
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 1

Peter Sestoft
IT University of Copenhagen

Friday 2015-08-28

IT University of Copenhagen 2

Plan for today
•  Why this course?
•  Course contents, learning goals
•  Practical information
•  Mandatory exercises, examination

•  Java threads
•  Java locking, the synchronized keyword
•  Visibility of memory writes
•  Threads for performance

IT University of Copenhagen

The teachers
•  Course responsible: Peter Sestoft

– MSc 1988 and PhD 1991, Copenhagen University

•  Co-teacher: Claus Brabrand
•  Exercises

– Florian Biermann, ITU PhD student, ex-ITU MSc
– Martin Rønning Bech, ITU MSc student
– NN?

1993 2002, 2005, 2016 2004 & 2012 2007 2012 2014

IT University of Copenhagen

Why this course?
•  Parallel programming is necessary

– For responsiveness in user interfaces etc.
– The real world is parallel

•  Think of the atrium lifts: lifts move, buttons are pressed
•  Think of handling a million online banking customers

– For performance: The free lunch is over
•  It is easy, and disastrous, to get it wrong

– Testing is even harder than for sequential code
– You should learn how to make correct parallel code

•  in a real language, used in practice

– You should learn how to make fast parallel code
•  and measure whether one solution is faster than another
•  and understand why

4

IT University of Copenhagen

Example: 2 lifts, 7 floors, 26 buttons

5

Lots of concurrency:
-  lifts move
-  buttons are pressed
-  doors open & close

b_1

−1

0

1

4

5

2

3

f_0

f_1

f_2

f_4

f_3

Lift A

f_5

Lift B

The free lunch is over:
No more growth in single-core speed

6

H
er

b
S
ut

te
r:

 T
he

 f
re

e
lu

nc
h

is
 o

ve
r,

D
r

D
ob

bs
,

20
05

.
Fi

gu
re

 u
pd

at
ed

 A
ug

us
t

20
09

.
ht

tp
:/

/w
w

w
.g

ot
w

.c
a/

pu
bl

ic
at

io
ns

/c
on

cu
rr

en
cy

-d
dj

.h
tm

Moore’s law

Clock speed

At 3 GHz
light travels
10 cm/cycle

IT University of Copenhagen

Course contents
•  Threads, locks, mutual exclusion, scalability
•  Java 8 streams, functional programming
•  Performance measurements
•  Tasks, the Java executor framework
•  Safety, liveness, deadlocks
•  Testing concurrent programs
•  Transactional memory, Multiverse
•  Lock-free data structures, Java mem. model
•  Message passing, Akka

7

IT University of Copenhagen

Learning objectives
After the course, the successful student can:
•  ANALYSE the correctness of concurrent Java

software, and RELATE it to the Java memory model
•  ANALYSE the performance of concurrent Java

software
•  APPLY Java threads and related language features

(locks, final and volatile fields) and libraries
(concurrent collections) to CONSTRUCT correct and
well-performing concurrent Java software

•  USE software tools for accelerated testing and
analysis of concurrency problems in Java software

•  CONTRAST different communication mechanisms
(shared mutable memory, transactional memory,
message passing)

8

IT University of Copenhagen

Expected prerequisites
•  From the ITU course base:

“Students must know the Java programming
language very well, including inner classes
and a first exposure to threads and locks,
and event-based GUIs as in Swing or AWT.”

•  Today we will review the basics of
–  Java threads
–  Java synchronized methods and statements
–  Java’s final keyword
–  Java inner classes

9

IT University of Copenhagen 10

Standard Friday plan
•  Fridays until 4 December (except 16 Oct)
•  Lectures 0800-1000
•  Exercise startup

– either 1000-1200 in 2A54
– or 1200-1400 in 4A20+4A22

•  Exercise hand-in: 6.5 days after lecture
– That is, the following Thursday at 23:55

IT University of Copenhagen 11

Course information online

•  Course LearnIT page, restricted access:
https://learnit.itu.dk/course/view.php?id=3003969
–  Exercises and hand-ins, deadlines, feedback
–  Mandatory exercises and hand-ins, deadlines, feedback
–  Discussion forum
–  Non-public reading materials

•  Course homepage, public access:
http://www.itu.dk/people/sestoft/itu/PCPP/E2015/
–  Overview of lectures and exercises
–  Lecture slides and exercise sheets
–  Example code
–  List of all mandatory reading materials

IT University of Copenhagen

Exercises
•  There are 13 sets of weekly exercises
•  Hand in the solutions through LearnIT
•  You can work in teams of 1 or 2 students
•  The teaching assistants will provide feedback
•  Six of the 13 weekly exercise sets are mandatory
•  At least five of those must be approved

–  otherwise you cannot take the course examination
–  failing to get 5 approved costs an exam attempt (!!)

•  Exercise may be approved even if not fully solved
–  It is possible to resubmit
–  Make your best effort
–  What is important is that you learn

12

IT University of Copenhagen

The exam
•  A 30 hour take-home written exam/project

– Start at 0900 on Monday 11 January 2016
– End at 1500 on Tuesday 12 January
– Electronic submission in LearnIT

•  Expected exam workload is 16 hours
•  Individual exam, no collaboration
•  All materials, including Internet, allowed
•  Always credit the sources you use
•  Plagiarism is forbidden – as always

•  The January 2015 exam is on the homepage
13

IT University of Copenhagen

Stuff you need
•  Goetz et al: Java Concurrency in Practice

–  From 2006, still the best on Java concurrency
–  Most contents is relevant for C#/.NET too

•  Free lecture notes and papers, see homepage
•  A few other book chapters, see LearnIT

•  Java 8 SDK installed on your computer
–  Java 7 or earlier will not work

•  Various optional materials, see homepage:
–  Bloch: Effective Java, 2008, highly recommended
–  Sestoft: Java Precisely, 2005, draft 3rd ed 2016
–  more ...

14

IT University of Copenhagen

What about other languages?
•  .NET and C# are very similar to Java

– We will point out differences on the way
•  Clojure, Scala, F#, ... build on JVM or .NET

– So thread concepts are very similar too
•  C and C++ have some differences (ignore)
•  Haskell has transactional memory

– We will see this in Java too (Multiverse)
•  Erlang, Scala, F# have message passing

– We will see this in Java too (Akka)
•  Dataflow, CSP, CCS, Pi-calculus, Join, Cω, ...

– Zillions of other concurrency mechanisms

15

IT University of Copenhagen

Other concurrency models
•  Java threads interact via shared mutable fields

– Shared: Visible to multiple threads
– Mutable: The fields can be updated, assigned to

•  This is a source of many problems
•  Alternatives exist:
•  No sharing: interact via message passing

– Erlang, Scala, MPI, F#, Go ... and Java Akka library
•  No mutability: use functional programming

– Haskell, F#, ML, Google MapReduce, ...
•  Allow shared mutable mem., but avoid locks

– Transactional memory, optimistic concurrency
–  In Haskell, Clojure, ... and Java Multiverse library

16

IT University of Copenhagen

Other parallel hardware
•  We focus on multicore (standard) hardware

– Typically 2-32 general cores on a CPU chip
–  (Instruction-level parallelism, invisible to software)

•  Other types of parallel hardware exist
•  Vector instructions (SIMD, SSE, AVX) on core

– Typically 2-8 floating-point operations/CPU cycle
– Soon available through .NET JIT and hence C#

•  General purpose graphics processors GPGPU
– Such as Nvidia CUDA, up to 2500 cores on a chip
– We’re using those in a research project

•  Clusters, cloud: servers connected by network

17

IT University of Copenhagen

Threads and concurrency in Java
•  A thread is

– a sequential activity executing Java code
–  running at the same time as other activities

•  Concurrent = at the same time = in parallel
•  Threads communicate via fields

– That is, by updating shared mutable state

18

IT University of Copenhagen

A thread-safe class for counting
•  A thread-safe long counter:

•  The state (field count) is private!
•  Only synchronized methods read and write it

19

class LongCounter {
 private long count = 0;
 public synchronized void increment() {
 count = count + 1;
 }
 public synchronized long get() {
 return count;
 }
} Te

st
Lo

ng
C
ou

nt
er

.j
av

a

A thread that increments the counter
•  A Thread t is created from a Runnable
•  The thread’s behavior is in the run method

•  This only creates the thread, does not start it
•  Q: What does final mean? 20

final LongCounter lc = new LongCounter();
Thread t =
 new Thread(
 new Runnable() {
 public void run() {
 while (true)
 lc.increment();
 }
 }
);

An anonymous inner
class, and an
instance of it

When started, the
thread will do this:
increment forever

NB!

Starting the thread in parallel
with the main thread

21

public static void main(String[] args) ... {
 final LongCounter lc = new LongCounter();
 Thread t = new Thread(new Runnable() { ... });
 t.start();
 System.out.println("Press Enter ... ");
 while (true) {
 System.in.read();
 System.out.println(lc.get());
 }
}

Press Enter to get the current value:
60853639
103606384
263682708
...

Creating and starting a thread

22

Thread “main”
(active)

Object lc
(passive)

Thread t
(active)

increment()!

increment()!

get()!

increment()!

t = new Thread(...)!

lc = new LongCounter()!

t.start()!

Java threads communicate
through mutable shared state

23

Thread “main”
(active)

Object lc
(passive)

Thread t1
(active)

increment()!

increment()!

increment()!

get()!

get()!

get()!

increment()!

•  Instead of old anonymous inner classes:

•  ... we use neat Java 8 lambda expressions:

Thread t = new Thread(
 new Runnable() {
 public void run() {
 while (true)
 lc.increment();
 }
 });

Java 8 lambda expressions

24

Thread t = new Thread(() -> {
 while (true)

 lc.increment();
}); Te

st
Lo

ng
C
ou

nt
er

.j
av

a
Te

st
Lo

ng
C
ou

nt
er

7.
ja

va

IT University of Copenhagen

Locks and the synchronized keyword
•  Any Java object can be used for locking
•  The synchronized statement

– Blocks until the lock on obj is available
– Takes (acquires) the lock on obj!
– Executes the body block
– Releases the lock, also on return or exception

•  By consistently locking on the same object
– one can obtain mutual exclusion, so
– at most one thread can execute the code at a time

25

synchronized (obj) {
 ... body ...
}

IT University of Copenhagen

A synchronized method is just
one with a synchronized body

•  A synchronized instance method

really uses a synchronized statement:

•  Q: What is being locked? (The entire class,
the method, the instance, the Java system)?

26

class C {
 public synchronized void method() { ... }
}

class C {
 public void method() {
 synchronized (this) { ... }
 }
}

IT University of Copenhagen

Multiple threads, locking
•  Two threads incrementing counter in parallel:

•  Q: How many threads are running now?

27

final int counts = 10_000_000;
Thread t1 = new Thread(new Runnable() { public void run() {
 for (int i=0; i<counts; i++)
 lc.increment();
}});
Thread t2 = new Thread(new Runnable() { public void run() {
 for (int i=0; i<counts; i++)
 lc.increment();
}});

TestLongCounterExperiments.java

IT University of Copenhagen

Starting the threads,
and waiting for their completion

•  A thread completes when run returns
•  To wait for thread t completing, call t.join()!
•  May throw InterruptedException!

!

•  What is lc.get() after threads complete?

– Each thread calls lc.increment() ten million times
– So it gets called 20 million times
!

28

t1.start(); t2.start();

try { t1.join(); t2.join(); }
catch (InterruptedException exn) { ... }

System.out.println("Count is " + lc.get());

IT University of Copenhagen

Removing the locking
•  Non-thread-safe counter class:

•  Produces very wrong results, not 20 million:

•  Q: Why?

29

class LongCounter2 {
 private long count = 0;
 public void increment() {
 count = count + 1 ;
 }
 public long get() { return count; }
}

Count is 10041965
Count is 19861602
Count is 18939813

IT University of Copenhagen

The operation
count = count + 1 is not atomic

•  What means:
–  read count
– add 1
– write result to count!

•  Hence not atomic
•  So risk that two increment() calls will

increase count by only 1

•  NB: Same for and

30

count = count + 1

count += 1 count++

No locking: lost update

31

Thread t1
(active)

Object lc
(passive)

Thread t2
(active)

increment()!

increment()!

0

1

2

increment()!

read 0
compute 0+1
write 1

read 2
compute 2+1

write 3

3

increment()!

read 2

BAD: lost
update

compute 2+1
write 3 3

Without
locking

How does locking help?

32

Thread t1
(active)

Object lc
(passive)

Thread t2
(active)

2

increment()!

try to lock
acquires lock

4

increment()!

try to lock, cannot
blocks

3

With
locking

acquires lock
read 3
compute 3+1
write 4
release lock

read 2
compute 2+1

write 3
release lock

•  Locking can achieve mutual exclusion
– When used on all state accesses
– Unfortunately, quite easy to get it wrong

IT University of Copenhagen

Why synchronize just to read data?

•  The synchronized keyword has two effects:
– Mutual exclusion: only one thread can hold a lock

(execute a synchronized method or block) at a time
– Visibility of memory writes: All writes by thread A

before releasing a lock (exit synchr) are visible to
thread B after acquiring the lock (enter synchr)

33

class LongCounter {
 private long count = 0;
 public synchronized void increment() {
 count = count + 1;
 }
 public synchronized long get() {
 return count;
 } } Why needed?

Te
st

Lo
ng

C
ou

nt
er

.j
av

a

Visibility is really important

•  Looks OK, no need for synchronization?
•  But thread t may loop forever in this scenario:

•  Two possible fixes:
– Add synchronized to methods get and set, OR!
– Add volatile to field value

34

class MutableInteger {
 private int value = 0;
 public void set(int value) { this.value = value; }
 public int get() { return value; }
}

WARNING: Useless

final MutableInteger mi = new MutableInteger();
Thread t = new Thread(() -> {
 while (mi.get() == 0) { }
});
t.start();
mi.set(42);

Loop while zero

This write by thread ”main” may
be forever invisible to thread t

Te
st

M
ut

ab
le

In
te

ge
r.j

av
a

IT University of Copenhagen

Visibility by synchronization

35

G
oe

tz
 p

.
37

lock = acquire

exit synchronized!

unlock = release

enter synchronized!

IT University of Copenhagen

Communication through mutable
shared state fails if no visibility

36

Thread “main”
(active)

Object mi
(passive)

Thread t
(active)

get()!

get()!

get()!

set(42)!

get()!

get()!

0

0

0

0

0

BAD: does
not see

the write

IT University of Copenhagen

The volatile field modifier
•  The volatile field modifier can be used to

ensure visibility (but not mutual exclusion)

•  All writes by thread A before writing a
volatile field are visible to thread B when,
and after, reading the volatile field

•  Note: A single volatile write+read makes
writes to all other fields visible also!
•  A bit mysterious, but a consequence of the implementation
•  This is Java semantics; C and C++ volatile is different

37

class MutableInteger {
 private volatile int value = 0;
 public void set(int value) { this.value = value; }
 public int get() { return value; }
}

OK

IT University of Copenhagen

Goetz advice on volatile

•  Rule 1: Use synchronized!
•  Rule 2: If circumstances are right, and you

are an expert, maybe use volatile instead
•  Rule 3: There are few experts

38

Use volatile variables only when they simplify
your synchronization policy; avoid it when
verifying correctness would require subtle
reasoning about visibility.

Locking can guarantee both visibility and
atomicity; volatile variables can only
guarantee visibility.

G
oe

tz
 p

.
38

,
39

IT University of Copenhagen

That was Java.
What about C# and .NET?

•  C# Language Spec. §17.3.4 Volatile Fields
•  CLI Ecma-335 standard section §I.12.6.7:

–  "A volatile write has release semantics ... the write
is guaranteed to happen after any memory
references prior to the write instruction in the CIL
instruction sequence"

–  "volatile read has acquire semantics ... the read is
guaranteed to occur prior to any references to
memory that occur after the read instruction in the
CIL instruction sequence"

•  C#’s volatile is weaker than Java’s

– And not very clearly described
– Use C# lock or MemoryBarrier() instead

39

IT University of Copenhagen

Ways to ensure visibility
•  Unlocking followed by locking the same lock
•  Writing a volatile field and then reading it
•  Calling one method on a concurrent collection

and another method on same coll.
–  java.util.concurrent.*

•  Calling one method on an atomic variable and
then another method on same variable
–  java.util.concurrent.atomic.*

•  Finishing a constructor that initializes final or
volatile fields

•  Calling t.start() before anything in thread t!
•  Anything in thread t before t.join() returns

(Java Language Specification 8 §17.4, and the Javadoc for concurrent collection
classes etc, give the full and rather complicated details; week 11)

40

IT University of Copenhagen

Why “concurrent” and “parallel”?
•  Informally both mean “at the same time”
•  But some people distinguish

– Concurrent: related to correctness
– Parallel: related to performance

•  Soccer (fodbold) analogy, by P. Panangaden
– The referee (dommer) is concerned with

concurrency: the soccer rules must be followed
– The coach (træner) is concerned with parallelism:

the best possible use of the team’s 11 players

•  This course is concerned with correctness as
well as performance: concurrent and parallel

41

IT University of Copenhagen

Using threads for performance
Example: Count primes 2 3 5 7 11 ...
•  Count primes in 0...9999999

•  Takes 6.4 sec to compute on 1 CPU core
•  Why not use all my computer’s 4 (x 2) cores?

– Eg. use two threads t1 and t2 and divide the work:
t1: 0...4999999 and t2: 5000000...9999999

42

static long countSequential(int range) {
 long count = 0;
 final int from = 0, to = range;
 for (int i=from; i<to; i++)
 if (isPrime(i))

 count++;
 return count;
}

Te
st

C
ou

nt
Pr

im
es

.j
av

a

Result is 664579

Using two threads to count primes

•  Takes 4.2 sec real time, so already faster
•  Q: Why not just use a long count variable?
•  Q: What if we want to use 10 threads?

•  Takes 6.4 sec to compute on 1 processor
•  Why not use all processors in my computer?

– Using two threads t1 and t2 and divide the work:
t1: 0...4999999 and t2: 5000000...9999999

43

final LongCounter lc = new LongCounter();
final int from1 = 0, to1 = perThread;
Thread t1 = new Thread(() -> {
 for (int i=from1; i<to1; i++)
 if (isPrime(i))

 lc.increment();
});
final int from2 = perThread, to2 = perThread * 2;
Thread t2 = new Thread(() -> {
 for (int i=from2; i<to2; i++)
 if (isPrime(i))

 lc.increment();
});

Same code twice,
bad practice

Te
st

C
ou

nt
Pr

im
es

.j
av

a

Using N threads to count primes

•  Takes 1.8 sec real time with threadCount 10
– Approx 3.3 times faster than sequential solution
– Q: Why not 4 times, or 10 times faster?
– Q: What if we just put to=perThread * (t+1)?

44

final LongCounter lc = new LongCounter();
Thread[] threads = new Thread[threadCount];
for (int t=0; t<threadCount; t++) {
 final int from = perThread * t,
 to = (t+1==threadCount) ? range : perThread * (t+1);
 threads[t] = new Thread(() -> {
 for (int i=from; i<to; i++)
 if (isPrime(i))
 lc.increment();
 });
}
for (int t=0; t<threadCount; t++)
 threads[t].start();

Thread processes
segment [from,to)

Last thread has
to==range!

IT University of Copenhagen

Reflections: threads for performance
•  This code can be made better in many ways

– Eg better distribution of work on the 10 threads
– Eg less use of the synchronized LongCounter

•  Use Java 8 parallel streams instead, week 3
•  Proper performance measurements, week 4
•  Very bad idea to use many (> 500) threads

– Each thread takes much memory for the stack
– Each thread slows down the garbage collector

•  Use tasks and Java “executors”, week 5
•  More advice on scalability, week 7
•  How to avoid locking, week 11 and 12
•  (Prime numbers used as example for simplicity)

45

IT University of Copenhagen

Processes, threads, and tasks
•  An operating system process running Java is

– a Java Virtual Machine that executes code
– an object heap, managed by a garbage collector
– one or more running Java threads

•  A Java thread
– has its own method call stack, takes much memory
–  shares the object heap with other threads

•  A task (or future) (or actor)
– does not have a call stack, so takes little memory
–  is run by an executor, using a thread pool, week 5

46

IT University of Copenhagen

This week
•  Reading

– Goetz chapters 1, 2 and 3
– Sutter paper
– Bloch item 66

•  Exercises week 1, on homepage and LearnIT
– Make sure you are familiar with Java threads and

locks and inner classes
– Make sure that you can compile, run and explain

programs that use these features
•  Read before next week’s lecture

– Goetz chapters 4 and 5
– Bloch item 15

47

