Practical Concurrent and
Parallel Programming 2

Peter Sestoft
IT University of Copenhagen

Friday 2015-09-04

IT University of Copenhagen

java.util.concurrent.atomic.AtomicLong
Safe publication

Thread and stack confinement
Immutability

Java monitor pattern

Defensive copying, VehicleTracker
Standard collection classes not thread-safe
Extending collection classes
ConcurrentModificationException
FutureTask<T> and asynchronous execution
(Silly complications of checked exceptions)
Building a scalable result cache

IT University of Copenhagen

Exercises

e Hand-ins this week:
— Must put yourself into a group, maybe 1-person
- Your hand-in will automatically count for the group
— Sorry about last week’s hand-in mess!

e Last week’s exercises:
— Too easy?
— Too hard?
— Too time-consuming?
— Too confusing?
— Any particular problems?

IT University of Copenhagen 5

public class StatelessFactorizer implements Servlet {
public void service (ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest (req) ;

BigInteger[] factors = factor (i), Sk
encodeIntoResponse (resp, factors); S
} [
} S
e Because a webserver is naturally concurrent
— So servlets should be thread-safe
e We use similar, simpler examples:
class StatelessFactorizer implements Factorizer ({ 7;
public long[] getFactors(long p) { =
long[] factors = PrimeFactors.compute (p) ; .§
return factors; £
} :
) Ll

IT University of Copenhagen

A “server” for computing prime
factors 2357 11 ... of a humber
e Could replace the example by this

interface Factorizer {
public long[] getFactors(long p);
public long getCount() ;

}

e Call the server from multiple threads:

for (int t=0; t<threadCount; t++) ({
threads[t] =
new Thread(() -> {
for (int i=2; i<range; i++) {
long[] result = factorizer.getFactors(i);
}
}) s
threads|[t] .start () ;

}

IT University of Copenhagen

Stateless objects are thread-safe

class StatelessFactorizer implements Factorizer ({

public long[] getFactors(long p) {
long[] factors = PrimeFactors.compute (p) ;

return factors;

}
public long getCount() { return 0; }

}

‘ Like Goetz p. 18 ‘

e Local variables are never shared btw threads
— two getFactors calls can execute at the same time

IT University of Copenhagen 8

Bad attempt to count calls

class UnsafeCountingFactorizer implements Factorizer ({
private long count = 0;
public long[] getFactors(long p) {
long[] factors = PrimeFactors.compute (p) ;

count++;
return factors;

}
public long getCount() { return count; }

}

Like Goetz p. 19

e Not thread-safe
e Q: Why?
e Q: How could we repair the code?

IT University of Copenhagen 9

Thread-safe server counting calls

class CountingFactorizer implements Factorizer {

private final AtomiclLong count = new AtomicLong(0) ;

public long[] getFactors(long p) {
long[] factors = PrimeFactors.compute (p) ;

count.incrementAndGet () ;
return factors;

}
public long getCount() { return count.get(); }

}

e java.util.concurrent.atomic.AtomicLong
supports atomic thread-safe arithmetics

e Similar to a thread-safe LongCounter class

IT University of Copenhagen

Like Goetz p. 23

10

Bad attempt to
cache last factorization

class TooSynchronizedCachingFactorizer implements Factorize:

}

private long lastNumber = 1;
private long[] lastFactors = new long[O0];
// Invariant: product (lastFactors) == lastNumber

public synchronized long[] getFactors(long p) {

if (p == lastNumber)
return lastFactors.clone() ;

else {
long[] factors = PrimeFactors.compute (p) ;
lastNumber = p;
lastFactors = factors;
return factors;

Like Goetz p. 26

b}

e Bad performance: no parallelism at all
e Q: Why?

IT University of Copenhagen 11

Atomic operations

e We want to atomically update lastNumber
and lastFactors

Operations A and B are atomic with respect to
each other if, from the perspective of a thread
executing A, when another thread executes B,
either all of B has executed or none of it has.

An atomic operation is one that is atomic with
respect to all operations (including itself) that
operate on the same state.

IT University of Copenhagen

12

Goetz p. 22, 25

Lack of atomicity:
overlapping reads and writes

Thread t1 Object Ic Thread t2
(active) (passive) (active)
I < increment ()
|
>
increment () l
oK 4
<€
I < increment ()
: >
| < increment ()
I >
: increment ()
- increment () <
> |
<€
| >
I
|
I

TestLongCounterExperiments.java

IT University of Copenhagen

=
OV

Atomic update
without excess locking

class CachingFactorizer implements Factorizer {

private long lastNumber = 0;

private long[] lastFactors = new long[O0];

public long[] getFactors(long p) {
long[] factors = null;
synchronized (this) {

if (p == lastNumber)

factors = lastFactors.clone() ;

}

1f (factors == null) {
factors = PrimeFactors.compute (p) ;
synchronized (this) { i 1
lastNumber = p;
lastFactors = factors.clone() ;

}

}

return factors;

} }
e Correct but subtle

Like Goetz p. 31

14

For each mutable state variable that may be
accessed by more than one thread, all
accesses to that variable must be performed

with the same lock held. Then the variable is
guarded by that lock.

For every invariant that involves more than

Goetz p. 28, 29

one variable, all the variables involved in that
invariant must be guarded by the same lock.

e Common mis-reading and mis-reasoning:
— The purpose of synchronized is to get atomicity
— S0 synchronized roughly means “"atomic” Wrong
— True only if all other accesses are synchronized!!!

IT University of Copenhagen

Wrapping the state
in an immutable object

class OneValueCache {
rivate final long lastNumber;

private final long[] lastFactors;

public OneValueCache (long p, long[] factors) {
this.lastNumber = p;
this.lastFactors = factors.clone() ;

Like Goetz p. 49

}
public long[] getFactors(long p) {
if (lastFactors == null || lastNumber != p)

return null;

else
return lastFactors.clone() ;

| Q why?

e Immutable, so automatically thread-safe

IT University of Copenhagen 16

Make the state a single field,
referring to an immutable object

class latileCachingFactorizer implements Factorizer {

private volatile OneValueCache cache
= new OneValueCache (0, null);
public long[] getFactors(long p) {

long[] factors = cache.getFactors(p) ;
if (factors == null) {

factors = PrimeFactors.compute (p) ;
cache = new OneValueCache (p, factors);

}

return factors;

}

Like Goetz p. 50

}
e Only one mutable field, atomic assignment
e Easy to implement, easy to see it is correct

e Drawback: cost of creating cache objects

— Not a problem with modern garbage collectors
IT University of Copenhagen

17

Immutability

e OOP: An object has state, held by its fields
— Fields should be private for encapsulation
— It is common to define getters and setters

e But mutable state causes lots of problems
— Better make fields £inal and remove the setters

Immutable objects are always thread-safe.

An object is immutable if:

« Its state cannot be modified after construction

« All its fields are final

« [t is properly constructed (this does not escape)

IT University of Copenhagen

18

Goetz p. 46, 47

Bloch: Effective Java, item 15

Item 15: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is provided when it is created and is
fixed for the lifetime of the object. The Java platform libraries contain many
immutable classes, including String, the boxed primitive classes, and BigInte-
ger and BigDecimal. There are many good reasons for this: Immutable classes
are easier to design, implement, and use than mutable classes. They are less prone
to error and are more secure.
To make a class immutable, follow these five rules:

1. Don’t provide any methods that modify the object’s state (known as muta- '

tors).

2. Ensure that the class can’t be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by behav-
ing as if the object’s state has changed. Preventing subclassing is generally ac-

Josh Bloch
designed the Java
collection classes

A serious Java (or
C#) developer
should own and
use this book

C(TU SUNOIOOI IOV, Loy w== =

d Classes should be immutable unless there’s a very goo
3 » mutable. Immutable classes provide many advantages,

d reason to make them
and their only disadvan-

.
11 e cnundnswe Anvtain

ircumetances. Yol

forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06 16].

4. Make all fields private. This prevents clients from obtaining access to muta-

Bloch p. 73 19

e The final field modifier has two effects
- Non-updatability can be checked by the compiler

- Visibility from other threads of the fields’ values
after the OneValueCache constructor returns

e S0 final has visibility effect like volatile

e Without £inal or synchronization, another
thread may not see the given field values

e That was Java. What about C#/.NET?
— No visibility effect of readonly field modifier
— S0 must be ensured by volatile or locking
- Seems a little dangerous?

IT University of Copenhagen

Avoiding shared mutable state

e Avoiding sharing between threads:

— Stack confinement: Local variables are never
shared between threads

- Thread confinement via ThreadLocal objects

- Ad hoc thread confinement: Swing GUI
components are accessed only by the GUI thread

e Avoiding mutable state:

— Make fields £inal as far as possible

— Replace multiple mutable fields by a single
mutable reference to an immutable object

IT University of Copenhagen 21

Why .clone() in the factorizers?

public long[] getFactors(long p) {
factors = lastFactors.clone() ;

lastFactors = factors.clone() ;

}

e Because Java array elements are mutable
e S0 unsafe to share an array with just anybody

e Must defensively clone the array when passing
a reference to some other part of the program

e This is a problem in sequential code too, but
much worse in concurrent code
— Minimize Mutability!

IT University of Copenhagen 22

An object following the Java monitor pattern
encapsulates all its mutable state (in private
fields) and guards it with the object’s own
intrinsic lock (synchronized).

Goetz p. 60

e Monitors invented 1974 by Hansen and Hoare
— A way to encapsulate mutable state in concurrency

e Java monitor pattern implements monitors
— If you use care and discipline!
— Per Brinch Hansen critical of Java, 1999 paper

e Modern (Java) data structures are subtler ...
— Illustrated by Goetz VehicleTracker example

IT University of Copenhagen

A class of mutable points

e MutablePoint, like java.awt.Point_
class MutablePoint | 'Not thread-safe

public int x, y;
public MutablePoint() {
x=0;, y=0;

}
public MutablePoint (MutablePoint p) {
this.x = p.x; this.y = p.y’

}
}

Goetz p. 64

TestVehicleTracker.java

e Q: Why not thread-safe?

IT University of Copenhagen 24

Vehicle tracker as a monitor class V1
class MonitorVehicleTracker {
private final Map<String, MutablePoint> locations; :B
public MonitorVehicleTracker (Map<String, MutablePoint> locations) { a
this.locations = deepCopy (locations) ; N
} S
public synchronized Map<String, MutablePoint> getLocations () ({ O
return deepCopy (locations) ;
: S
public synchronized MutablePoint getLocation (String id) ({ -%
MutablePoint loc = locations.get(id) ; %
return loc == null ? null : new MutablePoint (loc) ; %
) O
public synchronized void setLocation(String id, int x, int y) { %
MutablePoint loc = locations.get(id) ; %
loc.x = x; =

loc.y =y
}
private static Map<String, MutablePoint> deepCopy (Map<String, MutablePoint> m) {
Map<String, MutablePoint> result = new HashMap<String, MutablePoint>() ;
for (String id : m.keySet())
result.put(id, new MutablePoint(m.get(id))) ;
return Collections.unmodifiableMap (result) ;

}

e Protects its state in field locations
e But why all that copying?

25

MonitorVehiclerTracker memory

locations /T (HaShMap)

N W
O 00 [

3
5

getLocation(“#1") /\

3
4

getLocations () /\ (UandIfIableMap)

i

(HashMap)

AW <
N W (€<
00)

A class of immutable points

e Immutable Point class:

class Point {
public final int x, y;
public Point(int x, int y) {
this.x = x; this.y = y;
}
}

TestVehicleTracker.java

e Automatically thread-safe

Goetz p. 64

IT University of Copenhagen 27

Thread safety by delegation V2
and immutable points

class DelegatingVehicleTracker ({

private final ConcurrentMap<String, Point> locations;

private final Map<String, Point> unmodifiableMap;

public DelegatingVehicleTracker (Map<String, Point> points) ({
locations = new ConcurrentHashMap<String, Point>(points);
unmodifiableMap = Collections.unmodifiableMap (locations) ;

}

public Map<String, Point> getLocations () {
return unmodifiableMap;

}

public Point getLocation(String id) ({
return locations.get(id) ;

}

public void setLocation(String id, int x, int y) {
locations.replace(id, new Point(x, y))

}
}

Goetz p. 65

e No defensive copying any longer
— Less mutability can give better performance!

e Q: Why not just cast locations to an
interface without setters?

28

DelegatingVehicleTracker memory

unmodifiableMap /\ (Unmod|f|ab|eMap)

locations /\ (ConcurrentHaShMapﬁ
e
4 3 3 8
5 4 7 6

getLocation(“#1")

getLocations ()

29

V2A
Alternative getLocations() o

e Returns unmodifiable view
— of snapshot copy of hashmap,
— referring to the existing immutable points

Goetz p. 66

public Map<String, Point> getLocationsAsSnapshot() {
return Collections.unmodifiableMap (new HashMap<String, Point>(locations)) ;

}

IT University of Copenhagen 30

DelegatingVehicleTracker memory
with static getLocations result

unmodifiableMap /\ (Unmod|f|ab|eMap)

soustions [| ™ (ConcurrentHashMap)
N
4 3 3]
getLocation(“#1") J
(HashMap)

getLocationsAsStatic() /\ (U Nnm Od |f| d b I e M d p)

e Can simplify thread-safety
e Can speed up some operations

e Microsoft .NET has new immutable collections

- http://msdn.microsoft.com/en-us/library/
dn385366%28v=vs.110%29.aspx

- http://blogs.msdn.com/b/bclteam/archive/
2012/12/18/preview-of-immutable-collections-
released-on-nuget.aspx

e Different from unmodifiable collections

— No underlying modifiable collection
— Enumeration is safe, including thread-safe

e Java 8 does not have immutable collections

IT University of Copenhagen

Safe mutable point class

e Mutable point as monitor

public class SafePoint {
private int x, y;
private SafePoint(int[] a) { this(a[0], a[l]); }
public SafePoint (SafePoint p) { this(p.get()); }
public SafePoint(int x, int y) { this.set(x, y), }
public synchronized int[] get() {
return new int[]{x, vy}
}
public synchronized void set(int x, int y) {
this.x = x; this.y = y;
}

IT University of Copenhagen

33

Goetz p. 69

Safe publishing vehicle tracker

public class PublishingVehicleTracker ({
private final Map<String, SafePoint> locations;
private final Map<String, SafePoint> unmodifiableMap;

public PublishingVehicleTracker (Map<String, SafePoint> locations) {
this.locations
= new ConcurrentHashMap<String, SafePoint>(locations) ;
this.unmodifiableMap = Collections.unmodifiableMap (this.locations) ;
}
public Map<String, SafePoint> getLocations () ({
return unmodifiableMap;
}
public SafePoint getlLocation(String id) {
return locations.get (id) ;
}
public void setLocation(String id, int x, int y) {
locations.get (id) .set(x, vy);
}

Goetz p. 70

IT University of Copenhagen 34

SafePublishingVehicleTracker memory

unmodifiableMap //ﬂ\\\a

l(UnmodifiabIeMap)
locations /\ (ConCU rrentHash prﬁ

!

3 8
7 6

.

K““\>cmcm <]

getLocation(“#1")

getLocations ()

35

Which VehicleTracker is best?

e All are thread-safe
— Some due to defensive copying
— Some due to immutability and unmodifiability

e Different meanings of setLocation:

— setLocation does not affect prior getLocation/s:
e MonitorVehicleTracker (V1)
e DelegatingVehicleTracker with getLocationsStatic (V2A)

— setLocation does affect prior getLocation/s:
e DelegatingVehicleTracker (V2)
e SafePublishingVehicleTracker (V3)

e Performance depends on the usage

— Eg. more setLocation calls than getlLocations calls

— Number of results returned by getlLocations
36

The classic collection classes
are not threadsafe

final Collection<Integer> coll = new HashSet<Integer>() ;

final int itemCount = 100_000;

Thread addEven = new Thread(new Runnable() { public wvoid run() {
for (int i=0; i<itemCount; i++)

coll.add(2 * i);
}})
Thread addOdd = new Thread(new Runnable() { public wvoid run() {
for (int i=0; i<itemCount; i++)
coll.add(2 * 1 + 1) ;

TestCollection.java

}})
e May give wrong results or obscure exceptions:

There are 169563 items, should be 200000

"Thread-0" ClassCastException: java.util.HashMap$Node cannot be
cast to java.util.HashMap$TreeNode

e Wrap as synchronized coll. for thread safety

final Collection<Integer> coll
= Collections.synchronizedCollection (new HashSet<Integer>()) ;

IT University of Copenhagen 37

Adding putlfAbsent to ArrayList<T>
Not thread-safe

class FirstBadListHelper<E> {
private final List<E> list
= Collections.synchronizedList (new ArrayList<E>()) ;
public boolean putIfAbsent (E x) ({

boolean absent = !'list.contains (x); -

if (absent)
}

return absent;
}

e Non-atomic test-then-act is not thread-safe

e But this is not thread-safe either. Q: Why?
class SecondBadListHelper<E> ({ _

public final List<E> list = Collections.synchronizedList (new Array...);
public synchronized boolean putIfAbsent (E x) ({
boolean absent = !list.contains (x) ;
if (absent)
list.add (x) ;
return absent;

TestListHelper.java

}
}

Like Goetz p. 72

38

Client side locking for putIfAbsent

class GoodListHelper<E> ({

public List<E> list = Collections.synchronizedlList (new ArrayList<E>()) ;

synchronized (list) ({
boolean absent = !'list.contains(x) ;
if (absent)
list.add (x) ;
return absent;

e Discuss:
— Is the test-then-act guaranteed atomic?
- What could undermine the atomicity?

Goetz p. 72

IT University of Copenhagen 39

Using composition is safer
- and more work

final class BetterArrayList<E> implements List<E> {
private List<E> list = new ArrayList<E>() ;

public synchronized boolean putIfAbsent(E x) ({
boolean absent = !list.contains (x) ;
if (absent)
list.add (x) ;
return absent;

}

public synchronized boolean add(E item) ({
return list.add(item) ;

}

. approx. 30 other ArraylList<E> methods with synchronized added ...

e Q: Are operations now guaranteed atomic?

e Better use java.util.concurrent.* collections
— If you need to make updates concurrently

IT University of Copenhagen

TestListHelper.java

ConcurrentModificationException

ArrayList<String> universities = new ArrayList<String>() ;
universities.add ("Copenhagen University") ;
universities.add ("KVL") ;
universities.add("Aarhus University") ;
universities.add("IT University");
for (String name : universities) {
System.out.println (name) ;
if (name.equals ("KVL"))
universities.remove (name) ;

TestConcurrentmodification .java

Copenhagen University
KVL

Exception ... java.util.ConcurrentModificationException

e The “fail-early” mechanism is not thread-safe!

e Do not rely on it in a concurrent context
- ... instead ...

IT University of Copenhagen 41

Java 8 documentation on iteration
e Collections.synchronizedList() says:

It is imperative that the user manually synchronize on the returned collection when traversing it via
Iterator, Spliterator or Stream:

Collection ¢ = Collections.synchronizedCollection(myCollection);

synchronized (c) {

Iterator i = c.iterator(); // Must be in the synchronized block
while (i.hasNext())

foo(i.next());

Failure to follow this advice may result in non-deterministic behavior.

Collection c = Collections.synchronizedCollection (myCollection) ;
synchronized (c) {

for (T item : c)
foo(item) ;

}
e All access to myCollection must be through c

IT University of Copenhagen 42

Collections In a concurrent context

e Preferably use a modern concurrent collection
class from java.util.concurrent.*

— Iterators and for are weakly consistent:

« they may proceed concurrently with other operations
o they will never throw ConcurrentModificationException

o they are guaranteed to traverse elements as they existed upon
construction exactly once, and may (but are not guaranteed to)
reflect any modifications subsequent to construction.

e Or else wrap collection as synchronized
e Or synchronize accesses yourself

e Or make a thread-local copy of the collection
and iterate over that

Java 8 class library documentation

IT University of Copenhagen 43

Callable<T> versus Runnable

e A Runnable is one method that returns nothing

public interface Runnable {

public void run() ;
} unit -> unit

e A java.util.concurrent.Callable<T> returns a T:

public interface Callable<T> {

public T call() throws Exception;
} unit -> T

Callable<String> getWiki = new Callable<String>() {
public String call() throws Exception {
return getContents ("http://www.wikipedia.org/", 10);

}Y
// Call the Callable, block till it returns:

try { String homepage = getWiki.call(); ... }
catch (Exception exn) { throw new RuntimeException (exn); }

TestCallable.java

44

Synchronous FutureTask<T>

Callable<String> getWiki = new Callable<String> () {

pub
r

IRy

lic String call () throws Exception {
eturn getContents ("http://www.wikipedia.oxrg/", 10);

FutureTask<String> fut = new FutureTask<String>(getWiki) ;

by Runcaii() on“main” thread
try {

Str
SYsS
}

catch

ing homepage = fut.get();
Cem.out.println(nomepage); (IGEUIESUIEOREATI()]

(Exception exn) { throw new RuntimekException(exn); }

— Producesa T

— Is created from a Callable<T>

— Above we run it synchronously on the main thread
— More useful to run asynchronously on other thread

45

Asynchronous FutureTask<T>

Callable<String> getWiki = new Callable<String> () {
public String call () throws Exception {
return getContents ("http://www.wikipedia.org/", 10);

B
FutureTask<String> fut = new FutureTask<String> (getWiki);

Thread t = new Thread(fut) ;
t.start () ;

try {

System.out.println (homepage) ;
}

catch (Exception exn) { throw new RuntimeException (exn); }

e The "main” thread can do other work between
t.start () and fut.get ()

e FutureTask can also be run as a task, week 5

IT University of Copenhagen 46

Synchronous FutureTask

Thread "main” FutureTask Callable
(active) (passive) (passive)
|
fut.run() | ,
> getWiki.call() '
- |
I |
! |
| | L
! |
I |
! |
| < _
I “HTML..." '
< - |
void I
| :
fut.get () I
> |
< |
“HTML..."] I

IT University of Copenhagen 47

Asynchronous FutureTask

Thread "main” Thread t FutureTask fut CaIIa_bIe
(active) (active) (passive) (passive)
|
| : '
t.start

start0 > fut.run() I I
< void | getWiki.call() |

| > | =
I I
I I
I I
I I
I I
fut.get () > | |
I I
I I

I 1 -
< | < “HTML..."” I
I I
I I

”HTTL..."

48

Those @$% &!!! checked exceptions
e Our exception handling is simple but gross:

try { String homepage = fut.get()
catch (Exception exn) { throw new RuntimeException (exn); }

e Goetz has a better, more complex, approach:

try { String homepage = fut.get(); ... }
catch (ExecutionException exn) ({

Throwable cause = exn.getCause() ;
if (cause instanceof IOException)

throw (IOException)cause;

Like Goetz p. 97

else
throw launderThrowable (cause) ; -
}
4

9

Goetz’s launderThrowable method

public static RuntimeException launderThrowable (Throwable t) {
if (t instanceof RuntimeException)
return (RuntimeException) t;
else if (t instanceof Error)
throw (Error) t;
else
throw new IllegalStateException ("Not unchecked", t);

e Make a checked exception into an unchecked
— without adding unreasonable layers of wrapping
— cannot just throw cause; in previous slide’s code
e Mostly an administrative mess

— caused by the Java’s “checked exceptions” design
— thus not a problem in C#/.NET

Goetz p. 98

IT University of Copenhagen 50

Goetz’s “"'scalable result cache”

e Interface representing functions from A to V

interface Computable <A, V> {
V compute (A arg) throws InterruptedException;

Goetz p. 103

}
e Example 1: Our prime factorizer

class Factorizer implements Computable<Long, long[]> {
public long[] compute (Long wrappedP) ({
long p = wrappedP;

TestCache.java

—
e Example 2: Fetching a web page

class FetchWebpage implements Computable<String, String> ({
public String compute (String url) {
. create Http connection, fetch webpage ...

b}

IT University of Copenhagen 51

Thread-safe but non-scalable cacheE

class Memoizerl<A, V> implements Computable<A, V> {
private final Map<A, V> cache = new HashMap<A, V>()
private final Computable<A, V> c;
public Memoizerl (Computable<A, V> c¢) { this.c = c; }

public synchronized V compute (A arg) throws InterruptedEx... {
V result = cache.get(arg);

if (result == null) {
result = c.compute (arg) ;

cache.put(arg, result);
}

return result;

Goetz p. 103

Computable<Long, long[]> factorizer = new Factorizer(),
cachingFactorizer = new Memoizerl<Long,long[]>(factorizer) ;
long[] factors = cachingFactorizer.compute (7182763656381322L) ;

e Q: Why not scalable?

IT University of Copenhagen 52

Thread-safe scalable cache, C2
using concurrent hashmap

class Memoizer2<A, V> implements Computable<A, V> {
private final Map<A, V> cache = new ConcurrentHashMap<A, V>();
private final Computable<A, V> c;

public Memoizer2 (Computable<A, V> c¢) { this.c = c; }

public V compute (A arg) throws InterruptedException {
V result = cache.get (arqg);
if (result == null) {
result = c.compute (arg) ;
cache.put(arg, result);

}

return result;

}
}

e But large risk of computing same thing twice

- Argument put in cache only after computing result

e so0 cache may be updated long after compute (arg) call
IT University of Copenhagen 53

Goetz p. 105

How Memoizer2 can duplicate work

f(1) not | add (1)
A — ! I —
in cache compute f(1) to cache
o f(1) not ‘
in cache ™1 compute f(1)

Goetz p. 105

_ add f(1)
to cache

FIGURE 5.3. Two threads computing the same value when using Memoizer2.

e Better approach, Memoizer3:

— Create a FutureTask for arg

— Add the FutureTask to cache immediately at arg
— Run the future on the calling thread
— Return fut.get ()

IT University of Copenhagen

54

Thread-safe scalable cache C3
using FutureTask<V>, v. 3

class Memoizer3<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache
= new ConcurrentHashMap<A, Future<vV>>()
private final Computable<A, V> c;

Goetz p. 106

public V compute (final A arg) throws InterruptedException {

Future<vV> f = cache.get (arqg);
if (f == null) {
Callable<V> eval = new Callable<V>() {

public V call() throws InterruptedException
return c.compute (argqg) ;

}}s
FutureTask<V> ft = new FutureTask<V> (eval) ;

cache.put(arg, ft);
f = ft;
ft.run();

}
try (retun f.get();) e BIOCK UNKil cOMplEted

catch (ExecutionException e) { throw launderThrowable(...);, }

}

55

Memoizer3 can still duplicate work

Goetz p. 107

put Future
f(1) not
A — in cache — for f(1) |—= compute f(1) —m Set result
in cache
i £(1) not put Future
—— in cache = for f(1) [compute (1) ——m{set result
in cache

FIGURE 5.4. Unlucky timing that could cause Memoizer3 to calculate the same
value twice.

e Better approach, Memoizer4:
— Fast initial check for arg cache
— If not, create a future for the computation
- Atomic put-if-absent may add future to cache
— Run the future on the calling thread
— Return fut.get ()

IT University of Copenhagen 56

Thread-safe scalable cache C4
using FutureTask<V>, v. 4

class Memoizer4<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache
= new ConcurrentHashMap<A, Future<V>>() ;
private final Computable<A, V> c;
public V compute (final A arg) throws InterruptedException {
Future<V> f = cache.get (arg) ;
if (£ == null) {
Callable<V> eval = new Callable<V>() {
public V call() throws InterruptedException {
return c.compute (arqg) ;

TestCache.java

}}s
FutureTask<V> ft = new FutureTask<V> (eval) ;

f = cache.putlfAbsent(arg, £ft);
if (£ == null) {

f = £t; £ft.run();
}

}
try { return f.get(); }

catch (ExecutionException e) { throw launderThrowable(...); }

}
57

The technique used in Memoizer4

e Suggestion by Bloch item 69:
- Make a fast (non-atomic) test for arg in cache
— If not there, create a future object

- Then atomically put-if-absent (arg, future)
e If the arg was added in the meantime, do not add
e Otherwise, add (arg, future) and run the future

e May wastefully create a future, but only rarely
— The garbage collector will remove it

e Java 8 has computelfAbsent, can avoid the
two-stage test, but looks complicated

IT University of Copenhagen 58

Thread-safe scalable cache C5
using FutureTask<V>, v. 5 (Java 8)

class Memoizer5<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache
= new ConcurrentHashMap<A, Future<V>>() ;
private final Computable<A, V> c;
public V compute (final A arg) throws InterruptedException {
final AtomicReference<FutureTask<V>> ftr = new ... (),
Future<V> f = cache.computelfAbsent (arg, new Function<...>() {
public Future<V> apply(final A arg) {
Callable<V> eval = new Callable<V>() {
public V call() throws InterruptedException |{

return c.compute (arg) ; .
}}s
ftr.set (new FutureTask<V>(eval)) ;
return ftr.get()
1) g

if (ftr.get() '= null)
try { return f.get(); }

catch (ExecutionException e) { throw launderThrowable(...); }

TestCache.java

}
59

e Reading
— Goetz et al chapters 4 and 5
- Bloch item 15

e Exercises
- Mandatory hand-in Thursday at 23:55

— Goals: Build a threadsafe class, use built-in
collection classes, use the “future” concept

e Read before for next week’s lecture
— Java Precisely 3" ed. §11.13, 11.14, 23, 24, 25
— Available in PDF on LearnIT

IT University of Copenhagen

