceed.
In advice: Return generic type (target) — with proceed.

[TestableMethod (”../../../ target2/bin/Release/Target2.dl1”)]
private void Test17()

{
API. CreatePointcutFile (
7around public instance % *.Testl7Target:Testl7 (%) do Aspect.
Aspect: Test17Aspect;”,
"pointcutfile”);
API. Weave(”../../../ target2/bin/Release/Target2.d1l1”, ”../../../ Aspect
/bin/Release/Aspect.dll”, "pointcutfile”);
object [] args = new object[1];
args [0] = new MyTestLib. Testl6External () ;
API.ExpectReturnOnCall (args [0], ”"Testl7Target”, ”Testl7”, args);
args [0] = "Hello”;
API. ExpectReturnOnCall(args [0] , "Testl7Target”, ”"Testl7”, args);
args [0] = 10;
API. ExpectReturnOnCall (args [0], "Testl7Target”, "Testl7”, args);
// Not testable, as Test17Target here and in the new target assembly
is mot the same.
//args [0] = new Target. Test17. Testl17Target();
//API. ExpectReturnOnCall(args [0], "Testl17Target”, "Test17”, args);
}
/x Test 18.
x Test of:
x In advice: Use of the opcode "initobj”.
x In advice: Return generic type (primitive) — using default with proceed
x In advice: Return generic type (string) — using default with proceed.
x In advice: Return generic type (external) — using default with proceed.
x In advice: Return generic type (target) — wusing default with proceed.
x In advice: Return generic type (void) — using default with proceed.
x As the use of the default method on the mentioned types generates ’null
x this is tested, and furthermore the methods prints out the string 7
Aspect”
* on the console.
v/

[TestableMethod (”../../../ target2/bin/Release/Target2.dl1”)]
private void Test18()

API. CreatePointcutFile (
7around public instance % *.Testl8Target:Test18x*() do Aspect.
Aspect: Test18Aspect;”,
"pointcutfile”);

API.Weave(”../../../ target2/bin/Release/Target2.dl1”, 7../../../ Aspect
/bin/Release/Aspect.dll”, ”pointcutfile”);

API. ExpectReturnOnCall (0, ”"Testl8Target”, "Test18int”, null);

API. ExpectReturnOnCall (null, ”Testl8Target”, ”"Test18string”, null);

API. ExpectReturnOnCall (null, ”Test18Target”, ”"Test18”, null);

191

Chapter R

YITHAW - An aspect weaver for .NET

API. ExpectReturnOnCall (null, ”Testl8Target”, ”Testl8target”, null);
API. ExpectReturnOnCall (null, ”"Test18Target”, ”Testl8external”, null);
}
/x Test 19.
x Test of:
x In advice: Return generic type (primitive) — using default without
proceed .
x In advice: Return generic type (string) — using default without proceed
x In advice: Return generic type (external) — using default without
proceed.
x In advice: Return generic type (target) — using default without proceed
x In advice: Return generic type (void) — wusing default without proceed.
x As the use of the default method on the mentioned types gemerates ’null
* this is tested, and furthermore the methods prints out the string 7
Aspect”
* on the console.
*/
[TestableMethod (”../../../ target2/bin/Release/Target2.dl1”)]
private void Test19 ()
{
API. CreatePointcutFile (
7around public instance % x.Testl8Target:Test18x() do Aspect.
Aspect: Test19Aspect;”,
"pointcutfile”);
API.Weave(”../../../ target2/bin/Release/Target2.d11”, 7../../../ Aspect
/bin/Release/Aspect.dll”, "pointcutfile”);
API. ExpectReturnOnCall (0, "Testl8Target”, ”"Test18int”, null);
API. ExpectReturnOnCall (null, ”Test18Target”, ”Test18string”, null);
API. ExpectReturnOnCall (null, ”Testl8Target”, ”"Testl8”, null);
API. ExpectReturnOnCall (null, ”Test18Target”, ”Testl8target”, null);
API. ExpectReturnOnCall (null, ”Testl8Target”, ”Testl8external”, null);
}
/x Test 20.
x Test of:
* In advice: Use of opcode ’"newarr”.
* Pointcut introduction: Access specifier (method): Private
x Pointcut introduction: Access specifier (property): Private
x Pointcut introduction: Access specifier (field): *
x Pointcut introduction: Access specifier (property): =
x Pointcut introduction: Access specifier (event): *
x Pointcut introduction: Access specifier (event): Internal
x Pointcut introduction: invocation type (event): *
x Pointcut introduction: Returntype (method): Target assembly
x Pointcut introduction: Returntype (method): Aspect assembly
x Pointcut introduction: Returntype (field): Aspect assembly
x Pointcut introduction: Returntype (property): Aspect assembly
x Pointcut introduction: Target (method): TTT . *
* Pointcut introduction: Target (property): TTT . *
x Pointcut introduction: Target (class): *. TTT
x Pointcut introduction: Target (event): TTT . *

*/

[TestableMethod(”../../../ target/bin/Release/Target.dl1”)]

private void

Test20 ()

API. CreatePointcutFile (

192

Chapter R YITHAW - An aspect weaver for .NET

7around public instance string *:Test20() do Aspect2.Test20Class:
Test20Aspect;” +

”insert method private % Aspect2.Test20InsertClass Aspect2.
Test20Class: Test20AspectReturn () into Target.Test20.
Test20Target;” +

7insert class Aspect2.Test20InsertClass into x.Test20;” +

7insert field % % Aspect2.Test20InsertClass Aspect2.Test20Class:
test20Field into Target.Test20.x;” +

insert method % * Target.Test20. Test20Target Aspect2. Test20Class:
Test20targetReturn () into Target.Test20.x;” +

”insert event internal % x Aspect2.Test20Class: Test20Event into
Target. Test20.x%;”7 +

insert method % % % Aspect2.Test20Class: Test20ClassTest20Event (
object , System.EventArgs) into Target.Test20.Test20Target;” +

insert event *x % % Aspect2.Test20Class: Test20Event2 into Target.
Test20. Test20Target ;” +

7insert method * % x Aspect2.Test20Class: Test20ClassTest20Event2 (
object , System.EventArgs) into Target.Test20.Test20Target;” +

”insert property private x * Aspect2.Test20Class:
Test20StringProperty into Target.Test20.x;” +

”insert property x % Aspect2.Test20InsertClass Aspect2.Test20Class
:Test20Property into Target.Test20.x;”,

"pointcutfile”);

API . Weave(”../../../ target/bin/Release/Target.d1l”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, ”"pointcutfile”);

API. ExpectReturnOnCall (” Test20 aspect aspect”, ”"Test20Target”, ”"Test20
7, null);

/+* Test 21.

x Test of:

* Modification: Change of basetype.

* Pointcut modification: Action: Inherit
x Pointcut introduction: Target (class): TTT . *
*

/
[TestableMethod (”../../../ target /bin/Release/Target.dll”)]
private void Test21 ()

API. CreatePointcutFile (
7insert class Aspect2.Test21Class into Target.Test21.x;” +
"modify Target.Test21.ns.Test21Target inherit Aspect2.Test21Class;

b
"pointcutfile”);

API.Weave(”../../../ target /bin/Release/Target.dll”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, "pointcutfile”);
API. ExpectReturnOnCall (” Aspect”, "Test21Target”, "Test21Method”, null)

)

}
/x Test 22.
x Test of:
x* Modification: Implementation of interface.
x Pointcut modfication: Action: Implement
*

[TestableMethod (”../../../ target /bin/Release/Target.dll”)]
private void Test22()

{

API. CreatePointcutFile (
7insert method * x % Aspect2.Test22Class: Test22IMethod () into

193

Chapter R YITHAW - An aspect weaver for .NET
Target . Test22.x;”7 +
"modify Target.Test22.Test22Target implement Aspect2.
Test22Interface;” +
?insert class Aspect2.Test22Interface into Target.Test22;” +
7around * * * *:Test22Method () do Aspect2.Test22Class: Test22Aspect
"pointcutfile”);
API.Weave(”../../../ target /bin/Release/Target.dll”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, "pointcutfile”);
API. ExpectReturnOnCall (” Aspect”, ”"Test22Target”, "Test22Method”, null)
}
/x Test 23.
x Test of:
* In advice: JoinPoint API: Proceed<T>
* In advice: JoinPoint API: GetTarget<T>
* In advice: JoinPoint API: AccessSpecfier
x In advice: JoinPoint API: Arguments
* In advice: JoinPoint API: DeclaringType
x In advice: JoinPoint API: IsStatic
* In advice: JoinPoint API: Name
* In advice: JoinPoint API: ReturnType
* In advice: Use of opcode 7switch”
x The switch:
case 0:
return JoinPointContext. Proceed<string >();
case 1:
return JoinPointContext. AccessSpecifier;
case 2:
return JoinPointContext. Arguments;
case 3:
return JoinPointContext. DeclaringType;
case 4:
return JoinPointContext. IsStatic. ToString();
case b5:
return JoinPointContext.Name;
case 0:
return JoinPointContext. ReturnType;
case 7:
return JoinPointContext. GetTarget<Target5.T23. T23Target>().
ToString () ;
default :
return “Aspect”;

*/

[TestableMethod (”../../../ target/bin/Release/Target.dl1”)]
private void Test23()

{

API. CreatePointcutFile (

7around * * * *:Test23Method (*) do Aspect2.Test23Class:
Test23Aspect;”,

"pointcutfile”);

API.Weave(”../../../ target /bin/Release/Target.dll1”, 7../../../ Aspect2/
bin/Release/Aspect2.dll”, "pointcutfile”);

object [] args = new object [1];

args [0] = 0;

API. ExpectReturnOnCall (70”7, "Test23Target”, ”Test23Method”, args);

args [0] = 1;

API. ExpectReturnOnCall (”public”, "Test23Target”, "Test23Method”, args)

194

Chapter R YITHAW - An aspect weaver for .NET
args [0] = 2;
API. ExpectReturnOnCall (”System.Int32”, ”"Test23Target”, "Test23Method”,
args) ;

args [0] = 3;

API. ExpectReturnOnCall (” Target . Test23. Test23Target”, ”Test23Target”, 7
Test23Method”, args);

args [0] = 4;

API. ExpectReturnOnCall (”False”, ”"Test23Target”, "Test23Method”, args);

args [0] = 5;

API. ExpectReturnOnCall (”?Test23Method”, ”"Test23Target”, "Test23Method”

args) ;

args [0] = 6;

API. ExpectReturnOnCall (”System . String”, ”"Test23Target”, "Test23Method”
, args);

args [0] = T;

API. ExpectReturnOnCall (” TargetToString” , "Test23Target”, ”Test23Method
" args);

args [0] = 8;

API. ExpectReturnOnCall (” Aspect”, "Test23Target”, "Test23Method”, args)

}
}
}

Aspect.cs - Aspect file for interception tests only

using System;

using System. Collections . Generic;
using System.Text;

using YIIHAW.API;

namespace Aspect

{

/// <summary>

/// Thi

s class contains the aspects for all the tests that only uses

interception
/// </summary>

public

{
/x

*
*

*/

class Aspect

Test 1.

Test of:

Return defined primitive — without proceed

Use of opcode "bozx” (a is bozed, to be used in the string)

public int TestlAspect ()

{

}

VAT

/x

*

*/

int a = 42;
Console. WriteLine (”Test 1 — advice. The output is: {0}”, a);
return a;

T B T
*/

Test 2.

Return defined string — without proceed

public string Test2Aspect(string a)

{

195

Chapter R YITHAW - An aspect weaver for .NET

return a + a;

}

/*>k*****>(<>(<>(<*****>k>k>k>k>k>k>k>k********>k>k*****>(<>(<*******>k>k***********************

«/

/+x Test 3.
x Test of:
* Return defined string — with proceed

*/
public static string Test3Aspect ()

{
}

/*>k**>(<>(<>(<>(<*********>k>k>k>k>k>k******>k*>k***>(<>(<>(<>(<>(<********************************

*/

#region Test4

return JoinPointContext.Proceed<string >();

/% Test 4.
x Test of:
* Return defined external — with proceed

* Use of opcode 7call”
*/
public MyTestLib.MyType Test4Aspect ()
{
MyTestLib.MyType returnvalue = JoinPointContext.Proceed<MyTestLib.
MyType> () ;
Console. WriteLine (returnvalue .Name) ;
return returnvalue;

}

public MyTestLib.MyType Test4Aspect(string a)
{
MyTestLib.MyType returnvalue = JoinPointContext.Proceed<MyTestLib.
MyType>() ;
returnvalue .Name 4= 7 7 + a;
Console. WriteLine (returnvalue .Name) ;
return returnvalue;

}
#endregion

/% stk ok sk sk sk stk ok sk K sk ok sk sk ok ok KR R ok ok sk ok ok K R sk ok sk sk ok ok K R R sk ok sk ok ok KK s sk ok sk ok ok kR R R ok sk sk ok K K ok ok sk ok ok K K kK

*/

/x Test 5.
x Test of:
* Return defined wvoid — with proceed

*/
public void Test5Aspect ()

{
JoinPointContext . Proceed<YITHAW.API. Void >() ;

return;

}

/***>(<>(<>(<>(<*****************************>(<>(<>(<>(<********************************

*/

/x Test 6.
x Test of:

196

Chapter R YITHAW - An aspect weaver for .NET

x Return defined external — without proceed
* use of opcode: Access an argument
*/
public MyTestLib.MyType Test6Aspect (MyTestLib.MyType m)
{
m.Name = ”Aspect”;
return m;

}

/*>k***>(<>(<>(<>(<>(<*****>k>k>k>k>k>k>k>k******>k*>k****>(<>(<>(<>(<*******>k>k***********************

x/

/+x Test 7.
x Test of:
* Return defined aspect — without proceed

* (not possible, as aspect is not introduced into the target assembly)

*/

private AspectType Test7Aspect ()

{
}

/**

*/

return new AspectType();

/x Test 8.
x Test of:
* Return defined target — without proceed

*/

internal Target.Interception.Target Test8Aspect ()

{

Target.Interception. Target t = new Target.Interception. Target();
t.testValue = ”Aspect”;
return t;

}

/****>(<>(<>(<>(<****************************>(<>(<>(<>(<********************************

*/

/x Test 9.
x Test of:
x Return defined void — without proceed

*/

protected static void Test9Aspect(int i)

{
}

/***>(<>(<>(<>(<>(<>(<>(<**************************>(<>(<>(<>(<********************************

*/

Console. WriteLine (” Aspect” + 1i);

/x Test 17.

x Test of:

* Return generic type (primitive) — with proceed
* Return generic type (string) — with proceed

x Return generic type (external) — with proceed
x Return generic type (target) — with proceed

*/
public T Testl17Aspect<T>()

{

Console . WriteLine (” Aspect”) ;
return JoinPointContext.Proceed<T>();

197

Chapter R YITHAW - An aspect weaver for .NET

}

/K stk stk sk sk sk koK ok KR R ok oK kKoK SRR R K oK Sk KRR R R Sk SRR R KR R R SR SRk oK KR R R R sk ok ok R R K R Sk Kk KK K sk KRk Kk Ok

*/

/+x Test 18.

x Test of:

x Use of the opcode 7initobj”.

x Return generic type (primitive) — using default with proceed
* Return generic type (string) — using default with proceed

* Return generic type (external) — using default with proceed
x Return generic type (target) — using default with proceed

* Return generic type (void) — wusing default with proceed

*/
public T Test18Aspect<I>()
{
Console. WriteLine (” Aspect”) ;
JoinPointContext . Proceed<T>();
return default (T);

}

/*>k**>(<>(<>(<>(<*********************>k*>k***>(<>(<>(<>(<>(<********************************

*/

/+* Test 19.

x Test of:

* Use of the opcode 7initobj”.

* Return generic type (primitive) — using default without proceed
x Return generic type (string) — using default without proceed

x Return generic type (extermal) — wusing default without proceed
x Return generic type (target) — wusing default without proceed

x Return generic type (void) — wusing default without proceed

*/
public T Testl19Aspect<I>()

{

Console. WriteLine (” Aspect”) ;
return default (T);

}

/% sk ok ks sk sk sk stk ok kK R ok ok sk ok oK K R sk ok sk sk ok K R R sk ok sk sk ok K R s R sk sk sk ok KK R R ok sk ok ok kR R sk ok sk ok ok K Kk sk ok ok ok ok Kk sk ok ok ok /

//Used for test 7 as returntype
public class AspectType

{3
}

Aspect2.cs - Aspect file for interception and introduction tests

using System;

using System. Collections . Generic;
using System . Text;

using YIIHAW.API;

namespace Aspect2
{

#region Testl0

/x Test 10.
x Test of:

198

Chapter R YITHAW - An aspect weaver for .NET

Class with reference to: Aspect Assembly

Method with reference to: Aspect Assembly

Use of opcode: Accessing local variable (In Test10String).

Use of opcode: newobj (In Test10String when creating new Testl0InserClass)

* ¥ ¥ %

*/

public class Test10Class

{

public int Testl0Aspect ()

{
}

public string Testl0Aspect(int i)

{
}

return Test10Int () ;

return Test10String (i);

public int Test10Int ()

{
}

private string Test10String (int i)

{

return new Testl0InsertClass().IntTest;

Test10InsertClass t = new Test10InsertClass () ;
t.IntTest = i;
return t.String;

}

public class Test10InsertClass

{

public static int i = 42;

public int IntTest

{

get { return new NestedClass().Returnlnt(); }
set { i = value; }

}

public string String

{
}

public class NestedClass

{

get { return ”Aspect” + i; }

public int Returnlnt ()

{
}

return i;

}

#endregion
/¢ s o o o o o o o K R R KRR KKK KRR KRR KKK KRR KKK KKK KKK KRR KRRk Rk ok ok /

/+ Test 11.

x Test of:
x Return generic type (void) — with proceed

199

Chapter R YITHAW - An aspect weaver for .NET

*/
public class Test11Class

{
public T TestllAspect<T>()

{

T t = JoinPointContext.Proceed<T>();
Testl11Method (JoinPointContext . Name) ;
return t;

}

public void Testl1Method (string s)

{
}

Console. WriteLine (s);

}

/***/

#region Test12

/x Test 12.

x Test of:

* Return defined primitive — with proceed

* Class with reference to: Mscorlib

x Method with reference to: Mscorlib

x Field with referemce to: Mscorlib

* Property with reference to: Mscorlib

x Fvent with reference to: Mscorlib

x Property with reference to: Aspect Assembly

x Use of opcode: unbox (int Test12Return8, when adding object i).

*/

public class Test12InsertClass

{

int i;

public Test12InsertClass ()

}

public class Test12Class

{

internal int Testl12Aspect ()

{

int i = JoinPointContext.Proceed<int >();
IntField = 2;
return i + a — Testl2Return3 () + IntField;

}

internal int a = 2;

public int IntField

{

get { return 1; }
set { a=2; }

}

public int Test12Return3 ()

{
int[] ints = new int[1];
ints [0] = 1;

200

Chapter R YITHAW - An aspect weaver for .NET

object i = 1;
int result = ints[0] + (int)i + IntField;
return result;

}

public event System.EventHandler Testl2;
}
#endregion

/**>(<>(<>(<>(<>(<******>k>k*>k>k>k>k********>k>k***>(<>(<>(<>(<*******>k>k>k>k*************************/

Ve

* %

* X X * ¥

*/

Test 13.

Test of:

Use of opcode: Accessing a field (In t.testField = tn.Testl8NestedMethod())
Class with referemce to: Target assembly

Method with reference to: Target assembly

Field with reference to: Target assembly

Property with reference to: Target assembly

Event with reference to: Target assembly

internal class Test13Class

{

internal T Testl3Aspect<I>() where T : Target.Test13.ITest13
{

Test13NestedClass tn = new Test13NestedClass () ;

T t = JoinPointContext.Proceed<T>();

t.testField = tn.Test13NestedMethod () ;

return t;

}

private static Target.Test13.Testl3Target targetl3;

internal Test13Class ()
{
target1l3 = new Target.Testl3.Testl3Target () ;
targetl3.Testl13Event += new Target.Test1l3.Testl3EventHandler (
target13_Test13Event);

}
EventHandler targetl3_Testl3Event ()
{
Console. WriteLine (”Test13Event happend”);
return null;
}
internal Target.Test13.Test1l3Target Targetl3
{
get { return targetl3; }
}
public class Test13NestedClass
{
private Target.Testl3.Testl3Target t13 = new Target.Test1l3.
Test13Target () ;
internal int Test13NestedMethod ()
{
return Target.Testl3. Testl3Target.a + t13.testField;
}
}

private static event Target.Testl3.Testl3EventHandler Testl3AspectEvent;

201

Chapter R YITHAW - An aspect weaver for .NET

}

/% otk ks sk ok sk koK KRR Sk ok ok kKRR Sk R Sk KK R R Sk oK SR SRR KR R R SR SR koK KRR SR R Sk oK K KRR K K sk ok KR R K sk koK ok Kk sk ok ok ok /

/x Test 15.

x Test of:

x Return defined Target — with return

x Field with referemce to: Aspect assembly

*/

public class Test15Class

{

public string aspectValue = ”Aspect”;
public Target.Testl5. Test15Target Test15Aspect ()

{

Console. WriteLine (aspectValue + ”"Testl5 here”);
return JoinPointContext.Proceed<Target.Test15. Test15Target >();

}

/% stk ks sk ok sk stk kKK sk ok ok sk ok KRR SR R sk sk ok KRR sk ok sk stk KR R R ok sk sk ok KR R R R sk koK R R K K sk ok o KR Rk ok sk ok ok Kk sk ok ok ok /

#region Testl6

/+x Test 16.
x Test of:
* Method with reference to: Ezternal assembly
x Field with reference to: Ezxternal assembly
x Property with reference to: External assembly
* Class with reference to: External assembly
x Fvent with reference to: External assembly

*/

public class Test16Class

{

public T Testl6Aspect<I>()

{

TestEvent += new MyTestLib. Test16EventHandler (Test16ClassTestEvent) ;
T t = JoinPointContext.Proceed<T>();
if (t is MyTestLib. Testl6External)

(t as MyTestLib. Test16External).value = TestMethod () .value;
return t;

}

protected EventHandler Testl6ClassTestEvent ()

{
}

protected static MyTestLib. Testl6External testField;

return null;

protected static MyTestLib. Testl6External TestMethod ()

{

TestProperty = new MyTestLib. Test16External () ;
TestProperty.value = ”Aspect”;
return TestProperty;

}

protected static MyTestLib. Testl6External TestProperty

{

get { return testField; }

202

Chapter R YITHAW - An aspect weaver for .NET

set

TestEvent () ;
testField = value;

}

protected static event MyTestLib. Testl6EventHandler TestEvent;

public class Test16NestedClass

{

public MyTestLib. Testl6External nestedTestField = new MyTestLib.
Testl6External () ;

public MyTestLib. Testl6External NestedTestMethod ()

{
NestedTestProperty = new MyTestLib. Testl6External () ;
return NestedTestProperty;
}
public MyTestLib. Testl6External NestedTestProperty
{
get { return nestedTestField; }
set
{
NestedTestEvent () ;
nestedTestField = value;
}

}

public event MyTestLib.Testl6EventHandler NestedTestEvent;

}
#endregion

/¢ o o o o o o R R KR K R R KK KKK R KRR KRR KKK KKK KKK KKK KRR KRR Rk ok ok o/
#region Test20

/x Test 20.

x Test of:

x Use of opcode "newarr” (in Test20targetReturn, and Test20AspectReturn).
*/

public class Test20Class

{

public string Test20Aspect ()
{
test20Field = Test20AspectReturn () ;
test20Field . t20 = Test20targetReturn () ;
Test20Event += new EventHandler (Test20ClassTest20Event) ;
Test20Event2 += new Target.Test20. Test20EventHandler (
Test20ClassTest20Event2) ;
Test20Event (null, null);
Test20Event2 (null, null);
return Test20StringProperty;

}

EventHandler Test20ClassTest20Event2 (object sender, EventArgs args)

203

Chapter R YITHAW - An aspect weaver for .NET

{
}

void Test20ClassTest20Event (object sender, EventArgs e)

{
}

internal event System.EventHandler Test20Event;

return null;

return;

internal event Target.Test20.Test20EventHandler Test20Event2;

private Test20InsertClass test20Field;

private Test20InsertClass Test20Property

{
}

private string Test20StringProperty

{
}

get { return test20Field; }

get { return Test20Property.ToString(); }

private Target.Test20.Test20Target Test20targetReturn ()

{

Target . Test20. Test20Target [] target20Arr = new Target.Test20.
Test20Target [1];

target20Arr [0] = new Target.Test20.Test20Target () ;

target20Arr [0]. targetValue = ”"aspect”;

return target20Arr [0];

}

private Test20InsertClass Test20AspectReturn ()

{

Test20InsertClass [] test20Arr = new Test20InsertClass [1];
test20Arr [0] = new Test20InsertClass () ;

test20Arr [0]. value = "aspect”;

return test20Arr [0];

}

public class Test20InsertClass

{

public string value = 77;

public Target.Test20.Test20Target t20;

public override string ToString ()

{
}

return ”"Test20 7 + value + 7 7 +t20.targetValue;

#endregion
/o o o o o o K K K K K KK KKK R KKK KKK KKK KR KRRk ok ok o/

/x Test 21.

204

Chapter R YITHAW - An aspect weaver for .NET

x Test of:
x Change of basetype.

*/

public class Test21Class

{

public override string ToString ()

{
}

return " Aspect”;

}

/% otk ks sk ok sk stk ok KR R ok ok sk kKR Sk R sk kKRR sk ok Sk kR KR s R Sk SR koK R R SR R sk oKk R R K oK Sk ok o KR R K ok sk ok ok Kk sk ok ok ok /

/x Test 22.
x Test of:
x Implementation of interface.

*/

public class Test22Class : Test22Interface

{

public string Test22IMethod ()

{
}

public string Test22Aspect ()

{

return " Aspect”;

if (this is Test22Interface)
return this. Test22IMethod () ;

return null;

}
}

public interface Test22Interface

{
}

/*>(<>(<>(<>(<>(<****************************>(<>(<*************************************/

string Test22IMethod () ;

Test 23.

Test of:

JoinPoint API: Proceed<T>
JoinPoint API: GetTarget<T>
JoinPoint API: AccessSpecfier
JoinPoint API: Arguments
JoinPoint API: DeclaringType
JoinPoint API: IsStatic
JoinPoint API: Name
JoinPoint API: ReturnType
Use of opcode 7switch”

IS
*

¥ X X X X X X X X ¥

*/

public class Test23Class

{

public string Test23Aspect(int i)

{

switch (i)
{
case 0:
return JoinPointContext.Proceed<string>();
case 1:

205

Chapter R YITHAW - An aspect weaver for .NET

return JoinPointContext. AccessSpecifier;
case 2:
return JoinPointContext.Arguments;
case 3:
return JoinPointContext.DeclaringType;
case 4:
return JoinPointContext.IsStatic.ToString();
case 5:
return JoinPointContext .Name;
case 6:
return JoinPointContext.ReturnType;
case T:
return JoinPointContext.GetTarget<Target.Test23.Test23Target
>().ToString () ;
default:
return ”"Aspect”;

}

Target.cs - Target file for targets without external references

/1

/// This file contains the targets for all the tests, which does not use external
libraries .

/1

using System;
using System. Collections . Generic;
using System.Text;

namespace Target.Interception

{
/// <summary>
/// This class contains the targets for the tests, which only uses

interception .

/// </summary>
public class Target

{

79

public string testValue = ;

public int Testl ()

{
}

/% stk sk sk sk sk sk ok ok kR sk ok ok sk ok ok R R K oK sk ok KR R R sk SRR KRR R R sk sk koK KR R sk ok sk ok ok R R K ok sk ok ok KR K K sk ok ok ok K Kk k

*/

return 0;

public string Test2(string a)

{
}

/**

*/

return a;

public static string Test3(string a)

{

206

Chapter R YITHAW - An aspect weaver for .NET

return a;

}

/*>k*****>(<>(<>(<*****>k>k>k>k>k>k>k>k********>k>k*****>(<>(<>(<>(<*****>k>k***********************

«/

public void Test5A ()
{

Random r = new Random() ;
r.Next();

}

public int Test5B ()

{

Random r = new Random() ;
r.Next();
return 42;

}

/**

«/

internal Target Test8(string a)

{

Target t = new Target () ;
t.testValue = a;
return t;

}

/% stk sk sk sk sk sk ok kK sk ok ok sk ok ok R R R ok sk ok KR R R ok sk ok ok KR R sk sk sk ok ok KR sk ok sk ok ok R R R ok sk sk ok KR sk ok sk ok ok K K kK

*/

protected static void Test9(int i)

{
}

Console. WriteLine (" Target” + 1);

protected static void Test9B(string s)

{
}

/***>(<>(<>(<>(<>(<>(<>(<**************************>(<>(<>(<>(<********************************

«/

Console. WriteLine (” Target” + s);

public override bool Equals(object obj)

{
if (obj is Target)
return (obj as Target).testValue.Equals(testValue);
else
return base.Equals(obj);

}

/% stk sk sk sk ok sk ok ok kK sk sk ok sk ok ok K R sk ok sk sk ok ok Kk sk ok sk sk ok kK sk ok sk sk ok kK R sk ok sk sk ok K R R sk ok sk sk ok K K sk sk ok sk ok ok Kk sk ok ok ok /

namespace Target. Test10

{

public class Testl0Target

{

207

Chapter R YITHAW - An aspect weaver for .NET

public int Test10A ()

{
}

public string Testl0B(int i)

{
}

return 0;

return 77 4+ i;

}

/***/

namespace Target.Testll

{

public class TestllTarget

{

public int Testll()

{
}

return 42;

}

/*>(<>(<**************************>(<>(<>(<>(<>(<***************************************/

namespace Target.Testl2

{

public class Testl2Target

{

public int Testl2(int i)

{
}

return i;

}

/% ok ok kR ok R KK KRR R K R SRR KRR SR K SR SRR KRR SR K SR KR KR K SR K SR KR KRR K K SR KR KRR Sk K SRR K KR R K K KKK KKk ok ok ok /)

namespace Target.Testl3

{

public interface ITestl13

{

int testField

{
get;
set ;

}

public class Testl3Target : ITestl3

{

public static int a = 2;

public int testField

{
get { return a; }
set

208

Chapter R YITHAW - An aspect weaver for .NET

if (Testl3Event !=
Test13Event () ;
a = value;

null)

}

public ITest13 ReturnITest13(ITest13 t)

{
}

public int Test13Method ()
{

}

public event Testl3EventHandler Testl3Event;

return t;

return 1;

public override bool Equals(object obj)

{
if (obj is ITestl3)
return (obj as ITest13).testField = testField;

return base.Equals(obj);

}

public delegate System.EventHandler Testl3EventHandler () ;

}

[/ okt s sk sk sk ok ok kK s sk ok sk ok ok KR sk ok sk sk ok R sk sk sk sk ok K R sk ok sk sk ok oK K R R R sk sk ok oK R R ok sk sk ok ok Kk sk ok sk sk ok ok Kk sk ok ok ok /

namespace Target. Testl4

{

public class Testl4Target

{

public int Testl4()

{
}

return 1;

}

/% ok ok R ok ok koK KRR S K oK SRR KR SR K SR KRR SR K SR SRR KRR SR K SR KR KRR SR K SR KRR R Sk K KK R KR R K K KKk KKk ok ok ok /

namespace Target.Testld

{

public interface Testl15I { }

public class Testl5Target : Testl5I

{

9

public string value = ;

public Testl5Target Testl5(string a)

{
value = a;
return this;

209

Chapter R YITHAW - An aspect weaver for .NET

public override bool Equals(object obj)

{
if (obj is Testl5Target)
return (obj as Testl5Target).value.Equals(value);

return base.Equals(obj);

}

/***/

namespace Target.Test20

{

public class Test20Target

{

public string targetValue = "target”;

public string Test20 ()

{
}

return "target”;

}

public delegate System.EventHandler Test20EventHandler (object sender ,
EventArgs args);

}

/ot s sk sk sk ok ok kR ok ok sk ok ok KR R sk ok sk sk ok KR sk ok sk sk ok KR K R ok sk sk ok KRR R R sk sk ok oK K R sk ok sk sk ok ok Kk sk ok sk ok ok ok Kk sk ok ok ok /

namespace Target.Test21.ns //special namespace, to be target able by zzz.x

{

public class Test21Target

{

public string Test21Method ()

{
}

return base.ToString () ;

}

/% ok ok kR ok ok koK KRR R K R KKK R SR K SR SRR KRR SR K SR SRR KRR SR K SR KR KRR SR R Sk KR KRR Sk K KKK KR R K K KKk KK K ok ok ok /

namespace Target. Test22

{

public class Test22Target

{

public string Test22Method ()

{
}

return "Target”;

}

/oK s o ok sk ok ok KR sk ok Sk KR KRR Sk R Sk KR SRR SR R SR KR KRR SR R SR kK KRR R R SR kKRR R K sk kR K KR R K sk koK ok Kk ok ok ok /

namespace Target. Test23

{

210

Chapter R YITHAW - An aspect weaver for .NET

public class Test23Target

{

public string Test23Method (int i)

{
}

return i.ToString();

public override string ToString ()

{
}

return "TargetToString”;
/¢ S o o o o o o K K KRR R R KRR KKK R R R KRR KRR KRR KRR KRR KRR KRR KRRk Rk ok ok ok /

Target2.cs - Target file for targets with external references

s

/// This file contains the targets for all the tests, which does use external
libraries.

ez

using System;
using System. Collections . Generic;
using System.Text;

/ot s ok o ok ok ok KR sk ok Sk oK oK KRR SR R SR KR SRR SR R SR KR KRR SR R SR KR KRR SR K SR kK KRR SR K Sk kR o KR R K Sk Kok ok Kk ok ok ok /

namespace Target. Test4d

{

/// <summary>

/17

/// </summary>
public class Test4Target

{

public MyTestLib.MyType Test4A ()

{
}

public MyTestLib.MyType TestdB(string a)

{

return new MyTestLib.MyType() ;

MyTestLib.MyType returnvalue = new MyTestLib.MyType() ;
returnvalue .Name = a;
return returnvalue;

}

public MyTestLib.MyType TestdC (string a, string b)

{

MyTestLib.MyType returnvalue = new MyTestLib.MyType() ;
returnvalue.Name = a + 7 7 + b;
return returnvalue;

}

/*>(<>(<>(<*************************>(<>(<>(<>(<>(<***************************************/

namespace Target. Test6

211

Chapter R YITHAW - An aspect weaver for .NET

public class Test6Target

{
public MyTestLib.MyType Test6 (MyTestLib.MyType m)

{
}

return m;

}

/o s sk sk sk ok ok KR sk ok sk ok ok KRR Sk ok sk kR KR R R ok sk kR KR R SR R sk sk ok KRR R R oK sk ok KR R ok sk sk ok ok KR R ok Sk sk ok ok Kk sk ok ok ok /

namespace Target.Testl6

{

public class Testl6Target

{

public MyTestLib. Test16External Test16 ()

{
}

return new MyTestLib. Testl6External () ;

}

/*>(<>(<>(<***************************>(<>(<>(<***************************************/

namespace Target.Testl7

{

public class Testl7Target

{
public int Testl7(int i)

{
}

public string Testl7(string s)

{
}

public MyTestLib. Test16External Test17 (MyTestLib. Testl6External t)

{
}

public Testl7Target Testl7(Testl7Target t)

{
}

return i;

return s;

return t;

return t;

}

/o s s ok kKoK KR sk R Sk KRR R SR R SR KR SRR SR R SR KR KRR SR R SR KK KRR R K SR SRR KRR R K Sk SRR KR R K Sk kK ok KKk ok ok ok /

namespace Target. Testl8

{

public class Testl8Target

{

public void Test18()

{
}

212

Chapter R YITHAW - An aspect weaver for .NET

public int Test18int ()

{
return 42;
}
public string Test18string ()
{
return 7427 ;
}
public Testl18Target Testl8target ()
{
return new Testl8Target () ;
}
public MyTestLib. Testl6External Testl8external ()
{
return new MyTestLib. Testl6External () ;
}

}

Target3.cs - Target file for targets with references to aspect

/1

/// This file contains the targets for all the tests, which uses references to the
Aspect assemblies.

/1)

using System;

using System. Collections . Generic;
using System.Text;

namespace Target. Test7

{ public class Test7Target
{ private Aspect.AspectType Test7 ()
{
return null;
}
}
}

MyType.cs - File used as external reference

using System;
using System. Collections . Generic;
using System.Text;

namespace MyTestLib

{

public class MyType

{

private string _name = "MyType — Name”;
public string Name

{

get { return _name; }
set { _name = value; }

213

Chapter R YITHAW - An aspect weaver for .NET

public override bool Equals(object obj)

{
if (obj is MyType)
return (obj as MyType) .Name. Equals (_name) ;

return base.Equals(obj);

}

public class Testl6External

{

public string value = 77;

public override bool Equals(object obj)

{

if (obj is Testl6External)
return (obj as Testl6External).value.Equals(value);

return base.Equals(obj);

}

public delegate System.EventHandler Testl6EventHandler () ;

}
ErrorLogger.cs - The logger

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAWTester
{
/// <summary>
/// Used to store error messages and print them out when needed.

/// </summary>
public class ErrorLogger

{
private StringBuilder _sbError;
private StringBuilder _sbWarning;
private int _ErrorCounter = 0;
private int _WarningCounter = 0;

public ErrorLogger ()

{
_sbError = new StringBuilder ();
_sbWarning = new StringBuilder ();

}

/// <summary>
/// Add an error to the log.
/// </summary>
/// <param name="error”>The error to add to the log.</param>
public void AddError(string error)
{
_ErrorCounter++;
_sbError.Append (”\nERROR: 7 +error+”\n”);

/// <summary>
/// Prints the full log out on the console.out.

214

Chapter R YITHAW - An aspect weaver for .NET

/// </summary>
/// <param name="start”>A string that will be inserted at the start of the

printout.</param>
internal void Print(string start)

{

Console. WriteLine (7\n\n 7))

Console. WriteLine(start+”"\n");

Console. WriteLine (” Testing generated {0} warning(s) and {1} error(s)”,
_WarningCounter , _ErrorCounter) ;

Console. WriteLine (_sbWarning . ToString ()) ;

Console. WriteLine (_sbError. ToString());

}

/// <summary>
/// Add a warning to the log.
/// </summary>
/// <param name="warning”>The warning to add to the log.</param>
internal void AddWarning(string warning)
{
_WarningCounter++;
_sbWarning . Append ("WARNING: ” + warning + ”\n”);

215

Appendix S

Source code for YITHAW - API

JoinPointContext.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW.API

{

/// <summary>
/// The join point API. Only to be used in advice methods.

/// </summary>
public class JoinPointContext

{

/// <summary>
/// Invokes the original target method
/// </summary>
/// <typeparam name="T">The return type of the advice method</typeparam>
/// <returns>A value of the specified type</returns>
public static T Proceed<T>()
{
throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
method can only be invoked from an advice method.”);

}

/// <summary>
/// Returns a reference to object being intercepted (instance methods only
)

/// </summary>
/// <typeparam name="T">The declaring type of the target method</typeparam

>
/// <returns>An reference to the object being intercepted</returns>
public static T GetTarget<T>()
{
throw new YIIHAW. Exceptions. NotSupportedOperationException (” This
method can only be accessed from an advice method.”);

}

/// <summary>
/// Returns a string describing the declaring type (namespace and class)
of the target method

/// </summary>
public static string DeclaringType

{

get

{

216

Chapter S YITHAW - An aspect weaver for .NET

throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
property can only be accessed from an advice method.”);

}

/// <summary>
/// Returns a string describing the name of the target method

/// </summary>
public static string Name

{

get

{

throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
property can only be accessed from an advice method.”);

}

/// <summary>
/// Returns a string describing the return type of the target method

/// </summary>
public static string ReturnType

{

get

{

throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
property can only be accessed from an advice method.”);

}

/// <summary>
/// Returns a string describing the access specifier of the target method

/// </summary>
public static string AccessSpecifier

{

get

{

throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
property can only be accessed from an advice method.”);

}

/// <summary>
/// Returns a boolean indicating if the target method is static or not

/// </summary>
public static bool IsStatic

{

get

{

throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
property can only be accessed from an advice method.”);

}

/// <summary>
/// Returns a commma—seperated list of arguments of the target method

/// </summary>
public static string Arguments

{

get

{

throw new YIIHAW. Exceptions.NotSupportedOperationException (” This
property can only be accessed from an advice method.”);

217

Chapter S YITHAW - An aspect weaver for .NET

}
Void.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW.API
{

/// <summary>
/// The join point API. Use when you need to invoke Proceed() with type "void

2

/// </summary>
public class Void

{
}

private Void() { } // no instance allowed

218

Appendix T

Source code for YIITHAW -
Exceptions

Exceptions.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW. Exceptions
{
/// <summary>
/// Ezception thrown when an operation is not supported.

/// </summary>
public class NotSupportedOperationException : System.Exception

{

public NotSupportedOperationException(string message) : base(message)

{
}
}

/// <summary>
/// Ezception thrown when an illegal operation is met.

/// </summary>
public class IllegalOperationException : System.Exception

{
public IllegalOperationException (string message)
base (message)
{

}
}

/// <summary>
/// Ezception thrown when a construct could not be found.

/// </summary>
public class ConstructNotFoundException : System.Exception

{

public ConstructNotFoundException(string message)
base (message)
{

}
}

/// <summary>
/// Exzception thrown when an internal error in Yiihaw has happend.

219

Chapter T YITHAW - An aspect weaver for .NET

/// </summary>
public class InternalErrorException : System.Exception

{

public InternalErrorException (string message)
base (message)
{

}

220

Appendix U

Source code for YIIHAW - Output

OutputFormatter.cs

using System;

using System. Collections . Generic;

using System.Text;

namespace YIIHAW. Output

{

/// <summary>

/// Used for all formatting and storing the log output from the weaver.

/// </summary>

public static class OutputFormatter

{

private static
private static
private static
private static

string >();
private static

string >();
private static

LinkedList<string> _warnings = new LinkedList<string>();
string _exception = null;

string _internalException = null;

LinkedList<string> _methodsIntercepted = new LinkedList<

LinkedList<string> _methodsNotIntercepted = new LinkedList<

Dictionary<string , List<string>> _methodsIntroduced = new

Dictionary<string, List<string>>();

private static

Dictionary<string, List<string>> _propertiesIlntroduced =

new Dictionary<string, List<string>>();

private static

Dictionary<string, List<string>> _fieldsIntroduced = new

Dictionary<string, List<string>>();

private static

Dictionary<string , List<string>> _typesIntroduced = new

Dictionary <string, List<string>>();

private static

Dictionary<string, List<string>> _eventsIntroduced = new

Dictionary<string, List<string>>();

/// <summary>
/// Resets all

/// </summary>

information stored in the log.

public static void Reset ()

{

_warnings = new LinkedList<string>();

_exception = null;

_internalException = null;

_methodsIntercepted = new LinkedList<string>();
_methodsNotIntercepted = new LinkedList<string >();
_methodsIntroduced = new Dictionary<string, List<string>>();
_propertiesIntroduced = new Dictionary<string, List<string>>();
_fieldsIntroduced = new Dictionary<string, List<string>>();
_typesIntroduced = new Dictionary<string, List<string>>();

221

Chapter U YITHAW - An aspect weaver for .NET

_eventsIntroduced = new Dictionary<string, List<string>>();

}

/// <summary>

/// Add a warning to the log.

/// </summary>

/// <param name="message”™ The message to store as warning.</param>
public static void AddWarning(string message)

{
}

/// <summary>

/// Add an ezception to the log.

/// </summary>

/// <param name="message”™ The message to store as the exception.</param>
public static void AddException(string message)

{
}

/// <summary>

/// Add an internal ezception to the log.

/// Only one exception stored here, as it is expected that the program
will stop when an internal exception is added.

/// </summary>

/// <param name="message”>The message that will be stored as the internal
exception.</param>

public static void AddInternalException(string message)

{
}

/// <summary>

/// Add information about a method that has been intercepted by a given
advice .

/// </summary>

/// <param name="method”>The method that has been intercepted.</param>

/// <param name="advice”>The advice which was used in the interception.</
param>

public static void AddMethodIntercepted (string method, string advice)

{
}

/// <summary>

/// Add information about a method that matched the target part of the
pointcut ,

/// but where there was no suitable advice to use for intercepting the
method.

/// </summary>

/// <param name="method”>The method that was not intercepted.</param>

public static void AddMethodNotIntercepted (string method)

{
}

/// <summary>
/// Add information about a method that has been inserted into a target
type.

/// </summary>
/// <param name="aspect”™ The method that has been inserted.</param>

_warnings.AddLast (message) ;

_exception = message;

_internalException = message;

_methodsIntercepted.AddLast(method + ” using ” + advice);

_methodsNotIntercepted. AddLast (method) ;

222

Chapter U YITHAW - An aspect weaver for .NET

/// <param name="target”>The type that the method has been inserted into
.</param>
public static void AddMethod(string aspect, string target)
{
if (!_methodsIntroduced. ContainsKey (aspect))
_methodsIntroduced [aspect] = new List<string>();

_methodsIntroduced [aspect].Add(target);

}

/// <summary>
/// Add information about a property that has been inserted into a target
type.

/// </summary>
/// <param name="aspect”™ The property that has been inserted.</param>

/// <param name="target” The type that the property has been inserted into
.</param>
public static void AddProperty(string aspect, string target)
{
if (!_propertiesIntroduced .ContainsKey (aspect))
_propertiesIntroduced [aspect] = new List<string>();

_propertiesIntroduced [aspect].Add(target);

}

/// <summary>
/// Add information about a field that has been inserted into a target
type.

/// </summary>
/// <param name="aspect”The field that has been inserted.</param>

/// <param name="target”>The type that the field has been inserted into.</
param>
public static void AddField(string aspect, string target)
{
if (!_fieldsIntroduced.ContainsKey (aspect))
_fieldsIntroduced [aspect] = new List<string>();

_fieldsIntroduced [aspect].Add(target);

}

/// <summary>
/// Add information about an event that has been inserted into a target
type.

/// </summary>
/// <param name="aspect” The event that has been inserted.</param>

/// <param name="target”>The type that the event has been inserted into.</
param>
public static void AddEvent(string aspect, string target)
{
if (!_eventsIntroduced.ContainsKey (aspect))
_eventsIntroduced [aspect] = new List<string>();

_eventsIntroduced [aspect].Add(target);

}

/// <summary>

/// Add information about a type that has been inserted into a target type
or mamespace.

/// </summary>

/// <param name="aspect”The type that has been inserted.</param>

/// <param name="target”>The type or mamespace that the type has been
inserted into.</param>

223

Chapter U YITHAW - An aspect weaver for .NET

public static void AddType(string aspect, string target)
{
if (!_typesIntroduced. ContainsKey (aspect))
_typesIntroduced [aspect] = new List<string >();

_typesIntroduced [aspect].Add(target);

}

/// <summary>

/// Prints the logged output on the console.out.

/// </summary>

/// <param name="verbose”>A boolean indicating if the output should be
verbose (include detailed information about the weaving).</param>

public static void PrintOutput(bool verbose)

{

”

string splitter = \n”;
StringBuilder sb = new StringBuilder ();

// check if there was exzceptions logged.
if (_exception != null)
{
sb.Append (”Fatal error: 7);
sb . Append (_exception);
}
else if (_internalException != null)
{
sb.Append (”Internal error: 7);
sb.Append (_internalException);
}
else
{ // print warnings.
foreach (string warning in _warnings)
{
sb . Append ("WARNING: ") ;
sb . Append (warning) ;
sb . Append (”\n”) ;

if (_warnings.Count > 0)
sb . Append (”\n”) ;

if (verbose) // wverbose feature is selected — print detailed
information about the constructs weaved
{

// print methods intercepted.
if (_methodsIntercepted.Count > 0)
{
sb.Append ("The following methods were succesfully
intercepted: \n”);

foreach (string methodIntercepted in _methodsIntercepted)

{
sb . Append ("—) ;

sb . Append (methodIntercepted) ;
sb . Append (”\n”) ;

}

else
sb.Append (”\nNo methods were intercepted.\n”);

// print methods not intercepted.
if (_methodsNotIntercepted.Count > 0)

{

224

Chapter U YITHAW - An aspect weaver for .NET

sb.Append (”\nNo suitable advice were found for the
following methods:\n”);

foreach (string methodNotIntercepted in
_methodsNotIntercepted)

{

sb . Append ("— 7);
sb . Append (methodNotIntercepted) ;
sb. Append (”\n”);

}

//print methods introduced.
if (_methodsIntroduced.Count > 0)
{
sb . Append ("\nThe following methods were introduced:\n”);
foreach (string aspect in _methodsIntroduced.Keys)
{
sb . Append ("— 7);
sb . Append (aspect) ;
sb . Append (”\n”) ;

foreach (string target in _methodsIntroduced[aspect])

{
sb.Append ("\t at 7);

sb.Append (target) ;
sb . Append (”\n”) ;

}

else
sb . Append (”\nNo methods were introduced.\n”);

// print properties introduced.
if (_propertiesIntroduced.Count > 0)

sb.Append ("\nThe following properties were introduced:\n”)

b
foreach (string aspect in _propertiesIntroduced .Keys)

{
sb . Append ("—) ;

sb . Append (aspect) ;
sb . Append (”\n”) ;

foreach (string target in _propertiesIntroduced [aspect

1)
{

sb.Append (”\t at 7);
sb . Append (target) ;
sb . Append (”\n”) ;

}

else
sb . Append ("\nNo properties were introduced.\n”);

// print fields introduced.

if (_fieldsIntroduced.Count > 0)

{
sb.Append ("\nThe following fields were introduced:\n”);
foreach (string aspect in _fieldsIntroduced .Keys)

{
sb . Append ("— 7);

225

Chapter U YITHAW - An aspect weaver for .NET

sb . Append (aspect) ;
sb. Append (”\n”);

foreach (string target in _fieldsIntroduced [aspect])

{
sb.Append (”\t at 7);
sb . Append (target) ;
sb . Append (”\n”);
}
}
}
else

sb.Append (”\nNo fields were introduced.\n”);

// print events introduced.
if (_eventsIntroduced.Count > 0)
{
sb.Append ("\nThe following events were introduced:\n”);
foreach (string aspect in _eventsIntroduced.Keys)
{
sb . Append ("— 7);
sb . Append (aspect) ;
sb . Append (”\n”) ;

foreach (string target in _eventsIntroduced [aspect])

{
sb.Append ("\t at ”);

sb . Append (target) ;
sb . Append (”\n”) ;

}

else
sb . Append (”\nNo events were introduced.\n”);

// print types introduced.
if (_typesIntroduced.Count > 0)

sb.Append ("\nThe following classes and interfaces were
introduced:\n”);
foreach (string aspect in _typesIntroduced.Keys)

{
sb . Append ("—) ;

sb . Append (aspect) ;
sb . Append ("\n”) ;

foreach (string target in _typesIntroduced[aspect])

{
sb.Append (”\t at ”);

sb.Append (target) ;
sb . Append ("\n”) ;

}

else
sb.Append (”\nNo classes or interfaces were introduced.\n”)

)

sb.Append (”\n” + splitter);

226

Chapter U YITHAW - An aspect weaver for .NET

// print the total number of methods that were intercepted
sb.Append (”Methods intercepted: 7);

sb . Append (_methodsIntercepted . Count) ;

sb . Append (”\n”) ;

// print number of methods that was targeted, but was not
intercepted

sb . Append (”Methods targeted , but not intercepted: 7);

sb . Append (_methodsNotIntercepted.Count) ;

sb . Append (”\n”) ;

// print number of methods introduced
sb . Append (_methodsIntroduced . Count) ;

sb.Append (” method(s) were introduced at 7);
sb.Append (Totallntroductions (_methodsIntroduced));
sb.Append (” location(s).\n”);

// print number of properties introduced
sb.Append (_propertiesIntroduced . Count) ;

sb.Append(” properties were introduced at 7);
sb.Append (Totallntroductions (_propertiesIntroduced));
sb.Append (” location(s).\n”);

// print number of fields introduced
sb.Append (_fieldsIntroduced . Count) ;

sb.Append(” field (s) were introduced at ”);
sb. Append (Totallntroductions (_fieldsIntroduced));
sb.Append (” location(s).\n”);

// print number of events introduced

sb.Append (_eventsIntroduced . Count) ;

sb.Append(” event(s) were introduced at ”);
sb.Append (Totallntroductions (_eventsIntroduced));
sb.Append (” location(s).\n”);

// print number of classes and interfaces introduced
sb.Append (_typesIntroduced . Count) ;

sb.Append(” class(es) or interface(s) were introduced at 7);
sb.Append (Totallntroductions (_typesIntroduced));
sb.Append(” location(s).\n”);

// print number of errors and warnings
sb.Append (splitter);
sb . Append (_warnings . Count) ;
sb.Append (” warning(s)”);

}

Console. WriteLine (sb. ToString ()) ;

}

/// <summary>

/// Calculate the total number of a certain type of introductions.

/// </summary>

/// <param name="dictionary”>A dictionary containing the log information
about the introduction type.</param>

/// <returns>The number of times the type of introduction has happend.</
returns>

private static int Totallntroductions(Dictionary<string, List<string>>
dictionary)

{

int total = 0;

foreach (List<string> list in dictionary.Values)
total 4= list .Count;

227

Chapter U YITHAW - An aspect weaver for .NET

return total;

}

/// <summary>
/// Given a name of a type, the types short form is returned.
/// There will only be a change between the parameter and the return value
, when the type
/// is one of the primitive types in .NET, and it is specified in its long
form e.g. System.Int32
/// </summary>
/// <param name="type”>The name of the type.</param>
/// <returns>The possible shorter form of the type.</returns>
public static string GetTypeShortFormat(string type)
{
switch (type)
{
case ”System.Byte”:
return "byte”;
case ”System.SByte”:
return "sbyte”;
case ”System.Int32”:
return "int”;
case ”System.UlInt32”:
return "uint”;
case ”System.Int16”:
return ”"short”;
case ”System.UlIntl16”:
return "ushort”;
case ”System.Int64”:
return ”long”;
case ”System.UInt64”:
return "ulong”;
case ”System. Single”:
return ”float”;
case ”System.Double”:
return "double”;
case ”System.Char”:
return ”"char”;
case ”System.Boolean
return "bool”;
case ”System.Object”:
return "object”;
case ”System.String”:
return "string”;
case ”System.Decimal”:
return "decimal”;
case ”System.Void”:
return "void”;
default :
return type;

” .

228

Appendix V

Source code for YIIHAW - Pointcut

Tokenizer.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW. Pointcut. LexicalAnalysis
{
/// <summary>
/// Splits a string into lexical tokens.

/// </summary>
public class Tokenizer

{
/// <summary>
/// Determines the type of token just encountered. Possible values are
(End Of File), WORD (string literal) or NUMBER (integer).
/// </summary>
public enum TokenType { EOF, WORD, NUMBER };

private string _str;

private int _index = O0;

private TokenType _tokentype = TokenType.EOF;
private string _sval = 77;

private int _nval = 0;

private LinkedList<char> _seperators;

/// <summary>
/// Creates an instance of the Tokenizer class.
/// </summary>
/// <param name="str”>The string to tokenize.</param>
public Tokenizer (string str)
{
_seperators = new LinkedList<char>();
_str = str;

Next (); // fetch the first token

/// <summary>
/// When a WORD token is encountered, this property contains the string
value of the token.

/// </summary>
public string Sval

{

get

{

229

EOF

Chapter V YITHAW - An aspect weaver for .NET

return _sval;

}

/// <summary>
/// When a NUMBER token is encountered, this property contains the integer
value of the token.

/// </summary>
public int Nval

{

get

{
}

return _nval;

}

/// <summary>
/// The type of token just encountered.

/// </summary>
public TokenType Token

{

get

{
}

return _tokentype;

}

/// <summary>

/// Adds a seperator wvalue. Seperator wvalues will be ezxtracted from the
input string and returned as a token even if these seperators are not
enclosed by whitespace characters.

/// </summary>

/// <param name="seperator”>The seperator value to extract from the input
string.</param>

public void AddSeperator (char seperator)

{
}

/// <summary>
/// Fetches the next token from the input string.

/// </summary>
public void Next ()

{

_seperators.AddLast(seperator);

if ((_-index + 1) > _str.Length)
_tokentype = TokenType.EOF;
else
{
// skip ahead to the first non—whitespace character
while (_index < _str.Length && _str[_index].Equals(’ 7))
_index++;

// first character found — find the next token

int startindex = _index;

while (_index < _str.Length && !(_str[_index].Equals(’ ’) ||
IsASeperator(_str[_index])))

_index++;

if (startindex = _index) // index wvariable has not been
incremented — this means that the current token is a seperator
— dncrement the index wvariable by 1 and continue
_index++;

230

Chapter V YITHAW - An aspect weaver for .NET

// fetch token

string token = _str.Substring(startindex , _index — startindex);

// token has been found — check the token type

if (int.TryParse(token, out _nval)) // token is a number
_tokentype = TokenType .NUMBER,;

else // token is a word

{
_tokentype = TokenType.WORD;
_sval = token;

}

/// <summary>

/// Determines if a given character in the input string is a seperator.

/// </summary>

/// <param name="c”>The character to check.</param>

/// <returns>A boolean indicating whether the character is a seperator or
not.</returns>

private bool IsASeperator(char c¢)

{
foreach (char seperator in _seperators)
if (c.Equals(seperator))
return true;
return false;
}
}
}
Scanner.cs

using System;

using System. Collections . Generic;
using System.Text;

using System .IO;

namespace YIIHAW. Pointcut. LexicalAnalysis

{

/// <summary>
/// Scans the contents of a file and identifies keywords.

/// </summary>
public class Scanner

{

/// <summary>

/// Determines the type of token just encountered.

/// </summary>

public enum TokenType { EOF, EOS, AROUND, INSERT, MODIFY, PUBLIC, PRIVATE,
PROTECTED, INTERNAL, STATIC, INSTANCE, ANY, VOID, NAME, COMMA, COLON,
PAROPEN, PARCLOSE, INHERITS, DO, CLASS, INTERFACE, METHOD, PROPERTY,
DELEGATE, FIELD, INTO, IMPLEMENT, EVENT, ENUM, ATTRIBUTE };

private Tokenizer _tokenizer;
private TokenType _tokentype;

. . oy,
private string _sval = ;

/// <summary>
/// Creates an instance of the Scanner class.

231

Chapter V

YITHAW - An aspect weaver for .NET

/// </summary>

/// <param name="filename”> The name of the input file.</param>
public Scanner(string filename)

{

string input = 77

try

{

using (StreamReader reader = new StreamReader (filename))
while (!reader.EndOfStream)
{
string line = reader.ReadLine();
if (!line.StartsWith(”//7))
input += line.Trim();

}

catch (IOException)
{

throw new YIIHAW. Pointcut.Exceptions.InputFileNotFoundException (”

Error opening file: ”

}

_tokenizer
_tokenizer
_tokenizer
_tokenizer
_tokenizer
_tokenizer

= new Tokenizer (input);
.AddSeperator (’:)
.AddSeperator ()
.AddSeperator (7(’);
()7
("7

’
.
)

.AddSeperator ()"’
. AddSeperator (’,’

I

)

)

DetermineTokenType () ;

}

/// <summary>
/// When a NAME token
value of the token.

/// </summary>
public string Sval

{

is encountered ,

get

{
}

return _sval;

}

/// <summary>
/// The type of token just encountered.

/// </summary>
public TokenType Token

{

get

{
}

return _tokentype;

}

/// <summary>
/// Fetches the next token.

/// </summary>
public void Next ()

{

+ filename);

this property contains the string

if (_tokenizer.Token != Tokenizer.TokenType.EOF) // end—of—file has

not been reached yet

232

Chapter V YITHAW - An aspect weaver for .NET

_tokenizer.Next(); // fetch next token

DetermineTokenType() ;

}

/// <summary>
/// Reads the

/// </summary>
private void DetermineTokenType ()

{

last token that was fetched and determines its type.

if (_tokenizer.Token = Tokenizer.TokenType.EOF)
_tokentype = TokenType.EOF;
else if (_tokenizer.Token Tokenizer . TokenType .WORD)

{

switch (_tokenizer.Sval)

{

case 7;7:

_tokentype =
break;
”around” :
_tokentype =
break;
”insert”:
_tokentype =
break;
case "modify”:
_tokentype =
break;
case “public”:
_tokentype =
break;
case ”"private”:
_tokentype =
break;

case

case

case "protected”:

_tokentype =
break;
7internal”:
_tokentype =
break;
7static”:
_tokentype =
break;
”instance”:
_tokentype =
break;
case "x7:
_tokentype =
break;
?void”:
_tokentype =
break;
case 7 ,7:
_tokentype =
break;

M.,

case

case

case

case

case
_tokentype =
break;

case " (7:
_tokentype =

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType.

TokenType.

TokenType.

TokenType

TokenType

233

.EOS;

.AROUND;

.INSERT;

.MODIFY;

.PUBLIC;

.PRIVATE;

.PROTECTED;

.INTERNAL;

.STATIC;

.INSTANCE;;

.COLON;;

.PAROPEN;;

Chapter V

YITHAW - An aspect weaver for .NET

}

Parser.cs

using System;

break;
case 7)7:
_tokentype
break;
case
case ”inherit”:
_tokentype
break;
7do”:
_tokentype
break;
?class”:
_tokentype
break;
”interface
_tokentype
break;
”method” :
_tokentype
break;

case

case

case

case

Pinherits”:

TokenType

TokenType

TokenType

TokenType

”» .

case "property”:

_tokentype
break;
case
_tokentype

break;
7field”:
_tokentype
break;
”into”:
_tokentype
break;

case

case

?delegate”:

TokenType

TokenType

TokenType

TokenType

TokenType

TokenType

case “implement”:
case “implements”:
_tokentype = TokenType

break;

case “event”:

_tokentype = TokenType.

break;
case “enum”:
case
_tokentype
break;
7attribute
_tokentype
break;
default:

_tokentype

case

”enumeration” :

TokenType

” .

TokenType

TokenType

.PARCLOSE;;

.INHERITS;

.DO;

.CLASS;

.INTERFACE;

.METHOD;

.PROPERTY

.DELEGATE;

.FIELD

.INTO;

.IMPLEMENT;

.ENUM;

.ATTRIBUTE;;

NAME;

_sval = _tokenizer.Sval;

break;

using System. Collections . Generic;

using System.Text;

234

Chapter V YITHAW - An aspect weaver for .NET

namespace YIIHAW. Pointcut
{
/// <summary>
/// Determines the access specifier.
/// </summary>
public enum AccessEnum { PUBLIC, PRIVATE, PROTECTED, INTERNAL, ANY,
NOTAVAILABLE }:

/// <summary>
/// Determines the member type (static, instance, x)

/// </summary>
public enum InvocationKindEnum { STATIC, INSTANCE, ANY, NOTAVAILABLE };

/// <summary>
/// Determines the type of return wvalue (void, %, specific).

/// </summary>
public enum ReturnTypeEnum { VOID, ANY, SPECIFIC, NOTAVAILABLE };

/// <summary>
/// Determines the type of argument (none, x, specific).

/// </summary>
public enum ArgTypeEnum { NONE, ANY, SPECIFIC };

/// <summary>
/// Determines the type of inheritance requirement (*, specific).

/// </summary>
public enum InheritTypeEnum { ANY, SPECIFIC };

/// <summary>
/// Determines the type of insert statement.

/// </summary>
public enum InsertTypeEnum { CLASS, METHOD, DELEGATE, FIELD, PROPERTY, EVENT,

ENUM, ATTRIBUTE };

/// <summary>
/// Determines the type of modify statement

/// </summary>
public enum ModifyTypeEnum { INHERIT, IMPLEMENT };

/// <summary>
/// Stores information for an around pointcut.

/// </summary>
public struct Around

{
private AccessEnum _access;
private InvocationKindEnum _invocationKind;
private ReturnType _returnType;
private string _targetType;
private Method _targetMethod;
private Inherit _inherit;
private string _adviceType;
private string _adviceName;

/// <summary>
/// Creates an instance of the Around struct.

/// </summary>
public Around(AccessEnum access, InvocationKindEnum invocationKind ,

ReturnType returnType, string targetType, Method targetMethod, Inherit
inherit , string adviceType, string adviceName)

—access = access |

235

Chapter V YITHAW - An aspect weaver for .NET

_invocationKind = invocationKind;
_returnType = returnType;
_targetType = targetType;
_targetMethod = targetMethod;

_inherit = inherit;
_adviceType = adviceType;
_adviceName = adviceName;

}

/// <summary>
/// The access specifier.

/// </summary>
public AccessEnum Access

{

get

{
}

return _access;

}

/// <summary>
/// The member type (instance, static, any).

/// </summary>
public InvocationKindEnum InvocationrType

{

get

{
}

return _invocationKind;

}

/// <summary>
/// The return type of the target type.

/// </summary>
public ReturnType ReturnType

{

get

{
}

return _returnType;

}

/// <summary>
/// The target type (namespace and class).

/// </summary>
public string TargetType

{

get

{
}

return _targetType;

}

/// <summary>
/// The target method.

/// </summary>
public Method TargetMethod

{

get

{
}

return _targetMethod;

236

Chapter V

}

/// <summary>
/// The inheritance constraint.

/// </summary>
public Inherit Inherit

{
get
{
return _inherit;
}
}

/// <summary>
/// The advice type (mamespace and class).

/// </summary>
public string AdviceType

{
get
{
return _adviceType;
}
}

/// <summary>
/// The advice method.

/// </summary>
public string AdviceName

{
get
{
return _adviceName;
}
}

/// <summary>
/// A textual representation of the around pointcut.

/// </summary>
public override string ToString ()

{
StringBuilder sb = new StringBuilder () ;
sb . Append (7around 7);
sb.Append (_access . ToString());
sb.Append (”) ;
sb.Append(_invocationKind . ToString ());
sb.Append (”) ;
sb . Append (- returnType ToString ());
sb.Append (”) ;
sb . Append (- targetType)
sb. Append (7:”);
sb . Append (targetMethod ToString ());
sb.Append (” ”);
sb.Append(_inherit.ToString());
sb.Append(” do 7);
sb . Append (_ adv1ceType)
sb.Append (7:7);
sb . Append (_ advmeName)
sb.Append(”;”);
return sb. ToStrlng();

}

237

YITHAW - An aspect weaver for .NET

Chapter V YITHAW - An aspect weaver for .NET

/// <summary>
/// Stores information for an insert pointcut.

/// </summary>
public struct Insert

{
private InsertTypeEnum _insertType;
private AccessEnum _access;
private InvocationKindEnum _invocationKind;
private ReturnType _returnType;
private string _type;
private string _name;
private Method _method;
private string _targetType;

/// <summary>

/// Creates an instance of the Insert struct.

/// </summary>

public Insert (InsertTypeEnum insertType, AccessEnum access,
InvocationKindEnum invocationKind , ReturnType returnType, string type,
string name, string targetType)

_insertType = insertType;

_access = access;

_invocationKind = invocationKind;
_returnType = returnType;

-type = type;

_name = name;

_method = new Method(); // default value
_targetType = targetType;

}

/// <summary>

/// Creates an instance of the Insert struct.

/// </summary>

public Insert (InsertTypeEnum insertType, AccessEnum access,
InvocationKindEnum invocationKind, ReturnType returnType, string type,
Method method, string targetType)

_insertType = insertType;

_access = access;

_invocationKind = invocationKind;
_returnType = returnType;

-type = type;

_name = ""; // default value
_method = method;

_targetType = targetType;

}

/// <summary>
/// Creates an instance of the Insert struct.
/// </summary>
public Insert (InsertTypeEnum insertType, string type, string targetType)
{
_insertType = insertType;
_access = AccessEnum .NOTAVAILABLE; // default value
_invocationKind = InvocationKindEnum .NOTAVAILABLE; // default wvalue
_returnType = new ReturnType (ReturnTypeEnum .NOTAVAILABLE, ””); //
default value
-type = type;
_name = 77; // default value
_method = new Method(); // default wvalue
_targetType = targetType;

238

Chapter V YITHAW - An aspect weaver for .NET

}

/// <summary>
/// The type of introduction.

/// </summary>
public InsertTypeEnum InsertType

{
get
{
return _insertType;
}
}

/// <summary>
/// The access specifier.

/// </summary>
public AccessEnum Access

{

get

{
}

return _access;

}

/// <summary>
/// The member type (instance, static, any).

/// </summary>
public InvocationKindEnum InvocationKind

{

get

{
}

return _invocationKind;

}

/// <summary>
/// The return type of the target.

/// </summary>
public ReturnType ReturnType

{

get

{
}

return _returnType;

}

/// <summary>
/// The aspect type.

/// </summary>
public string Type

{
get
{
return _type;
}
}

/// <summary>
/// The aspect name.

/// </summary>
public string Name

{

239

Chapter V YITHAW - An aspect weaver for .NET

get

{
}

return _name;

}

/// <summary>
/// The aspect method.

/// </summary>
public Method Method

{
get
{
return _method;
}
}

/// <summary>
/// The target type.

/// </summary>
public string TargetType

{
get
{
return _targetType;
}
}

/// <summary>
/// A textual representation of the insert pointcut.

/// </summary>
public override string ToString ()

{

StringBuilder sb = new StringBuilder ();

sb.Append (”insert 7);

sb.Append(,lnsertType ToString ());

sb.Append (”) ;

sb.Append (_access . ToString());

sb.Append (”) ;

sb . Append (_invocationKind . ToString ()) ;

sb. Append (”) ;

sb . Append (_ returnType ToString ());

sb.Append (”) ;

sb.Append (_type);

if (|| _insertType =
InsertTypeEnum .METHOD)
sb.Append(”:” + _method. ToString());

else if(_insertType = InsertTypeEnum .FIELD || _insertType =—
InsertTypeEnum .PROPERTY)
sb.Append(”:” 4+ _name);

sb.Append (” into 7);

sb . Append (_targetType) ;

return sb.ToString () ;

}

}

/// <summary>
/// Stores information for a modify pointcut.

/// </summary>
public struct Modify

{

private string _targetType;

240

Chapter V YITHAW - An aspect weaver for .NET

private ModifyTypeEnum _modifyType;
private string _inheritType;

/// <summary>
/// Creates an instance of the Modify struct.

/// </summary>
public Modify (string targetType, string inheritType)

{
_targetType = targetType;
_modifyType = default (ModifyTypeEnum) ;
_inheritType = inheritType;

}

/// <summary>

/// Creates an instance of the Modify struct.

/// </summary>

public Modify (string targetType, ModifyTypeEnum modifyType, string
inheritType)

{
_targetType = targetType;
_modifyType = modifyType;
_inheritType = inheritType;
}

/// <summary>
/// The target type.

/// </summary>
public string TargetType

{
get
{
return _targetType;
}
}

/// <summary>
/// The modify type.

/// </summary>
public ModifyTypeEnum ModifyType

{
get
{
return _modifyType;
}
}

/// <summary>
/// The aspect type.

/// </summary>
public string InheritType

{
get
{
return _inheritType;
}
}

/// <summary>
/// A textual representation of the modify pointcut.

/// </summary>
public override string ToString ()

{

241

Chapter V

YITHAW - An aspect weaver for .NET

}

return "modify ” + _targetType + ” inherit ” 4+ _inheritType +

/// <summary>

/// Stores information related to the returntype of a method,
or property.

/// </summary>
public struct ReturnType

{

}

private ReturnTypeEnum _type;
private string _specificType;

/// <summary>
/// Creates an instance of the ReturnType struct.

/// </summary>
public ReturnType(ReturnTypeEnum type, string specificType)

{
_type = type;
_specificType = specificType;

}

/// <summary>
/// A description of the return type.

/// </summary>
public ReturnTypeEnum Type

{

get

{
}

return _type;

}

/// <summary>

/// The return type (for mon—wvoid and non—any return type only).

/// </summary>
public string SpecificType

{

get

{
}

return _specificType;

}

/// <summary>
/// A textual representation of the return type.

/// </summary>
public override string ToString()

{

if (_type = ReturnTypeEnum.ANY)
return "x”;

else if (_type = ReturnTypeEnum.VOID)
return ”"void”;

else
return _specificType;

/// <summary>

/// Stores information for a list

/// </summary>

242

” L,
PR

delegate , field

of arguments for a method or delegate.

Chapter V YITHAW - An aspect weaver for .NET

public struct ArgumentList

{

private ArgTypeEnum _arg_type;
private ICollection<string> _arguments;

/// <summary>
/// Creates an instance of the ArgumentList struct.

/// </summary>
public ArgumentList (ArgTypeEnum arg_type, ICollection<string> arguments)

{
_arg_type = arg_type;
_arguments = arguments;

}

/// <summary>
/// The type of argument.

/// </summary>
public ArgTypeEnum ArgumentType

{

get

{
}

return _arg_type;

}

/// <summary>
/// The collection of arguments.

/// </summary>
public ICollection<string> Arguments

{

get

{
}

return _arguments;

}

/// <summary>
/// Stores information for a method.

/// </summary>
public struct Method

{

private string _name;
private ArgumentList _argumentList;

/// <summary>
/// Creates an instance of the Method struct.

/// </summary>
public Method(string name, ArgumentList argumentList)

{

_name = name;
_argumentList = argumentList;

}

/// <summary>
/// The name of the method.

/// </summary>
public string Name

{

get

{

return _name;

243

Chapter V

}

}

/// <summary>
/// The list of arguments.

/// </summary>
public ArgumentList ArgumentList

{

get

{
}

return _argumentList;

}

/// <summary>
/// A textual representation of the method.

/// </summary>
public override string ToString()

{
if (_argumentList.ArgumentType =— ArgTypeEnum.ANY)
return _name + 7 (x*)7;
else if (_argumentList.ArgumentType = ArgTypeEnum.SPECIFIC)

{

string output = ”77;

bool first = true;
foreach (string argument in _argumentList.Arguments)

{

if (!first)
output 4= 7,7;
first = false;

output 4= argument;

}

return _name + ”(” + output + ”)”;

}

else
return _name + " ()”7;

/// <summary>
/// Stores information for an inheritance specification.

/// </summary>
public struct Inherit

{

private InheritTypeEnum _inheritType;
private ModifyTypeEnum _modifyType;
private string _specificType;

/// <summary>
/// Creates an instance of the Inherit struct.

/// </summary>
public Inherit (InheritTypeEnum inheritType, string specificType)

{
_inheritType = inheritType;
_modifyType = default (ModifyTypeEnum) ;
_specificType = specificType;

}

/// <summary>
/// Creates an instance of the Inherit struct.

/// </summary>

244

YITHAW - An aspect weaver for .NET

Chapter V YITHAW - An aspect weaver for .NET

public Inherit (InheritTypeEnum inheritType, ModifyTypeEnum modifyType,
string specificType)

{
_inheritType = inheritType;
_modifyType = modifyType;
_specificType = specificType;
}

/// <summary>
/// The type of inheritance specification.

/// </summary>
public InheritTypeEnum InheritType

{

get

{

return _inheritType;

}
}
public ModifyTypeEnum ModifyType
{

get

{

return _modifyType;

}
}

/// <summary>

/// The specific type (if any).
/// </summary>

public string SpecificType

{

get

{
}

return _specificType;

}

/// <summary>
/// A textual representation of the inheritance specification.

/// </summary>
public override string ToString ()

{

if (_inheritType = InheritTypeEnum .ANY)
return "inherits %7
else

return ”inherits 7

+ _specificType;

}

/// <summary>

/// Interface for parsing an input file.
/// </summary>

public interface IParser

{

void Parse();

ICollection <Around> AroundStatements { get; }
ICollection<Insert> InsertStatements { get; }
ICollection <Modify> ModifyStatements { get; }

}

/// <summary>

245

Chapter V YITHAW - An aspect weaver for .NET

/// Parses an input file and creates Around, Insert and Modify structs for
describing the pointcuts found.

/// </summary>
public class Parser : IParser

{
private LexicalAnalysis.Scanner _scanner;
private ICollection <Around> _aroundStatements;
private ICollection<Insert> _insertStatements;
private ICollection <Modify> _modifyStatements;
private int _statementNumber = 0;

/// <summary>

/// Creates an instance of the parser.

/// </summary>

/// <param name="scanner”>A scanner instance that can be used for
retrieving tokens from the input file.</param>

public Parser(LexicalAnalysis.Scanner scanner)

{
_scanner = scanner,
_aroundStatements = new LinkedList<Around>();
_insertStatements = new LinkedList<Insert >();
_modifyStatements = new LinkedList<Modify >();

}

/// <summary>
/// A grammar method. Parses the first token found.

/// </summary>
protected void Start ()

{

_statementNumber-++;

switch (_scanner.Token)
{
case LexicalAnalysis.Scanner.TokenType.AROUND:
_scanner . Next () ;
Around () ;
break;
case LexicalAnalysis.Scanner.TokenType.INSERT:
_scanner . Next () ;
Insert () ;
break;
case LexicalAnalysis.Scanner.TokenType.MODIFY:
_scanner . Next () ;
Modify () ;
break;
default:
throw new Exceptions.ParseError (”Expected ’around’, ’insert’
or ’modify’, but found ” 4+ TokenAsString());

}

if (_scanner.Token != LexicalAnalysis.Scanner.TokenType.EOF) // more
tokens are available — continue
Start (); // parse the next statement

}

/// <summary>
/// A grammer method. Parses an around statement.

/// </summary>
protected void Around ()

{

AccessEnum access = Access(); // parse the access specified
InvocationKindEnum invocationKind = InvocationKind (); // parse the

246

Chapter V YITHAW - An aspect weaver for .NET

invocation kind (instance, static, %)
ReturnType returnType = ReturnType(); // parse the return type
string type = Name(); // parse the target type (mamespace + class name

)

CheckColon () ;

Method method = Method(); // parse the method (including any specified
arguments)

Inherit inherit = Inherit(); // parse the inherits specification (if
any)

CheckDo () ;

string adviceType = ForcedName(); // parse the advice type (namespace
+ class name)

CheckColon () ;

string adviceMethod = ForcedName(); // parse the advice method

CheckEOS () ;

// store this around statement
_aroundStatements.Add(new Around(access, invocationKind, returnType,
type, method, inherit, adviceType, adviceMethod));

}

/// <summary>
/// A grammar method. Parses an insert statement.

/// </summary>
protected void Insert ()

{
Insert insert = Introduction ();
CheckEOS () ;
_insertStatements.Add(insert);

}

/// <summary>
/// A grammar method. Parses a modify statement.

/// </summary>
protected void Modify ()

{
string targetType = ForcedName () ;
Inherit inherit = ForcedInherit();
CheckEOS () ;

_modifyStatements.Add(new Modify (targetType, inherit.ModifyType,
inherit.SpecificType));

}

/// <summary>

/// A grammar method. Parses an access specifier (which is optional).

/// </summary>

/// <returns>An AccessEnum that describes the access specifier found.</
returns>

protected AccessEnum Access ()

{

switch (_scanner.Token)
{
case LexicalAnalysis.Scanner.TokenType.PUBLIC:
_scanner .Next(); // fetch nexzt token
return AccessEnum .PUBLIC;
case LexicalAnalysis.Scanner.TokenType.PRIVATE:
_scanner .Next(); // fetch nexzt token
return AccessEnum .PRIVATE;
case LexicalAnalysis.Scanner.TokenType .PROTECTED:
_scanner .Next(); // fetch nexzt token
return AccessEnum .PROTECTED;

247

Chapter V YITHAW - An aspect weaver for .NET

case LexicalAnalysis.Scanner.TokenType .INTERNAL:
_scanner .Next(); // fetch nexzt token
return AccessEnum .INTERNAL;
case LexicalAnalysis.Scanner.TokenType.ANY:
_scanner .Next(); // fetch nexzt token
return AccessEnum .ANY;
default:
throw new Exceptions.ParseError(”Expected ’'public’, ’private’,
"protected ’, ’internal’ or ’x’, but found ” +
TokenAsString ()) ;

}

/// <summary>
/// A grammar method. Parses an introduction statement.

/// </summary>
/// <returns>An Insert struct describing the insert statement.</returns>

protected Insert Introduction ()

{

if (_scanner.Token =— LexicalAnalysis.Scanner.TokenType.CLASS ||
_scanner .Token = LexicalAnalysis.Scanner.TokenType .INTERFACE ||
_scanner.Token = LexicalAnalysis.Scanner.TokenType .ENUM ||
_scanner . Token = LexicalAnalysis.Scanner.TokenType.ATTRIBUTE)

return Typelntro();
else if(_scanner.Token = LexicalAnalysis.Scanner.TokenType .PROPERTY

|| -scanner.Token = LexicalAnalysis.Scanner.TokenType.FIELD ||

_scanner.Token = LexicalAnalysis.Scanner.TokenType . EVENT ||

_scanner.Token = LexicalAnalysis.Scanner.TokenType METHOD ||

_scanner . Token =— LexicalAnalysis.Scanner.TokenType.DELEGATE)

return MemberlIntro () ;

else

throw new Exceptions.ParseError (”Expected ’class’, ’interface’, ’

property ', ’field >, ’event’, ’'method’ or ’delegate’, but found

7 + TokenAsString());
}

/// <summary>
/// A grammar method. Parses a typeintro (class or interface).

/// </summary>
/// <returns>An insert struct describing the insert statement.</returns>
protected Insert Typelntro ()
{
InsertTypeEnum insertType;
insertType = TypeConstruct () ;

string type = ForcedName(); // parse the type
CheckInto () ;

string targetType = Name(); // parse the target type
return new Insert (insertType, type, targetType);

}

/// <summary>
/// A grammar method. Check if the current token is a wvalid type (class,

enum or attribute).

/// </summary>

/// <returns>An InsertTypeEnum describing the kind of type specified.</
returns>

protected InsertTypeEnum TypeConstruct ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.CLASS ||
_scanner . Token =— LexicalAnalysis.Scanner.TokenType.INTERFACE)

{

248

Chapter V YITHAW - An aspect weaver for .NET

_scanner . Next () ;
return InsertTypeEnum .CLASS;

}
else if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.ATTRIBUTE

)
{

_scanner . Next () ;

return InsertTypeEnum .ATTRIBUTE;
}

else if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .ENUM)
{

_scanner . Next () ;

return InsertTypeEnum .ENUM;

}

else // invalid type of construct specified by the user
throw new Exceptions.ParseError(”Expected ’class’, ’interface’, ’

enum’ or ’attribute’, but found ” 4+ TokenAsString());

}

/// <summary>

/// A grammar method. Parses a memberintro (method, delegate, field of
property).

/// </summary>

/// <returns>An insert struct describing the insert statement.</returns>

protected Insert MemberIntro()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .PROPERTY ||
_scanner.Token = LexicalAnalysis.Scanner.TokenType.FIELD ||
_scanner .Token = LexicalAnalysis.Scanner.TokenType .EVENT) // this

is a property, field or event insert statement

InsertTypeEnum insertType = MemberConstruct () ;
AccessEnum access = Access () ;

InvocationKindEnum invocationKind = InvocationKind () ;
ReturnType returnType = ReturnType() ;

string type = ForcedName () ;

CheckColon () ;

string name = ForcedName () ;

CheckInto () ;

string targetType = Name() ;

return new Insert (insertType, access, invocationKind, returnType,
type, name, targetType);

else

InsertTypeEnum insertType = MemberConstructWithArg () ;
AccessEnum access = Access () ;

InvocationKindEnum invocationKind = InvocationKind () ;
ReturnType returnType = ReturnType () ;

string type = ForcedName () ;

CheckColon () ;

Method method = ForcedMethod () ;

ChecklInto () ;

string targetType = Name() ;

return new Insert (insertType, access, invocationKind, returnType,
type, method, targetType);

}

/// <summary>

249

Chapter V YITHAW - An aspect weaver for .NET

/// A grammar method. Parses a memberconstruct (either 7field”, "property
7 or "event”).

/// </summary>

/// <returns>An InsertTypeEnum describing the kind of construct found.</
returns>

protected InsertTypeEnum MemberConstruct ()

{

if (_scanner.Token =— LexicalAnalysis.Scanner.TokenType.PROPERTY)

_scanner . Next () ;
return InsertTypeEnum .PROPERTY;

}

else if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.FIELD)
{

_scanner . Next () ;

return InsertTypeEnum .FIELD;

}

else if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .EVENT)
{
_scanner .Next () ;
return InsertTypeEnum .EVENT;
}
else
throw new Exceptions.ParseError (”Expected ’property’, ’event’ or
field ’, but found ” 4+ TokenAsString());

)

}

/// <summary>

/// A grammar method. Parses a memberconstructwitharg (either ”“method” or
7delegate”).

/// </summary>

/// <returns>An InsertTypeEnum describing the kind of construct found.</
returns>

protected InsertTypeEnum MemberConstructWithArg ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .METHOD)

_scanner . Next () ;
return InsertTypeEnum .METHOD;

}

else if (_scanner.Token =— LexicalAnalysis.Scanner.TokenType.DELEGATE)
{
_scanner . Next () ;
return InsertTypeEnum .DELEGATE;
}
else
throw new Exceptions.ParseError (”Expected ’method’ or ’delegate’,
but found 7 + TokenAsString());

}

/// <summary>

/// A grammar method. Parses an invocation kind (static, instance or x).
The invocation kind is optional.

/// </summary>

/// <returns>An InvocationKindEnum describing the invocation kind.</
returns>

protected InvocationKindEnum InvocationKind ()

{

switch (_scanner.Token)

{

case LexicalAnalysis.Scanner.TokenType.STATIC:
_scanner.Next(); // fetch next token

250

Chapter V YITHAW - An aspect weaver for .NET

return InvocationKindEnum .STATIC;
case LexicalAnalysis.Scanner.TokenType.INSTANCE:
_scanner .Next(); // fetch next token
return InvocationKindEnum .INSTANCE;
case LexicalAnalysis.Scanner.TokenType.ANY:
_scanner .Next(); // fetch next token
return InvocationKindEnum .ANY;
default:
throw new Exceptions.ParseError (”Expected ’static’, ’instance
or ’«’, but found ” 4+ TokenAsString());

I

}

/// <summary>

/// A grammar method. Parses the return type.

/// </summary>

/// <returns>A ReturnType struct describing the return type specified by
the user. There are 3 kinds of return types: wvoid, any (x) or specific
(any type).</returns>

protected ReturnType ReturnType()

{

switch (_scanner.Token)
{
case LexicalAnalysis.Scanner.TokenType.VOID:
_scanner.Next(); // fetch next token
return new ReturnType(ReturnTypeEnum.VOID, ”7);
case LexicalAnalysis.Scanner.TokenType.ANY:
_scanner.Next(); // fetch next token
return new ReturnType(ReturnTypeEnum . ANY, 77);
case LexicalAnalysis.Scanner.TokenType .NAME:
return new ReturnType (ReturnTypeEnum.SPECIFIC, Name()); //
parse the return type
default:
throw new Exceptions.ParseError (”Expected return type, but
found 7 + TokenAsString());

}

/// <summary>

/// A grammar method. Parses a name.
/// </summary>

/// <returns>A string containing the name.</returns>
protected string Name()

{

P

* 7 is allowed.

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .NAME)
string sval = _scanner.Sval;
int indexAny = sval.IndexOf(”%”);
if (indexAny != —1 && !(indexAny =— 0 || indexAny == sval.Length —
1)) // the x is located is mnot located at either end of the
string — this is not allowed

throw new Exceptions.ParseError(”The wildcard character (x) is
only allowed in the beginning or at the end of a name.”);

if (sval.IndexOf(”%”, indexAny + 1) != —1) // more than one x is
specified — this is not allowed
throw new Exceptions.ParseError (”Only one wildcard character
(%) is allowed within a name.”);

_scanner . Next () ;
return sval;

251

Chapter V YITHAW - An aspect weaver for .NET

else if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.ANY)

{

_scanner . Next () ;

return "x”;

}
else
throw new Exceptions.ParseError (”Expected name, but found 7 +
TokenAsString ()) ;

}

/// <summary>
/// A grammar method. Parses a name. ’x’ is NOT allowed.

/// </summary>
/// <returns>A string containing the name.</returns>
protected string ForcedName ()
{
if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .NAME) // check
that the ”.”7 is followed by a name
if (!(-_scanner.Sval.Equals(”%”)))
{
string sval = _scanner.Sval;
_scanner . Next () ;
return sval;
}
else
throw new Exceptions.ParseError (”Expected name, but found ’x’7”
);
else
throw new Exceptions.ParseError (”Expected name, but found 7 +
TokenAsString ()) ;

}

/// <summary>

/// A grammar method. Parses a method. ’x
and arguments.

/// </summary>

/// <returns>A Method struct describing the method.</returns>

protected Method Method ()

{

> is allowed for both method name

string method_name = Name(); // parse the name of the method

CheckParOpen () ;

ArgumentList argumentlist = Arglist(); // parse the list of method
arguments

CheckParClose () ;

return new Method (method_name, argumentlist);

}

/// <summary>
/// A grammar method. Parses a method. ’x’ is NOT allowed.
/// </summary>
/// <returns>A Method struct describing the method.</returns>
protected Method ForcedMethod ()
{
string methodName = ForcedName () ;
CheckParOpen () ;
ArgumentList argumentlist = ForcedArgList () ;
CheckParClose () ;
return new Method (methodName, argumentlist);

}

/// <summary>
/// A grammar method. Parses a list of arguments for a method. '’ is

252

Chapter V YITHAW - An aspect weaver for .NET

allowed .

/// </summary>
/// <returns>An ArgumentList struct describing the arguments.</returns>

protected ArgumentList Arglist ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.ANY)

_scanner . Next () ;

return new ArgumentList (ArgTypeEnum.ANY, null);
}
else

return ForcedArgList () ;

}

/// <summary>
/// A grammar method. Parses a list of arguments for a method.
allowed .

/// </summary>
/// <returns>An ArgumentList struct describing the arguments.</returns>

protected ArgumentList ForcedArgList ()

{

’

* 7 48 NOT

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.PARCLOSE) //
no arguments specified
return new ArgumentList (ArgTypeEnum .NONE, null);
else
{
string name = ForcedName () ;
LinkedList<string> arguments = ArgListOpt () ;
arguments. AddFirst (name) ;
return new ArgumentList (ArgTypeEnum.SPECIFIC, arguments);

}

/// <summary>

/// A grammar method. Parses the optional part of the list of arguments (
the arguments following the wvery first argument).

/// </summary>

/// <returns>A LinkedList instance containing all arguments found.</
returns>

protected LinkedList<string> ArgListOpt ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType .COMMA)

_scanner . Next () ;

string name = Name() ;

LinkedList<string> arguments = ArgListOpt () ;
arguments. AddFirst (name) ;

return arguments;

else // final argument has been reached
return new LinkedList<string>();

}

/// <summary>

/// A grammar method. Parses the inherits statement (which is optional).

/// </summary>

/// <returns>An Inherit struct describing the inheritance requirement
specified. If mo inherits statement is specified, ANY (x) is returned
.</returns>

protected Inherit Inherit ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.INHERITS)

253

Chapter V YITHAW - An aspect weaver for .NET

{

_scanner . Next () ;

return new Inherit (InheritTypeEnum .SPECIFIC, Name());
}
else

return new Inherit (InheritTypeEnum .ANY, 77);

}

/// <summary>
/// A grammar method. Parses the inherits statement (NOT optional).
/// </summary>
/// <returns>An Inherit struct describing the inheritance requirement
specified.</returns>
protected Inherit ForcedInherit ()
{
ModifyTypeEnum modifyType;
if (_scanner.Token =— LexicalAnalysis.Scanner. TokenType.INHERITS)
modifyType = ModifyTypeEnum .INHERIT;
else if(_scanner.Token = LexicalAnalysis.Scanner.TokenType .IMPLEMENT)
modifyType = ModifyTypeEnum .IMPLEMENT;,
else
throw new Exceptions.ParseError(”Expected ’inherit’ or ’implement
>, but found ” 4+ TokenAsString());

_scanner . Next () ;
return new Inherit (InheritTypeEnum .SPECIFIC, modifyType, ForcedName())

)

}

/// <summary>
/// A helper method. Checks that the next token is a DO.

/// </summary>
protected void CheckDo()

{

if (_scanner.Token =— LexicalAnalysis.Scanner.TokenType.DO)
_scanner . Next () ;

else
throw new Exceptions.ParseError (”Expected ’do’, but found 7 +

TokenAsString ()) ;
}

/// <summary>
/// A helper method. Checks that the next token is COLON.

/// </summary>
protected void CheckColon ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.COLON)
_scanner . Next () ;

else
throw new Exceptions.ParseError (”Expected ’:’, but found 7 +

TokenAsString ()) ;
}

/// <summary>
/// A helper method. Checks that the next token is a PAROPEN.

/// </summary>
protected void CheckParOpen ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.PAROPEN)
_scanner . Next () ;

else
throw new Exceptions.ParseError (”Expected ’(’, but found ” +

254

Chapter V YITHAW - An aspect weaver for .NET

TokenAsString ()) ;
}

/// <summary>
/// A helper method. Checks that the next token is a PARCLOSE.

/// </summary>
protected void CheckParClose()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.PARCLOSE)
_scanner . Next () ;

else
throw new Exceptions.ParseError (”Expected ’)’, but found ” +

TokenAsString ()) ;
}

/// <summary>
/// A helper method. Checks that the next token is a INTO.

/// </summary>
protected void CheckInto ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.INTO)
_scanner . Next () ;

else
throw new Exceptions.ParseError(”Expected ’into’, but found 7 +

TokenAsString ()) ;
}

/// <summary>
/// A helper method. Checks that the next token is a EOS (End—Of—Statement

/// </summary>
protected void CheckEOS ()

{

if (_scanner.Token = LexicalAnalysis.Scanner.TokenType.EOS)
_scanner . Next () ;

else
throw new Exceptions.ParseError(”Expected ’;’, but found ” +

TokenAsString ()) ;
}

/// <summary>

/// Parses the input file specifed. After invoking this method, the output
is available wvia the properties AroundStatement, InsertStatement and
ModifyStatements .

/// </summary>
public void Parse()

{

Start () ;

if (_scanner.Token != LexicalAnalysis.Scanner.TokenType.EOF)
throw new Exceptions.ParseError (”Expected end of file”);

}

/// <summary>
/// Returns the list of around statements found. It makes no sense to get
this list before invoking Parse().

/// </summary>
public ICollection <Around> AroundStatements

{

get

{

return _aroundStatements;

255

Chapter V YITHAW - An aspect weaver for .NET

}

/// <summary>
/// Returns the list of insert statements found. It makes no sense to get
this list before invoking Parse().

/// </summary>
public ICollection<Insert> InsertStatements

{

get

{
}

return _insertStatements;

}

/// <summary>
/// Returns the list of modify statements found. It makes no sense to get
this list before invoking Parse().

/// </summary>
public ICollection <Modify> ModifyStatements

{

get

{
}

return _modifyStatements;

}

/// <summary>
/// Returns the current token in a human—readable form.
/// </summary>
/// <returns>A string representation of the current token.</returns>
private string TokenAsString ()
{
string output;
switch (_scanner.Token)

{

case LexicalAnalysis.Scanner.TokenType.ANY:
output = 7 ’x’7;
break;

case LexicalAnalysis.Scanner.TokenType.COLON:
output = 7 ’:77;
break;

case LexicalAnalysis.Scanner.TokenType .COMMA:
output = 77,77,
break;

case LexicalAnalysis.Scanner.TokenType.EOF:
output = ”"end—of—file”;
break;

case LexicalAnalysis.Scanner.TokenType.EOS:
output = 7 7;’7;
break;

case LexicalAnalysis.Scanner.TokenType .NAME:
output = ”’” 4 _scanner.Sval + 7’7,
break;

case LexicalAnalysis.Scanner.TokenType.PARCLOSE:
output = 77)’7;
break;

case LexicalAnalysis.Scanner.TokenType.PAROPEN:
output = 77(7;
break;

default:

output = 7’” 4+ _scanner.Token. ToString (). ToLower() + 7’7;

256

Chapter V YITHAW - An aspect weaver for .NET

break;
}

return output + 7 (statement ” + _statementNumber + 7)”;

}

Exceptions.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW. Pointcut . Exceptions
{
/// <summary>
/// Ezception thrown when the pointcut file could not be found.

/// </summary>
public class InputFileNotFoundException : Exception

{

public InputFileNotFoundException(string message)
base (message)
{

}
}

/// <summary>
/// Ezception thrown when the parsed exzperienced an error.

/// </summary>
public class ParseError : Exception

{

public ParseError (string message)
base (message)

257

Appendix W

Source code for YIITHAW -
Controller

InsertHandler.cs

using System;

using
using
using
using
using

System . Collections . Generic;
System . Text;

YIIHAW . Pointcut ;

Mono. Cecil;

YIIHAW . Weaver ;

namespace YIIHAW. Controller

{

/// <summary>

/// Handles

the insertion of contructs from an aspect assembly to an target

assembly .

/// </summary>
public class InsertHandler

{

private
private
private
private

private

AssemblyDefinition _aspectAssembly;
AssemblyDefinition _targetAssembly;
LocalMapperCollection _localMaps;

GlobalMapperCollection _globalMaps;

Introduction _weaver;

/// <summary>

/// Creates a new InsertHandler.

/// </summary>

/// <param name="aspectAssembly”>The aspect assembly where the constructs
that should be inserted are located.</param>

/// <param name="targetAssembly”™>The target assembly where the constructs
will get inserted.</param>

/// <param name="localMaps”™>A LocalMapperCollection which will be used
throughout the insertions.</param>

/// <param name="globalMaps”™>A GlobalMapperCollection which will be used
throughout the insertions.</param>

public InsertHandler (AssemblyDefinition aspectAssembly, AssemblyDefinition
targetAssembly , LocalMapperCollection localMaps,
GlobalMapperCollection globalMaps)

_localMaps = localMaps;
_globalMaps = globalMaps;
_aspectAssembly = aspectAssembly;

258

Chapter W YITHAW - An aspect weaver for .NET

_targetAssembly = targetAssembly;
_weaver = new Introduction ();

}

/// <summary>

/// Processes an insert statement by checking the type of contruct to
insert ,

/// and taking the needed actions to insert the construct.

/// </summary>

/// <param name="insert”>The pointcut represented as an insert statement
.</param>

/// <param name="firstPass”™>A boolean indicating if this is the first pass
of the insertion.</param>

public void ProcessStatement (Insert insert, bool firstPass)

{

switch (insert.InsertType)
{

case InsertTypeEnum .METHOD:
MethodDefinition aspect = FindMethod (insert);
InsertAspectMethod (aspect , insert , firstPass, true);
break;

case InsertTypeEnum .PROPERTY:
PropertyDefinition property = FindProperty (insert);
InsertAspectProperty (property, insert, firstPass);
break;

case InsertTypeEnum .FIELD:
FieldDefinition field = FindField(insert);
InsertAspectField (field , insert, firstPass);
break;

case InsertTypeEnum .CLASS:
TypeDefinition type = FindType(insert);
InsertAspectType(type, insert, firstPass);
break;

case InsertTypeEnum .EVENT:
EventDefinition eventDef = FindEvent(insert);
InsertAspectEvent (eventDef, insert, firstPass);
break;

}

/// <summary>
/// Inserts an event from the aspect assembly and into the target assembly

/// This method also inserts the field and methods beloging to the event.

/// </summary>

/// <param name="aspectEvent”>The event from the aspect assembly to insert
.</param>

/// <param name="insert”>The insert statement indicating where the event
should be inserted.</param>

/// <param name="firstPass”™>A boolean indicating if this is the first pass
of the insertion.</param>

private void InsertAspectEvent(EventDefinition aspectEvent, Insert insert,
bool firstPass)

{

foreach (TypeDefinition typeDef in _targetAssembly.MainModule. Types)

{

// ignore all interfaces and modules
if (typeDef.FullName.Equals(”<Module>") || typeDef.IsInterface)
continue;

// ignore newly inserted types
if (_globalMaps.Types.ContainsValue (typeDef))

259

Chapter W YITHAW - An aspect weaver for .NET

continue;

// check that this target matches the type defined in the pointcut
specification

if (!Helper.CheckTarget(insert.TargetType, typeDef.FullName))
continue;

// check if an event with the same name is already in the class.
foreach (EventDefinition targetEventDef in typeDef.Events)
if (targetEventDef.Name. Equals(aspectEvent .Name))
throw new Exceptions.IllegalOperationException (”Event 7 +
aspectEvent .Name + ”’ can not be inserted into class
>? 4+ typeDef.FullName + ”’, as an event with the same
name already exist in this class.”);

if (firstPass)
YIOHAW . Output. OutputFormatter . AddEvent (aspectEvent .
DeclaringType.FullName + ”.” 4 aspectEvent.Name, typeDef.
FullName) ;

// find and insert the field belonging to the event.
FieldDefinition eventField = FindField (insert);
InsertField (eventField , typeDef, firstPass);

// insert any methods belonging to the event.
if (aspectEvent.AddMethod != null)
InsertMethod (aspectEvent . AddMethod, typeDef, firstPass, false)

)

if (aspectEvent.InvokeMethod != null)
InsertMethod (aspectEvent . InvokeMethod, typeDef, firstPass,
false);
if (aspectEvent.RemoveMethod != null)
InsertMethod (aspectEvent . RemoveMethod, typeDef, firstPass,
false);

// insert the actual event.
InsertEvent (aspectEvent , typeDef, firstPass);

}

/// <summary>

/// Inserts an event into a given target.

/// </summary>

/// <param name="aspectEvent”>The event from the aspect assembly to insert
.</param>

/// <param name="typeDef”>The type where the event should be inserted.</
param>

/// <param name="firstPass”™>A boolean indicating if this is the first pass
of the insertion.</param>

private void InsertEvent(EventDefinition aspectEvent, TypeDefinition
typeDef, bool firstPass)

{

if (!firstPass)
EventDefinition newEvent = aspectEvent. Clone();

newEvent. CustomAttributes. Clear(); // The atiributes set by Clone
() are not correct.

260

Chapter W YITHAW - An aspect weaver for .NET

// update method references to the local methods in the target
assembly .
if (aspectEvent.AddMethod != null)
newEvent . AddMethod = _localMaps.Methods.Lookup (typeDef,
aspectEvent . AddMethod) ;

if (aspectEvent.InvokeMethod != null)
newEvent.InvokeMethod = _localMaps.Methods.Lookup (typeDef ,
aspectEvent . InvokeMethod) ;

if (aspectEvent.RemoveMethod != null)
newEvent . RemoveMethod = _localMaps.Methods. Lookup (typeDef ,
aspectEvent . RemoveMethod) ;

// update the reference to the events type.

if (aspectEvent.EventType.Scope = aspectEvent.DeclaringType.Scope
)
{
GlobalMapperEntry<TypeReference> typeEntry = _globalMaps.
TypeReferences . Lookup (aspectEvent . EventType) ;
if (typeEntry = null)

throw new Exceptions.IllegalOperationException (”Unable to
locate the class ’” 4 aspectEvent.EventType.FullName +
”? in the target assembly. This class is used by the
event ’” 4 aspectEvent.Name 4+ ”’, which you have
specified should be inserted into the target assembly.
Please specify that the class ’”7 4 aspectEvent.
EventType.FullName 4+ ”’ should be introduced as well
using the pointcut file.”);
else if (typeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
locate the class ’” 4 aspectEvent.EventType.FullName +
”?7 . which is used by the event '” 4 aspectEvent.Name
4+ 7”’. The class ’7 4+ aspectEvent.EventType.FullName +
”?? is inserted at multiple locations in the target
assembly (thus causing the reference to this class to
be ambiguous).”);
else
newEvent.EventType = typeEntry. Reference;

}

else
{
if (!(YIOHAW.Weaver. Helper . IsAssemblyInRefs (typeDef. Module.

AssemblyReferences , aspectEvent.EventType) || YIHAW.

Weaver. Helper . IsAssemblyTarget (aspectEvent . EventType,

typeDef)))

YIHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the usage of ’” 4+ aspectEvent.
EventType.FullName 4+ ”’. Please make sure that this
class is available from the target assembly.”);

if (YOHHAW.Weaver. Helper . IsAssemblyTarget (aspectEvent.
EventType, typeDef))
newEvent . EventType = YIIHAW. Weaver . Helper . FindLocalType (
typeDef, aspectEvent.EventType);
else
newEvent.EventType = typeDef.Module.Import (aspectEvent .
EventType) ;

}

// insert attributes
foreach (CustomAttribute attribute in aspectEvent.CustomAttributes

261

Chapter W YITHAW - An aspect weaver for .NET

)

newEvent. CustomAttributes.Add(_weaver.CopyAndUpdateAttribute (
aspectEvent . DeclaringType, typeDef, _globalMaps, attribute

)

// add the event to the target, and update the target assembly.
typeDef. Events.Add(newEvent) ;
typeDef.Module. Import (typeDef) ;

}

/// <summary>
/// Finds an event that should be inserted from the aspect assembly.
/// </summary>
/// <param name="insert”>The insert statement, which indicates what event
to insert.</param>
/// <returns>An EventDefinition representing the event in aspect assembly
that should be inserted.</returns>
private EventDefinition FindEvent(Insert insert)
{
foreach (TypeDefinition typeDef in _aspectAssembly.MainModule. Types)
{
if (typeDef.FullName.Equals(insert.Type)) // we have found the
correct class — run through all events in the class
{

foreach (EventDefinition eventDef in typeDef.Events)
{
// check the event name
if (!eventDef.Name.Equals(insert .Name))
continue;

// check the event type

if (!(insert.ReturnType.Type = YIIHAW. Pointcut.
ReturnTypeEnum .ANY) && (!Helper.IsTypeEqual(insert.
ReturnType. SpecificType, eventDef.EventType)))
continue;

//check the access specifier — this can only be done on
the events methods.

if (eventDef.AddMethod != null & & !Helper.
CheckAccessSpecifier (eventDef. AddMethod. Attributes ,
insert.Access))
continue;

return eventDef;

}
}

throw new Exceptions.ConstructNotFoundException(”The event ’” 4+ insert
.Name + 7’ could not be found in class ” + insert.Type + ”7.7);

/// <summary>
/// Inserts an type from the aspect assembly and into the target assembly.

/// </summary>

/// <param name="type”>The type from the aspect assembly to insert.</param
>

/// <param name="insert”>The insert statement indicating where the type
should be inserted.</param>

/// <param name="firstPass”>A boolean indicating if this is the first pass

262

Chapter W YITHAW - An aspect weaver for .NET

of the insertion.</param>

private void InsertAspectType(TypeDefinition type, Insert insert, bool
firstPass)
{

List<string> namespacesInsertedInto = new List<string>(); // keeps
control of the mamespaces that the type has been inserted into.
bool found = false;

foreach (TypeDefinition typeDef in _targetAssembly.MainModule. Types)
{
// avoiding the namespace of newly inserted types.
if (typeDef.Namespace = 7”)
continue;

// check if the insert statement matches the mnamespace of the
target.

if (Helper.CheckTarget(insert.TargetType, typeDef.Namespace))
if (firstPass)

if (namespacesInsertedInto.Contains(typeDef. Namespace)) //
type has already been inserted into the namespace
continue;

TypeDefinition newTypeDef = new TypeDefinition (type.Name,
typeDef.Namespace, type.Attributes, type.BaseType);
newTypeDef. Attributes = MakeTypeUnNested (newTypeDef.
Attributes); // if the inserted type was nested in
aspect in should be unnested now.
InsertType (type, firstPass, newTypeDef); // do the actual
insertion of the type.
namespacesInsertedInto.Add(typeDef. Namespace) ;
Output . OutputFormatter . AddType(type .Name, typeDef.
Namespace) ;
found = true;
}
else if (type.Name.Equals(typeDef.Name)) // second pass
{
InsertType (type, firstPass, typeDef);
found = true;

// If the insert did not match the namespace of the target type,
it might match the actually type.

// in which case is should be inserted as a nested type. This is
only possible if the insert statemet

// contains a fully qualified name of the target.

// The change of ’/’ to ’.’ is done, as nested types are named
typename/nestedtypename in Cecil.

else if (!insert.TargetType.Contains(”*”) && Helper.CheckTarget (
insert . TargetType, typeDef.FullName.Replace(’/’, ’.7)) && !
typeDef.IsInterface) //There was not a mamespace match but a
precise typename instead, the type will be inserted as a
nestedtype .

if (firstPass)
TypeDefinition newTypeDef = new TypeDefinition (type.Name,
77 type.Attributes, type.BaseType);

newTypeDef. Attributes = MakeTypeNested (newTypeDef.
Attributes); // the type should be nested now.

263

Chapter W YITHAW - An aspect weaver for .NET

typeDef. NestedTypes.Add(newTypeDef) ;
InsertType(type, firstPass , newTypeDef); // do the actual
insetion of the type.
Output. OutputFormatter . AddType(type.Name, typeDef.FullName
)
}
else // second pass
foreach (TypeDefinition nestedType in typeDef.NestedTypes)
if (nestedType.Name.Equals(type.Name))
InsertType (type, firstPass, nestedType);

found = true;
}
}
if (firstPass && !found)
Output.OutputFormatter . AddWarning (”The namespace or type ’7 +
insert . TargetType 4+ 7’ was not found in the target assembly.
The type ’” 4+ type.Name + ”’ has not been inserted into the

target assembly.”);

}

/// <summary>
/// Changes the attributes of a type, so that it becomes nested.
/// </summary>
<param name= e ributes e e’s attributes.</param>
/// <p “typeAttributes ™ The type 's attribut /p
<returns>The type attributes changed so at the type is nested.<
t The ty ttrib hanged th h y ; ted

returns>
private TypeAttributes MakeTypeNested (TypeAttributes typeAttributes)
{
if ((typeAttributes & TypeAttributes.Public) = TypeAttributes.Public)
return typeAttributes | TypeAttributes.NestedPublic;
else
return typeAttributes | TypeAttributes.NestedAssembly;
}

/// <summary>
/// Changes any attributes that a type may have, so that it mno longer is
nested .
/// If the type is mnot nested, the attributes returned will be the same as
the omnes given as argument.
/// </summary>
/// <param name="typeAttributes”™ The type’s attributes.</param>
/// <returns>The type attributes changed so that the type is mo longer
nested.</returns>
private TypeAttributes MakeTypeUnNested (TypeAttributes typeAttributes)
{
if ((typeAttributes & TypeAttributes.NestedPublic) = TypeAttributes.
NestedPublic)
return (typeAttributes ~ TypeAttributes.NestedPublic) |
TypeAttributes. Public;
else if ((typeAttributes & TypeAttributes.NestedAssembly) —
TypeAttributes. NestedAssembly)
return (typeAttributes ~ TypeAttributes.NestedAssembly) |
TypeAttributes. NotPublic;
else if ((typeAttributes & TypeAttributes.NestedFamANDAssem) =—
TypeAttributes . NestedFamANDAssem)
return (typeAttributes ~ TypeAttributes.NestedFamANDAssem) |
TypeAttributes. NotPublic;
else if ((typeAttributes & TypeAttributes.NestedFamily) =—
TypeAttributes. NestedFamily)
return (typeAttributes ~ TypeAttributes.NestedFamily) |

264

Chapter W YITHAW - An aspect weaver for .NET

TypeAttributes. NotPublic;
else if ((typeAttributes & TypeAttributes.NestedFamORAssem) =
TypeAttributes . NestedFamORAssem)
return (typeAttributes ~ TypeAttributes.NestedFamORAssem) |
TypeAttributes. NotPublic;
else if ((typeAttributes & TypeAttributes.NestedPrivate) =
TypeAttributes. NestedPrivate)
return (typeAttributes ~ TypeAttributes.NestedPrivate) |
TypeAttributes. NotPublic;
else return typeAttributes;

}

/// <summary>

/// Inserts all the content of an aspect type into a target type.

/// </summary>

/// <param name="type”>The aspect type to insert from.</param>

/// <param name="firstPass”>A boolean indicating if this is the first pass
of the insertion.</param>

/// <param name="typeDef”>The target type to insert into.</param>

private void InsertType(TypeDefinition type, bool firstPass ,
TypeDefinition typeDef)

{

if (firstPass)

// recursivly insert the mested types
foreach (TypeDefinition nestedTypeDef in type.NestedTypes)

{

TypeDefinition newNestedType = new TypeDefinition (
nestedTypeDef.Name, nestedTypeDef.Namespace, nestedTypeDef
.Attributes , nestedTypeDef.BaseType);

typeDef. NestedTypes.Add(newNestedType) ;

InsertType (nestedTypeDef, firstPass , newNestedType);

}

_targetAssembly . MainModule. Types.Add(typeDef) ;

_globalMaps . Types.Add(type, typeDef);
_globalMaps . TypeReferences.Add(type, typeDef);

}

else if (type.Name.Equals(typeDef.Name)) //this is the second pass and
we have the correct type (the type inserted in the first pass).
{

// recursivly insert the nested types.
foreach (TypeDefinition nestedTypeDef in type.NestedTypes)
foreach (TypeDefinition newNesterTypeDef in typeDef.
NestedTypes)
if (nestedTypeDef.Name. Equals(newNesterTypeDef.Name))
InsertType (nestedTypeDef, firstPass , newNesterTypeDef)

)

if (type.BaseType != null)
// update the basetype
if (type.BaseType.Scope = type.Scope)

GlobalMapperEntry<TypeReference> basetypeEntry =
_globalMaps . TypeReferences.Lookup (type.BaseType) ;

if (basetypeEntry = null)
throw new Exceptions.IllegalOperationException (”Unable

265

Chapter W YITHAW - An aspect weaver for .NET

to locate the class 7 4+ type.BaseType.FullName +
7’ in the target assembly. This class is
inherited by the class ’” + type.Name + ”’, which

you have specified should be inserted into the
target assembly. Please specify that the class
+ type.BaseType.FullName + ”’ should be introduced
as well using the pointcut file.”);
else if (basetypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable

Rab

to inherit the class ’” 4+ type.BaseType.FullName
4+ 7’ from class '” 4+ type.Name 4+ 7', as '7 4+ type.
BaseType.FullName + 7’ is inserted at multiple

locations in the target assembly (thus causing the
reference to this class to be ambiguous”);
else
typeDef.BaseType = basetypeEntry. Reference;

}

else

{
if (! (YIIHAW.Weaver. Helper . IsAssemblyInRefs (typeDef. Module

.AssemblyReferences , type.BaseType) || YIHAW.Weaver.

Helper.IsAssemblyTarget (type.BaseType, typeDef)))

YIHAW . Output. OutputFormatter . AddWarning (” It is not
possible to type check the usage of ’”7 + type.
BaseType.FullName + ”’. Please make sure that this
class is available from the target assembly.”);

if (YOHAW.Weaver. Helper.IsAssemblyTarget (type.BaseType,
typeDef))
typeDef.BaseType = YIIHAW. Weaver. Helper . FindLocalType (
typeDef, type.BaseType);

else
typeDef.BaseType = typeDef.Module.Import (type.BaseType

)

// add interfaces
foreach (TypeReference interfaceType in type.Interfaces)

{

if (interfaceType.Scope = type.Scope)

GlobalMapperEntry<TypeReference> interfaceEntry =
_globalMaps . TypeReferences . Lookup(interfaceType);

if (interfaceEntry = null)
throw new Exceptions.IllegalOperationException (”Unable
to locate the interface ’” + interfaceType.Name +

”?’> in the target assembly. This interface is
implemented by the class 7 4+ type.Name 4+ 77,
which you have specified should be inserted into
the target assembly. Please specify that the
interface '” 4+ interfaceType.Name + 7’ should be
introduced as well using the pointcut file.”);
else if (interfaceEntry.IsAmbiguousReference)

throw new Exceptions.IllegalOperationException (”Unable
to insert the type 7 4+ type.Name 4+ ”7’, as the
interface ’'” 4+ interfaceType.Name + ”’, which is
implemented by this type is inserted at multiple
locations in the target assembly (thus causing the
reference to this interface to be ambiguous”);

else
typeDef.Interfaces .Add(interfaceEntry . Reference);

266

Chapter W YITHAW - An aspect weaver for .NET

}

else
{
if (! (YOHHAW.Weaver. Helper.IsAssemblyInRefs (typeDef. Module
.AssemblyReferences , interfaceType) || YIHAW.Weaver.
Helper.IsAssemblyTarget (interfaceType, typeDef)))
YIOHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the usage of 7 +
interfaceType.FullName + ”’. Please make sure that
this interface is available from the target
assembly .”);

if (YOHHAW.Weaver. Helper.IsAssemblyTarget (interfaceType ,
typeDef))
typeDef. Interfaces .Add(YIIHAW. Weaver . Helper .
FindLocalType (typeDef, interfaceType));
else
typeDef.Interfaces .Add(typeDef. Module. Import (
interfaceType));

}

// add attributes
foreach (CustomAttribute attribute in type.CustomAttributes)
typeDef.CustomAttributes.Add(_weaver.CopyAndUpdateAttribute (
type, typeDef, _globalMaps, attribute));

foreach (MethodDefinition methodDef in type.Constructors) // add
constructors
InsertMethod (methodDef, typeDef, firstPass, false);

foreach (MethodDefinition methodDef in type.Methods) // add methods
InsertMethod (methodDef, typeDef, firstPass, false);

foreach (FieldDefinition fieldDef in type.Fields) // add fields
InsertField (fieldDef, typeDef, firstPass);

foreach (PropertyDefinition propertyDef in type.Properties) // add
properties
InsertProperty (propertyDef, typeDef, firstPass);

foreach (EventDefinition eventDef in type.Events) // add events
InsertEvent (eventDef, typeDef, firstPass);

}

/// <summary>

/// Finds a type in the aspect assembly, based on an insert statement.

/// </summary>

/// <param name="insert”>The insert statement that tells which type to
find.</param>

/// <returns>The type found in the aspect assembly.</returns>

private TypeDefinition FindType(Insert insert)

{

foreach (TypeDefinition type in _aspectAssembly.MainModule. Types)

// the replacement of ’/’ to ’.’ is done, as nested classes are
written differently in the insert statement and in CeCil.

if (!insert.Type.Equals(type.FullName.Replace(’/’, ’.7)))
continue;

267

Chapter W YITHAW - An aspect weaver for .NET

if (Helper.CheckAccessSpecifier (type.Attributes, insert.Access))
return type;

}

throw new Exceptions.ConstructNotFoundException(”The class or
interface ’” + insert.Type + 7’ could not be found.”);

}

/// <summary>

/// Finds a field in the aspect assembly, based on an insert statement.

/// </summary>

/// <param name="insert”>The insert statement that tells which field to
find.</param>

/// <returns>The field found in the aspect assembly.</returns>

private FieldDefinition FindField(Insert insert)

{

foreach (TypeDefinition typeDef in _aspectAssembly.MainModule. Types)
{
if (typeDef.FullName.Equals(insert.Type)) // we have found the
correct class — run through all fields in the class
{

foreach (FieldDefinition fieldDef in typeDef.Fields)

{

// check the field name
if (!fieldDef.Name.Equals(insert .Name))
continue;

// check the access specifier
if (!(insert.InsertType =— YIHAW. Pointcut .InsertTypeEnum.
EVENT)) // event fields are always private so the
access specifier should not be checked for these
fields
if (!Helper.CheckAccessSpecifier (fieldDef. Attributes,
insert.Access))
continue;

// check the field type

if (!(insert.ReturnType.Type = YIIHAW. Pointcut.
ReturnTypeEnum .ANY) && !Helper.IsTypeEqual(insert .
ReturnType. SpecificType, fieldDef.FieldType))

continue;

// check static — instance

if (insert.InvocationKind = InvocationKindEnum .INSTANCE
&& fieldDef.IsStatic)
continue;

if (insert.InvocationKind = InvocationKindEnum .STATIC &&
IfieldDef.IsStatic)
continue;

return fieldDef;

}

throw new Exceptions.ConstructNotFoundException(”The field + insert
.Name + 7’ could not be found in class ” + insert.Type + ”7.7);

}

/// <summary>

268

Chapter W YITHAW - An aspect weaver for .NET

/// Finds a property in the aspect assembly, based on an insert statement.

/// </summary>

/// <param name="insert”>The insert statement that tells which property to
find.</param>

/// <returns>The property found in the aspect assembly.</returns>

private PropertyDefinition FindProperty (Insert insert)

{

foreach (TypeDefinition typeDef in _aspectAssembly.MainModule. Types)

{

if (typeDef.FullName.Equals(insert.Type)) // we have found the
correct class — run through all parameters in the class
foreach (PropertyDefinition propertyDef in typeDef.Properties)
{
// Check the name
if (!propertyDef.Name.Equals(insert .Name))
continue;

if (propertyDef.GetMethod != null)

// check the access specifier

if (!Helper.CheckAccessSpecifier (propertyDef.GetMethod
.Attributes, insert.Access))
continue;

// check the method type

if (!Helper.CheckInvocationKind (propertyDef.GetMethod,
insert.InvocationKind))
continue;

}

else

{

//check the access specifier

if (!Helper.CheckAccessSpecifier (propertyDef.SetMethod
.Attributes, insert.Access))
continue;

//check the method type

if (!Helper.CheckInvocationKind (propertyDef.SetMethod,
insert.InvocationKind))
continue;

}

// check the property type

if (insert.ReturnType.Type != ReturnTypeEnum.ANY && !
Helper .IsTypeEqual (insert . ReturnType. SpecificType ,
propertyDef. PropertyType))
continue;

return propertyDef;

}
}
throw new Exceptions.ConstructNotFoundException(”The property : 7 +
insert .Name + 7 was not found in class : 7 + insert.Type + 7.”);

/// <summary>
/// Finds a method in the aspect assembly, based on an insert statement.

/// </summary>
/// <param name="insert”>The insert statement that tells which method to

find.</param>

269

Chapter W YITHAW - An aspect weaver for .NET

/// <returns>The method found in the aspect assembly.</returns>
protected MethodDefinition FindMethod(Insert insert)

{

foreach (TypeDefinition typeDef in _aspectAssembly.MainModule. Types)

{

if (typeDef.FullName.Equals(insert.Type)) // we have found the
correct class — run through all enclosing methods
foreach (MethodDefinition methodDef in typeDef.Methods) //
check if this method matches the pointcut
{

// check the method name
if (!methodDef.Name.Equals(insert.Method.Name))
continue;

// check the access specifier

if (!Helper.CheckAccessSpecifier (methodDef. Attributes ,
insert.Access))
continue;

// check the return type
if (insert.ReturnType.Type = ReturnTypeEnum.VOID)
{
if (!methodDef.ReturnType.ReturnType.FullName.Equals(”
System . Void”))
continue;
}
else if (insert.ReturnType.Type != ReturnTypeEnum .ANY && !
Helper.IsTypeEqual (insert . ReturnType. SpecificType ,
methodDef. ReturnType . ReturnType))
continue;

// check the method type

if (!Helper.CheckInvocationKind (methodDef, insert.
InvocationKind))
continue;

// check the argument types

if (!Helper.CheckArguments(insert.Method. ArgumentList ,
methodDef. Parameters))
continue;

return methodDef;
}
}
throw new YIIHAW. Exceptions. ConstructNotFoundException (” Specified
method (7 + insert.Method.Name + ”) could not be found.”);

}

/// <summary>

/// Inserts a method from the aspect into the target assembly.

/// </summary>

/// <param name="aspectMethod”>The aspect method to insert.</param>

/// <param name="insert”>The insert statement that tells where the method
should be inserted.</param>

/// <param name="firstPass”>A boolean indicating if this is the first pass
of the insertion.</param>

/// <param name="addToOutput”™>A boolean indicating if the insertion of the
method should be registered in the output.</param>

protected void InsertAspectMethod (MethodDefinition aspectMethod, Insert
insert , bool firstPass, bool addToOutput)

{

270

Chapter W YITHAW - An aspect weaver for .NET

foreach (TypeDefinition typeDef in _targetAssembly.MainModule. Types)
{
// ignore all interfaces and modules
if (typeDef.FullName.Equals(”<Module>”) || typeDef.IsInterface)
continue;

// ignore newly inserted types
if (_globalMaps.Types.ContainsValue (typeDef))
continue;

// check that this target matches the type defined in the pointcut
specification
if (!Helper.CheckTarget(insert.TargetType, typeDef.FullName))
continue;
if (firstPass) // check if there is already a method with the same
signature in the target type.
foreach (MethodDefinition methodDef in typeDef.Methods)
{
if (!methodDef.Name. Equals (aspectMethod .Name))
continue;

if (!(methodDef.IsStatic = aspectMethod.IsStatic))
continue;

if (!(methodDef. GenericParameters.Count = aspectMethod.
GenericParameters.Count))
continue;

if (!(methodDef.Parameters.Count = aspectMethod.
Parameters. Count))
continue;

bool argsEqual = true;
for (int i = 0; i < methodDef.Parameters.Count; i++)
{
if (!methodDef.Parameters|[i].ParameterType.FullName.
Equals (aspectMethod . Parameters[i]. ParameterType.
FullName))

argsEqual = false;
break;

}

if (argsEqual)
throw new Exceptions.IllegalOperationException (”Method
’” 4+ aspectMethod .Name + 7’ can not be inserted

into class ’'” + typeDef.FullName + ”’, as a method
with the same signature already exist in this
class.”);

}

// insert the method into the target type.
InsertMethod (aspectMethod, typeDef, firstPass , addToOutput);

}

/// <summary>
/// Inserts a method from the aspect assembly into a given target type.

/// </summary>
/// <param name="aspectMethod” The method to insert.</param>

/// <param name="typeDef”>The type to insert the message into</param>

271

Chapter W YITHAW - An aspect weaver for .NET

/// <param name="firstPass”>A boolean indicating if this is the first pass
of the insertion.</param>

/// <param name="addToOutput”™>A boolean indicating if the insertion of the
method should be registered in the output.</param>

private void InsertMethod (MethodDefinition aspectMethod, TypeDefinition
typeDef, bool firstPass, bool addToOutput)

{

if (firstPass) // this is the first pass — create a new method and
store it in the mapper

{

MethodDefinition newMethod = new MethodDefinition (aspectMethod.
Name, aspectMethod.Attributes , aspectMethod.ReturnType.
ReturnType) ;

_localMaps.Methods.Add(typeDef, aspectMethod, newMethod) ;

_localMaps.MethodReferences.Add(typeDef, aspectMethod, newMethod) ;

_globalMaps.Methods.Add (aspectMethod , newMethod) ;

_globalMaps.MethodReferences .Add(aspectMethod , newMethod) ;

if (aspectMethod.IsConstructor)
typeDef. Constructors .Add(newMethod) ;

else
typeDef.Methods.Add(newMethod) ;

else // this is the second pass — instruct the weaver to insert the
body of the method
{

MethodDefinition targetMethod = _localMaps.Methods.Lookup (typeDef,

aspectMethod) ;

if (targetMethod != null)

if (addToOutput)
YIOHAW. Output. OutputFormatter . AddMethod (Helper .
MethodToString (aspectMethod), targetMethod.
DeclaringType . FullName) ;

_weaver . InsertMethod (aspectMethod , targetMethod, _localMaps,
_globalMaps) ;

typeDef.Module. Import (typeDef) ;
}
else
throw new Exceptions.InternalErrorException(”Unable to
retrieve method from mapper in second pass.”);

}

/// <summary>

/// Inserts a property from the aspect into the target assembly.

/// The setter and getter methods belonging to the property are also
inserted .

/// </summary>

/// <param name="property”>The property to insert.</param>

/// <param name="insert”>The insert statement that tells where the
property should be inserted.</param>

/// <param name="firstPass”>A boolean indicating if this is the first pass
of the insertion.</param>

private void InsertAspectProperty (PropertyDefinition property, Insert
insert , bool firstPass)

{

// insert the getter method

if (property.GetMethod != null)
InsertAspectMethod (property . GetMethod, insert, firstPass , false);

// insert the setter method

272

Chapter W YITHAW - An aspect weaver for .NET

if (property.SetMethod != null)
InsertAspectMethod (property .SetMethod, insert, firstPass, false);

// find the types where the property should be inserted.
foreach (TypeDefinition typeDef in _targetAssembly.MainModule. Types)
{
// ignore all interfaces and modules
if (typeDef.FullName.Equals(”<Module>”) || typeDef.IsInterface)
continue;

// ignore newly inserted types
if (_globalMaps.Types. ContainsValue (typeDef))
continue;

// check that this target matches the type defined in the pointcut
specification

if (!Helper.CheckTarget(insert.TargetType, typeDef.FullName))
continue;

InsertProperty (property , typeDef, firstPass);

if (firstPass)
YIHAW . Output. OutputFormatter . AddProperty (property .
DeclaringType.FullName + ”.” 4 property.Name, typeDef.
FullName) ;

}

/// <summary>

/// Inserts a property into a given target.

/// The methods belogning to the property should already be inserted, and
registered in the local mapper.

/// </summary>

/// <param name="property”>The property to insert.</param>

/// <param name="typeDef”>The type to insert the property into.</param>

/// <param name="firstPass”>A boolean indicating if this is the first pass
of the insertion.</param>

private void InsertProperty (PropertyDefinition property, TypeDefinition
typeDef, bool firstPass)

{

if (firstPass)

PropertyDefinition newProperty = property.Clone () ;

newProperty. CustomAttributes. Clear (); //The attributes set by
Clone () are not correct

typeDef. Properties.Add(newProperty) ;

}

else
{
// find the property that was inserted in the first pass.
foreach (PropertyDefinition newProperty in typeDef.Properties)
{
if (!nmewProperty.Name. Equals(property .Name))
continue;

//set getter method to the inserted method
if (property.GetMethod != null)
newProperty . GetMethod = _localMaps.Methods.Lookup (typeDef
property . GetMethod) ;

//set setter method to the inserted method
if (property.SetMethod != null)

273

Chapter W YITHAW - An aspect weaver for .NET

newProperty.SetMethod = _localMaps.Methods.Lookup (typeDef,
property .SetMethod) ;

if (property.PropertyType.Scope = property.DeclaringType.
Scope) // Trying to instantiate a type defined in the

aspect assembly. This is only allowed

if the reference is
not ambiguous.

GlobalMapperEntry<TypeReference> mappedTypeEntry

_globalMaps . TypeReferences.Lookup(property .
PropertyType) ;

if (mappedTypeEntry = null)

throw new Exceptions.IllegalOperationException (”Unable
to insert the property ’” 4+ property.Name + 7’
>? 4+ typeDef.FullName + ”’, as the property

type (’” + property.PropertyType.FullName + ”7)
not defined in the target assembly. Please

specify that this type should be introduced using
the pointcut file.”);

if (mappedTypeEntry.IsAmbiguousReference)

throw new Exceptions.IllegalOperationException (”Unable
to insert the property’”

into

is

else

+ property.Name + 7’
into ’” + typeDef.FullName + ”’, as the property
type is inserted at multiple locations (and is
thus ambiguous).”);
else
newProperty . PropertyType =
}

mappedTypeEntry . Reference
else

{

// is the property type already available to the target
assembly .
if

(I'(YOHAW. Weaver . Helper . IsAssemblyInRefs (typeDef. Module
. AssemblyReferences,

property.PropertyType) || YIHAW.
Weaver. Helper . IsAssemblyTarget (property . PropertyType
typeDef)))

YIIHAW . Output. OutputFormatter . AddWarning (7 It
possible to type check the usage of + property.
PropertyType.FullName 4+ ”’. Please make sure that
this class is available from the target assembly.”
)

is not
”

// is the property type a type defined in the target, if
so it does mot need to be imported.

if (YOHAW.Weaver. Helper . IsAssemblyTarget (property .
PropertyType, typeDef))

newProperty . PropertyType = YIIHAW. Weaver. Helper .

FindLocalType (typeDef, property.PropertyType);
else

newProperty . PropertyType = typeDef.Module. Import (
property . PropertyType);
}

//insert attributes

foreach (CustomAttribute attribute in property.
CustomAttributes)

newProperty . CustomAttributes.Add(_-weaver.

CopyAndUpdateAttribute (property . DeclaringType, typeDef
, -—globalMaps, attribute));

// update the target assembly.

274

Chapter W YITHAW - An aspect weaver for .NET

typeDef.Module. Import (typeDef);

}

/// <summary>

/// Inserts a field from the aspect into the target assembly.

/// </summary>

/// <param name="aspectField”>The field to insert.</param>

/// <param name="insert”>The insert statement that tells where the field
should be inserted.</param>

/// <param name="firstPass”™>A boolean indicating if this is the first pass
of the insertion.</param>

private void InsertAspectField (FieldDefinition aspectField, Insert insert
bool firstPass)

{

// find the types where the field should be inserted.
foreach (TypeDefinition typeDef in _targetAssembly.MainModule. Types)
{
// ignore all interfaces and modules
if (typeDef.FullName.Equals(”<Module>”) || typeDef.IsInterface)
continue;

// ignore newly inserted types
if (_globalMaps.Types.ContainsValue(typeDef))
continue;

// check that this target matches the type defined in the pointcut
specification

if (!Helper.CheckTarget(insert.TargetType, typeDef.FullName))
continue;

if (firstPass)

// check if there is already a field with the same name.
foreach (FieldDefinition fieldDef in typeDef.Fields)
if (fieldDef.Name.Equals(aspectField .Name))
throw new Exceptions.IllegalOperationException (”Field
’” + aspectField .Name + ”’ can not be inserted
into class '”7 4+ typeDef.FullName + 7’7, as a field
with the same name already exist in this class.”);

YIOHAW . Output. OutputFormatter . AddField (aspectField .
DeclaringType.FullName + ”.” + aspectField .Name, typeDef.
FullName) ;

}

InsertField (aspectField , typeDef, firstPass);

}

/// <summary>

/// Inserts a field into a given target.

/// </summary>

/// <param name="aspectField”>The field to insert.</param>

/// <param name="target”™ The target type to insert the field into.</param>

/// <param name="firstPass”>A boolean indicating if this is the first pass
of the insertion.</param>

private void InsertField (FieldDefinition aspectField, TypeDefinition
target , bool firstPass)

{

if (firstPass)

275

Chapter W YITHAW - An aspect weaver for .NET

{
// create a copy of the field, add it to the mappings and to the
target type.
FieldDefinition targetField = aspectField. Clone();
_localMaps. Fields.Add(target , aspectField, targetField);
_localMaps. FieldReferences.Add(target , aspectField, targetField);
_globalMaps. Fields.Add(aspectField , targetField);
_globalMaps. FieldReferences.Add(aspectField , targetField);
targetField . CustomAttributes. Clear(); // The attributes that has
been set by wusing Clone() are not correct
target . Fields.Add(targetField);
target .Module.Import (target);
}

else //this 1is the second pass

// find the previous inserted field and update its type reference.

FieldDefinition targetField = _localMaps.Fields.Lookup(target ,
aspectField) ;

TypeReference typeRef = targetField.FieldType;

if (typeRef.Scope = aspectField.DeclaringType.Scope) // Trying to
instantiate a type defined in the aspect assembly. This 1is
only allowed if the reference is mot ambiguous.

GlobalMapperEntry<TypeReference> mappedTypeEntry = _globalMaps
. TypeReferences.Lookup(typeRef);

if (mappedTypeEntry =— null)
throw new Exceptions.IllegalOperationException (”Unable to
insert the field ’'” 4+ aspectField .Name 4+ 7’ into ’”7 +
target .FullName + 77, as the field type (7 +

aspectField . FieldType.FullName + ”’) is not defined in
the target assembly. Please specify that this type
should be introduced using the pointcut file.”);

else if (mappedTypeEntry.IsAmbiguousReference)

throw new Exceptions.IllegalOperationException (”Unable to

insert the field ’'” + aspectField.Name + ”’ into ’”7 +
target . FullName + ”’, as the field type is inserted at
multiple locations (and is thus ambiguous).”);

else

targetField .FieldType = mappedTypeEntry. Reference;

}

else
{
if (! (YIOHAW.Weaver. Helper . IsAssemblyInRefs(target . Module.

AssemblyReferences, typeRef) || YIIHAW.Weaver. Helper .

IsAssemblyTarget (typeRef, target)))

YIHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the usage of ’” 4+ aspectField.
FieldType.FullName + ”’. Please make sure that this
class is available from the target assembly.”);

if (YOHHAW.Weaver. Helper . IsAssemblyTarget (targetField.
FieldType, target))
targetField . FieldType = YIIHAW. Weaver. Helper . FindLocalType
(target , targetField.FieldType);
else
targetField . FieldType = target.Module. Import(aspectField.
FieldType);

276

Chapter W YITHAW - An aspect weaver for .NET

//insert attributes
foreach (CustomAttribute attribute in aspectField.CustomAttributes
)
targetField . CustomAttributes.Add(_weaver.
CopyAndUpdateAttribute (aspectField . DeclaringType, target,
_globalMaps, attribute));

}

InterceptHandler.cs

using System;

using System. Collections . Generic;
using System.Text;

using Mono. Cecil;

using Mono. Cecil . Cil;

using YIIHAW. Pointcut;

using YIIHAW. Weaver;

using YIIHAW. Exceptions;

namespace YIIHAW. Controller
{
/// <summary>
/// Handles the interception of methods in the target assembly, which are
intercepted by methods from the aspect assemby.

/// </summary>
class InterceptHandler

{

private AssemblyDefinition _aspectAssembly;
private AssemblyDefinition _targetAssembly;
private LocalMapperCollection _localMaps;
private GlobalMapperCollection _globalMaps;
private Interception _weaver;

/// <summary>

/// Creates a new InterceptHandler and sets the data needed for the
handler to function properly.

/// </summary>

/// <param name="aspectAssembly”™>The aspect assembly, where the
interception methods are located.</param>

/// <param name="targetAssembly”>The target assembly which holds the
methods that should be intercepted.</param>

/// <param name="localMaps”™>A LocalMapperCollection which will be used
throughout the interceptions.</param>

/// <param name="globalMaps”™>A GlobalMapperCollection which will be used
throughout the interceptions.</param>

public InterceptHandler (AssemblyDefinition aspectAssembly ,
AssemblyDefinition targetAssembly , LocalMapperCollection localMaps,
GlobalMapperCollection globalMaps)

_localMaps = localMaps;

_globalMaps = globalMaps;

_aspectAssembly = aspectAssembly;

_targetAssembly = targetAssembly;

_weaver = new Interception (localMaps, globalMaps);

277

Chapter W YITHAW - An aspect weaver for .NET

/// <summary>

/// Processes an around statement by finding the advice methods that are
valid for the statement

/// and then intercept the methods in the target that are matching the
pointcut in the statement.

/// </summary>

/// <param name="around”>The pointcut represented as an around statement
.</param>

public void ProcessStatement (Around around)

{
List<MethodDefinition> adviceMethods = FindAdviceMethods (around.

AdviceName, around.AdviceType);

InterceptTargetMethods (adviceMethods, around);

}

/// <summary>

/// Finds the methods in target that matches the pointcut, and if there is
an advice method

/// which can be used for intercepting the target method, it calls the
weaver to get the two methods weaved together.

/// </summary>

/// <param name="adviceMethods”>A list of advice methods that can be used
for the interception.</param>

/// <param name="around”>The around statement that tells which methods
should be the target of interception.</param>

private void InterceptTargetMethods(List<MethodDefinition> adviceMethods,
Around around)

{

foreach (TypeDefinition typeDef in _targetAssembly.MainModule. Types)
{
if (!typeDef.IsInterface && Helper.CheckTarget (around.TargetType,
typeDef.FullName)) // we have found the correct class — run
through all enclosing methods
foreach (MethodDefinition methodDef in typeDef.Methods) //
check if this method matches the pointcut
{

// check if this method have been introduced previously
if (_localMaps.Methods. ContainsValue (methodDef))
continue;

// check the method name

if (!Helper.CheckTarget (around. TargetMethod .Name,
methodDef . Name))
continue;

// check the access specifier

if (!Helper.CheckAccessSpecifier (methodDef. Attributes ,
around . Access))
continue;

// check the return type
if (around.ReturnType.Type =— ReturnTypeEnum.VOID)

if (!methodDef.ReturnType.ReturnType.FullName.Equals(”
System.Void”))
continue;

else if (around.ReturnType.Type != ReturnTypeEnum .ANY && !
Helper.IsTypeEqual (around . ReturnType. SpecificType ,
methodDef. ReturnType . ReturnType))
continue;

278

Chapter W YITHAW - An aspect weaver for .NET

// check the method type

if (!Helper.CheckInvocationKind (methodDef, around.
InvocationrType))
continue;

// check the argument types

if (!Helper.CheckArguments(around. TargetMethod.
ArgumentList , methodDef. Parameters))
continue;

// check the inherits property
if (!Helper.CheckInherit (around.Inherit , typeDef))
continue;

// check if there is an advice method that can be used for
the interception of the target method.

// if that is the case, get the weaver to weave the two
methods together.

MethodDefinition adviceMethod = FindBestMatch (methodDef,
adviceMethods) ;

if (adviceMethod != null)

YIHAW . Output. OutputFormatter . AddMethodIntercepted (
Helper . MethodToString (methodDef) , Helper.
MethodToString (adviceMethod)) ;

_weaver . AroundIntercept (adviceMethod , methodDef) ;

}

/// <summary>

/// Finds the best matching advice method to a given target method.

/// Matching is on the signature of the method, where the return type has
highest weight,

/// and the parameter types of the advice must match the parameter types
of the target method.

/// It is okay if the advice takes lesser parameters than the target, as
long as there is a match on all the parameter types of the advice.

/// </summary>

/// <param name="targetMethod”>The target method to find a match for.</
param>

/// <param name="adviceMethods”>A list of advice methods to find a match
in.</param>

/// <returns></returns>

private MethodDefinition FindBestMatch(MethodDefinition targetMethod, List
<MethodDefinition> adviceMethods)

{

// info about best match so far
int numberOfParametersMatched = —1;
bool returnTypeMatched = false;
MethodDefinition bestMatch = null;

// run through all available advice methods
foreach (MethodDefinition advice in adviceMethods)
{
if (ladvice.IsStatic && targetMethod.IsStatic) //If the advice
method is an instance method, the target method has to be an
instance method as well.
continue;

TypeReference returnType = GetReturnType(advice); // get the

279

Chapter W YITHAW - An aspect weaver for .NET

return type of the current advice method

if (returnType.FullName.Equals(targetMethod.ReturnType.ReturnType.
FullName)) // the return type of the advice matches the return
type of the target method

int paramThatMatch = GetParametersThatMatch (targetMethod ,
advice); // get the number of parameters that match the
target method

if (paramThatMatch > (returnTypeMatched 7
numberOfParametersMatched : —1)) // this is the best match
so far

numberOfParametersMatched = paramThatMatch;
bestMatch = advice;
returnTypeMatched = true;
}
}
else if (!returnTypeMatched && returnType is GenericParameter)
// the return type of the advice does NOT match the return type of
the target method
// AND we have not yet found an advice method that matches the
return type of the target method
// AND the return type of the advice method is generic.
{
int paramThatMatch = GetParametersThatMatch (targetMethod ,
advice); // get the number of parameters that match the
target method
if (paramThatMatch > numberOfParametersMatched) // this is the
best match so far
{

numberOfParametersMatched = paramThatMatch;
bestMatch = advice;

}

if (bestMatch != null)
return bestMatch;
else
{
YIHAW. Output. OutputFormatter . AddMethodNotIntercepted (Helper.
MethodToString (targetMethod)) ;
return null;

}

/// <summary>

/// Counts how many parameters that matches between the target and advice
methods .

/// If there is any parameters that does not match, the result is —1.

/// If the advice takes more parameters than the target the result is —1.

/// </summary>

/// <param name="targetMethod”> The target method.</param>

/// <param name="adviceMethod”> The advice method.</param>

/// <returns>An integer telling how many parameters that matched.</returns
>

protected int GetParametersThatMatch(MethodDefinition targetMethod,
MethodDefinition adviceMethod)

{

if (targetMethod.Parameters.Count = 0 && adviceMethod.Parameters.
Count = 0) // neither target method or advice method takes any

280

Chapter W YITHAW - An aspect weaver for .NET

parameters
return 0;

else if (adviceMethod.Parameters.Count > targetMethod.Parameters.Count
) // advice method takes more parameters than the target method —
this is mot a match
return —1;

else // target method takes a number of parameters — see how many of
these parameters are matched by the advice method

{

int parametersMatched = 0; // parameters found so far

// run through all arguments on the advice method
foreach (ParameterDefinition paramDef in adviceMethod.Parameters)
{
if (paramDef. ParameterType . FullName . Equals (targetMethod .
Parameters [parametersMatched | . ParameterType . FullName) &&
paramDef. ParameterType . Scope .Name. Equals (targetMethod .
Parameters [parametersMatched | . ParameterType. Scope . Name))

// parameter match — increase the counter
parametersMatched++;
else // parameter does not match — this advice method does not

match the target method
return —1;

}

return parametersMatched;

}

/// <summary>

/// Gets the return type of an advice method. The type might be generic,
in which case a possible constraint on the type will define the return
type.

/// </summary>

/// <param name="advice”>The advice method, to get the return type from.</
param>

/// <returns>The return type of the given advice method.</returns>

protected TypeReference GetReturnType(MethodDefinition advice)

{

if (advice.ReturnType.ReturnType is GenericParameter) // Returntype is
generic —check constraints
{

GenericParameter genericParam = advice.ReturnType.ReturnType as
GenericParameter;

if (genericParam.Constraints.Count != 0) // there are constraints
on the type — check if there is more than one (limitation by
weaver) .

{
if (genericParam.Constraints.Count != 1) // more than one

constraint is defined — this is illegal

throw new Exceptions.NotSupportedOperationException(”It is
illegal to have more than one constraint on a generic
parameter (type 7 + advice.DeclaringType.FullName +
7.7 + advice.Name + ”77).7);
else // only one constraint defined — return this constraint
return genericParam. Constraints [0];

else //no constraints — return the generic type
return genericParam;

else //returntype is not generic — return the concrete type.

281

Chapter W YITHAW - An aspect weaver for .NET

return advice.ReturnType.ReturnType;

}

/// <summary>

/// Finds the advice methods in the aspect assembly which matched the type
and name given .

/// </summary>

/// <param name="adviceName”> The name that the methods should match.</
param>

/// <param name="adviceType”>The type in which the methods should be
located.</param>

/// <returns></returns>

protected List<MethodDefinition> FindAdviceMethods(string adviceName,
string adviceType)

{

List <MethodDefinition> results = new List<MethodDefinition >();

// run through all types defined in the aspect assembly
foreach (TypeDefinition typeDef in _aspectAssembly.MainModule. Types)
if (typeDef.FullName.Equals(adviceType)) // we have found the
correct type
foreach (MethodDefinition methodDef in typeDef.Methods)
if (methodDef.Name. Equals(adviceName)) // we have found an
advice method that matches the pointcut
results .Add(methodDef) ;

return results;

}
ModifyHandler.cs

using System;

using System. Collections . Generic;
using System.Text;

using YIIHAW. Pointcut;

using Mono. Cecil;

using YIIHAW. Weaver;

namespace YIIHAW. Controller
{
/// <summary>
/// Handles the modification of types in the target assembly.

/// </summary>
public class ModifyHandler

{
private AssemblyDefinition _aspectAssembly;
private AssemblyDefinition _targetAssembly;
private LocalMapperCollection _localMaps;
private GlobalMapperCollection _globalMaps;

/// <summary>

/// Creates a new ModifyHandler and sets the data needed for the handler
to function properly.

/// </summary>

/// <param name="aspectAssembly”™>The aspect assembly, where the
modification types are located.</param>

/// <param name="targetAssembly”>The target assembly which holds the types
that should be modified.</param>

/// <param name="localMaps”™>A LocalMapperCollection which will be used

282

Chapter W YITHAW - An aspect weaver for .NET

throughout the modifications.</param>

/// <param name="globalMaps”>A GlobalMapperCollection which will be used
throughout the modifications.</param>

public ModifyHandler (AssemblyDefinition aspectAssembly, AssemblyDefinition
targetAssembly , LocalMapperCollection localMaps,
GlobalMapperCollection globalMaps)

_aspectAssembly = aspectAssembly;
_targetAssembly = targetAssembly;
_localMaps = localMaps;
_globalMaps = globalMaps;

}

/// <summary>
/// Processes an modify statement by finding the target types that matches
the pointcut
/// and the do the modification to the found types.
/// </summary>
/// <param name="modify”></param>
public void ProcessStatement (Modify modify)
{
List<TypeDefinition> targetTypes = FindTargetTypes(modify.TargetType);
if (modify.ModifyType =— ModifyTypeEnum .IMPLEMENT)
ImplementInterface (targetTypes, modify);
else
SetNewBaseClass (targetTypes, modify);

}

/// <summary>

/// Changes the basetype of types given as parameter.

/// </summary>

/// <param name="targetTypes”™>A list of target types which should be
modified.</param>

/// <param name="modify”>The modify statement that tells what basetype to
use in the modification.</param>

private void SetNewBaseClass(List<TypeDefinition> targetTypes, Modify
modify)

{

// find the aspect basetype
TypeDefinition aspectBaseType = FindAspectType(modify , false);

if (aspectBaseType = null) // no aspect basetype was found.
throw new Exceptions.ConstructNotFoundException(”The type ’'7 +
modify . InheritType + ”’ could not be found in the aspect
assembly.”);

// as the new basetype must come from the aspect assembly, it should
have been inserted into the target, and therefore be located in
the global mapper.

GlobalMapperEntry<TypeDefinition> mappedType = _globalMaps. Types.
Lookup (aspectBaseType) ;

if (mappedType = null)
throw new Exceptions.ConstructNotFoundException(”Unable to use the

class ’'” + aspectBaseType.Name + ”’ as a basetype, as this
class is not defined in the target assembly. If this class
should be available in the target assembly, please specify
that it should be inserted into the target assembly using the
pointcut specification.”);

else if (mappedType.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to use the

class 7 + aspectBaseType.Name + ”’. The class is ambiguous,

283

Chapter W YITHAW - An aspect weaver for .NET

as it is inserted at multiple locations.”);

//check for each target type that it has the necessary methods and
properties
foreach (TypeDefinition type in targetTypes)

{

CheckTypelmplementation (type, aspectBaseType);

// store a reference to the old basetype
TypeReference oldBaseType = type.BaseType;

// set the basetype
type.BaseType = mappedType. Reference;

// update all references in the methods.
Modification modification = new Modification () ;

foreach (MethodDefinition methodDef in type.Constructors)
modification . ModifyMethod (methodDef, oldBaseType, mappedType.
Reference) ;

foreach (MethodDefinition methodDef in type.Methods)
modification . ModifyMethod (methodDef, oldBaseType, mappedType.
Reference) ;

// update the target assembly
type.Module.Import (type);

}

/// <summary>

/// Makes the target types implement an interface.

/// </summary>

/// <param name="targetTypes”™>A list of target types, which should be
modified to implement the interface.</param>

/// <param name="modify”>The modify statement that tells which interface
to use in the modification.</param>

private void ImplementInterface (List<TypeDefinition> targetTypes, Modify
modify)

//find the aspect interface
TypeDefinition aspectInterface = FindAspectType(modify, true);

if (aspectInterface = null) // no aspect interface found.
throw new Exceptions.ConstructNotFoundException(”The interface 7
+ modify.InheritType + ”’ could not be found in the aspect

assembly .”);

// as the new interface must come from the aspect assembly, it should
have been inserted into the target, and therefore be located in
the global mapper.

GlobalMapperEntry<TypeDefinition> mappedType = _globalMaps. Types.
Lookup (aspectInterface);

if (mappedType = null)
throw new Exceptions.ConstructNotFoundException (”Unable to

implement interface ’” + aspectlnterface.Name + ”’, as this
interface is not defined in the target assembly. If this
interface should be available in the target assembly, please
specify that it should be inserted into the target assembly
using the pointcut specification.”);

else if (mappedType.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to

284

Chapter W YITHAW - An aspect weaver for .NET

implement interface ’'” + aspectInterface.Name + ”’. The
interface is ambiguous, as it is inserted at multiple
locations.”);

//check for each targettype that it has the necessary methods and
properties
foreach (TypeDefinition type in targetTypes)

{

CheckTypelmplementation (type, aspectlnterface);

//insert the interface.
type.Interfaces.Add(mappedType. Reference);

}

/// <summary>

/// Finds a type in the aspect assembly, based on the pointcut.

/// </summary>

/// <param name="modify”>The pointcut represented as a modify statement.</
param>

/// <param name="isInterface”™>A boolean indicating if it is an interface
that should be found.</param>

/// <returns>The type found in the aspect assembly that matched the
pointcut.</returns>

private TypeDefinition FindAspectType(Modify modify ,bool isInterface)

{
// go through each type.
foreach (TypeDefinition typeDef in _aspectAssembly.MainModule. Types)

// check whether the actual type is an interface, and whether it
is an interface that should be found.

if ((!typeDef.IsInterface && isInterface) || (typeDef.IsInterface
&& !isInterface))
continue;

// check the name
if (typeDef.FullName.Equals(modify.InheritType))
return typeDef;

}

return null;

}

/// <summary>

/// Checks if a given type can implement/extend a given aspect type.

/// </summary>

/// <param name="type”>The type that should be checked.</param>

/// <param name="aspectType”>The aspect type to check against.</param>

private void CheckTypelmplementation(TypeDefinition type, TypeDefinition
aspectType)

{

// check all methods in the aspect type.
foreach (MethodDefinition aspectMethodDef in aspectType.Methods)

{

// only abstract methods need to be implemented in the type.
if (!aspectMethodDef.IsAbstract)
continue;

bool methodFound = false;
foreach (MethodDefinition methodDef in type.Methods)

// check the method name

285

Chapter W YITHAW - An aspect weaver for .NET

if (laspectMethodDef.Name.Equals(methodDef.Name))
continue;

// check the access specifier

if (! Helper.CheckAccessSpecifier (methodDef. Attributes ,
aspectMethodDef. Attributes))
continue;

// check the return type

if (!methodDef.ReturnType.ReturnType.Name. Equals (
aspectMethodDef. ReturnType . ReturnType . Name))
continue;

// check the invocation kind
if (!(aspectMethodDef.IsStatic = methodDef.IsStatic))

continue;

// check the argument types

if (!Helper.CheckArguments(aspectMethodDef.Parameters,
methodDef. Parameters))
continue;

// check generic parameters

if (!Helper.CheckGenericParameters (aspectMethodDef.
GenericParameters, methodDef. GenericParameters))
continue;

methodFound = true;

}

if (!methodFound)
throw new Exceptions.ConstructNotFoundException(”The class 7
+ type.FullName + ”’ does not contain abstract method 7 +
aspectMethodDef.Name + ”’. Please specify that this
method should be inserted into this class using the
pointcut file.”);
}
// check all properties in the aspect type.
foreach (PropertyDefinition aspectProperty in aspectType.Properties)
{
bool propertyFound = false;
foreach (PropertyDefinition targetProperty in type.Properties)
{
// check the property name
if (!aspectProperty.Name.Equals(targetProperty .Name))
continue;

// check the property type

if (laspectProperty.PropertyType.FullName.Equals(
targetProperty . PropertyType.FullName))
continue;

propertyFound = true;

}

if (!propertyFound)
throw new Exceptions.ConstructNotFoundException(”The class 7
+ type.FullName + ”’ does not contain interface property
? + aspectProperty.Name + ”’. Please specify that this
property should be inserted into this class using the
pointcut file.”);

)

286

Chapter W YITHAW - An aspect weaver for .NET

}

}

/// <summary>

/// Finds all the types in the target assembly who’s full name matches a
given string.

/// The string can be from a pointput, and therefore used *’s.

/// </summary>

/// <param name="targetType” The name to match against.</param>

/// <returns>A list of types in the target assembly that matched.</returns
>

private List<TypeDefinition> FindTargetTypes(string targetType)

{
List<TypeDefinition> types = new List<TypeDefinition >();
foreach (TypeDefinition type in _targetAssembly.MainModule. Types)
if (Helper.CheckTarget (targetType, type.FullName))
types.Add(type);

return types;

Helper.cs

using
using
using
using
using
using

System ;

System . Collections . Generic;
System . Text;

Mono. Cecil;

Mono. Cecil . Cil;

YIIHAW . Pointcut ;

namespace YIIHAW. Controller

{

/// <summary>
/// Contains helper methods for the InsertHandler, InterceptHandler and

ModifyHandler classes.

/// </summary>
public static class Helper

{

/// <summary>
/// Checks if the name of a target matches the given pointcut.
/// </summary>
/// <param name="pointcut”™ The pointcut value.</param>
/// <param name="target”>The target value.</param>
/// <returns>A boolean indicating if the target matches the pointcut.</
returns>
public static bool CheckTarget(string pointcut, string target)
{
if (pointcut.Equals(”«”) && !target.Contains(”/”)) // matches all
types (except mested types)
return true;
else if (pointcut.StartsWith(”*”) && !target.Contains(”/”)) // matches
any type followed by a specific type (*.something) (except nested
types)
return (target.EndsWith(pointcut.Substring(1)));
else if (pointcut.EndsWith(”+”) && !target.Contains(”/”)) // matches a
specific type followed by any type (something.*x) (except nested
types)
return (target.StartsWith(pointcut.Substring (0, pointcut.Length —

287

Chapter W YITHAW - An aspect weaver for .NET

1)));
else // matches only fully qualified types
return target.Equals(pointcut);

}

/// <summary>

/// Checks if the access specfier of a method matches the given pointcut.

/// </summary>

/// <param name="attributes”™ The MethodAttributes of the method to check
.</param>

/// <param name="target”>The pointcut to check against.</param>

/// <returns>A boolean indicating if the methods access specifier matches
the pointcut.</returns>

public static bool CheckAccessSpecifier (MethodAttributes attributes ,
AccessEnum target)

{

if (target =— AccessEnum .INTERNAL && !((attributes & MethodAttributes.
Assem) = MethodAttributes.Assem))
return false;

else if (target AccessEnum .PRIVATE && !((attributes &
MethodAttributes.Private) = MethodAttributes. Private))
return false;

else if (target AccessEnum .PROTECTED && !((attributes &
MethodAttributes.Family) = MethodAttributes.Family))
return false;

else if (target AccessEnum .PUBLIC && !((attributes &
MethodAttributes.Public) = MethodAttributes.Public))
return false;

return true;

}

/// <summary>

/// Checks if two methods has the same access specifier.

/// </summary>

/// <param name="targetAttributes”>The first method.</param>

/// <param name="aspectAttributes”™ The second method.</param>

/// <returns>A boolean indicating if the two methods had the same access
specifier or not.</returns>

public static bool CheckAccessSpecifier (MethodAttributes targetAttributes,
MethodAttributes aspectAttributes)

{

if (((targetAttributes & MethodAttributes.Assem) = MethodAttributes.
Assem) && !((aspectAttributes & MethodAttributes.Assem) =—
MethodAttributes. Assem))
return false;

else if (((targetAttributes & MethodAttributes.Private) —
MethodAttributes. Private) && !((aspectAttributes &
MethodAttributes. Private) = MethodAttributes. Private))
return false;

else if (((targetAttributes & MethodAttributes.Family) =
MethodAttributes.Family) && !((aspectAttributes & MethodAttributes
.Family) = MethodAttributes.Family))
return false;

else if (((targetAttributes & MethodAttributes.Public) =
MethodAttributes. Public) && !((aspectAttributes & MethodAttributes
.Public) = MethodAttributes.Public))
return false;

return true;

288

Chapter W YITHAW - An aspect weaver for .NET

/// <summary>

/// Checks if the access specfier of a type matches the given pointcut.

/// </summary>

/// <param name="attributes”™>The TypeAttributes of the type to check.</
param>

/// <param name="target”>The pointcut to check against.</param>

/// <returns>A boolean indicating if the types access specifier matches
the pointcut.</returns>

public static bool CheckAccessSpecifier (TypeAttributes attributes,
AccessEnum target)

{

if (target = AccessEnum .PRIVATE && !(attributes = TypeAttributes.
NotPublic))
return false;

else if (target = AccessEnum .PUBLIC && !((attributes & TypeAttributes
.Public) = TypeAttributes.Public))
return false;

return true;

}

/// <summary>

/// Checks if the access specfier of a field matches the given pointcut.

/// </summary>

/// <param name="attributes”>The FieldAttributes of the type to check.</
param>

/// <param name="target”>The pointcut to check against.</param>

/// <returns>A boolean indicating if the fields access specifier matches
the pointcut.</returns>

public static bool CheckAccessSpecifier (FieldAttributes attributes,
AccessEnum target)

{

if (target = AccessEnum .INTERNAL && !((attributes & FieldAttributes.
Assembly) = FieldAttributes. Assembly))
return false;

else if (target AccessEnum .PRIVATE && !((attributes &
FieldAttributes.Private) = FieldAttributes.Private))
return false;

else if (target AccessEnum .PROTECTED && !((attributes &
FieldAttributes.Family) = FieldAttributes.Family))
return false;

else if (target AccessEnum .PUBLIC && !((attributes &
FieldAttributes.Public) = FieldAttributes.Public))
return false;

return true;

}

/// <summary>

/// Checks if the invocation kind of a method matches the given pointcut.

/// </summary>

/// <param name="target”>The method to check.</param>

/// <param name="memberType”>The pointcut to check against.</param>

/// <returns>A boolean indicating if the methods invocation kind matches
the pointcut.</returns>

public static bool CheckInvocationKind (MethodDefinition target ,
InvocationKindEnum memberType)

{

if (memberType = InvocationKindEnum .INSTANCE && target.IsStatic)

return false;
else if (memberType = InvocationKindEnum .STATIC && !target.IsStatic)

289

Chapter W YITHAW - An aspect weaver for .NET

return false;

return true;

}

/// <summary>

/// Checks if the arguments of a method matches the given pointcut.

/// </summary>

/// <param name="target”>The pointcut to check against.</param>

/// <param name="parameters”™ The arguments of the method.</param>

/// <returns></returns>

public static bool CheckArguments(ArgumentList target ,
ParameterDefinitionCollection parameters)

{

if (target.ArgumentType = ArgTypeEnum .NONE)

if (parameters.Count > 0) //There are parameters but there should
be mone.
return false;

else if (target.ArgumentType =— ArgTypeEnum .ANY)
return true;
else
{
if (target.Arguments.Count != parameters.Count)
return false;

int i = 0;
foreach (string arg in target.Arguments)
{
if (!IsTypeEqual(arg, parameters|[i].ParameterType))
return false;

i+
}

return true;

}

/// <summary>
/// Checks if the arguments of an aspect method matches the arguments of a
target method.

/// </summary>
/// <param name="aspect”™The aspect methods arguments.</param>

/// <param name="target”>The target methods arguments.</param>

/// <returns>A boolean indicating if the arguments of the two methods
matches.</returns>

public static bool CheckArguments(ParameterDefinitionCollection aspect,
ParameterDefinitionCollection target)

{

if (target.Count != aspect.Count)
return false;

for (int i = 0; i < aspect.Count; i++)
if (laspect[i].Name.Equals(target[i].Name))

return false;

return true;

}

/// <summary>

290

Chapter W YITHAW - An aspect weaver for .NET

/// Checks if a type mame matches a given type.

/// For the primitive types defined in the .Net framework,
versions are handled.

/// </summary>

/// <param name="type”>The type name to check.</param>

/// <param name="typeReference” The type to check against.</param>

/// <returns>A boolean indicating if the type name matches the type.</
returns>

public static bool IsTypeEqual(string type, TypeReference typeReference)

the short form

{

}

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

(type.Equals(typeReference .Name))

return true;

(type.Equals(typeReference .FullName))

return true;
(type.Equals(”byte”))

return typeReference.FullName.

(type.Equals(”sbyte”))

return typeReference.FullName.

(type.Equals(”int”))

return typeReference.FullName.

(type.Equals(”uint”))

return typeReference.FullName.

(type.Equals(”short”))

return typeReference.FullName.

(type.Equals(”ushort”))

return typeReference.FullName.

(type.Equals(”long”))

return typeReference.FullName.

(type.Equals(”ulong”))

return typeReference.FullName.

(type.Equals(”float”))

return typeReference.FullName.

(type.Equals(”double”))

return typeReference.FullName.

(type.Equals(”char”))

return typeReference.FullName.

(type.Equals(”bool”))

return typeReference.FullName.

(type.Equals(”object”))

return typeReference.FullName.

(type.Equals(”string”))

return typeReference.FullName.

(type.Equals(”decimal”))

return typeReference.FullName.

return false;

/// <summary>
/// Formats a methods signature as a string.
/// </summary>
/// <param name="method”>The method.</param>
/// <returns>A string representing the signature of the given method.</

returns>

Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .
Equals (”System .

Equals (”System .

Byte”);
SByte”);
Int327);
Ulnt32”7);
Int167);
Ulnt16”7) ;
Int647);
Ulnt64”) ;
Single”);
Double”) ;
Char”) ;
Boolean”) ;
Object”) ;
String”);

Decimal”) ;

public static string MethodToString(MethodDefinition method)

{

StringBuilder sb = new StringBuilder () ;
sb . Append (YIHAW . Output . OutputFormatter . Get TypeShortFormat (method .
ReturnType. ReturnType . FullName)) ;
sb.Append (”) ;
sb . Append (method . DeclaringType . FullName) ;
sb. Append (7:7);

291

Chapter W YITHAW - An aspect weaver for .NET

sb . Append (method . Name) ;
sb.Append(”(”);

bool firstParam = true;
foreach (ParameterDefinition paramDef in method.Parameters)
{
if (!firstParam)
sb.Append (7, ”);

firstParam = false;
sb . Append (YIHAW . Output . OutputFormatter . Get TypeShortFormat (
paramDef. ParameterType . FullName)) ;

}
sb.Append(”)”);

return sb.ToString();

}

/// <summary>
/// Checks if a type inherits a given type (non recursive).
/// </summary>
/// <param name="inherit”>The basetype.</param>
/// <param name="typeDef”>The type to check.</param>
/// <returns>A boolean indicating if the type inherits the specified type
.</returns>
internal static bool CheckInherit(Inherit inherit, TypeDefinition typeDef)
{
if (inherit.InheritType = InheritTypeEnum .ANY) //Inherit type is
irrelevant as all types are matched.
return true;

if (typeDef.BaseType.FullName.Equals(inherit.SpecificType)) //Basetype
matches.
return true;

foreach (TypeReference typeRef in typeDef.Interfaces) //Check the
implemented interfaces.
if (typeRef.FullName.Equals(inherit.SpecificType))
return true;

return false;

}

/// <summary>
/// Checks if the generic parameters of two methods are identical.

/// </summary>
/// <param name="aspect”™ Generic parameters from the aspect method.</param

>

/// <param name="target” Generic parameters from the target method.</param
>

/// <returns>A boolean indicating if the parameters are identical.</
returns>

internal static bool CheckGenericParameters(GenericParameterCollection
aspect , GenericParameterCollection target)
{
if (target.Count != aspect.Count)
return false;

//The only thing mnecessary to check, are the constraints on the types.

for (int i = 0; i < aspect.Count; i++)
if (laspect[i].Constraints.Equals(target[i]. Constraints))

292

Chapter W YITHAW - An aspect weaver for .NET

return false;

return true;

}

Mediator.cs

using System;

using System. Collections . Generic;
using System.Text;

using YIIHAW. Pointcut;

using Mono. Cecil;

using System.IO;

using YIIHAW. Weaver ;

using YIIHAW. Output;

namespace YIIHAW. Controller
{
/// <summary>
/// The Mediator is the main controller of the program, and it is also the
starting point of the program.

/// </summary>
public class Mediator

{
/// <summary>
/// The method that starts the weaver.
/// </summary>
/// <param name="args”>The arguments for the weaver. <pointcut> <target> <
aspect> [out] [—v]</param>
public static void Main(string[] args)
{
OutputFormatter. Reset () ;
// check to see that the right number og arguments are specified.
if (args.Length < 3 || args.Length > 5)
Console. WriteLine (”?Usage: yiithaw <pointcut> <target> <aspect> [out
| [-v]);
else
{
bool verbose = false; //indicates if the output should be in
verbose mode or mnot.

if ((args.Length = 4 && args[3].Equals(”-v”)) || (args.Length =
5 && args [4].Equals("—v")))
verbose = true;

AssemblyDefinition targetAssembly;

AssemblyDefinition aspectAssembly;

LocalMapperCollection localMaps = new LocalMapperCollection () ;
GlobalMapperCollection globalMaps = new GlobalMapperCollection () ;

// open the target assembly.
try

{
}

catch (FileNotFoundException)

{

targetAssembly = AssemblyFactory.GetAssembly (args[1]);

OutputFormatter. AddException(” Target assembly could not be
found”) ;
OutputFormatter. PrintOutput (verbose) ;

293

Chapter W

YITHAW - An aspect weaver for .NET

Console.ReadLine () ;
return;

}

catch (Exception e)
{
OutputFormatter . AddException(”An error occurred while reading
target assembly: ” + e.Message);
OutputFormatter. PrintOutput (verbose);
Console . ReadLine () ;

return;

}

// open the aspect assembly.
try

{

aspectAssembly = AssemblyFactory.GetAssembly (args [2]) ;

catch (FileNotFoundException)
{
OutputFormatter . AddException(” Aspect assembly could not be
found”);
OutputFormatter. PrintOutput (verbose);
Console . ReadLine () ;
return;

}

catch (Exception e)
{
OutputFormatter . AddException(”An error occurred while reading
aspect assembly: 7 + e.Message);
OutputFormatter. PrintOutput (verbose);
Console . ReadLine () ;

return;

}

// parse the pointcut file.
Parser parser;
try
{
parser = new Parser (new YIIHAW. Pointcut.LexicalAnalysis.
Scanner (args [0]));
parser . Parse () ;

}

catch (YIHAW. Pointcut.Exceptions.InputFileNotFoundException)

{
OutputFormatter . AddException (”Pointcut file could not be found
")
OutputFormatter . PrintOutput (verbose) ;
Console . ReadLine () ;
return;

}

catch (YIIHAW. Pointcut.Exceptions.ParseError e)
{
OutputFormatter . AddException(”Error while parsing pointcut
file: 7 4+ e.Message);
OutputFormatter. PrintOutput (verbose);
Console . ReadLine () ;
return;

}

// take action of the statements created by the parser, based on
the pointcut file.
try

294

Chapter W

YITHAW - An aspect weaver for .NET

// insertion first.
InsertHandler insertHandler = new InsertHandler (aspectAssembly
, targetAssembly, localMaps, globalMaps);

// do first pass
foreach (Insert insert in parser.InsertStatements)
insertHandler . ProcessStatement (insert , true);

// do second pass
foreach (Insert insert in parser.InsertStatements)
insertHandler . ProcessStatement (insert , false);

// modification second.
ModifyHandler modifyHandler = new ModifyHandler (aspectAssembly
, targetAssembly, localMaps, globalMaps);

foreach (Modify modify in parser.ModifyStatements)
modifyHandler. ProcessStatement (modify) ;

// and interception last.
InterceptHandler interceptHandler = new InterceptHandler (
aspectAssembly , targetAssembly , localMaps, globalMaps);

foreach (Around around in parser.AroundStatements)
interceptHandler . ProcessStatement (around) ;

// if there is an output file specified make sure it got a
useable extention , and change the name registered as
metadata in the nmew assembly.

if (args.Length >= 4 && args[3] != "—v”)
if (args[3].Substring(args[3].Length — 4) = ”7.exe” &
args [3]. Substring (args [3]. Length — 4) != 7.dl11”)

{ // there is no extention on the output filename, use the
extention from the target assembly.
args [3] 4= targetAssembly.MainModule.Name. Substring (
targetAssembly . MainModule . Name. Length — 4);
}
// change the name in the metadata of the outputted
assembly , so that it matched the name of the outputted

file.
int lastslash = args[3]. LastIndexOf(’\\");
if (lastslash = -1)

lastslash = args[3]. LastIndexOf(’/’);
if (lastslash = —1)

{ // there is no path specification in the output filename
Just use the name, without the extention.
targetAssembly . MainModule.Name = args [3];
target Assembly .Name.Name = args [3]. Substring (0, args
[3].Length — 4);
}
else
{ // there is a path specification in the output filename,
use only the filename part of the string.
target Assembly . MainModule.Name = args [3]. Substring (
lastslash + 1);
targetAssembly .Name.Name = args [3]. Substring(lastslash
+1, args[3].Length —lastslash —5);
}
// save the weaved assembly with the new filename.
AssemblyFactory.SaveAssembly (target Assembly , args[3]);

295

Chapter W YITHAW - An aspect weaver for .NET
}
else
// overwrite the target assembly, with the weaved assembly
AssemblyFactory . SaveAssembly (targetAssembly , args[1]);
}
catch (YIIHAW. Exceptions.InternalErrorException e)
{
OutputFormatter. AddInternalException (e.Message) ;
}
catch (Exception e)
{
OutputFormatter. AddException (e . Message) ;
}
finally
{
OutputFormatter. PrintOutput (verbose);
Console. WriteLine (”Press <Enter> to end the weaving”);
Console.ReadLine () ;
}
}

296

Appendix X

Source code for YITHAW - Weaver

Introduction.cs

using System;

using System. Collections . Generic;
using System.Text;

using Mono. Cecil;

using Mono. Cecil . Cil;

namespace YIIHAW. Weaver

{

/// <summary>
/// Used for the weaving part of an introductions.

/// </summary>
public class Introduction

{

/// <summary>

/// Inserts a given aspect method into a given target method,

/// so that the target becomes a copy of the aspect method.

/// </summary>

/// <param name="aspect”™The aspect method to insert.</param>

/// <param name="target”>The target method to weave the aspect into.</
param>

/// <param name="localMaps”™>A LocalMapperCollection which will be used
throughout the introduction of the method.</param>

/// <param name="globalMaps”>A GlobalMapperCollection which will be used
throughout the introduction of the method.</param>

public void InsertMethod (MethodDefinition aspect, MethodDefinition target
LocalMapperCollection localMaps, GlobalMapperCollection globalMaps)

{

if (laspect.IsAbstract)

// insert locals
foreach (VariableDefinition varDef in aspect.Body. Variables)
{
// special action is needed if the wvariable is an arrayType,
as the actual type is then stored at another place.
if (varDef.VariableType is ArrayType)

HandleArrayVar (varDef, aspect, target, globalMaps);

}

else if (varDef.VariableType.Scope = aspect.DeclaringType.
Scope) // Trying to instantiate a type defined in the
aspect assembly. This is only allowed if the reference 1is
not ambiguous.

297

Chapter X

YITHAW - An aspect weaver for .NET

GlobalMapperEntry<TypeReference> mappedTypeEntry =
globalMaps. TypeReferences. Lookup (varDef. VariableType) ;

if (mappedTypeEntry =— null)
throw new Exceptions.IllegalOperationException (”Unable
to access the type 7 + varDef.VariableType.
FullName + ”’ from ’” 4+ target.DeclaringType.
FullName 4+ ”7.” + target.Name + ”’, as ’” + varDef.
VariableType.FullName + ”’ is not defined in the
target assembly. Please specify that this type
should be introduced using the pointcut file.”);
else if (mappedTypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable
to access the type '7 + varDef.VariableType.
FullName 4+ 7’ from ’” + target.DeclaringType.
FullName + ”7.” + target.Name + ”’. The reference

is ambiguous, as the type is inserted at multiple
locations.”);
else

varDef. VariableType = mappedTypeEntry. Reference;

else

if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences, varDef.VariableType) || Helper.
IsAssemblyTarget (varDef. VariableType , target.
DeclaringType)))
YIOHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the instantiation of 7 +
varDef. VariableType.FullName + ”’. Please make

sure that this class is available from the target
assembly .”);

if (Helper.IsAssemblyTarget(varDef. VariableType, target.
DeclaringType))
varDef. VariableType = Helper.FindLocalType(target .
DeclaringType, varDef.VariableType);
else
varDef. VariableType = target.DeclaringType.Module.
Import (varDef. VariableType) ;

}

target.Body. Variables.Add(varDef) ;
}

// insert init locals metadata
target .Body.InitLocals = aspect.Body.InitLocals;

}

// insert arguments
InsertMethodArguments (aspect , target, globalMaps);

// insert gemeric parameters
InsertGenericParameters (aspect, target, globalMaps);

// update returntype
UpdateReturnType (aspect , target, globalMaps);
target . Attributes = aspect.Attributes;

//insert attributes
InsertAttributes (aspect, target, globalMaps);

298

Chapter X YITHAW - An aspect weaver for .NET

if (!aspect.IsAbstract)

// run through all instructions in the aspect body and check if
special action is mneeded.
foreach (Instruction curlnstr in aspect.Body.Instructions)

{

CilWorker worker = aspect.Body.CilWorker;

// check if this instruction is a “call”
if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
MethodCallOpCodesArray))
HandleMethodReference (curlnstr , target, aspect, worker,
localMaps, globalMaps);
// check if this opcode is a reference to a field (store or

load)
else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
LoadFieldOpCodesArray) || Helper.IsOpcodeEqual(curlnstr.

OpCode, Helper.StoreFieldOpCodesArray))
HandleFieldAccess (curlnstr , aspect, target, worker,
localMaps, globalMaps);

else if (curlnstr.OpCode. Equals(OpCodes. Newobj))
HandleNewobj(curlnstr , target, aspect, worker, globalMaps)

)

else if (curlnstr.OpCode. Equals(OpCodes. Newarr))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes.Box))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
UnBoxOpCodesArray))
HandleTypelmport (curlnstr , target, aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Castclass))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Isinst))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Constrained))
HandleConstrained (curlnstr , target, aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes.Ldobj))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Stobj))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes.Cpobj))

HandleTypelmport (curlnstr , target, aspect, worker,
globalMaps) ;

299

Chapter X YITHAW - An aspect weaver for .NET

else if (curlnstr.OpCode. Equals(OpCodes. Mkrefany))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Refanytype))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Refanyval))
HandleTypelmport (curlnstr , target, aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Sizeof))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
ElementLoad AndStoreWithTokenArray))
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;

else if (curlnstr.OpCode. Equals(OpCodes. Ldtoken))
{
if (curlnstr.Operand is MethodReference)
HandleMethodReference (curlnstr , target, aspect, worker
, localMaps, globalMaps);
else if (curlnstr.Operand is TypeReference)
HandleTypelmport (curlnstr , target , aspect, worker,
globalMaps) ;
else
HandleFieldAccess (curlnstr , aspect, target, worker,
localMaps, globalMaps);

}

else // no changes are needed for this instruction
target.Body.CilWorker . Append (curlnstr);

}

/// <summary>

/// Handles the case where a variable that should be inserted is of an
arraytype.

/// </summary>

/// <param name="varDef”>The wvariable that has the arraytype.</param>

/// <param name="aspect”™ The advice method.</param>

/// <param name="target”>The target method.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

private void HandleArrayVar(VariableDefinition varDef, MethodDefinition
aspect , MethodDefinition target, GlobalMapperCollection globalMaps)

{

TypeReference typeRef = (varDef.VariableType as ArrayType).ElementType

)

if (typeRef.Scope =— aspect.DeclaringType.Scope) // Trying to
instantiate a type defined in the aspect assembly. This is only
allowed if the reference is mot ambiguous.

GlobalMapperEntry<TypeReference> mappedTypeEntry = globalMaps.

300

Chapter X YITHAW - An aspect weaver for .NET

TypeReferences.Lookup (typeRef);

if (mappedTypeEntry = null)
throw new Exceptions.IllegalOperationException (”Unable to
access the type ’” + typeRef.FullName + 7’ from 7 +
target . DeclaringType.FullName + ”.” + target.Name + ”7’, as
>” + typeRef.FullName + ”’ is not defined in the target
assembly. Please specify that this type should be
introduced using the pointcut file.”);
else if (mappedTypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access the type 7 + typeRef.FullName + 7’ from ’'” +
target . DeclaringType.FullName + ”.” + target.Name 4+ 7.
The reference is ambiguous, as the type is inserted at
multiple locations.”);
else
(varDef. VariableType as ArrayType).ElementType =
mapped TypeEntry . Reference;

}

else

{

if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences, typeRef) || Helper.IsAssemblyTarget (
typeRef, target.DeclaringType)))
YIOHAW. Output. OutputFormatter . AddWarning (”It is not possible
to type check the instantiation of ’” + typeRef.FullName +
”? 7. Please make sure that this class is available from
the target assembly.”);

if (Helper.IsAssemblyTarget(typeRef, target.DeclaringType))
(varDef. VariableType as ArrayType).ElementType = Helper.
FindLocalType(target . DeclaringType, typeRefl);
else
(varDef. VariableType as ArrayType).ElementType = target .
DeclaringType . Module. Import (typeRef) ;

}

/// <summary>
/// Sets the same attributes on the target method as the ones set on the

aspect method.

/// </summary>
/// <param name="aspect”>The aspect method.</param>

/// <param name="target”>The target method to set the attributes on.</
param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

private void InsertAttributes(MethodDefinition aspect, MethodDefinition
target , GlobalMapperCollection globalMaps)
{
foreach (CustomAttribute attribute in aspect.CustomAttributes)
// a new copy must be made for each attribute.
CustomAttribute newAttribute = CopyAndUpdateAttribute (aspect.
DeclaringType, target.DeclaringType, globalMaps, attribute);

target . CustomAttributes.Add(newAttribute);

}

/// <summary>
/// Creates a copy of a given attribute , and updates the references

301

Chapter X YITHAW - An aspect weaver for .NET

/// of the copy so that it works in the target assembly.

/// </summary>

/// <param name="aspect”™ The aspect method.</param>

/// <param name="target”The target method.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

/// <param name="attribute”™The attribute to make a copy of.</param>

/// <returns></returns>

public CustomAttribute CopyAndUpdateAttribute (TypeReference aspect ,
TypeReference target, GlobalMapperCollection globalMaps,
CustomAttribute attribute)

{
// copy the attribute
CustomAttribute newAttribute = attribute.Clone();
// update the type of the attribute reference.
TypeReference typeRef = attribute.Constructor.DeclaringType;
if (typeRef.Scope = aspect.Scope) // Trying to use a type defined in
the aspect assembly. This is only allowed if the reference is not
ambiguous.
GlobalMapperEntry<TypeReference> mappedTypeEntry = globalMaps.
TypeReferences . Lookup (typeRef) ;
if (mappedTypeEntry = null)
throw new Exceptions.IllegalOperationException (”Unable to
access the attribute ’”7 + typeRef.FullName + ”’ from ’” +
target .FullName + 7”7, as ’” 4+ typeRef.FullName 4+ ”’ is not
defined in the target assembly. Please specify that this
type should be introduced using the pointcut file.”);
else if (mappedTypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access the attribute ’'” 4+ typeRef.FullName + 7’ from ’” +
target . FullName 4+ ”’. The reference is ambiguous, as the
type is inserted at multiple locations.”);
else
{
newAttribute. Constructor.DeclaringType = mappedTypeEntry.
Reference;
newAttribute. Constructor = Helper.FindLocalMethod (target ,
newAttribute. Constructor) ;
}
}
else
{
if (!(Helper.IsAssemblyInRefs(target.Module. AssemblyReferences,
typeRef) || Helper.IsAssemblyTarget(typeRef, target)))
YIHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the usage of ’” + typeRef.FullName + 7.
Please make sure that this class is available from the
target assembly.”);
if (Helper.IsAssemblyTarget(typeRef, target))
newAttribute. Constructor = Helper.FindLocalMethod (target ,
newAttribute. Constructor);
else
newAttribute. Constructor = target.Module.Import(newAttribute.
Constructor) ;
}
return newAttribute;
}

302

Chapter X YITHAW - An aspect weaver for .NET

/// <summary>

/// Handles instructions being inserted that is referencing a method.

/// </summary>

/// <param name="curlInstr”>The instruction which is referencing a method
.</param>

/// <param name="target”>The target method where the instruction should be
inserted.</param>

/// <param name="aspect”The aspect method from where the instruction
originates.</param>

/// <param name="worker”>A CilWorker.</param>

/// <param name="localMpas”™ The local mappings to make lookups in.</param>

/// <param name="globalMaps”™> The global mappings to make lookups in.</
param>

private void HandleMethodReference(Instruction curlnstr, MethodDefinition
target , MethodDefinition aspect, CilWorker worker,
LocalMapperCollection localMaps , GlobalMapperCollection globalMaps)

MethodReference methodRef = curlnstr.Operand as MethodReference;

// check that none of the generic parameters defined on the advice

class are passed as argument to other method — this is not allowed
as the generic parameters do mot exzist at runtime (and would thus
fail)

foreach (GenericParameter genericParameter in methodRef.
GenericParameters)
if (aspect.DeclaringType.GenericParameters. Contains (
genericParameter))
throw new Exceptions.IllegalOperationException (”The generics
parameters defined on the advice class can not be used
when calling methods (’” + aspect.DeclaringType.FullName +
7.7 + aspect.Name + ”77).7);

if (methodRef.DeclaringType = aspect.DeclaringType) // the call is to
a method defined in the same class as the aspect method — map the
method call to the method that was created in the target type
during the first pass

MethodReference mappedMethod = localMaps.MethodReferences . Lookup (
target.DeclaringType, methodRef);
if (mappedMethod != null) // the method was found in the mapper —
insert a call to this method
methodRef = mappedMethod ;
else // method was not found in the mapper — throw an ezception
throw new Exceptions. ConstructNotFoundException(”Unable to
invoke method ’” + methodRef.Name + 7’ from ’'” + target.
Name + ”’, as ’” + methodRef.Name + ”’ is not defined in
the target assembly. If this method should be available in
the target assembly, please specify that this method
should be inserted into the target assembly using the
pointcut specification.”);
}
// Trying to use a method defined in the aspect assembly. This is only
allowed if the reference is mot ambiguous.
else if (methodRef.DeclaringType.Scope = aspect.DeclaringType.Scope)
{
GlobalMapperEntry<MethodReference> mappedMethodRef = globalMaps.
MethodReferences . Lookup (methodRef) ;
if (mappedMethodRef = null)
throw new Exceptions. ConstructNotFoundException(”Unable to
access the method ’'” + methodRef.Name + 7’ from ’'” +
target .Name + ”’, as ’'” 4+ methodRef.Name + ”’ is not
defined in the target assembly. If this method should be

303

Chapter X YITHAW - An aspect weaver for .NET

available in the target assembly, please specify that it
should be inserted into the target assembly using the
pointcut file.”);
else if (mappedMethodRef.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access the method ’'” 4+ methodRef.Name + ”’ from 7 +
target .Name + ”’. The reference is ambiguous, as the
method is inserted at multiple locations.”);
else
methodRef = mappedMethodRef. Reference;
}
else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences , methodRef.DeclaringType) || Helper.
IsAssemblyTarget (methodRef. DeclaringType, target.DeclaringType
)))
YIHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the use of ’” + methodRef.DeclaringType.
FullName + ”’. Please make sure that this class is
available from the target assembly.”);

if (Helper.IsAssemblyTarget (methodRef. DeclaringType, target.
DeclaringType))
methodRef = Helper.FindLocalMethod (target .DeclaringType,
methodRef) ;
else
methodRef = target.DeclaringType.Module.Import (methodRef) ;

}
target .Body.CilWorker . Append (worker . Create (curInstr .OpCode, methodRef))

)

}

/// <summary>

/// Handles the .constrained instruction .

/// </summary>

/// <param name="curlInstr”>The .constrained instruction.</param>

/// <param name="target”>The target method.</param>

/// <param name="aspect”™ The advice method.</param>

/// <param name="worker”>A CilWorker.</param>

/// <param name="globalMaps”™>The global mappings to make lookups in.</
param>

private void HandleConstrained (Instruction curlnstr, MethodDefinition
target , MethodDefinition aspect, CilWorker worker,
GlobalMapperCollection globalMaps)

TypeReference typeRef = curlnstr.Operand as TypeReference;

// if it is not a generic type, just handle it as any other
instruction with a typeReference operand.

if (!(typeRef is GenericParameter))

HandleTypelmport (curlnstr, target, aspect, worker, globalMaps);
return;

}

target .Body.CilWorker . Append (curlnstr);

}

/// <summary>

/// Inserts the generic parameters from an aspect method into a target
method .

304

Chapter X YITHAW - An aspect weaver for .NET

/// </summary>

/// <param name="aspect”™ The aspect method.</param>

/// <param name="target”>The target method to insert the parameters into
.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

private static void InsertGenericParameters(MethodDefinition aspect,
MethodDefinition target, GlobalMapperCollection globalMaps)

{

foreach (GenericParameter genericParam in aspect.GenericParameters)
{
// make a copy of the parameter
GenericParameter newGenericParam = new GenericParameter (
genericParam .Name, target);
// add the constraints
foreach (TypeReference typeRef in genericParam.Constraints)
{
if (typeRef.Scope = aspect.DeclaringType.Scope) // Trying to
instantiate a type defined in the aspect assembly. This is
only allowed if the reference is mot ambiguous.

GlobalMapperEntry<TypeReference> mappedTypeEntry =
globalMaps. TypeReferences . Lookup (typeRef);

if (mappedTypeEntry = null)
throw new Exceptions.IllegalOperationException (”Unable
to access the type 7 + typeRef.FullName + 7’
from ’” 4+ target.DeclaringType.FullName + 7.7 +
target .Name + 7', as ’7 + typeRef.FullName + 7’ is
not defined in the target assembly. Please
specify that this type should be introduced using
the pointcut file.”);
else if (mappedTypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable
to access the type "7 + typeRef.FullName + 7’
from ’” 4+ target.DeclaringType.FullName + 7.7 +
target .Name + ”’. The reference is ambiguous, as
the type is inserted at multiple locations.”);
else
newGenericParam . Constraints . Add(mappedTypeEntry .
Reference);

}

else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences, typeRef) || Helper.
IsAssemblyTarget (typeRef, target.DeclaringType)))
YIHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the usage of ’” 4+ typeRef.
FullName + ”’. Please make sure that this class is
available from the target assembly.”);

if (Helper.IsAssemblyTarget(typeRef, target.DeclaringType)
)
newGenericParam. Constraints . Add(Helper . FindLocalType (
target.DeclaringType, typeRef));
else
newGenericParam. Constraints .Add(target . DeclaringType.
Module . Import (typeRef));

305

Chapter X YITHAW - An aspect weaver for .NET

target . GenericParameters.Add(newGenericParam) ;

}

/// <summary>

/// Inserts the argument types from a aspect method into a target method.

/// </summary>

/// <param name="aspect”™ The aspect method.</param>

/// <param name="target”>The target method.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

private static void InsertMethodArguments(MethodDefinition aspect,
MethodDefinition target, GlobalMapperCollection globalMaps)

{

foreach (ParameterDefinition paramDef in aspect.Parameters)

// create copy of the parameter

ParameterDefinition newParamDef = new ParameterDefinition (paramDef
.Name, paramDef.Sequence, paramDef. Attributes , paramDef.
ParameterType) ;

if (paramDef.ParameterType.Scope = aspect.DeclaringType.Scope) //
Trying to use a type defined in the aspect assembly. This is
only allowed if the reference is mot ambiguous.

GlobalMapperEntry<TypeReference> mappedTypeEntry = globalMaps.
TypeReferences . Lookup (paramDef. ParameterType) ;

if (mappedTypeEntry =— null)
throw new Exceptions.IllegalOperationException (”Unable to
access the type ’” + paramDef.ParameterType.FullName +
77 from ’” + target.DeclaringType.FullName + 7.7 +
target .Name + ”’, as ’” 4+ paramDef.ParameterType + 7’
is not defined in the target assembly. Please specify
that this type should be introduced using the pointcut
file.”);
else if (mappedTypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to

access the type 7 + paramDef.ParameterType.FullName +
7?7 from ’” + target.DeclaringType.FullName + 7.7 +
target .Name + ”’. The reference is ambiguous, as the

type is inserted at multiple locations.”);
else

newParamDef. ParameterType = mappedTypeEntry. Reference;

}
else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences , aspect.ReturnType.ReturnType) ||

Helper.IsAssemblyTarget (aspect.ReturnType.ReturnType,

target.DeclaringType)))

YIOHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the usage of ’” 4+ paramDef.
ParameterType 4+ ”’. Please make sure that this class
is available from the target assembly.”);

if (Helper.IsAssemblyTarget(paramDef.ParameterType, target.
DeclaringType))
newParamDef. ParameterType = Helper.FindLocalType (target .
DeclaringType , paramDef.ParameterType) ;
else

newParamDef. ParameterType = target.DeclaringType.Module.

306

Chapter X YITHAW - An aspect weaver for .NET

Import (paramDef. ParameterType) ;

}

target.Parameters.Add(newParamDef) ;

}

/// <summary>

/// Update the return type of the target method to that of the aspect
method.

/// </summary>
/// <param name="aspect”™ The aspect method.</param>
/// <param name="target”™ The target method.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

private static void UpdateReturnType(MethodDefinition aspect ,
MethodDefinition target, GlobalMapperCollection globalMaps)

{
if (aspect.ReturnType.ReturnType.Scope = aspect.DeclaringType. Scope)
// Trying to instantiate a type defined in the aspect assembly.
This is only allowed if the reference is not ambiguous.
GlobalMapperEntry<TypeReference> mappedTypeEntry = globalMaps.
TypeReferences.Lookup (aspect . ReturnType.ReturnType) ;
if (mappedTypeEntry =— null)

throw new Exceptions.IllegalOperationException (”Unable to
access the type ’”7 + aspect.ReturnType.ReturnType.FullName
4+ 77 from ’” + target.DeclaringType.FullName + 7.7 +
target .Name + 7’7, as ’” + aspect.ReturnType.ReturnType.
FullName 4+ 7’ is not defined in the target assembly.
Please specify that this type should be introduced using
the pointcut file.”);

else if (mappedTypeEntry.IsAmbiguousReference)

throw new Exceptions.IllegalOperationException (”Unable to
access the type ’” + aspect.ReturnType.ReturnType.FullName
4+ 77 from ’” + target.DeclaringType.FullName + 7.7 +
target .Name + ”’. The reference is ambiguous, as the type
is inserted at multiple locations.”);

else
target . ReturnType. ReturnType = mappedTypeEntry. Reference;
}
else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences, aspect.ReturnType.ReturnType) || Helper.

IsAssemblyTarget (aspect . ReturnType. ReturnType, target.

DeclaringType)))

YIHAW. Output. OutputFormatter . AddWarning (”It is not possible
to type check the usage of ’7 + aspect.ReturnType.
ReturnType.FullName + ”’. Please make sure that this class

is available from the target assembly.”);
if (Helper.IsAssemblyTarget(aspect.ReturnType.ReturnType, target.

DeclaringType))

target .ReturnType.ReturnType = Helper.FindLocalType(target .
DeclaringType, aspect.ReturnType.ReturnType);

else

target . ReturnType. ReturnType = target.DeclaringType.Module.

Import (aspect . ReturnType . ReturnType) ;
}
}

307

Chapter X YITHAW - An aspect weaver for .NET

/// <summary>

/// Given an instruction that has a TypeReference as operand, this type is
imported into the target.

/// The instruction should come from an advice.

/// </summary>

/// <param name="curlInstr”>An instruction which has a TypeReference as
operand.</param>

/// <param name="target”>The target to insert it into.</param>

/// <param name="aspect”™The advice from where the instruction originates
.</param>

/// <param name="worker”>A CilWorker.</param>

/// <param name="globalMaps”™> The global mappings to make lookups in.</
param>

private void HandleTypelmport(Instruction curlnstr, MethodDefinition
target , MethodDefinition aspect, CilWorker worker,
GlobalMapperCollection globalMaps)

TypeReference typeRef = curlnstr.Operand as TypeReference;
GlobalMapperEntry<TypeReference> typeRefEntry = globalMaps.
TypeReferences . Lookup (typeRef);

// Trying to instantiate a type defined in the aspect assembly. This
is only allowed if the reference is not ambiguous.

if (typeRef.Scope = aspect.DeclaringType.Scope)
if (typeRefEntry =— null)
throw new Exceptions.IllegalOperationException (”Unable to
instantiate ’” 4 typeRef.FullName + 7’ from ’'” + target.
DeclaringType.FullName + ”.” + target .Name 4+ ”’, as ’”7 +
typeRef.FullName + ”’ is not defined in the target

assembly. Please specify that this type should be
introduced wusing the pointcut file.”);
else if (typeRefEntry.IsAmbiguousReference)

throw new Exceptions.IllegalOperationException (”Unable to
instantiate ’” + typeRef.FullName + 7’ from ’” + target.
DeclaringType.FullName + ”.” 4+ target.Name 4+ ”’. The
reference is ambiguous, as the type is inserted at
multiple locations.”);

else
typeRef = typeRefEntry.Reference;
else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences, typeRef) || Helper.IsAssemblyTarget (

typeRef, target.DeclaringType)))

YIHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the instantiation of ’” 4+ typeRef.
DeclaringType . FullName 4+ ”’. Please make sure that this
class is available from the target assembly.”);

if (Helper.IsAssemblyTarget(typeRef, target.DeclaringType))
typeRef = Helper.FindLocalType(target.DeclaringType, typeRef);

else
typeRef = target.DeclaringType.Module.Import (typeRef);

target .Body.CilWorker . Append (worker . Create (curInstr .OpCode, typeRef)) ;

308

Chapter X YITHAW - An aspect weaver for .NET

/// <summary>

/// Takes a mewobj instruction from the advice, and makes sure that it
will work in the target.

/// </summary>

/// <param name="curlnstr”™> The newobj instruction.</param>

/// <param name="target”>The target to insert the instruction into.</param
>

/// <param name="aspect”The advice from where the instruction originates
.</param>

/// <param name="worker”>A CilWorker.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

private void HandleNewobj(Instruction curlnstr, MethodDefinition target,
MethodDefinition aspect, CilWorker worker, GlobalMapperCollection
globalMaps)

MethodReference methodRef = curlnstr.Operand as MethodReference;
GlobalMapperEntry<MethodReference> methodRefEntry = globalMaps.
MethodReferences . Lookup (methodRef) ;

// Trying to instantiate a type defined in the aspect assembly. This
is only allowed if the reference is not ambiguous.
if (methodRef.DeclaringType.Scope =— aspect.DeclaringType.Scope)
if (methodRefEntry = null)
throw new Exceptions.IllegalOperationException (”Unable to
instantiate ’” 4+ methodRef.DeclaringType.FullName + 7’
from 7 4 target.DeclaringType.FullName + ”.” 4 target.
Name + ”’, as ’” + methodRef.DeclaringType.FullName + 7’
is not defined in the target assembly. Please specify that
this type should be introduced using the pointcut file.”)
b
else if (methodRefEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to

instantiate ’” + methodRef.DeclaringType.FullName + 7’
from ’” + target.DeclaringType.FullName + ”.” 4 target.
Name + ”’. The reference is ambiguous, as the type is

inserted at multiple locations.”);
else

methodRef = methodRefEntry. Reference;

else

{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences , methodRef.DeclaringType) || Helper.

IsAssemblyTarget (methodRef. DeclaringType, target.DeclaringType

)))

YIHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the instantiation of ’” + methodRef.
DeclaringType.FullName + ”’. Please make sure that this
class is available from the target assembly.”);

if (Helper.IsAssemblyTarget (methodRef. DeclaringType, target.
DeclaringType))

methodRef = Helper.FindLocalMethod (target.DeclaringType,
methodRef) ;
else

methodRef = target.DeclaringType.Module. Import (methodRef) ;

}

target .Body.CilWorker . Append (worker . Create (curInstr .OpCode, methodRef))

)

309

Chapter X

YITHAW - An aspect weaver for .NET

/// <summary>
/// Handles instructions which has an operand of type FieldReference.

/// The field reference is update,

so that it works in the target assembly

/// .</summary>

private void HandleFieldAccess(Instruction curlnstr,

/// <param name="curInstr”>The instruction which has the FieldReference as
operand.</param>

/// <param name="aspect”™The target method.</param>

/// <param name="target”™ The advice method.</param>

/// <param name="worker”>A CilWorker.</param>

/// <param name="localMaps™ The local mappings to make lookups in.</param>

/// <param name="globalMaps”>The global mappings to make lookups in.</
param>

MethodDefinition
aspect , MethodDefinition target ,
LocalMapperCollection localMaps,

CilWorker worker ,
GlobalMapperCollection globalMaps)

Instruction newlnstr;
FieldReference fieldRef = curlnstr.Operand as FieldReference;

if (fieldRef.DeclaringType = aspect.DeclaringType) // the opcode
refers to a field defined in the same class as the aspect method —
map the reference to the field that was created in the target
type during the first pass

FieldReference mappedField = localMaps. FieldReferences .Lookup (
target.DeclaringType, fieldRef);
if (mappedField != null) // the field was found in the mapper —
insert a reference to this field
newlnstr = worker. Create (curlnstr.OpCode, mappedField);
else // field was not found in the mapper — throw an exzception
throw new Exceptions. ConstructNotFoundException(”Unable to
access field ’'” + fieldRef.Name + 7’
+ 77, as 7”7 4 fieldRef.Name + ”’ is not defined in the
target assembly. If this field should be available in the
target assembly, please specify that this field should be
inserted into the target assembly using the pointcut
specification.”);

from '” 4 target .Name

else if (fieldRef.DeclaringType.Scope
// this is a reference to a field
outside the declaring type of the
inserted — check if the reference

aspect . DeclaringType. Scope)
inside the aspect assembly, but
aspect method currently being
is ambiguous

GlobalMapperEntry<FieldReference> mappedField = globalMaps.
FieldReferences . Lookup(fieldRef);
if (mappedField = null)
throw new Exceptions. ConstructNotFoundException(”Unable to
access field 7 + fieldRef.Name + 7’ from + target .Name
+ 77, as ’” 4+ fieldRef.Name 4+ ”’ is not defined in the
target assembly. If this field should be available in the
target assembly, please specify that this field should be
inserted into the target assembly using the pointcut
specification.”);
else if (mappedField.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access field ’'” + fieldRef.Name + 7’ from ’” + target .Name
4+ 77, The reference is ambiguous, as the field is
inserted at multiple locations.”);

79

else
newlnstr = worker. Create (curlnstr.OpCode, mappedField.

310

Chapter X YITHAW - An aspect weaver for .NET

}

Reference) ;

else // this is a reference to some field located outside the aspect
assembly — add this field reference to the target method and
import the declaring type of the field

FieldReference newFieldRef = fieldRef;

if (Helper.IsAssemblyTarget(fieldRef.DeclaringType, target.
DeclaringType))
newFieldRef = Helper.FindLocalField (target , fieldRef);
else
newFieldRef = target.DeclaringType.Module.Import(fieldRef);
newlnstr = worker. Create(curlnstr .OpCode, newFieldRef);

}

target .Body.CilWorker . Append (newInstr) ;

Interception.cs

using System;

using System. Collections . Generic;
using System.Text;

using Mono. Cecil;

using Mono. Cecil. Cil;

namespace YIIHAW. Weaver

{

/// <summary>
/// Used for the weaving part of an interception.

/// </summary>
public class Interception

{

protected RecursiveDictionary<Instruction> _instructionMapping; // local
mapping used when an instruction is replaced with another instruction

private LocalMapperCollection _localMaps;

private GlobalMapperCollection _globalMaps;

private bool _proceedInvoked = false; //indicating if the advice has had a
call to proceed.

/// <summary>

/// Creates a new Interception object and sets the data needed for the
object to fumnction properly.

/// </summary>

/// <param name="localMaps”>A LocalMapperCollection which will be used
throughout the interceptions.</param>

/// <param name="globalMaps”™>A GlobalMapperCollection which will be used
throughout the interceptions.</param>

public Interception(LocalMapperCollection localMaps,
GlobalMapperCollection globalMaps)

{

_localMaps = localMaps;
_globalMaps = globalMaps;
_instructionMapping = new RecursiveDictionary <Instruction >();

}

/// <summary>
/// This is the entrance point from outside. Given an advice and a target

311

Chapter X YITHAW - An aspect weaver for .NET

the method
/// makes an interception of the target method with the advice method.
/// </summary>
/// <param name="advice”>The advice to use in the interception.</param>
/// <param name="target”>The target of the interception.</param>
public void AroundIntercept(MethodDefinition advice, MethodDefinition
target)
{

_proceedInvoked = false;
_instructionMapping. Clear(); // clear all previous instructions stored
MethodBody originalAdviceBody = advice.Clone () .Body;

//The clone method sets all Next and Previous reference to null. These
references mneed to be updated manually.

for (int index = 0; index < originalAdviceBody.Instructions.Count — 1;
index++)

{

originalAdviceBody . Instructions [index].Next = originalAdviceBody .
Instructions [index + 1];

originalAdviceBody . Instructions [index + 1].Previous =
originalAdviceBody . Instructions [index |;

}

//The clone method sets the index to 0 for all local wvariables. These
indexes need to be updated manually.

for (int index = 0; index < originalAdviceBody. Variables.Count; index
++)
originalAdviceBody . Variables [index |. Index = index;

//The clone method sets the methods declaring type to null
originalAdviceBody .Method. DeclaringType = advice.DeclaringType;

CilWorker worker = target.Body.CilWorker; // get a cil worker that can
be used to access the original target body
target .Body = new MethodBody (target); // clear the target body

// update the target body so that it is ready to be inserted whenever
we reach a call to Proceed()

UpdateTargetBody (worker, target.Body, advice.Body, target.
DeclaringType) ;

// copy the body of the advice to the target, and take action on the
spectal instructions.
HandleAdvice (target , advice, worker);

// post processing of the weaved body.
UpdateWeavedTargetBody (worker, target.Body) ;

//Insert exception and finally handlers.
AddHandlers (worker . GetBody () . ExceptionHandlers , target.Body) ;
AddHandlers (advice .Body. ExceptionHandlers , target.Body);

//Set the advice body back to its original form.
advice.Body = originalAdviceBody;

}

/// <summary>
/// Updates the references to local wvariables to the right one,
/// and optimezes the opcode for load and store of local wvariables.

/// </summary>
/// <param name="worker”>The worker of the original target body.</param>

312

Chapter X YITHAW - An aspect weaver for .NET

/// <param name="targetBody”>The MethodBody to update.</param>

protected void UpdateWeavedTargetBody (CilWorker worker, MethodBody
targetBody)

{

// remove local wvariables if necessary
if (!_proceedInvoked) // the Proceed() method has not been invoked —
remove all local wvariables that were copied from the original body
, as these are mo longer needed
foreach (VariableDefinition varDef in worker.GetBody (). Variables)
targetBody . Variables.Remove(varDef);

// all local variables are updated to have the correct Index parameter
for (int index = 0; index < targetBody.Variables.Count; index++)
targetBody . Variables [index].Index = index;

for (int index = 0; index < targetBody.Instructions.Count; index++)

{

Instruction instr = targetBody.Instructions[index];

// access to localvariables (loading) needs to be updated with a
new index

if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
LoadLocalOpCodesArray) && !Helper.IsOpcodeEqual(instr.OpCode,
Helper . LoadAdressOpCodesArray))

int number = (instr.Operand as VariableDefinition).Index;

// the instrution to use instead of the orginal ”load”
instruction
Instruction newlnstr;
switch (number)
{
case O0:
newlnstr = targetBody . CilWorker. Create (OpCodes. Ldloc_0
)
break;
case 1:
newlnstr
)
break;
case 2:
newlnstr
)
break;
case 3:
newlnstr = targetBody . CilWorker. Create (OpCodes. Ldloc_3
)
break;
default:
if (number < 256)
newlInstr = targetBody.CilWorker. Create (OpCodes.
Ldloc_S, targetBody.Variables[number]) ;

targetBody . CilWorker . Create (OpCodes. Ldloc_1

targetBody . CilWorker . Create (OpCodes. Ldloc_2

else
newlInstr = targetBody.CilWorker. Create (OpCodes.
Ldloc, targetBody.Variables[number]) ;
break;

}

// the replacement of an instruction needs to be registered
_instructionMapping .Add(instr , newlnstr);
targetBody . Instructions [index] = newlnstr;

313

Chapter X YITHAW - An aspect weaver for .NET

}

// access to localvariables (storing) needs to be updated with a
new index

else if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
StoreLocalOpCodesArray))

{

int number = (instr.Operand as VariableDefinition).Index;

// the instrution to use instead of the orginal 7store”
instruction
Instruction newlnstr;
switch (number)
{
case O0:
newlnstr
)5
break;
case 1:
newlnstr
)
break;
case 2:
newlnstr
)
break;
case 3:
newlnstr
)
break;
default:
if (number < 256)
newlnstr = targetBody.CilWorker. Create (OpCodes.
Stloc_S, targetBody.Variables [number]) ;

targetBody . CilWorker . Create (OpCodes. Stloc_0

targetBody . CilWorker . Create (OpCodes. Stloc_1

targetBody . CilWorker . Create (OpCodes. Stloc_2

targetBody . CilWorker . Create (OpCodes. Stloc_3

else
newlnstr = targetBody . CilWorker. Create (OpCodes.
Stloc, targetBody.Variables [number]) ;
break;

}

// access to localvariables meeds to be updated with a new

index
_instructionMapping .Add(instr , newlnstr);
targetBody . Instructions [index] = newlnstr;

}

CheckBranching (targetBody . Instructions);

}

/// <summary>
/// Checks if the instructions in an InstructionCollection have references

to
/// instructions that has been replaced. If any such references are found,
they are

/// change to point at the instruction which has replaced the old
tnstruction .

/// </summary>

/// <param name="instructions”™The collection of instructions to check.</
param>

private void CheckBranching(InstructionCollection instructions)

{

314

Chapter X YITHAW - An aspect weaver for .NET

foreach (Instruction instr in instructions)

{

if (Helper.IsOpcodeEqual(instr.OpCode, Helper.BranchOpCodesArray))

if (_instructionMapping.ContainsKey (instr.Operand as
Instruction)) //Instruction is in mapping — update
reference to the replacement instruction.

Instruction mappedInstr = _instructionMapping|[instr.
Operand as Instruction |;
instr.Operand = mappedInstr;
}
}
// special action needed for the switch instruction, as it has an
array of instructions to branch to.
else if (instr.OpCode. Equals(OpCodes.Switch))
{
Instruction [] switchInstructions = (instr.Operand as
Instruction []) ;
for (int i = 0; i < switchInstructions.Length; i++)
{
if (_instructionMapping.ContainsKey(switchInstructions|[i])

) //Instruction is in mapping — update reference to
the replacement instruction .

Instruction mappedInstr = _instructionMapping |
switchInstructions[i]];
switchInstructions [i] = mappedInstr;

}

/// <summary>

/// Adds a collection of EzceptionHandlers to a method.

/// </summary>

/// <param name="exzceptionHandlerCollection”™ The collection of
EzceptionHandlers to add.</param>

/// <param name="targetBody”>The method which the EzceptionHandlers should
be added to.</param>

private void AddHandlers(ExceptionHandlerCollection
exceptionHandlerCollection , MethodBody targetBody)

{

foreach (ExceptionHandler exceptionHandler in
exceptionHandlerCollection)
{

targetBody . ExceptionHandlers .Add(exceptionHandler) ;

if (exceptionHandler.Type =— ExceptionHandlerType.Catch) //Handler
is of type catch, import the type to be catched.
{

if (!(Helper.IsAssemblyInRefs(targetBody.Method. DeclaringType.

Module. AssemblyReferences, exceptionHandler.CatchType) ||

Helper.IsAssemblyTarget ((exceptionHandler . CatchType) ,

targetBody . Method . DeclaringType)))

YIHAW. Output . OutputFormatter . AddWarning (” It is not
possible to type check the use of ’7 +
exceptionHandler . CatchType.FullName + ”’. Please make
sure that this class is available from the target
assembly .”);

315

Chapter X

YITHAW - An aspect weaver for .NET

}

if (Helper.IsAssemblyTarget (exceptionHandler.CatchType,
targetBody . Method . DeclaringType))
exceptionHandler.CatchType = Helper.FindLocalType (
targetBody . Method . DeclaringType, exceptionHandler.
CatchType) ;
else
exceptionHandler . CatchType = targetBody.Method.
DeclaringType . Module. Import (exceptionHandler . CatchType

) ’
}

Instruction instr = exceptionHandler. FilterStart;
if (instr != null & & _instructionMapping.ContainsKey (instr))
exceptionHandler. FilterStart = _instructionMapping[instr];

instr = exceptionHandler. FilterEnd;
if (instr != null && _instructionMapping.ContainsKey (instr))
exceptionHandler . FilterEnd = _instructionMapping|[instr];

instr = exceptionHandler.HandlerStart;
if (instr != null && _instructionMapping.ContainsKey (instr))
exceptionHandler . HandlerStart = _instructionMapping[instr];

instr = exceptionHandler.HandlerEnd;
if (instr != null & & _instructionMapping.ContainsKey (instr))
exceptionHandler . HandlerEnd = _instructionMapping[instr];

instr = exceptionHandler. TryStart;
if (instr != null && _instructionMapping.ContainsKey (instr))
exceptionHandler . TryStart = _instructionMapping[instr];

instr = exceptionHandler.TryEnd;
if (instr != null && _instructionMapping.ContainsKey (instr))
exceptionHandler . TryEnd = _instructionMapping[instr];

/// <summary>
/// Copies the advice code into the new target, and takes action on

special instructions in the advice.

/// </summary>
/// <param name="target”>The target to insert into.</param>

/// <param name="advice”>The advice that should be inserted.</param>
/// <param name="worker”>The CilWorker of the old targetBody.</param>
protected void HandleAdvice(MethodDefinition target, MethodDefinition

{

advice , CilWorker worker)

UpdateLocalsInAdviceBody (advice .Body, target.Body);

//pass through the advice instructions, either taking action on them,
//adding them to the new target body, or both.
for (int index = 0; index < advice.Body.Instructions.Count; index++)

{

Instruction curlnstr = advice.Body.Instructions [index]; // current
instruction
if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
MethodCallOpCodesArray))
HandleMethodCall (curlnstr, target, advice, worker);

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
LoadArgOpCodesArray))

316

Chapter X YITHAW - An aspect weaver for .NET

HandleLoadArgInstruction (curlnstr , target, advice);

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
StoreArgOpCodesArray))
HandleStoreArgInstruction (curlnstr , target, advice);

else if (curlnstr.OpCode. Equals(OpCodes.Initobj))
HandleInitObject (target . ReturnType. ReturnType, target .Body.
CilWorker, advice.Body.CilWorker, curlnstr);

else if (curlnstr.OpCode. Equals(OpCodes.Newobj))
HandleNewobj(curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes.Newarr))
HandleTypelmport (curlnstr, target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes.Box))
HandleTypelmport (curlnstr, target, advice, worker);

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
UnBoxOpCodesArray))
HandleTypelmport (curInstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Castclass))
HandleTypelmport (curInstr , target, advice, worker);

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
LoadFieldOpCodesArray) || Helper.IsOpcodeEqual(curlnstr.OpCode
, Helper.StoreFieldOpCodesArray))
HandleFieldReferences (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Isinst))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Constrained))
HandleConstrained (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes.Ldobj))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Stobj))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes.Cpobj))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Mkrefany))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Refanytype))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Refanyval))
HandleTypelmport (curlnstr , target, advice, worker);

else if (curlnstr.OpCode. Equals(OpCodes. Sizeof))
HandleTypelmport (curlnstr , target, advice, worker);

else if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.

ElementLoadAndStoreWithTokenArray))
HandleTypelmport (curlnstr , target, advice, worker);

317

Chapter X YITHAW - An aspect weaver for .NET

else if (curlnstr.OpCode. Equals(OpCodes.Ldtoken))
{
if (curlnstr.Operand is MethodReference)
HandleMethodReference (curlnstr ,target ,advice ,worker);
else if (curlnstr.Operand is TypeReference)
HandleTypelmport (curlnstr , target ,advice , worker);
else
HandleFieldReferences (curlnstr ,target ,advice ,worker);
}
else
target .Body.CilWorker. Append(curlnstr);

}

/// <summary>

/// Handles instructions which has an operand of type MethodReference.

/// The method reference is update, so that it works in the target
assembly .

/// </summary>

/// <param name="curlnstr”™>The instruction which has the MethodReference
as operand.</param>

/// <param name="target”The target method.</param>

/// <param name="advice”>The advice method.</param>

/// <param name="worker”>A CilWorker.</param>

private void HandleMethodReference(Instruction curlnstr, MethodDefinition
target , MethodDefinition advice, CilWorker worker)

{

MethodReference methodRef = curlnstr.Operand as MethodReference;

// check that none of the generic parameters defined on the advice
class or the advice method are passed as argument to other method
— this is not allowed as the gemeric parameters do not exist at
runtime (and would thus fail)
foreach (GenericParameter genericParameter in methodRef.
GenericParameters)
if (advice.DeclaringType.GenericParameters. Contains (
genericParameter) || advice.GenericParameters.Contains (
genericParameter))
throw new Exceptions.IllegalOperationException (”The generics
parameters defined on the advice class or method can not
be used when calling methods (’” 4+ advice.DeclaringType.
FullName + 7.7 + advice.Name + ”7’).7);

// check if the reference method has been added to the type the holds
the method beind intercepted.

if (_localMaps.MethodReferences.Lookup(target.DeclaringType ,methodRef)
!= null)

methodRef = _localMaps.MethodReferences.Lookup(target .
DeclaringType , methodRef) ;

Instruction newlnstr = worker. Create(curlnstr.OpCode, methodRef);

_instructionMapping .Add(curInstr , newlInstr);

target .Body.CilWorker . Append (newInstr) ;

// Chech if the instruction is referencing a method defined in the
aspect assembly. This is only allowed if the referemce is not
ambiguous and inserted into the target assembly.

else if (methodRef.DeclaringType.Scope = advice.DeclaringType.Scope)

{

GlobalMapperEntry<MethodReference> mappedMethodRef = _globalMaps.
MethodReferences . Lookup (methodRef) ;
if (mappedMethodRef = null)

318

Chapter X YITHAW - An aspect weaver for .NET

throw new Exceptions. ConstructNotFoundException (”Unable to
access the method ’” + methodRef.Name 4+ ”’ from ’7 +
target .Name + ”7’, as ’” 4+ methodRef.Name + ”’ is not
defined in the target assembly. If this method should be
available in the target assembly, please specify that it
should be inserted into the target assembly using the
pointcut file.”);
else if (mappedMethodRef.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access the method ’'” + methodRef.Name + 7’ from ’'” +
target .Name + ”’. The reference is ambiguous, as the
method is inserted at multiple locations.”);
else
{
Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedMethodRef. Reference) ;
_instructionMapping.Add(curlnstr , newlnstr);
target .Body.CilWorker . Append (newlInstr) ;

}

// The refered method is not in the aspect assembly.
// Check if it is in an assembly known by the target,
// and else add an reference to the unknown assembly by importing the
method reference.
else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences, methodRef.DeclaringType) || Helper.
IsAssemblyTarget (methodRef. DeclaringType, target.DeclaringType
)))
YIOHAW. Output. OutputFormatter . AddWarning (”It is not possible
to type check the use of ’” 4+ methodRef.DeclaringType.
FullName 4+ ”7’. Please make sure that this class is
available from the target assembly.”);

if (Helper.IsAssemblyTarget (methodRef. DeclaringType, target.
DeclaringType))

methodRef = Helper.FindLocalMethod (target . DeclaringType,
methodRef) ;

else
methodRef = target.DeclaringType.Module. Import (methodRef) ;

Instruction newlnstr = worker. Create(curlnstr.OpCode, methodRef);
_instructionMapping .Add(curlnstr , newlnstr);
target.Body.CilWorker . Append (newInstr) ;

}

/// <summary>

/// Handles the .constrained instruction .

/// The instruction might be used on the generic returntype parameter in
the advice,

/// which will not be generic after the weaving. In that case the operand
in the instruction

/// should be changed to the new type of the parameter.

/// </summary>

/// <param name="curlnstr”>The .constrained instruction.</param>

/// <param name="target”>The target method.</param>

/// <param name="advice”>The advice method.</param>

/// <param name="worker”>A CilWorker.</param>

private void HandleConstrained (Instruction curlnstr, MethodDefinition
target , MethodDefinition advice, CilWorker worker)

319

Chapter X YITHAW - An aspect weaver for .NET

TypeReference typeRef = curlnstr.Operand as TypeReference;

// if it is mot a generic type, just handle it as any other
instruction with a typeReference operand.

if (!(typeRef is GenericParameter))

HandleTypelmport (curInstr , target, advice, worker);
return;
}
// check that it is the generic return type from the advice.
if (advice.ReturnType.ReturnType =— typeRef)
{
curlnstr.Operand = target.ReturnType.ReturnType;
target .Body.CilWorker . Append(curlnstr);
return;

target .Body.CilWorker . Append (curlnstr);

}

/// <summary>
/// Handles instructions which has an operand of type FieldReference.
/// The field reference is update, so that it works in the target assembly

/// </summary>

/// <param name="curlInstr”>The instruction which has the FieldReference as
operand.</param>

/// <param name="target”The target method.</param>

/// <param name="advice”>The advice method.</param>

/// <param name="worker”>A CilWorker.</param>

private void HandleFieldReferences(Instruction curlnstr, MethodDefinition
target , MethodDefinition advice, CilWorker worker)

{

FieldReference fieldRef = curlnstr.Operand as FieldReference;

// check if the field that is being referred is located in the same
assembly as the advice.

if (fieldRef.DeclaringType = advice.DeclaringType) // the call is to
a method defined in the same class as the aspect method — map the
method call to the method that was created in the target type
during the introduction phase

FieldReference mappedField = _localMaps.FieldReferences . Lookup (
target.DeclaringType, fieldRef);
if (mappedField !'= null) // the method was found in the mapper —

insert a call to this method
{
Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedField) ;
_instructionMapping .Add(curlnstr , newlnstr);
target .Body. CilWorker . Append (newlnstr) ;

else // field was not found in the mapper — throw an exception
throw new Exceptions. ConstructNotFoundException (”Unable to

access field 7 + fieldRef.Name + 7’ from ’” + target .Name
+ 77, as ’” 4+ fieldRef.Name 4+ ”’ is not defined in the
target assembly. If this field should be available in the
target assembly, please specify that this field should be
inserted into the target assembly using the pointcut
specification.”);

320

Chapter X

YITHAW - An aspect weaver for .NET

}

// check if the field referenced is in the aspect assembly.
else if (fieldRef.DeclaringType.Scope = advice.DeclaringType. Scope)

// this is a reference to a field inside the aspect assembly, but
outside the declaring type of the aspect method currently being
inserted — check if the field reference is ambiguous

GlobalMapperEntry<FieldReference> mappedField = _globalMaps.
FieldReferences.Lookup(fieldRef);
if (mappedField = null)
throw new Exceptions. ConstructNotFoundException (”Unable to
access field 7 + fieldRef.Name + 7’ from ’” + target .Name
+ 77, as 7 4+ fieldRef.Name + ”’ is not defined in the
target assembly. If this field should be available in the
target assembly, please specify that this field should be
inserted into the target assembly using the pointcut
specification.”);
else if (mappedField.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access field 7 4+ fieldRef.Name + 7’ from ’” + target .Name
4+ 77, The reference is ambiguous, as the field is
inserted at multiple locations.”);
else

{
Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedField. Reference);
_instructionMapping .Add(curlnstr , newlnstr);
target.Body.CilWorker . Append (newlInstr) ;

}

// The refered field is not in the aspect assembly.
// Check if it is in an assembly known by the target,
// and else add an reference to the unknown assembly by importing the

field reference.

else

{

if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences, fieldRef.DeclaringType) || Helper.

IsAssemblyTarget (fieldRef.DeclaringType, target.DeclaringType)

))

YIOHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the reference to ’”7 4 fieldRef.DeclaringType
.FullName + ”7.” + fieldRef.Name + ”’. Please make sure
that this field is available from the target assembly.”);

if (Helper.IsAssemblyTarget(fieldRef.DeclaringType, target.
DeclaringType))
fieldRef = Helper.FindLocalField (target , fieldRef);
else

fieldRef = target.DeclaringType.Module.Import(fieldRef);

Instruction newlnstr = worker.Create(curlnstr.OpCode, fieldRef);
_instructionMapping .Add(curInstr , newlInstr);
target .Body.CilWorker . Append (newInstr) ;

/// <summary>

/// Given an Instruction that has a TypeReference as operand, this type is
imported into the target.

/// The instruction should come from an advice.

/// </summary>

/// <param name="curlnstr”>An Instruction which has a TypeReference as

321

Chapter X YITHAW - An aspect weaver for .NET

operand.</param>

/// <param name="target”>The target to insert it into.</param>

/// <param name="advice”>The advice from where the instruction originates
.</param>

/// <param name="worker”>A CilWorker.</param>

private void HandleTypelmport(Instruction curlnstr, MethodDefinition
target , MethodDefinition advice, CilWorker worker)

{

TypeReference typeRef = curlnstr.Operand as TypeReference;

if (typeRef is GenericParameter && typeRef — advice.ReturnType.
ReturnType)
{

Instruction newlnstr = worker.Create(curlnstr.OpCode, target.
ReturnType. ReturnType) ;

_instructionMapping .Add(curlnstr , newlnstr);

target .Body.CilWorker . Append (newlnstr) ;

return;

}

// check that none of the generic parameters defined on the advice
class or the advice method are passed as argument to other method
— this is not allowed as the gemeric parameters do not exist at
runtime (and would thus fail)
foreach (GenericParameter genericParameter in typeRef.
GenericParameters)
if (advice.DeclaringType.GenericParameters. Contains (
genericParameter) || advice.GenericParameters. Contains (
genericParameter))
throw new Exceptions.IllegalOperationException (”The generics
parameters defined on the advice class or method can not
be used when instantiating objects (’” 4 advice.
DeclaringType.FullName + ”.” 4+ advice.Name + 77).");

// Trying to instantiate a type defined in the aspect assembly. This
is only allowed if the reference is not ambiguous.
if (typeRef.Scope = advice.DeclaringType.Scope)

GlobalMapperEntry<TypeReference> mappedType = _globalMaps.
TypeReferences . Lookup (typeRef);
if (mappedType = null)
throw new Exceptions. ConstructNotFoundException (”Unable to
access the class ’” 4+ typeRef.Name + 7’ from ’” 4 target.
Name + ”’, as ’” + typeRef.Name + ”’ is not defined in the
target assembly. If this class should be available in the
target assembly, please specify that it should be
inserted into the target assembly using the pointcut file.
")
else if (mappedType.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access the class ’” 4+ typeRef.Name + 7’ from ’” + target.
Name + ”’. The reference is ambiguous, as the class is
inserted at multiple locations.”);
else

Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedType. Reference) ;

_instructionMapping .Add(curlnstr , newlnstr);

target .Body.CilWorker . Append (newInstr) ;

322

Chapter X YITHAW - An aspect weaver for .NET

else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences, typeRef) || Helper.IsAssemblyTarget (
typeRef, target.DeclaringType)))
YIHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the instantiation of ’'”7 + typeRef.FullName +
7?7, Please make sure that this class is available from
the target assembly.”);

if (Helper.IsAssemblyTarget (typeRef, target.DeclaringType))
typeRef = Helper.FindLocalType(target.DeclaringType, typeRef);
else
typeRef = target.DeclaringType.Module. Import (typeRef);

Instruction newlnstr = worker.Create(curlnstr.OpCode, typeRef);
_instructionMapping .Add(curlnstr , newlnstr);
target .Body.CilWorker . Append (newInstr) ;

}

/// <summary>

/// Takes a Newobj Instruction from the advice, and makes sure that it
will work in the target.

/// </summary>

/// <param name="curlInstr”>The Newobj Instruction.</param>

/// <param name="target”>The target to insert it into.</param>

/// <param name="advice”>The advice from where the instruction originates
.</param>

/// <param name="worker”>A worker from the original target body.</param>

private void HandleNewobj(Instruction curlnstr, MethodDefinition target,
MethodDefinition advice, CilWorker worker)

{

MethodReference methodRef = curlnstr.Operand as MethodReference;
// check that none of the generic parameters defined on the advice
class or the advice method are passed as argument to other method
— this is not allowed as the generic parameters do not exist at
runtime (and would thus fail)
if (methodRef is GenericInstanceMethod)
foreach (GenericParameter genericParameter in (methodRef as
GenericlnstanceMethod) . GenericArguments)
if (advice.DeclaringType.GenericParameters. Contains (
genericParameter) || advice.GenericParameters.Contains(
genericParameter))
throw new Exceptions.IllegalOperationException (”The
generics parameters defined on the advice class or
method can not be used when instantiating objects (7
+ advice.DeclaringType.FullName + ”.” 4+ advice.Name +

777) 77).
M)

// Trying to instantiate a type defined in the aspect assembly. This
is only allowed if the reference is not ambiguous.
if (methodRef.DeclaringType.Scope = advice.DeclaringType. Scope)

GlobalMapperEntry<MethodReference> mappedMethod = _globalMaps.
MethodReferences . Lookup (methodRef) ;
if (mappedMethod = null)
throw new Exceptions. ConstructNotFoundException (”Unable to
instantiate type ’” 4+ methodRef.DeclaringType.Name + 7’
from ’” + target.Name + ”’, as ’” 4+ methodRef.
DeclaringType .Name + ”’ is not defined in the target

323

Chapter X YITHAW - An aspect weaver for .NET

assembly. If this type should be available in the target
assembly , please specify that it should be inserted into
the target assembly using the pointcut specification.”);
else if (mappedMethod.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
instantiate type ’” 4+ methodRef.DeclaringType.Name + 7’
from ’” 4+ target.Name + ”’. The reference is ambiguous, as
the type is inserted at multiple locations.”);
else
{
Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedMethod . Reference) ;
_instructionMapping .Add(curlnstr , newlInstr);
target .Body. CilWorker . Append (newlnstr) ;

}

else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences , methodRef. DeclaringType) || Helper.

IsAssemblyTarget (methodRef. DeclaringType, target.DeclaringType

)))

YIHAW . Output. OutputFormatter . AddWarning (” It is not possible
to type check the instantiation of ’” + methodRef.
DeclaringType.FullName + ”’. Please make sure that this
class is available from the target assembly.”);

if (Helper.IsAssemblyTarget (methodRef. DeclaringType, target.
DeclaringType))
methodRef = Helper.FindLocalMethod (target.DeclaringType,
methodRef) ;
else

methodRef = target.DeclaringType.Module. Import (methodRef) ;

Instruction newlnstr = worker. Create (curlnstr.OpCode, methodRef) ;
_instructionMapping .Add(curlnstr , newlnstr);
target.Body.CilWorker . Append (newInstr) ;

/// <summary>
/// Updates 7Store Argument” instructions to match the placement of the
argument in the targetbody.

/// </summary>

/// <param name="curInstr”>The instruction that is storing an argument.</
param>

/// <param name="target”>The target where the argument has been moved to
.</param>

/// <param name="advice”>The advice containing the instruction.</param>

private void HandleStoreArglnstruction (Instruction curlnstr,
MethodDefinition target , MethodDefinition advice)

{

int number = advice.Parameters.IndexOf(curlnstr.Operand as
ParameterDefinition) ;

Instruction newlnstr;

324

Chapter X YITHAW - An aspect weaver for .NET

if (number < 256)
newlnstr = target.Body.CilWorker. Create (OpCodes. Starg_S, target.
Parameters [number]) ;
else
newlnstr = target.Body.CilWorker. Create (OpCodes. Starg , target.
Parameters [number]) ;

_instructionMapping .Add(curlnstr , newlnstr); //registering replacement
of instruction
target .Body.CilWorker . Append (newInstr) ;

}

/// <summary>

/// Updates ”"Load Argument” instructions to match the placement of the
argument in the targetbody.

/// </summary>

/// <param name="curlnstr”> The instruction that is loading an argument.</
param>

/// <param name="target”>The target where the argument has been moved to
.</param>

/// <param name="advice”>The advice containing the instruction.</param>

private void HandleLoadArgInstruction(Instruction curlnstr,
MethodDefinition target , MethodDefinition advice)

{

Instruction newlnstr;

if (curlnstr.OpCode. Equals (OpCodes. Ldarga) || curlnstr.OpCode. Equals (
OpCodes. Ldarga_S))

{

int number = advice.Parameters.IndexOf(curlnstr.Operand as
ParameterDefinition);
if (number < 256)
newlnstr = target.Body.CilWorker . Create (OpCodes. Ldarga_S ,
target.Parameters [number]) ;
else
newlnstr = target.Body. CilWorker. Create (OpCodes. Ldarga, target
.Parameters [number]) ;

}

if (curlnstr.OpCode. Equals(OpCodes.Ldarg) || curlnstr.OpCode.Equals (
OpCodes. Ldarg_S))
{

int number = advice.Parameters.IndexOf(curlnstr.Operand as
ParameterDefinition);
if (number < 256)
newlnstr = target.Body.CilWorker. Create (OpCodes. Ldarg_S ,
target .Parameters [number]) ;
else
newlnstr = target.Body.CilWorker. Create (OpCodes. Ldarg, target .
Parameters [number]) ;

}

else
{
int number = Helper.GetNumberValue(curlnstr);
switch (number)
{
case O0:
newlnstr = target.Body.CilWorker.Create (OpCodes. Ldarg 0);
break;
case 1:
newlnstr = target.Body.CilWorker.Create (OpCodes. Ldarg_1);
break;
case 2:

325

Chapter X YITHAW - An aspect weaver for .NET

newlnstr = target.Body.CilWorker.Create (OpCodes. Ldarg_2);
break;

case 3:
newlnstr = target.Body.CilWorker.Create (OpCodes. Ldarg_3);
break;
case 4:
newlnstr = target.Body.CilWorker. Create (OpCodes. Ldarg_S ,
target .Parameters [number — 1]);
break;
default:
throw new Exceptions.IllegalOperationException(”Error
while handling load of argument operation”);

}
}

_instructionMapping .Add(curlnstr , newlnstr); //registering replacement
of instruction

target .Body.CilWorker . Append (newInstr) ;
}

/// <summary>

/// Replaces all load local and store local instruction in an advice, with
a ldloc or

/// stloc instruction. Both of these uses a VariableDefinition as operand.

/// </summary>

/// <param name="advice”>The advice to update.</param>

/// <param name="target”>The target of the interception.</param>

protected void UpdateLocalsInAdviceBody (MethodBody advice, MethodBody
target)

{

Instruction instr;
for (int index = 0; index < advice.Instructions.Count; index++)

{

instr = advice.Instructions[index|;

if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
LoadLocalOpCodesArray) && !Helper.IsOpcodeEqual(instr.OpCode,
Helper . LoadAdressOpCodesArray))

int number = Helper.GetNumberValue(instr);

//the instrution to wuse instead of the orginal 7load”
instruction

Instruction newlnstr;

newlnstr = advice.CilWorker. Create (OpCodes. Ldloc, target .
Variables [number]) ;

_instructionMapping .Add(instr , newlnstr);

advice.Instructions [index] = newlnstr;

UpdateNextAndPreviousReferences (instr , newlnstr);

}

if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
StoreLocalOpCodesArray))
{

int number = Helper.GetNumberValue(instr);

//the instrution to wuse instead of the orginal 7store”
tnstruction

Instruction newlnstr;

newlnstr = advice.CilWorker. Create (OpCodes. Stloc, target .
Variables [number]) ;

_instructionMapping .Add(instr , newlnstr);

advice.Instructions [index] = newlnstr;

326

Chapter X YITHAW - An aspect weaver for .NET

UpdateNextAndPreviousReferences (instr , newlnstr);

}

CheckBranching(advice.Instructions);

}

/// <summary>

/// Updates the references in a linkedList of Instructions, when replacing
an instruction with a new one.

/// </summary>

/// <param name="instr”>The instruction being replaced.</param>

/// <param name="newlnstr”>The replacement instruction.</param>

private void UpdateNextAndPreviousReferences(Instruction instr,
Instruction newlnstr)

{

newlnstr.Next = instr.Next;

newlnstr.Previous = instr.Previous;

if (newlnstr.Next != null)
newlnstr.Next.Previous = newlnstr;

if (newlnstr.Previous != null)
newlnstr.Previous.Next = newlnstr;

}

/// <summary>

/// Handles the initobj instruction. Special action is only needed if it
tries

/// to init the generic parameter that the advice might has as returntype.

/// In that case the generic parameter type should be change to the return
type of the target method.

/// </summary>

/// <param name="typeReference”The return type of the target method.</
param>

/// <param name="targetWorker”>The target body CilWorker.</param>

/// <param name="advice Worker”>The advice body CilWorker.</param>

/// <param name="instr”>The Initobj Instruction.</param>

protected void HandleInitObject (TypeReference typeReference, CilWorker
targetWorker , CilWorker adviceWorker, Instruction instr)

{

VariableDefinition initobjStore = null;
Instruction curlnstr = instr;
// the initobj instruction takes a pointer from the stack.
// Find the instruction that load this pointer onto the stack,
// and get the wvariable that the pointer points to.
while ((curlnstr = curlnstr.Previous) != null)
{
if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
LoadAdressOpCodesArray))
{

initobjStore = curlnstr.Operand as VariableDefinition;
break;

}

}

if (initobjStore.VariableType =— adviceWorker.GetBody () .Method.
ReturnType.ReturnType) // The type that is being initialized is of
the same type as the returntype of the advice

if (typeReference.FullName.Equals(”System.Void”)) // the
returntype of the target method is wvoid
{

327

Chapter X YITHAW - An aspect weaver for .NET

targetWorker . Remove(curlnstr); //removes the load address
instruction that has previously been copied to the
targetbody .

//Get variable used for storing, and make a check for any
other loads and copies of the wvariable.

int number = initobjStore.Index;

List<int> varIndexes = FixVoidLoadAndStores(instr , number,
adviceWorker) ;

int variablesRemoved = 0;

foreach (int index in varIndexes)
targetWorker . GetBody () . Variables . RemoveAt (index —
variablesRemoved++);

else

//The type of local wvariable from the advice body is changed
to that of the return type of the target.

initobjStore . VariableType = typeReference;

int varNum = targetWorker.GetBody (). Variables.IndexOf(
initobjStore);

List<Instruction> copylInstructions = FindCopyLocalVar (varNum,
instr);

foreach (Instruction startCopylnstr in copylnstructions)

{
int index = Helper.GetNumberValue(startCopylInstr.Next) ;
targetWorker . GetBody () . Variables[index]. VariableType =

typeReference;

}

Instruction newlnstr = targetWorker. Create (OpCodes. Initobj ,
typeReference) ;

_instructionMapping .Add(instr , newlnstr);

targetWorker . Append (newlInstr) ;

}
else
targetWorker . Append(instr);

}

/// <summary>

/// Finds the instructions that copies a local variable to another
localvariable.

/// </summary>

/// <param name="varNum”>The index of the localvariable.</param>

/// <param name="instr”>The instruction to start from.</param>

/// <returns>A list of the instructions where the copy is started (load
instructions).</returns>

private List<Instruction> FindCopyLocalVar(int varNum, Instruction
curlnstr)

{

//The local variables which is used to store the return wvalue is
registered in a list.

List<int> localsToCheck = new List<int>();

localsToCheck . Add(varNum) ;

List<Instruction> result = new List<Instruction >();

while (curlnstr != null)

{

if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
LoadLocalOpCodesArray))
if (localsToCheck.Contains(Helper.GetNumberValue(curlnstr)))

328

Chapter X

YITHAW - An aspect weaver for .NET

// it is ome of the registered locals that is being loaded
, check to see if it gets copied.
if (Helper.IsOpcodeEqual(curlnstr.Next.OpCode, Helper.
StoreLocalOpCodesArray))
{ //add it to the watchlist.
localsToCheck .Add(Helper . GetNumberValue(curlnstr . Next)
)
//add the instruction to the result list
result .Add(curlnstr);
}
curlnstr = curlnstr.Next;

}

return result ;

}

/// <summary>

/// Checks the remaining instructions in method, if they access a local
variable , which will not be used because it would just store “void”.

/// If there is an access right before a "ret”, it is removed,

/// and if the localvariable is copied to another localvariable this is
registered ,

/// and the copying is removed.

/// </summary>

/// <param name="instr”>The instruction from where to start — this
instruction is not included in the check.</param>

/// <param name="varNum”>The current known local wvariable index, where it
is known that the ”void” wvalue is stored</param>

/// <param name="worker”>The CilWorker which controls the body of the
instructions </param>

/// <returns>A list of integers that indicates which localVariables has
been used to hold the ”"Void” value.</returns>

private List<int> FixVoidLoadAndStores(Instruction instr, int varNum,
CilWorker worker)

{

//The local wvariables which is used to store the return value is
registered in a list.

List<int> localsToCheck = new List<int >();

localsToCheck .Add(varNum) ;

while ((instr = instr.Next) != null)

{

if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
LoadLocalOpCodesArray))
{

//we remove the load instruction if it is right before a
return

if (instr.Next.OpCode. Equals (OpCodes.Ret))

_instructionMapping .Add(instr , instr.Next);
worker . Remove (instr);

//else if it is ome of the registered locals that is being
loaded , there are two options.

else if (localsToCheck.Contains(Helper.GetNumberValue(instr)))
{

if (Helper.IsOpcodeEqual(instr.Next.OpCode, Helper.
StoreLocalOpCodesArray))

{ //the local is being copied to a new local, we add it to
our watchlist.

int newIndex = Helper.GetNumberValue(instr.Next) ;

329

Chapter X

YITHAW - An aspect weaver for .NET

if (!localsToCheck.Contains(newIndex))
localsToCheck .Add(newIndex) ;

Instruction newlnstr = worker. Create (OpCodes.Nop) ;
_instructionMapping .Add(instr , newlnstr);
_instructionMapping .Add(instr .Next, newlnstr);

worker . InsertBefore (instr , newlnstr);
worker . Remove (instr);
worker . Remove(instr . Next) ;

newlnstr. Previous.Next = newlnstr;
newlnstr.Next = instr.Next.Next;
instr = instr.Next;

}

//if the next opcode is Initobj it means that default(Type
) is invoked with the address of the wvariable — in
this case both the load—address and the initobj can be

deleted .
else if (instr.Next

{

.OpCode. Equals (OpCodes. Initobj))

Instruction newlnstr = worker. Create (OpCodes.Nop) ;
_instructionMapping .Add(instr , newlnstr);
_instructionMapping .Add(instr.Next, newlnstr);

worker . InsertBefore (instr , newlnstr);
worker . Remove (instr);
worker . Remove(instr.Next) ;

newlnstr. Previous.Next = newlnstr;
newlInstr.Next = instr.Next.Next;
instr = instr.Next;

}

else

//The local is being used, which it shouldn 't.

throw new Exceptions.IllegalOperationException (”The
program is trying to work on the return value from
a target method that returns void”);

}
}
localsToCheck. Sort () ;
return localsToCheck;

}

/// <summary>

/// Checks if a methodcall from the
target.

/// Also checks if it is one of the
, and handles

/// it if it is ome of thoose.

/// </summary>

/// <param name="curInstr”™>The call

/// <param name="target”™ The target

/// <param name="advice”>The advice
originating.</param>

advice body can be inserted in the

special method calls to the YIIHAW.API

Instruction.</param>
of the interception.</param>
from where the Instruction 1is

/// <param name="worker”>The worker of the original target body.</param>
private void HandleMethodCall(Instruction curlnstr, MethodDefinition
target , MethodDefinition advice, CilWorker worker)

{

MethodReference methodRef = curlnstr.Operand as MethodReference;
TypeReference typeRef = methodRef.DeclaringType;

330

Chapter X

YITHAW - An aspect weaver for .NET

// Check if it is one of the special YIIHAW.API calls.
if (typeRef.FullName.Equals(”YIIHAW.API. JoinPointContext”) &&
methodRef.Name. Equals (”Proceed”)) // this is a call to the Proceed
method — replace this call with the body of the target method
HandleProceed (curlnstr , target, worker, advice.Body.CilWorker);
else if (typeRef.FullName.Equals(”YIIHAW.API. JoinPointContext”) &&
methodRef.Name. Equals (”GetTarget”)) // this is a reference to the
Target property — replace this reference with a “this” pointer
HandleTarget (curlnstr , target, advice.Body);
else if (typeRef.FullName.EndsWith(”YIHAW.API. JoinPointContext”))
{
Instruction newlnstr = curlnstr;
if (methodRef.Name. Equals(”get_DeclaringType”)) // the user is
call to the DeclaringType property — replace this with a
string describing the declaring type of the target method
newlnstr = target.Body.CilWorker. Create (OpCodes. Ldstr, target .
DeclaringType . FullName) ;
else if (methodRef.Name.Equals(”get_Name”)) // the wuser is call to
the Name property — replace this with a string describing the
name of the target method
newlnstr =target.Body.CilWorker. Create (OpCodes. Ldstr, target.
Name) ;
else if (methodRef.Name.Equals(”get_ReturnType”)) // the wuser is
call to the ReturnType property — replace this with a string
describing the return type of the target method
newlnstr = target.Body.CilWorker. Create (OpCodes. Ldstr, target.
ReturnType.ReturnType.FullName) ;
else if (methodRef.Name.Equals(”get_AccessSpecifier”)) // the user
i1s call to the AccessSpecifier property — replace this with a
string describing the access specifier of the target method
string accessSpecifier = "7
if ((target.Attributes & MethodAttributes.Assem) =—
MethodAttributes . Assem)
accessSpecifier = ”internal”;
else if ((target.Attributes & MethodAttributes.Public) =—
MethodAttributes. Public)
accessSpecifier = "public”;
else if ((target.Attributes & MethodAttributes.Private) =—
MethodAttributes. Private)
accessSpecifier = "private”;
else if ((target.Attributes & MethodAttributes.Family) =—
MethodAttributes . Family)
accessSpecifier = "protected”;
else
accessSpecifier = "unknown”;

newlnstr = target.Body.CilWorker. Create (OpCodes. Ldstr ,
accessSpecifier);
}
else if (methodRef.Name.Equals(”get_IsStatic”)) // the wuser is
call to the IsStatic property — replace this with a boolean
determining if the target method is static of not
newlnstr = target.Body.CilWorker. Create ((target.IsStatic ?
OpCodes. Ldc_I4_1 : OpCodes.Ldc_14_0));
else if (methodRef.Name.Equals(”get_Arguments”)) // the wuser is
call to the Arguments property — replace this with a string
describing the arguments for the target method
string arguments = 77 ;
foreach (ParameterDefinition paramDef in target.Parameters) //

331

Chapter X YITHAW - An aspect weaver for .NET

run through all arguments and build up a string
representing the arguments

if (arguments.Length > 0)

arguments += "7

arguments += paramDef.ParameterType.FullName;

}

newlnstr = target.Body.CilWorker. Create (OpCodes. Ldstr ,

arguments) ;
}
_instructionMapping .Add(curlnstr , newlnstr);
target .Body.CilWorker . Append (newlnstr) ;

}

else // this is a call to some other method (i.e. a method not part of
the API for YIIHAW)
{

// check that none of the generic parameters defined on the advice
class or the advice method are passed as argument to other
method — this is not allowed as the generic parameters do not
exist at runtime (and would thus fail)
if (methodRef is GenericInstanceMethod)
foreach (GenericParameter genericParameter in (methodRef as
GenericInstanceMethod) . GenericArguments)
if (advice.DeclaringType.GenericParameters.Contains (
genericParameter) || advice.GenericParameters.Contains
(genericParameter))
throw new Exceptions.IllegalOperationException (”The
generics parameters defined on the advice class or
method can only be used to invoke default(T) or

the Proceed<T>() method.”);

// check calls to methods from same assembly as the advice.

if (methodRef.DeclaringType = advice.DeclaringType) // the call
i1s to a method defined in the same class as the aspect method
— map the method call to the method that was created in the
target type during the introduction phase

MethodReference mappedMethod = _localMaps.MethodReferences.
Lookup (target . DeclaringType , methodRef) ;
if (mappedMethod != null) // the method was found in the

mapper — itnsert a call to this method
{
Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedMethod) ;

_instructionMapping .Add(curlnstr , newlnstr);
target.Body.CilWorker . Append (newlInstr) ;

else // method was not found in the mapper — throw an
exception
throw new Exceptions. ConstructNotFoundException (”Unable to
invoke method ’'” + methodRef.Name + 7’ from ’7 +
target .Name + ”’, as ’” + methodRef.Name + ”’ is not
defined in the target assembly. If this method should
be available in the target assembly, please specify
that this method should be inserted into the target
assembly using the pointcut specification.”);
}
else if (methodRef.DeclaringType.Scope = advice.DeclaringType.
Scope) // this is a call to a method inside the aspect
assembly , but outside the declaring type of the aspect method

332

Chapter X

YITHAW - An aspect weaver for .NET

}

currently being inserted — check if the method reference 1is
ambiguous

GlobalMapperEntry<MethodReference> mappedMethod = _globalMaps.
MethodReferences . Lookup (methodRef) ;
if (mappedMethod = null)
throw new Exceptions. ConstructNotFoundException (”Unable to
invoke method ’” 4+ methodRef.Name + ”’ from 7 +
target .Name + ”7’, as ’” 4+ methodRef.Name + ”’ is not
defined in the target assembly. If this method should
be available in the target assembly, please specify
that this method should be inserted into the target
assembly using the pointcut specification.”);
else if (mappedMethod.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
invoke method ’” 4+ methodRef.Name + 7’ from ’7 +
target .Name + ”’. The reference is ambiguous, as the
method is inserted at multiple locations.”);
else
{
Instruction newlnstr = worker.Create(curlnstr.OpCode,
mappedMethod . Reference) ;
_instructionMapping .Add(curlnstr , newlnstr);
target .Body.CilWorker . Append (newlInstr) ;

else

{

}

if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.

AssemblyReferences, methodRef.DeclaringType) || Helper.

IsAssemblyTarget (methodRef. DeclaringType, target.

DeclaringType)))

YIHAW. Output. OutputFormatter . AddWarning (” It is not
possible to type check the call to ’” + methodRef.
DeclaringType . FullName + ”.” + methodRef.Name + 7 ’.
Please make sure that this method is available from
the target assembly.”);

if (Helper.IsAssemblyTarget (methodRef.DeclaringType, target.
DeclaringType))

methodRef = Helper.FindLocalMethod (target.DeclaringType,
methodRef) ;

else
methodRef = target.DeclaringType.Module. Import (methodRef) ;

Instruction newlnstr = worker.Create(curlnstr.OpCode,
methodRef) ;

_instructionMapping .Add(curlnstr , newlnstr);

target .Body. CilWorker . Append (newlnstr) ;

/// <summary>
/// Handles a method call in the advice body which is a call to the
Proceed method in the YIIHAW.API.

/// </summary>

/// <param
/// <param
/// <param
/// <param

name="curInstr”>The call Instruction.</param>
name="target”>The target of the weaving.</param>
name="worker”>The CilWorker of the target.</param>
name="advice Worker”> The CilWorker of the advice.</param>

333

Chapter X YITHAW - An aspect weaver for .NET

private void HandleProceed (Instruction curlnstr, MethodDefinition target,
CilWorker worker, CilWorker adviceWorker)
{

if (_proceedInvoked)
throw new Exceptions.IllegalOperationException (”It is illegal to
invoke Proceed () more than once within the same advice method
(77 + adviceWorker.GetBody () . Method . DeclaringType . FullName + ”
.7 + adviceWorker . GetBody () . Method .Name + ”’).”);

_proceedInvoked = true; // set flag indicating that the Proceed method
has been invoked

curlnstr = curlnstr.Next;

//Inserting the old target body into the new one.
foreach (Instruction targetInstr in worker.GetBody().Instructions)
target .Body.CilWorker. Append(targetInstr);

//If the return value of the call to ”"Proceed” is stored, special
attention is mneeded

if (Helper.IsOpcodeEqual(curlnstr.OpCode, Helper.
StoreLocalOpCodesArray))

{

int number = Helper.GetNumberValue(curlnstr);

//If the target method returns wvoid, there is nothing to store.
if (target.ReturnType.ReturnType.FullName.Equals(”System.Void”))
{

//removing the storelocal instruction

adviceWorker . Remove (curlnstr) ;

//As all stloc opcodes has been changed to ”stloc operand”,
there will be an operand of type VariableDefinition.

if (target.Body.Variables.Contains(curlnstr.Operand as
VariableDefinition)) //The variable has mot yet been
removed, and it should therefore be remowved.

List<int> varIndexes = FixVoidLoadAndStores(curlnstr ,
number, adviceWorker);
int variablesRemoved = 0;
foreach (int index in varIndexes)
target.Body. Variables .RemoveAt(index —
variablesRemoved++);

}

else
//The return type is not void.
{
//The type of local wvariable from the advice body, is changed
to that of the return type of the target
VariableDefinition varDef = target.Body. Variables [number];
varDef. VariableType = target.ReturnType.ReturnType;
List<Instruction> copylnstructions = FindCopyLocalVar (number,
curlnstr);
foreach (Instruction startCopylnstr in copylnstructions)
{
int index = Helper.GetNumberValue(startCopylInstr.Next);
target .Body. Variables [index |. VariableType = target.
ReturnType. ReturnType;

334

Chapter X YITHAW - An aspect weaver for .NET

else if (curlnstr.OpCode. Equals(OpCodes.Pop) && target.ReturnType.
ReturnType.FullName. Equals (”System . Void”)) // The returnvalue from
proceed is popped, but the target method returns void, so there
is mothing to pop.

Instruction newlnstr = adviceWorker. Create (OpCodes.Nop) ;
adviceWorker. Replace(curlnstr , newlnstr);
_instructionMapping .Add(curlnstr , newlnstr);
UpdateNextAndPreviousReferences (curlnstr , newlnstr);

}

/// <summary>

/// Handles the call of the Target method in the YIIHAW.API.

/// </summary>

/// <param name="curlInstr”>The Instruction calling the method.</param>

/// <param name="target”>The target of the interception.</param>

/// <param name="advice”>The advice.</param>

private void HandleTarget(Instruction curlnstr, MethodDefinition target,
MethodBody advice)

{

if (!target.IsStatic) //Only instance methods has a "this”.

GenericlnstanceMethod methodRef = curlnstr.Operand as
GenericlnstanceMethod ;

if (methodRef.GenericArguments.Count > 0 && methodRef.
GenericArguments [0]. FullName . Equals (target . DeclaringType.
FullName))

Instruction newlnstr = target.Body.CilWorker. Create (OpCodes.
Ldarg_0);

_instructionMapping .Add(curlnstr , newlnstr);

target.Body.CilWorker . Append (newInstr) ;

}

else
throw new Exceptions.IllegalOperationException (”The type
defined for the GetTarget<I'>() method does not match the
declaring type of the intercepted method.”);

}

else
throw new Exceptions.IllegalOperationException(”You can not invoke
the Target property on a static method.”);

}

/// <summary>

/// Adds local wvariables to the target body and updates all references to
these wvariables. Replaces return statements with branch operations.

/// </summary>

/// <param name="worker”™>A CIL worker for the original (unmodified) target
body.</param>

/// <param name="target”>A reference to the target body.</param>

/// <param name="advice”™>A reference to the advice body.</param>

/// <param name="targetType”>The declaring type of the body method.</param
>

protected void UpdateTargetBody (CilWorker worker, MethodBody target ,
MethodBody advice, TypeReference targetType)

// add the wvariables of the advice to the new target body (these are
added first , as the user might not invoke the Proceed() method)
foreach (VariableDefinition varDef in advice.Variables)

{

335

Chapter X YITHAW - An aspect weaver for .NET

if (!(varDef.VariableType is GenericParameter) && !(varDef.
VariableType is GenericlnstanceType) && !(varDef.VariableType
is ArrayType && (varDef.VariableType as ArrayType).ElementType

is GenericlnstanceType)) // Generic parameters do not need to
be imported

if (varDef.VariableType is ArrayType)
HandleArrayVar (varDef, advice.Method, target.Method);
else if (varDef.VariableType.Scope = advice.Method.
DeclaringType. Scope)

GlobalMapperEntry<TypeReference> mappedType = _globalMaps.
TypeReferences.Lookup (varDef. VariableType) ;
if (mappedType =— null)
throw new Exceptions. ConstructNotFoundException (”
Unable to access the type ’” + varDef. VariableType
.Name + 7’ from ’'” 4+ target.Method.Name + 7’ , as ’
7 4+ varDef. VariableType.Name + ”’ is not defined
in the target assembly. If this type should be
available in the target assembly, please specify
that it should be inserted into the target
assembly using the pointcut specification.”);
else if (mappedType.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable
to access the type 7 4 varDef.VariableType.Name
4+ 77 from ’” + target.Method.Name + ”’. The
reference is ambiguous, as the type is inserted at

multiple locations.”);
else

varDef. VariableType = mappedType. Reference;
}

else

{

if (!(Helper.IsAssemblyInRefs(target.Method.DeclaringType.

Module. AssemblyReferences , varDef.VariableType) ||

Helper.IsAssemblyTarget (varDef. VariableType, target.

Method . DeclaringType)))

YIIHAW . Output. OutputFormatter . AddWarning (” It is not
possible to type check the use of ’” 4+ varDef.
VariableType.FullName 4+ ”’. Please make sure that
this class is available from the target assembly.”

)

if (Helper.IsAssemblyTarget(varDef. VariableType, target.
Method . DeclaringType))

varDef. VariableType = Helper.FindLocalType(target .

Method . DeclaringType, varDef.VariableType);
else

varDef. VariableType = targetType.Module. Import (varDef.
VariableType) ;

}
}

target. Variables.Add(varDef);

// add the wvariables of the original target to the new target body
foreach (VariableDefinition varDef in worker.GetBody (). Variables)
target . Variables.Add(varDef);

target.InitLocals = advice.InitLocals || worker.GetBody().InitLocals;

336

Chapter X

YITHAW - An aspect weaver for .NET

// indication of the number of wvariables that the advice has added to
the

// new target body.

// The index of the old target wvariables is in the new target body now

given as
// mew_index = old_index + adviceLocalVariables.
int adviceLocalVariables = advice. Variables.Count;

// this last instruction is used, so that each return instruction in
the target body

// can be changed to a ”"branch” to the last instruction in the target
body .

Instruction lastInstr = worker. Create(OpCodes.Nop) ;

worker . Append(lastInstr);

// Pass through the target instructions.

for (int index = 0; index < worker.GetBody().Instructions.Count; index
++)

{

Instruction instr = worker.GetBody().Instructions [index |;

//Access to localvariables meeds to be updated with a new index

if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
LoadLocalOpCodesArray) && !Helper.IsOpcodeEqual(instr.OpCode,
Helper.LoadAdressOpCodesArray))

int number = Helper.GetNumberValue(instr) +
adviceLocalVariables;

//the instrution to use instead of the orginal ”load”
instruction

Instruction newlnstr;

newlnstr = worker. Create (OpCodes. Ldloc, target.Variables]|
number]) ;

//The replacement of an instruction needs to be registered
_instructionMapping .Add(instr , newlnstr);
worker . GetBody () . Instructions [index] = newlnstr;
UpdateNextAndPreviousReferences (instr , newlnstr);

}

//Access to localvariables needs to be updated with a new index

else if (Helper.IsOpcodeEqual(instr.OpCode, Helper.
StoreLocalOpCodesArray))

{

int number = Helper.GetNumberValue(instr) +
adviceLocalVariables;

//the instrution to wuse instead of the orginal 7store”
instruction

Instruction newlnstr;

newlnstr = worker. Create (OpCodes. Stloc, target.Variables]|
number]) ;

//Access to localvariables needs to be updated with a new

index
_instructionMapping .Add(instr , newlnstr);
worker . GetBody () . Instructions [index] = newlnstr;

UpdateNextAndPreviousReferences (instr , newlnstr);

337

Chapter X

YITHAW - An aspect weaver for .NET

}

//The target method should no longer have return instructions, as
the return

// is done from the advice method.

//each return is replaced by a "branch” to the last instruction in
the target body

else if (instr.OpCode.Equals(OpCodes.Ret))

{

if (instr.Next = lastInstr)

worker . Remove(instr);
_instructionMapping .Add(instr ,lastInstr);
UpdateNextAndPreviousReferences (instr ,lastInstr);

}

else

{
Instruction newlnstr = worker.Create (OpCodes.Br, lastInstr
)
_instructionMapping .Add(instr , newlnstr);
worker . GetBody () . Instructions [index] = newlnstr;
UpdateNextAndPreviousReferences (instr , newlnstr);

CheckBranching (worker . GetBody () . Instructions);

/// <summary>
/// Handles the case where a variable that should be inserted is of an

arraytype.

/// </summary>
/// <param name="varDef”>The variable that has the arraytype.</param>

/// <param name="advice”>The advice method.</param>
/// <param name="target”>The target method.</param>
private void HandleArrayVar(VariableDefinition varDef, MethodDefinition

{

advice, MethodDefinition target)

TypeReference typeRef = (varDef.VariableType as ArrayType).ElementType

)

if (typeRef.Scope = advice.DeclaringType.Scope) // Trying to

instantiate a type defined in the aspect assembly. This is only
allowed if the reference is mot ambiguous.

GlobalMapperEntry<TypeReference> mappedTypeEntry = _globalMaps.
TypeReferences.Lookup (typeRef);

if (mappedTypeEntry = null)
throw new Exceptions.IllegalOperationException (”Unable to
access the type ’” + typeRef.FullName + 7’ from 7 +
target . DeclaringType.FullName + ”.” + target.Name + ”7’, as
’7 4+ typeRef.FullName + 7’ is not defined in the target
assembly. Please specify that this type should be
introduced using the pointcut file.”);
else if (mappedTypeEntry.IsAmbiguousReference)
throw new Exceptions.IllegalOperationException (”Unable to
access the type '”7 + typeRef.FullName + 7’ from ’'” +
target . DeclaringType.FullName + ”.” 4+ target.Name 4+ 7.
The reference is ambiguous, as the type is inserted at

338

Chapter X YITHAW - An aspect weaver for .NET

}

multiple locations.”);
else
(varDef. VariableType as ArrayType).ElementType =
mappedTypeEntry . Reference;

}

else
{
if (!(Helper.IsAssemblyInRefs(target.DeclaringType.Module.
AssemblyReferences, typeRef) || Helper.IsAssemblyTarget (
typeRef, target.DeclaringType)))
YIHAW. Output. OutputFormatter . AddWarning (” It is not possible
to type check the instantiation of '” + typeRef.FullName +
7. Please make sure that this class is available from
the target assembly.”);

if (Helper.IsAssemblyTarget(typeRef, target.DeclaringType))
(varDef. VariableType as ArrayType).ElementType = Helper.
FindLocalType(target .DeclaringType, typeRefl);
else
(varDef. VariableType as ArrayType).ElementType = target .
DeclaringType . Module. Import (typeRef) ;

Modification.cs

using System;

using System. Collections . Generic;
using System.Text;

using Mono. Cecil;

using Mono. Cecil . Cil;

namespace YIIHAW. Weaver

{

/// <summary>
/// Used for the weaving part of modifications.

/// </summary>
public class Modification

{

/// <summary>

/// Updates a target method, where the methods declaring type has changed
basetype .

/// If there is any calls to instance methods of the old basetype, they
are changed

/// to call the new basetype instead.

/// Also type references to the old basetype are updated, and references
to fields

/// in the old basetype.

/// </summary>

/// <param name="methodDef”>The method to update.</param>

/// <param name="oldBaseType”™>The old basetype</param>

/// <param name="newBaseType”> The new basetype</param>

public void ModifyMethod (MethodDefinition methodDef, TypeReference
oldBasetype, TypeReference newBasetype)

{

if (methodDef.IsAbstract)
return;

foreach (Instruction curlnstr in methodDef.Body.Instructions)

339

Chapter X YITHAW - An aspect weaver for .NET

{
// update method references
if (curlnstr.Operand is MethodReference)
{
MethodReference methodRef = curlnstr.Operand as
MethodReference;
if (methodRef.DeclaringType = oldBasetype && !methodDef.
IsStatic)
{
TypeDefinition newType = Helper.FindLocalType (methodDef.
DeclaringType , newBasetype) ;
foreach (MethodDefinition newMethodDef in newType.
Constructors)
if (methodRef.Name. Equals(newMethodDef.Name))
{
curlnstr.Operand = newMethodDef;
return;
}
foreach (MethodDefinition newMethodDef in newType.Methods)
if (methodRef.Name.Equals(newMethodDef.Name))
{
curlnstr.Operand = newMethodDef;
return;
}
}
}
// update type references
else if (curlnstr.Operand is TypeReference)
{
TypeReference typeRef = curlnstr.Operand as TypeReference;
if (typeRef = oldBasetype)
{
curlnstr.Operand = Helper.FindLocalType (methodDef.
DeclaringType, typeRef);
return;
}
}
// update field references
else if (curlnstr.Operand is FieldReference)
{
FieldReference fieldRef = curlnstr.Operand as FieldReference;
if (fieldRef.DeclaringType = oldBasetype)
{
TypeDefinition newType = Helper.FindLocalType (methodDef.
DeclaringType , newBasetype) ;
foreach (FieldDefinition newFieldDef in newType. Fields)
if (fieldRef.Name.Equals(newFieldDef.Name))
{
curlnstr.Operand = newFieldDef;
return;
}
}
}
}

}
Mapper.cs

using System;

340

Chapter X YITHAW - An aspect weaver for .NET

using System. Collections . Generic;
using System.Text;

using Mono. Cecil;

using System. Collections;

namespace YIIHAW. Weaver

{

/// <summary>

/// A special mapping (dictionary) that uses a key based on two object.

/// The idea is that given a target type, and and aspect construct, it should
be

/// possible to find the copy of the aspect in the target.

/// </summary>

/// <typeparam name="T">The type of the value in the mapping.</typeparam>

public class LocalMapper<IT>

{

private Dictionary<int, T> map = new Dictionary<int, T>();

/// <summary>
/// Finds the wvalue in the mapping that matches the key of the given
arguments.

/// </summary>
/// <param name="typeRef”>The type (target) where the value is placed.</

param>

/// <param name="aspect”™ The aspect that the value should be a copy of.</
param>

/// <returns>The value that the mapping returns based on the two arguments
.</returns>

public T Lookup(TypeReference typeRef, T aspect)

{
// calculate the key.

int key = typeRef.GetHashCode() + aspect.GetHashCode () ;
if (map.ContainsKey (key))

{
}

return default (T);

return map|key];

}

/// <summary>

/// Checks if the mapping contains the given value.

/// </summary>

/// <param name="value”>The value to look for.</param>

/// <returns>A boolean indicating if the given wvalue is present in the
mapping.</returns>

public bool ContainsValue (T value)

{
}

/// <summary>

/// Add a new value to the mapping.

/// </summary>

/// <param name="typeRef”>The type in which the wvalue is inserted.</param>
/// <param name="aspect”The aspect that the value is a copy of.</param>
/// <param name="target”The value to store.</param>

public void Add(TypeReference typeRef, T aspect, T target)

{

return map. ContainsValue (value);

// calculate the key.
int key = typeRef.GetHashCode() + aspect.GetHashCode () ;
map.Add(key, target);

341

Chapter X YITHAW - An aspect weaver for .NET

}

/// <summary>

/// A collection of LocalMapper.

/// Used to store the different kind of constructs that are inserted,
/// and which might need to be looked up again.

/// </summary>
public class LocalMapperCollection

{
private LocalMapper<MethodDefinition> _methods;
private LocalMapper<MethodReference> _methodReferences;
private LocalMapper<FieldDefinition> _fields;
private LocalMapper<FieldReference> _fieldReferences;

public LocalMapper<MethodDefinition> Methods

{
get { return _methods; }
}
public LocalMapper<MethodReference> MethodReferences
{

get { return _methodReferences; }

}

public LocalMapper<FieldDefinition> Fields

{
}

public LocalMapper<FieldReference> FieldReferences

{

get { return _fields; }

get { return _fieldReferences; }

}

public LocalMapperCollection ()

{
_methods = new LocalMapper<MethodDefinition >();
_methodReferences = new LocalMapper<MethodReference >();
_fields = new LocalMapper<FieldDefinition >();
_fieldReferences = new LocalMapper<FieldReference >();

}

}

/// <summary>

/// A special mapping (dictionary) that maps from T to a List of
GlobalMapperEntry<T>.

/// </summary>

/// <typeparam name="T">The type used as key and as type parameter for
GlobalMapperEntry.</typeparam>

public class GlobalMapper<T>

{
private Dictionary<T, LinkedList <GlobalMapperEntry<I>>> map = new

Dictionary<T, LinkedList <GlobalMapperEntry<I>>>();

/// <summary>

/// Add a mapping from a key to a list of GlobalMapperEntry where one of
the

/// GlobalMapperEntry will hold the value specified as parameter.

/// </summary>

/// <param name="key”>The key to map from.</param>

/// <param name="value”™ The value to insert into the GlobalMapperEntry

342

Chapter X YITHAW - An aspect weaver for .NET

which will be in the value list.</param>
public void Add(T key, T value)

GlobalMapperEntry<T> newEntry = new GlobalMapperEntry<I>(value);

if (!map.ContainsKey(key)) //the key has not been used before, create
a new list.
map.Add(key, new LinkedList<GlobalMapperEntry<T>>());
else // there is already an entry in the list for this key.
// this means that the key is ambiguous.
{

newEntry.IsAmbiguousReference = true;
foreach (GlobalMapperEntry<T> entry in map[key])
// as it is the GlobalMapperEntry that holds the ambiguous

information
// they all need to be updated.
entry.IsAmbiguousReference = true;

}

map [key] . AddLast (newEntry) ;
}

/// <summary>
/// Gets the first GlobalMapperEntry in the value list of a given key.
/// </summary>
/// <param name="key”>The key to use in the lookup.</param>
/// <returns>The first GlobalMapperEntry in the wvalue list.
/// If key is mot in the mapping null is returned.</returns>
public GlobalMapperEntry<T> Lookup (T key)
{

if (map.ContainsKey (key))

return map|key]. First. Value;

return null;

}

/// <summary>
/// Checks if a given wvalue is in the mapping.
/// </summary>
/// <param name="value”>The value to look for.</param>
/// <returns>A boolean indicating if the wvalue was found.</returns>
public bool ContainsValue (T value)
{
foreach (KeyValuePair<T, LinkedList<GlobalMapperEntry<I>>> pair in map)
foreach (GlobalMapperEntry<T> entry in pair.Value)
if (entry.Reference.Equals(value))
return true;

return false;

}

/// <summary>
/// The type used as value used in the GlobalMapper.
/// Holds a reference to an object of type T, and a boolean indicating
/// if this entry is part of an ambiguous mapping.
/// </summary>
/// <typeparam name="T">The type T of the reference.</typeparam>
public class GlobalMapperEntry<T>
{
private T _reference;
private bool _ambiguousReference;

343

Chapter X YITHAW - An aspect weaver for .NET

public GlobalMapperEntry (T reference)

{

_reference = reference;
_ambiguousReference = false;

}

public T Reference

{

get

{
}

return _reference;

}

public bool IsAmbiguousReference

{

get

{

return _ambiguousReference;

_ambiguousReference = value;

}

/// <summary>

/// A collection of GlobalMapper.

/// Used to store the different kind of constructs that are inserted,
/// and which might need to be looked up again.

/// </summary>
public class GlobalMapperCollection

{

private GlobalMapper<MethodDefinition> _methods;

private GlobalMapper<MethodReference> _methodReferences;
private GlobalMapper<FieldDefinition> _fields;

private GlobalMapper<FieldReference> _fieldReferences;
private GlobalMapper<TypeDefinition> _types;

private GlobalMapper<TypeReference> _typeReferences;

public GlobalMapper<MethodDefinition> Methods

{
}

public GlobalMapper<MethodReference> MethodReferences

{
}

public GlobalMapper<FieldDefinition> Fields

{
}

public GlobalMapper<FieldReference> FieldReferences

{
}

get { return _methods; }

get { return _methodReferences; }

get { return _fields; }

get { return _fieldReferences; }

344

Chapter X YITHAW - An aspect weaver for .NET

public GlobalMapper<TypeDefinition> Types

{
get { return _types; }

}

public GlobalMapper<TypeReference> TypeReferences

{
get { return _typeReferences; }

}

public GlobalMapperCollection ()

{
_methods = new GlobalMapper<MethodDefinition >();
_methodReferences = new GlobalMapper<MethodReference >();
_fields = new GlobalMapper<FieldDefinition >();
_fieldReferences = new GlobalMapper<FieldReference >();
_types = new GlobalMapper<TypeDefinition >();
_typeReferences = new GlobalMapper<TypeReference >();

}

}

RecursiveDictionary.cs

using System;
using System. Collections . Generic;
using System.Text;

namespace YIIHAW. Weaver

{
/// <summary>
/// A dictionary with recursive lookup.
/// </summary>
/// <typeparam name="T1"></typeparam>
public class RecursiveDictionary<I> : Dictionary<T,T>
{
public new T this [T t]
{
get
{
t = base[t];
while (base.ContainsKey (t))
t = base[t];
return t;
}
set
{
base[t] = value;
}
}
}
}
Helper.cs

using System;

345

Chapter X YITHAW - An aspect weaver for .NET

using System. Collections . Generic;
using System.Text;

using Mono. Cecil;

using Mono. Cecil. Cil;

namespace YIIHAW. Weaver

{

public static class Helper

{

/// <summary>

/// Checks to see if a given opcode is equal to one of the opcodes in an
array of opcodes.

/// </summary>

/// <param name="opcode”™ The opcode to check</param>

/// <param name="opcodes”™The array of opcodes to check against</param>

/// <returns>returns true if a match was found.</returns>

internal static bool IsOpcodeEqual (OpCode opcode, params OpCode[] opcodes)

{

foreach (OpCode opc in opcodes)
{
if (opc.Equals(opcode))
return true;

}

return false;

}

internal readonly static OpCode[] LoadArgOpCodesArray = {
OpCodes. Ldarg, OpCodes.Ldarg_0, OpCodes.Ldarg_1, OpCodes.Ldarg_2,
OpCodes. Ldarg_3, OpCodes.Ldarg_ S, OpCodes.Ldarga, OpCodes.Ldarga_S

i

internal readonly static OpCode[] StoreArgOpCodesArray = {
OpCodes. Starg , OpCodes. Starg_S
b

internal readonly static OpCode[] LoadLocalOpCodesArray = {
OpCodes. Ldloc, OpCodes.Ldloc_0, OpCodes.Ldloc_1, OpCodes.Ldloc_2,
OpCodes. Ldloc_3, OpCodes.Ldloc_S, OpCodes.Ldloca, OpCodes.Ldloca_S

}s

internal readonly static OpCode[] LoadAdressOpCodesArray = {
OpCodes. Ldloca, OpCodes. Ldloca_S, OpCodes.Ldarga_S, OpCodes.Ldarga

})

internal readonly static OpCode|] StoreLocalOpCodesArray = {
OpCodes. Stloc, OpCodes. Stloc_0, OpCodes. Stloc_1, OpCodes. Stloc_2 ,
OpCodes. Stloc_3 , OpCodes. Stloc_S

s

internal readonly static OpCode|] LoadConstantIntOpCodesArray = {
OpCodes. Ldc_I14, OpCodes.Ldc_14_0, OpCodes.Ldc_I14_1, OpCodes.Ldc_14_2 ,
OpCodes. Ldc_14_3 , OpCodes.Ldc_14_4, OpCodes.Ldc_14_5, OpCodes.Ldc_14_6
OpCodes. Ldc_14_7, OpCodes.Ldc_14_8, OpCodes.Ldc_I14_-M1,0pCodes.Ldc_14_S

OpCodes. Ldc_1I8

346

Chapter X YITHAW - An aspect weaver for .NET

internal readonly static OpCode[] LoadConstantFloatOpCodesArray = {
OpCodes.Ldc_R4, OpCodes.Ldc_R8

s

internal readonly static OpCode[] UnBoxOpCodesArray = {
OpCodes. Unbox, OpCodes.Unbox_Any
}s

internal readonly static OpCode|[] MethodCallOpCodesArray = {
OpCodes. Call , OpCodes. Calli, OpCodes. Callvirt ,
OpCodes. Ldftn, OpCodes. Ldvirtftn , OpCodes.Jmp

s

internal readonly static OpCode[] BranchOpCodesArray = {

OpCodes.Br, OpCodes.Br_S, OpCodes.Beq, OpCodes.Beq_S, OpCodes.Bne_Un,
OpCodes.Bne_Un_S, OpCodes.Bge, OpCodes.Bge S, OpCodes.Bge Un,
OpCodes.Bge_Un_S, OpCodes.Bgt, OpCodes.Bgt_ S, OpCodes.Bgt_Un,
OpCodes.Bgt_Un_S, OpCodes.Ble, OpCodes.Ble_S, OpCodes.Ble_Un,
OpCodes. Ble_Un_S, OpCodes.Blt, OpCodes.Blt_S, OpCodes.Blt_Un,
OpCodes. Blt_Un_S, OpCodes. Brfalse , OpCodes. Brfalse_S , OpCodes. Brtrue,
OpCodes. Brtrue_S

}s

internal readonly static OpCode[] ElementLoadAndStoreWithTokenArray = {
OpCodes. Ldelema, OpCodes.Ldelem_Any, OpCodes.Stelem_Any

s

internal readonly static OpCode[] LoadFieldOpCodesArray = {
OpCodes. Ldfld , OpCodes. Ldsfld, OpCodes. Ldsflda, OpCodes.Ldflda
};

internal readonly static OpCode[] StoreFieldOpCodesArray = {
OpCodes. Stsfld , OpCodes. Stfld
};

/// <summary>

/// Finds the numeric value in a instruction (either in the opcode or the
oprand) .

/// </summary>

/// <param name="instr”>The instruction to find the value in.</param>

/// <returns>The value found in the instruction.</returns>

internal static int GetNumberValue(Instruction instr)

{

// check if the number is in the opcode.

if (instr.OpCode. Equals (OpCodes.Ldloc_0) || instr.OpCode. Equals(
OpCodes. Stloc_0) || instr.OpCode. Equals (OpCodes. Ldarg_0))

{
return 0;

}

else if (instr.OpCode.Equals(OpCodes.Ldloc_1) || instr.OpCode.Equals(
OpCodes. Stloc_1) || instr.OpCode.Equals(OpCodes.Ldarg_1))

{
return 1;

}

else if (instr.OpCode. Equals(OpCodes. Ldloc_2) || instr.OpCode.Equals (
OpCodes. Stloc_2) || instr.OpCode.Equals(OpCodes.Ldarg_2))

{
return 2;

}

else if (instr.OpCode.Equals(OpCodes.Ldloc_3) || instr.OpCode.Equals(

OpCodes. Stloc_3) || instr.OpCode. Equals (OpCodes. Ldarg_3))

347

Chapter X

YITHAW - An aspect weaver for .NET

{
}

// check if the instruction is refering to a local variable, and get
the index of the wvariable.

return 3;

else if (instr.OpCode.Equals(OpCodes.Ldloc_S) || instr.OpCode.Equals(
OpCodes. Stloc_S) ||
instr.OpCode. Equals (OpCodes. Ldloc) || instr.OpCode.Equals (
OpCodes. Stloc) ||
instr .OpCode. Equals (OpCodes. Ldloca_S) || instr.OpCode.Equals (
OpCodes. Ldloca))
{
VariableDefinition vardef = instr.Operand as VariableDefinition;
return vardef.Index;
}

// check if the opcode loads a constant.
else if (instr.OpCode. Equals(OpCodes.Ldc_14_0))

{

return 0;
}
else if (instr.OpCode.Equals(OpCodes.Ldc_14_1))
{

return 1;
}
else if (instr.OpCode. Equals(OpCodes.Ldc_I14_2))
{

return 2;
}
else if (instr.OpCode. Equals(OpCodes.Ldc_14_3))
{

return 3;
}
else if (instr.OpCode.Equals(OpCodes.Ldc_14_4))
{

return 4;
}
else if (instr.OpCode. Equals(OpCodes.Ldc_I14_5))
{

return 5;
}
else if (instr.OpCode. Equals(OpCodes.Ldc_14_6))
{

return 6;
}
else if (instr.OpCode.Equals(OpCodes.Ldc_14_7))
{

return 7;
}
else if (instr.OpCode. Equals(OpCodes.Ldc_I14_8))
{

return 8§;
}
else if (instr.OpCode. Equals(OpCodes.Ldc_I14_-M1))
{

return —1;
}

else if (instr.OpCode.Equals(OpCodes.Ldc_14_S) ||
instr .OpCode. Equals (OpCodes. Ldc_I8) ||
instr .OpCode. Equals (OpCodes. Ldc_14))

return (int)instr.Operand;

348

Chapter X YITHAW - An aspect weaver for .NET

throw new YIIHAW. Exceptions.InternalErrorException (”The number in
instruction ” + instr.ToString() + ” could not be found”);

}

/// <summary>

/// Checks if there is a reference to a specific assembly in a collection
of AssemblyNameReferences.

/// </summary>

/// <param name="assemblyNameReferenceCollection”™ The collection to check
up against.</param>

/// <param name="the_assem”™ The assembly to look for.</param>

/// <returns>Whether the AssemblyNameReference was found in the collection
or not.</returns>

public static bool IsAssemblyInRefs(AssemblyNameReferenceCollection
assemblyNameReferenceCollection, TypeReference typeRef)

{

// find the AssemblyNameReference to compare against.
AssemblyNameReference typeAssembly;
if (typeRef.Scope is AssemblyNameReference)
typeAssembly = typeRef.Scope as AssemblyNameReference;
else if (typeRef.Module. Assembly.Name is AssemblyNameReference)
typeAssembly = typeRef.Module. Assembly .Name as
AssemblyNameReference;
else
throw new Exceptions.InternalErrorException(”It was not possible
to find an assemblyNameReference in type ’” + typeRef.FullName
+)

// check if it can be found.
foreach (AssemblyNameReference assem in
assemblyNameReferenceCollection)
if (assem.FullName.Equals(typeAssembly.FullName))
return true;

return false;

}

/// <summary>

/// Checks if a type reference is to a type which is in the target
assembly .

/// </summary>

/// <param name="typeRef”>The type to check.</param>

/// <param name="target”>The target whose assembly to check up against.</
param>

/// <returns>A boolean indicating if the assembly of the type is the same
as the target assembly.</returns>

public static bool IsAssemblyTarget(TypeReference typeRef, TypeReference
target)

// find the AssemblyNameReference to compare against.
AssemblyNameReference assemblyName;
if (typeRef.Scope is AssemblyNameReference)
assemblyName = typeRef.Scope as AssemblyNameReference;
else if (typeRef.Module. Assembly.Name is AssemblyNameReference)
assemblyName = typeRef.Module. Assembly .Name as
AssemblyNameReference;
else
throw new Exceptions.InternalErrorException(”It was not possible
to find an assemblyNameReference for type ’” + typeRef.
FullName + 77.7);

// do the comparing

349

Chapter X YITHAW - An aspect weaver for .NET

return assemblyName.FullName. Equals(target.Module. Assembly . Name.
FullName) ;

}

/// <summary>

/// Finds a field placed in the same type as a given method, which a given
FieldReference is refering to.

/// </summary>

/// <param name="target”>The target method placed in the type that should
be searched.</param>

/// <param name="fieldRef”>The field reference for which the field should
be found.</param>

/// <returns>The field definition from the type.</returns>

public static FieldDefinition FindLocalField (MethodDefinition target ,
FieldReference fieldRef)

{

if (target.DeclaringType.Module. Types. Contains(fieldRef.DeclaringType.
FullName))

{
TypeDefinition targetType = target.DeclaringType.Module. Types |
fieldRef.DeclaringType . FullName | ;
foreach (FieldDefinition fieldDef in targetType.Fields)
if (fieldRef.Name.Equals(fieldDef.Name))
return fieldDef;
}

throw new Exceptions.InternalErrorException (”No matching type or field
was found in FindLocalField”);

}

/// <summary>

/// Given an reference to a type and to a method, the type is found, and
then the method is found in the type.

/// </summary>

/// <param name="target”>The reference to the type.</param>

/// <param name="methodRef”>The method reference for which the method
should be found.</param>

/// <returns>The method definition from the type.</returns>

public static MethodDefinition FindLocalMethod (TypeReference target ,
MethodReference methodRef)

{

// find the type.
if (target.Module. Types. Contains(methodRef. DeclaringType.FullName))
{
TypeDefinition targetType = target.Module. Types|[methodRef.
DeclaringType . FullName | ;
// find the method in the methods
foreach (MethodDefinition methodDef in targetType.Methods)
if (methodDef.Name. Equals (methodRef.Name))
return methodDef;
// or find the method in the constructors.
foreach (MethodDefinition methodDef in targetType.Constructors)
if (methodDef.Name. Equals (methodRef.Name))
return methodDef;
}
throw new Exceptions.InternalErrorException (”No matching type or field
was found in FindLocalField”);

/// <summary>

350

Chapter X YITHAW - An aspect weaver for .NET

/// Finds a type in the same assembly as a given type.

/// </summary>

/// <param name="target”The type placed in the assembly, where the other
type should be found.</param>

/// <param name="typeToFind”>A reference to the type that should be found
.</param>

/// <returns>The type definition from the assembly.</returns>

public static TypeDefinition FindLocalType(TypeReference target ,
TypeReference typeToFind)

{
if (target.Module. Types. Contains (typeToFind.FullName))
return target.Module. Types[typeToFind.FullName |;
throw new Exceptions.InternalErrorException(”No matching type was
found in FindLocalType”);
}

351

