
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 5

Peter Sestoft
IT University of Copenhagen

Friday 2015-09-25

IT University of Copenhagen

FAQ
•  Q: Some of the exercises are mandatory. Are

the others optional?
•  A: ...

3

IT University of Copenhagen 4

Plan for today
•  Tasks and the Java executor framework

– Executors, Runnables, Callables, Futures
•  The states of a task
•  Task creation overhead
•  Using tasks to count prime numbers
•  Java versus the .NET Task Parallel Library
•  Producer-consumer pipelines
•  Bounded queues, thread wait() and notify()
•  The states of a thread

IT University of Copenhagen

Prefer executors and tasks to threads
•  We have used threads to parallelize work

– But creating many threads takes time and memory
•  Better divide work into small tasks

– Then submit the tasks to an executor
– This uses a pool of (few) threads to run the tasks

•  Goetz chapters 6-8 and Bloch item 68

5

Bloch item 68

Executors and tasks
•  A task is just a Runnable or Callable<T>
•  Submitting it to an executor gives a Future

•  The executor has a pool of threads and uses
one of them to run the task

•  Use Future’s get() to wait for task completion

6

Future<?> fut
 = executor.submit(new Runnable() { public void run() {
 System.out.println("Task ran!");
}});

try { fut.get(); }
catch (InterruptedException exn) { System.out.println(exn); }
catch (ExecutionException exn) { throw new RuntimeException(exn); }

TestTaskSubmit.java

Future<?> fut
 = executor.submit(() -> { System.out.println("Task ran!"); });

Same, using a lambda!

Dynamics of the executor framework

7

...
task
queue
(10000)

thread
pool

(16)

t0 t15

...

executor : Executor

pop,
push,
...

pop

fut

public void run()!
{ ... }!

Runnable

fut = executor.submit(r)!

r

...!

Future

IT University of Copenhagen

A task that produces a result
•  Make the task from a Callable<T>

•  Use the Future to get the task’s result:

8

Future<String> fut
 = executor.submit(new Callable<String>() {
 public String call() throws IOException {
 return getPage("http://www.wikipedia.org", 10);
}});

try {
 String webpage = fut.get();
 System.out.println(webpage);
} catch (InterruptedException exn) { System.out.println(exn); }
 catch (ExecutionException exn) { throw new RuntimeExcep...; }

Future’s result type! ... same as Callable’s!

TestTaskSubmit.java

... same as Callable’s!

IT University of Copenhagen

Task rules
•  Different tasks may run on different threads

– Objects accessed from tasks must be thread-safe
•  A thread running a task can be interrupted

– So a task can be interrupted
– So fut.get() can throw InterruptedException

•  Creating a task is fast, takes little memory
•  Creating a thread is slow, takes much mem.

9

IT University of Copenhagen

The states of a task

10

•  After submit or execute!
– a task may be running immediately or much later
– depending on the executor and available threads

throw InterruptedException

Faultedtask throws
exception

task is canceled, may

Running
returns

task is canceled

new Callable() (...)

Terminated
submit()

execute()
WaitingToRunCreated

Canceled

new Runnable() (...)

Done

IT University of Copenhagen

Thread creation vs task creation
•  Task creation is faster than thread creation

•  A task also uses much less memory

11

Thread Task
Work 6581 ns 6612 ns
Create 1030 ns 77 ns
Create+start/(submit+cancel) 48929 ns 835 ns
Create+(start/submit)+complete 72759 ns 21226 ns In

te
l i

7
2.

4
G

H
z

JV
M

 1
.8

IT University of Copenhagen

Various Java executors
•  In class java.util.concurrent.Executors:
•  newFixedThreadPool(n)

– Fixed number n of threads; automatic restart
•  newCachedThreadPool()

– Dynamically adapted number of threads, no bound
•  newSingleThreadExecutor()

– A single thread; so tasks need not be thread-safe
•  newScheduledThreadPool()

– Delayed and periodic tasks; eg clean-up, reporting
•  newWorkStealingPool()

– Adapts thread pool to number of processors, uses
multiple queues; therefore better scalability

12

New in Java 8. Use it

IT University of Copenhagen 13

Plan for today
•  Tasks and the Java executor framework

– Executors, Runnables, Callables, Futures
•  The states of a task
•  Task creation overhead
•  Using tasks to count prime numbers
•  Java versus the .NET Task Parallel Library
•  Producer-consumer pipelines
•  Bounded queues, thread wait and notify
•  The states of a thread

IT University of Copenhagen

Week 1 flashback:
counting primes in multiple threads

•  Creates one thread for each segment

14

final LongCounter lc = new LongCounter();
Thread[] threads = new Thread[threadCount];
for (int t=0; t<threadCount; t++) {
 final int from = perThread * t,
 to = (t+1==threadCount) ? range : perThread * (t+1);
 threads[t] = new Thread(() -> {
 for (int i=from; i<to; i++)
 if (isPrime(i))
 lc.increment();
 });
}
for (int t=0; t<threadCount; t++)
 threads[t].start();

Thread processes
segment [from,to)

Last thread has
to==range!

Counting primes in multiple tasks

•  Creates a task for each segment
•  The tasks execute on a thread pool

15

List<Future<?>> futures = new ArrayList<Future<?>>();
for (int t=0; t<taskCount; t++) {
 final int from = perTask * t,
 to = (t+1 == taskCount) ? range : perTask * (t+1);
 futures.add(executor.submit(() -> {
 for (int i=from; i<to; i++)
 if (isPrime(i))
 lc.increment();
 }));
}
try {
 for (Future<?> fut : futures)
 fut.get();
} catch (...) { ... }

T1

TestCountPrimesTasks.java

Create task, submit to
executor, save a future

Wait for all tasks
to complete

Add to
shared

IT University of Copenhagen

Tasks that return task-local counts

16

T2

List<Callable<Long>> tasks = new ArrayList<Callable<Long>>();
for (int t=0; t<taskCount; t++) {
 final int from = perTask * t,
 to = (t+1 == taskCount) ? range : perTask * (t+1);
 tasks.add(() -> {
 long count = 0;
 for (int i=from; i<to; i++)
 if (isPrime(i))
 count++;
 return count;
 });
}
long result = 0;
try {
 List<Future<Long>> futures = executor.invokeAll(tasks);
 for (Future<Long> fut : futures)
 result += fut.get();
} catch (...) { ... } TestCountPrimesTasks.java

Create task

Submit tasks, wait for all
to complete, get futures

Add local task results

Add to
local

IT University of Copenhagen

Callable<Void> is like Runnable

17

T3

List<Callable<Void>> tasks = new ArrayList<Callable<Void>>();
for (int t=0; t<taskCount; t++) {
 final int from = perTask * t,
 to = (t+1 == taskCount) ? range : perTask * (t+1);
 tasks.add(() -> {
 for (int i=from; i<to; i++)
 if (isPrime(i))
 lc.increment();
 return null;
 });
}
try {
 executor.invokeAll(tasks);
} catch (...) { ... }

TestCountPrimesTasks.java

Create task

Submit tasks, wait
for all to complete

Add to
shared

IT University of Copenhagen

Type parameters <Void> and <?>
•  The type java.lang.Void contains only null!
•  Callable<Void> requires Void call() {...}!

– Similar to Runnable’s void run() { ... }!
– With Future<Void> the get() returns null!

•  Future<?> has an unknown type of value
– With Future<?> the get() returns null also

•  Java’s type system is somewhat muddled
– Forbids this assignment, therefore Callable<Void>:

18

Future<Void> future;
future = executor.submit(new Runnable() { ... });

Type Future<?>!

Not
same!
Not

same!

Overhead of creating many threads

19

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120

Threads shared AMD

Tasks shared AMD

Extra cost of
thread creation!

threads
or tasks

us

Shared counter vs local counter

20

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

Tasks shared i7

Tasks local i7

Intel i7: Local variable
slightly faster!

tasks

us

Computers differ a lot

21

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120

Tasks shared i7

Tasks local i7

Tasks shared AMD

Tasks local AMD

AMD: Local variable
much faster!

2.8 GHz AMD
2 x 16 cores

2.4 GHz i7
1 x 4 cores

us

tasks

IT University of Copenhagen 22

Plan for today
•  Tasks and the Java executor framework

– Executors, Runnables, Callables, Futures
•  The states of a task
•  Task creation overhead
•  Using tasks to count prime numbers
•  Java versus the .NET Task Parallel Library
•  Producer-consumer pipelines
•  Bounded queues, thread wait and notify
•  The states of a thread

IT University of Copenhagen

The .NET Task Parallel Library
•  Since C#/.NET 4.0, 2010
•  Easier to use and better language integration

–  async and await keywords in C#
–  .NET class library has more non-blocking methods
–  Java may get them in version 9 (2016)

•  Namespace System.Threading.Tasks
•  Class Task combines Runnable & Future<?>
•  Class Task<T> combines Callable<T> and

Future<T>

•  See C# Precisely chapters 22 and 23

23

IT University of Copenhagen

Parallel prime counts in C#, shared

•  Same concepts as in Java
– much leaner notation
– easier to use out of the box

•  The tasks are executed on a thread pool
–  in an unknown order

24

int perTask = range / taskCount;
LongCounter lc = new LongCounter();
Parallel.For(0, taskCount, t =>
 { int from = perTask * t,
 to = (t+1 == taskCount) ? range : perTask * (t+1);
 for (int i=from; i<to; i++)
 if (isPrime(i))
 lc.increment();
 });
return lc.get();

Te
st

C
ou

nt
Pr

im
es

Ta
sk

s.
cs

Create task t

C#T1

Create tasks, submit to
standard executor, run

Parallel prime counts in C#, local

•  Q: Why safe to write to results array?

25

long[] results = new long[taskCount];
Parallel.For(0, taskCount, t =>
 { int from = perTask * t,
 to = (t+1 == taskCount) ? range : perTask * (t+1);
 long count = 0;
 for (int i=from; i<to; i++)
 if (isPrime(i))
 count++;
 results[t] = count;
 });
return results.Sum();

C#T2

Te
st

C
ou

nt
Pr

im
es

Ta
sk

s.
cs

IT University of Copenhagen 26

Plan for today
•  Tasks and the Java executor framework

– Executors, Runnables, Callables, Futures
•  The states of a task
•  Task creation overhead
•  Using tasks to count prime numbers
•  Java versus the .NET Task Parallel Library
•  Producer-consumer pipelines
•  Bounded queues, thread wait and notify
•  The states of a thread

IT University of Copenhagen

Concurrent pipelines (Goetz §5.3)
•  We parallelized prime counting by splitting

the work into chunks:

27

task! task! task! task! task!

•  A different way is to create a pipeline
•  Example problem: Given long list of URLs,

– For each URL,
– download the webpage at that URL
–  scan the webpage for links ...
–  for each link, print “url links to link”

Pipeline to produce URL, get webpage,
scan for links, and print them

•  There are four stages
•  They can run in parallel

– On four threads
– Or as four tasks

•  Each does a simple job
•  Two stages communicate

via a blocking queue
–  queue.put(item) sends

data item to next stage;
blocks until room for data

–  queue.take() gets data
item from previous stage;
blocks until data available

28

UrlProducer

PageGetter

LinkScanner

LinkPrinter

“www.itu.dk”!

“<!DOCTYPE html ...”!

(“www.itu.dk”, !
“www.demtech.dk”)!

“www.itu.dk links to!
www.demtech.dk”!

Sketch of a one-item queue

29

interface BlockingQueue<T> {
 void put(T item);
 T take();
}

class OneItemQueue<T> implements BlockingQueue<T> {
 private T item;
 private boolean full = false;
 public void put(T item) {
 synchronized (this) {
 full = true;
 this.item = item;
 }
 }
 public T take() {
 synchronized (this) {
 full = false;
 return item;
 }
 }
} Useless

Te
st

Pi
pe

lin
e.

ja
va

But: What if
queue empty?

But: what if
already full?

Java monitor
pattern, good

If queue full, we
must wait for

another thread
to take() first

Other thread can
take() only if we
release lock first

Using wait() and notifyAll()

•  this.wait(): release lock on this; do nothing
until notified, then acquire lock and continue
– Must hold lock on this before call

•  this.notifyAll(): tell all threads wait()ing
on this to wake up
– Must hold lock on this, and keeps holding it

30

public void put(T item) {
 synchronized (this) {
 while (full) {
 try { this.wait(); }
 catch (InterruptedException exn) { }
 }
 full = true;
 this.item = item;
 this.notifyAll();
 }
}

Te
st

Pi
pe

lin
e.

ja
va

If queue full, wait for
notify from other thread

When non-full, save item,
notify all waiting threads

The take() method is similar

•  Only works if all methods locking on the
queue are written correctly

•  MUST do the wait() in a while loop; Q: Why?

31

public T take() {
 synchronized (this) {
 while (!full) {
 try { this.wait(); }
 catch (InterruptedException exn) { }
 }
 full = false;
 this.notifyAll();
 return item;
 }
}

If queue empty, wait for
notify from other thread

When non-empty, take item,
notify all waiting threads

Te
st

Pi
pe

lin
e.

ja
va

Bloch p. 276

Java Thread states

•  o.wait() is an action of the running thread itself
•  o.notify() is an action by another thread, on the waiting one
•  scheduled, preempted, ... are actions of the system

32

Enabled Running

Locking o Waiting for o

interrupt()

timeout

o.notifyAll()o.notify()

Sleeping DeadCreated

Joining u

got lock
on o attempting to lock o o.wait()

scheduled

preempted

yield()

u.join()

sleep()
interrupt()

timeout

timeout
interrupt()u died

start() dies

Ja
va

 P
re

ci
se

ly
 p

.
67

Producer-consumer pattern:
Pipeline stages and connecting queues

33

UrlProducer

PageGetter

LinkScanner

LinkPrinter

•  The first stage is a
producer only

•  The middle stages
are both consumers
and producers

•  The last stage is
only a consumer

•  A queue connects
producer(s) to
consumer(s) in a
thread-safe way

BlockingQueue<Link>

BlockingQueue<Webpage>

BlockingQueue<String>

put!

take!

put!

take!

put!

take!

How wait and notifyAll collaborate

34

UrlProducer
(active thread)

OneItemQueue
(passive object)

PageGetter
(active thread)

take()!

acquire lock
!full is true
wait()
release lock and wait

put(“www.itu.dk”)!
Waiting

Te
st

Pi
pe

lin
e.

ja
va

void!

“www.itu.dk”!

acquire lock
full is false
full = true!
notifyAll()

release lock and return

acquire lock
!full is false
full = false!
notifyAll()
release lock and return

Stages 1 and 2

35

class UrlProducer implements Runnable {
 private final BlockingQueue<String> output;
 public UrlProducer(BlockingQueue<String> output) {
 this.output = output;
 }
 public void run() {
 for (int i=0; i<urls.length; i++)
 output.put(urls[i]);
 }
}

Produce URLs

class PageGetter implements Runnable {
 ...
 public void run() {
 while (true) {
 String url = input.take();
 try {
 String contents = getPage(url, 200);
 output.put(new Webpage(url, contents));
 } catch (IOException exn) { System.out.println(exn); }
 }
 }

Transform URL
to webpage

Te
st

Pi
pe

lin
e.

ja
va

IT University of Copenhagen

Stages 3 and 4

36

class LinkScanner implements Runnable {
 ...
 private final static Pattern urlPattern
 = Pattern.compile("a href=\"(\\p{Graph}*)\"");
 public void run() {
 while (true) {
 Webpage page = input.take();
 Matcher urlMatcher = urlPattern.matcher(page.contents);
 while (urlMatcher.find()) {
 String link = urlMatcher.group(1);
 output.put(new Link(page.url, link));
} } } }

Transform
web page to
link stream

class LinkPrinter implements Runnable {
 ...
 public void run() {
 while (true) {
 Link p = input.take();
 System.out.printf("%s links to %s%n", p.from, p.to);
} } }

Consume links
and print them

IT University of Copenhagen

Putting stages and queues together

•  Each stage does one job
– Simple to implement and easy to modify
– Separation of concerns, simple control flow

•  Easy to add new stages
– For instance, discard duplicate links

•  Can achieve high throughput
– May run multiple copies of a slow stage

37

final BlockingQueue<String> urls = new OneItemQueue<String>();
final BlockingQueue<Webpage> pages = new OneItemQueue<Webpage>();
final BlockingQueue<Link> refPairs = new OneItemQueue<Link>();
Thread t1 = new Thread(new UrlProducer(urls));
Thread t2 = new Thread(new PageGetter(urls, pages));
Thread t3 = new Thread(new LinkScanner(pages, refPairs));
Thread t4 = new Thread(new LinkPrinter(refPairs));
t1.start(); t2.start(); t3.start(); t4.start(); Te

st
Pi

pe
lin

e.
ja

va

IT University of Copenhagen

“Prefer concurrency utilities to wait
and notify”

•  It’s instructive to use wait and notify!
•  ... but easy to do it wrong
•  Package java.util.concurrent has

– BlockingQueue<T> interface
– ArrayBlockingQueue<T> class and much more

•  Better use those in practice

•  ... or make a pipeline with Java 8 streams
– Simpler, and very easy to parallelize

38

Bloch item 69

Using Java 8 streams instead
•  Package java.util.stream
•  A Stream<T> is a source of T values

– Lazily generated
– Can be transformed with map(f) and flatMap(f)!
– Can be filtered with filter(p)!
– Can be consumed by forEach(action)!

•  Generally simpler than concurrent pipeline

39

Stream<String> urlStream
 = Stream.of(urls);
Stream<Webpage> pageStream
 = urlStream.flatMap(url -> makeWebPageOrNone(url, 200));
Stream<Link> linkStream
 = pageStream.flatMap(page -> makeLinks(page));
linkStream.forEach(link ->
 System.out.printf("%s links to %s%n", link.from, link.to));

Te
st

S
tr

ea
m

s.
ja

va

IT University of Copenhagen

Making the stages run in parallel

•  Magic? No!
•  Divides streams into substream chunks
•  Evaluates the chunks in tasks
•  Runs tasks on an executor called ForkJoinPool

– Using a thread pool and work stealing queues
– More precisely ForkJoinPool.commonPool()

40

Stream<String> urlStream
 = Stream.of(urls).parallel();
Stream<Webpage> pageStream
 = urlStream.flatMap(url -> makeWebPageOrNone(url, 200));
Stream<Link> linkStream
 = pageStream.flatMap(page -> makeLinks(page));
linkStream.forEach(link ->
 System.out.printf("%s links to %s%n", link.from, link.to));

Te
st

S
tr

ea
m

s.
ja

va

So easy. Why learn about threads?
•  Parallel streams use tasks, run on threads
•  Should be side effect free and take no locks
•  Otherwise all the usual thread problems:

– updates must be made atomic (by locking)
– updates must be made visible (by locking, volatile)
– deadlock risk if locks are taken

41 Java 8 class library documentation

IT University of Copenhagen

This week
•  Reading

– Goetz et al chapters 5.3, 6 and 8
– Bloch items 68, 69

•  Exercises week 5
– Show that you can use tasks and the executor

framework, and modify a concurrent pipeline

•  Read before next week’s lecture
– Goetz chapter 10
– Bloch item 67

42

