
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 7

Peter Sestoft
IT University of Copenhagen

Friday 2015-10-09

IT University of Copenhagen 2

Plan for today
•  Graphical user interface toolkits, eg Swing

– not thread-safe, access from event thread only
•  Using SwingWorker for long-running work

– Progress bar
– Cancellation
– Display results as they are generated

•  A thread-based lift simulator with GUI
•  Atomic long with ”thread striping” (week 6)
•  Shared mutable data on multicore is slow

IT University of Copenhagen

More on the exam
•  Take-home, Mon 11 to Tue 12 January 2016
•  Electronic submission in LearnIT
•  Individual, no collaboration allowed

•  New: “cheat check”
– Study adm will randomly select 20% of students

after the exam
– Must go to a short meeting with Claus and Peter
– Must answer questions about own exam solutions
–  (Probably early February?)

3

IT University of Copenhagen

Mandatory handin 4
•  (About correctness test of concurrent code)
•  Posted Fri 23 October
•  Handin deadline Thu 29 October at 23:55

•  Hence no conflict with Algorithm Design 2
exam October
– Correct?

4

IT University of Copenhagen

GUI toolkits are single-threaded
•  Java Swing components are not thread-safe

– This is intentional
– Ditto .NET’s System.Windows.Forms and others

•  Multithreaded GUI toolkits
– are difficult to use
– deadlock-prone, because actions are initiated both

•  top-down: from user towards operating system
•  bottom-up: from operating system to user interface
•  locking in different orders ... hence deadlock risk

•  In Swing, at least two threads:
– Main Thread – runs main(String[] args)!
– Event Thread – runs ActionListeners and so on

5

IT University of Copenhagen

From Graham Hamilton’s blog post
“Multithreaded toolkits: A failed dream?”

•  “In general, GUI operations start at the top of a stack of library
abstractions and go "down". I am operating on an abstract idea
in my application that is expressed by some GUI objects, so I
start off in my application and call into high-level GUI
abstractions, that call into lower level GUI abstractions, that
call into the ugly guts of the toolkit, and thence into the OS.

•  In contrast, input events start off at the OS layer and are
progressively dispatched "up" the abstraction layers, until they
arrive in my application code.

•  Now, since we are using abstractions, we will naturally be
doing locking separately within each abstraction.

•  And unfortunately we have the classic lock ordering nightmare:
we have two different kinds of activities going on that want to
acquire locks in opposite orders. So deadlock is almost
inevitable.” (19 October 2004)

6

https://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html

IT University of Copenhagen

Java Swing GUI toolkit dogmas
•  Dogma 1: “Time-consuming tasks should not

be run on the Event Thread”
– Otherwise the application becomes unresponsive

•  Dogma 2: “Swing components should be
accessed on the Event Thread only”
– The components are not thread-safe

•  But if another thread does long-running work,
how can it show the results on the GUI?
– Define the work in SwingWorker subclass instance
– Use execute() to run it on a worker thread
– The Event Thread can pick up the results

7

ja
va

x.
sw

in
g.

Sw
in

gW
or

ke
r

do
cu

m
en

ta
tio

n

IT University of Copenhagen

A short computation
on the event thread

•  Main thread may create GUI components
– But should not change eg. background color later

•  Event thread calls the ActionListener
– And can change the background color

8

final JFrame frame = new JFrame("TestButtonGui");
final JPanel panel = new JPanel();
final JButton button = new JButton("Press here");
frame.add(panel);
panel.add(button);
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 panel.setBackground(new Color(random.nextInt()));
 }});
frame.pack(); frame.setVisible(true);

Te
st

B
ut

to
nG

ui
.j

av
a

B 1

Main thread and event thread

9

main thread button event thread

actionPerformed()!

panel actionListener

create button

create panel

addActionL...()!

setBackgr...()!

panel.add(button)!

repaint()!

paint(g)!

repaint()!

paint(g)!

repaint()!

Click

IT University of Copenhagen

Using the main thread for blinking

•  repaint() may be called by any thread
•  Causes event thread to call paint(g) later

10

final JPanel panel = new JPanel() {
 public void paint(Graphics g) {
 super.paint(g);
 if (showBar) {
 g.setColor(Color.RED);
 g.fillRect(0, 0, 10, getHeight());
} } };
final JButton button = ...
frame.pack(); frame.setVisible(true);
while (true) {
 try { Thread.sleep(800); } // milliseconds
 catch (InterruptedException exn) { }
 showBar = !showBar;
 panel.repaint();
}

Te
st

B
ut

to
nB

lin
kG

ui
.j

av
a

B 2

IT University of Copenhagen

Fetching webpages on event thread

•  Occupies event thread for many seconds
– The GUI is unresponsive in the meantime
– Results not shown as they become available

• GUI gets updated only after all fetches

– Cancellation would not work
•  Cancel button event processed only after all fetches

– A progress bar would not work
• Gets updated only after all fetches

11

fetchButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 for (String url : urls) {
 System.out.println("Fetching " + url);
 String page = getPage(url, 200);
 textArea.append(String.format(..., url, page.length()));
 }
}});

Te
st

Fe
tc

hW
eb

G
ui

.j
av

a

W 0

Bad

On event
thread

Fetching web with SwingWorker

12

static class DownloadWorker extends SwingWorker<String,String> {
 private final TextArea textArea;
 public String doInBackground() {
 StringBuilder sb = new StringBuilder();
 for (String url : urls) {
 String page = getPage(url, 200),
 result = String.format("%-40s%7d%n", url, page.length());
 sb.append(result);
 }
 return sb.toString();
 }

 public void done() {
 try { textArea.append(get()); }
 catch (InterruptedException exn) { }
 catch (ExecutionException exn) { throw new RuntimeExc...; }
 }
} TestFetchWebGui.java

W 1

On worker
thread

On event
thread

Computed
result

Get result

•  SwingWorker<T,V> implements Future<T>
•  .NET has similar System.ComponentModel.BackgroundWorker

IT University of Copenhagen

Fetching web with SwingWorker

•  Event thread runs execute()!
•  Worker thread runs doInBackground()!

– which returns the full result when computed
•  Event thread runs done()!

– obtains the already-computed result with get()!
– and writes the result to the textArea

13

W 1

DownloadWorker downloadTask = new DownloadWorker(textArea);
fetchButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 downloadTask.execute();
}});

Te
st

Fe
ct

hW
eb

G
ui

.j
av

a

Dogma 1

Dogma 2

IT University of Copenhagen

Worker thread and event thread

14

Worker
thread

event thread

downloadTask.execute()!

downloadTask textArea

doInBackground()!

getPage() “A”!
getPage() “B”!
getPage() “C”!

“A B C”!

done()!

append(“A B C”)!

W 1

IT University of Copenhagen

•  In the GUI setup, add:

Add progress notification

15

static class DownloadWorker extends SwingWorker<String,String> {
 public String doInBackground() {
 int count = 0;
 StringBuilder sb = new StringBuilder();
 for (String url : urls) {
 String page = getPage(url, 200),
 result = String.format("%-40s%7d%n", url, page.length());
 sb.append(result);
 setProgress((100 * ++count) / urls.length);
 }
 return sb.toString();
 }
}

W 2

downloadTask.addPropertyChangeListener(new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent e) {
 if ("progress".equals(e.getPropertyName())) {
 progressBar.setValue((Integer)e.getNewValue());
}}});

On worker
thread

On event
thread

•  In the GUI setup, add:

Add cancellation

16

static class DownloadWorker extends SwingWorker<String,String> {
 public String doInBackground() {
 for (String url : urls) {
 if (isCancelled())
 break;
 ...
 sb.append(result);
 }
 return sb.toString();
 }
 public void done() {
 try { textArea.append(get()); }
 catch (InterruptedException exn) { }
 catch (ExecutionException exn) { throw new RuntimeExc...; }
 catch (CancellationException exn) { textArea.append(”Yrk”); }
} }

W 3

cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 downloadTask.cancel(false);
}});

On worker
thread

On event
thread

IT University of Copenhagen

Progress and cancellation

17

Worker
thread

event thread

downloadTask.execute()!

downloadTask textArea

doInBackground()!

getPage() “A”!
setProgress(...)!

cancel(false)!

append(“Yrk”)!

W 3

getPage() “B”!
setProgress(...)!

progressBar!
.setValue(...)!

“A B”!

done()!

IT University of Copenhagen

•  Worker thread calls publish(...) a few times
•  Event thread calls process with results from

calls to publish since last call to process!

Show results gradually

18

static class DownloadWorker extends SwingWorker<String,String> {
 public String doInBackground() {
 for (String url : urls) {
 String page = getPage(url, 200),
 result = String.format("%-40s%7d%n", url, page.length());
 publish(result);
 }
 }

 public void process(List<String> results) {
 for (String result : results)
 textArea.append(result);
 }
}

W 4

On worker
thread

On event
thread

Event thread and downloadTask

19

Worker
thread

event thread downloadTask textArea

doInBackground()!

process([“A”, “B”])!

getPage()!
publish(“A”)!
getPage()!
publish(“B”)!

append(“A”)!

append(“B”)!

getPage()!
publish(“C”)!

process([“C”])!

append(“C”)!

“”!

done()!

append(“”)!

downloadTask.execute()!

IT University of Copenhagen

SwingUtilities static methods
•  May be called from any thread:

–  boolean isEventDispatchThread()!
•  True if executing thread is the Event Thread

–  void invokeLater(Runnable cmd)!
•  Execute cmd.run() asynchronously on the Event Thread

–  void invokeAndWait(Runnable command)!
•  Execute cmd.run() on the Event Thread, wait to complete

•  SwingWorker = these + Java executors
– Goetz Listings 9.2 and 9.7 indicate how

•  Other methods that any thread may call:
– adding and removing listeners on components

•  but the listeners are called only on the Event Thread

–  comp.repaint() and comp.revalidate()!
20

IT University of Copenhagen

•  Avoids interaction with a partially constructed GUI
–  because the Event Thread is busy constructing the GUI

Very proper GUI creation in Swing
as per http://docs.oracle.com/javase/tutorial/uiswing/concurrency/initial.html

21

public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 final Random random = new Random();
 final JFrame frame = new JFrame("TestButtonGui");
 final JPanel panel = new JPanel();
 final JButton button = new JButton("Press here");
 frame.add(panel);
 panel.add(button);
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 panel.setBackground(new Color(random.nextInt()));
 }});
 frame.pack(); frame.setVisible(true);
 }
 });
}

Te
st

B
ut

to
nG

ui
Pr

op
er

.j
av

a

GUI gets built on
the Event Thread

IT University of Copenhagen 22

Plan for today
•  Graphical user interface toolkits, eg Swing

– not thread-safe, access from event thread only
•  Using SwingWorker for long-running work

– Progress bar
– Cancellation
– Display results as they are generated

•  A thread-based lift simulator with GUI
•  Atomic long with ”thread striping” (week 7)
•  Shared mutable data on multicore is slow

Example: 2 lifts, 7 floors, 26 buttons

23

Concurrency:
 2 lift cages move
 26 buttons pressed

b_1

−1

0

1

4

5

2

3

f_0

f_1

f_2

f_4

f_3

Lift A

f_5

Lift B

Inside-lift
buttons

Outside-lift
buttons

Li
ft

 c
ag

e

Lift cage

Two lift threads +
the event thread

IT University of Copenhagen

Modeling and visualizing the lifts
•  Use event thread for button clicks (obviously)

–  Inside requests: this lift must go to floor n
– Outside requests: some lift must go to floor n, and

then up (or down)
•  An object for each lift

–  to hold current floor, and floors yet to be visited
–  to compute time to serve an outside request

•  A thread for each lift
–  to update its state 16 times a second
–  to cause the GUI to display it

•  A controller object
–  to decide which lift should serve an outside request

24

IT University of Copenhagen

The lift simulator GUI

25

Buttons
inside lift 1

Buttons
outside lifts

Lift 1 shaft

Lift 1 cage

Lift controller algorithm
•  When outside button Up on floor n is pressed

– Ask each lift how long it would take to get to floor
n while continuing up afterwards

– Then order the fastest lift to serve floor n

26

class LiftController {
 private final Lift[] lifts;
 ...
 public void someLiftTo(int floor, Direction dir) {
 double bestTime = Double.POSITIVE_INFINITY;
 int bestLift = -1;
 for (int i=0; i<lifts.length; i++) {
 double thisLiftTime = lifts[i].timeToServe(floor, dir);
 if (thisLiftTime < bestTime) {

 bestTime = thisLiftTime;
 bestLift = i;

 }
 }
 lifts[bestLift].customerAt(floor, dir);
 }
}

Te
st

Li
ft

G
ui

.j
av

a

Up or Down

Ask lifts[i]
how long

Choose the
soonest one

IT University of Copenhagen

class Lift implements Runnable {
 private double floor;
 private Direction direction; // None, Up, Down
 // @GuardedBy("this")
 private final Direction[] stops;
 ...
 public synchronized void customerAt(int floor, Direction thenDir) {
 setStop(floor, thenDir.add(getStop(floor)));
 }
}

The state of a lift
•  Current floor and direction (None, Up, Down)
•  required stops and directions, stops[n]:

–  null: no need to stop at floor n!
–  None: stop at floor n, don’t know future direction
–  Down: stop at floor n, then continue down
–  Up: stop at floor n, then continue up
–  Both: stop, then up, and later down; or vice versa

27 Te
st

Li
ft

G
ui

.j
av

a

Accessed only
on lift thread

Called by
controller

Accessed on lift and
controller threads

switch (direction) {
case Up:
 if ((int)floor == floor) { // At a floor, maybe stop here
 Direction afterStop = getStop((int)floor);
 if (afterStop != null && (afterStop != Down || (int)floor == highestStop())) {
 openAndCloseDoors();
 subtractFromStop((int)floor, direction);
 }
 }
 if (floor < highestStop()) {
 floor += direction.delta / steps;
 shaft.moveTo(floor, 0.0);
 } else
 direction = Direction.None;
 break;
case Down: ... dual to Up ...
case None: ... if any stops[floor] != null, start moving in that direction ...
}

The lift’s behavior when going Up
•  If at a floor, check whether to stop here

–  If so, open+close doors and clear from stops table
•  If not yet at highest requested stop

– move up a bit and refresh display
– otherwise stop moving

28

Te
st

Li
ft

G
ui

.j
av

a

Executed 16
times/second

Down
is dual

on lift
thread

IT University of Copenhagen

Lift GUI thread safety
•  Dogma 1, no long-running on event thread:

–  sleep() happens on lift threads, not event thread
•  Dogma 2, only event thread works on GUI:

– Lift thread calls shaft.moveTo,
– which calls repaint(),
–  so event thread later calls paint(g), OK

•  Lift and event threads access stops[] array
– guarded by lock on lift instance this!

•  Only lift thread accesses floor and direction!
– not guarded by a lock!

29

IT University of Copenhagen

Lift modeling reflection
•  Seems reasonable to have a thread per lift

– because they move concurrently
•  Why not a thread for the controller?

– because activated only by the external buttons
– but what about supervising the lifts, timeouts?

E.g. if the lift sent to floor 4 going Up gets stuck at
floor 3 by some fool blocking the open door?

•  In Erlang, with message-passing, use
– a “process” (task) for each lift
– a “process” (task) for each floor, a “local controller”
– no central controller

•  Also Akka library, week 13-14
30

Armstrong et al: Concurrent Programming in Erlang (1993) 11.1

IT University of Copenhagen 31

Plan for today
•  Graphical user interface toolkits, eg Swing

– not thread-safe, access from event thread only
•  Using SwingWorker for long-running work

– Progress bar
– Cancellation
– Display results as they are generated

•  A thread-based lift simulator with GUI
•  Atomic long with ”thread striping” (wk 6)
•  Shared mutable data on multicore is slow

A “striped” thread-safe long

•  Use case: more writes (add) than reads (get)
•  Vastly different scalability

–  (a) Java 5’s AtomicLong
–  (b) Java 8’s LongAdder
–  (c) Home-made single-lock LongCounter
–  (d) Home-made striped long using AtomicLongArray
–  (e) Home-made striped long with scattered allocation

•  Ideas
–  (d,e) Use thread’s hashCode

to reduce update collisions
–  (e) Scatter AtomicLongs to

avoid false cache line sharing

32

Te
st

Lo
ng

A
dd

er
s.

ja
va

i7 4c AMD 32c
(a) 942 3011
(b) 65 54
(c) 1450 14921
(d) 427 1611
(e) 108 922

Wall clock time (ms) for 32 threads making 1 million additions each

IT University of Copenhagen

Dividing a long into 32 “stripes”

•  Two threads unlikely to add to same stripe
•  Each stripe has thread-affinity

–  if accessed by thread, likely to be accessed again
•  So, fast despite the cost of hashCode()!

33

class NewLongAdder {
 private final static int NSTRIPES = 32;
 private final AtomicLongArray counters = new AtomicLongArray(NSTRIPES);

 public void add(long delta) {
 counters.addAndGet(Thread.currentThread().hashCode() % NSTRIPES, delta);
 }

 public long longValue() {
 long result = 0;
 for (int stripe=0; stripe<NSTRIPES; stripe++)
 result += counters.get(stripe);
 return result;
 }
}

Te
st

Lo
ng

A
dd

er
s.

ja
va

Thread’s hashcode
selects stripe

IT University of Copenhagen 34

Plan for today
•  Graphical user interface toolkits, eg Swing

– not thread-safe, access from event thread only
•  Using SwingWorker for long-running work

– Progress bar
– Cancellation
– Display results as they are generated

•  A thread-based lift simulator with GUI
•  An atomic long with ”thread striping” (week 7)
•  Shared mutable data on multicore is slow

A typical multicore CPU
with three levels of cache

35

Li
n

&
 S

ny
de

r
20

09
,

p.
 1

6

•  Floating-point register add or mul: 0.4 ns
•  RAM access: > 100 ns

Fix 1: Each processor core has a cache
•  Cache = simple hardware hashtable
•  Stores recently accessed values from RAM
•  Cache is much faster than RAM

36

M
cK

en
ne

y
20

10
:

M
em

or
y

ba
rr

ie
rs

•  Two caches may have different
values for a given memory address

A cache line

Fix 2: Get all caches to agree
•  Cache coherence; cache line state = M,E,S,I

•  A cache line

– has 4 states
– and 12 transitions a-l

•  Cache messages
–  sent by cores to others
– via cache bus
–  to make caches agree

37

State Cache line Excl RAM Read Write
Modified Modified by me Y stale from cache to cache
Exclusive Not modified Y fresh from cache to cache -> M
Shared Others have it too N fresh from cache send invalidate
Invalid Not in use by me - - elsewhere send invalidate

M
cK

en
ne

y
20

10
:

M
em

or
y

ba
rr

ie
rs

IT University of Copenhagen

Cause I send I receive My response
M a (Send update to RAM) writeback - -
E b Write - - -
M c Other wants to write - read inv read resp, inv ack
I d Atomic read-mod-write read inv read resp, inv ack* -
S e Atomic read-mod-write read inv inv ack* -
M f Other wants to read - read read resp
E g Other wants to read - read read resp
S h Will soon write inv inv ack* -
E i Other wants atomic rw - read inv read resp, inv ack
I j Want to write read inv read resp, inv ack* -
I k Want to read read read resp -
S l Other wants to write - inv inv ack

Transitions and messages

38

A write in a non-exclusive state requires
acknowledge ack* from all other cores

Shared mutable state is slow on big machines

Fast and slow cache cases
•  The cache is fast when

–  the local core “owns” the data (state M or E), or
– data is shared (S) but local core only reads it

•  The cache is slow when
–  the data is shared (S) and we want to write it, or
–  the data is not in cache (I)

•  possibly because cache line “owned” by another core

39

This core wants to Messages Speed
M M Read cache line 0 fast
M M Write cache line 0 fast
E E Read cache line 0 fast
E M Write cache line 0 fast
S S Read cache line 0 fast
I S Read cache line 1+1 slow
S M Write cache line 1+N very slow
I M Write cache line 1+1+N very slow

Unshared
mutable

Shared
immutable

Shared
mutable

N
 c

or
es

One more performance problem:
“false sharing” because of cache lines
•  A cache line typically is 64 bytes

– gives better memory bus utilization
– prefetches data (in array) that may be needed next

•  Thus invalidating one (8 byte) long may
invalidate the neighboring 7 longs!

•  Frequently written memory locations should
not be on the same cache line!
– even if apparently not shared between threads

•  Attempts to fix this by “padding”
– may look very silly (next slide)
– are not guaranteed to help
– yet are used in the Java class library code

40

IT University of Copenhagen

Scattering the stripes of a long

41

class NewLongAdderPadded {
 private final static int NSTRIPES = 32;
 private final AtomicLong[] counters;

 public NewLongAdderPadded() {
 this.counters = new AtomicLong[NSTRIPES];
 for (int stripe=0; stripe<NSTRIPES; stripe++) {
 // Believe it or not, this sometimes speeds up the code,
 // presumably because avoids false sharing of cache lines:
 new Object(); new Object(); new Object(); new Object();
 counters[stripe] = new AtomicLong();
 }
 }
}

Te
st

Lo
ng

A
dd

er
s.

ja
va

•  Allocate many AtomicLongs
–  instead of AtomicLongArray

•  Scatter the AtomicLongs
– by allocating some Objects in between

Avoid side-by-side
AtomicLong allocation

unless JVM is too clever

IT University of Copenhagen

This week
•  Reading this week

– Goetz et al chapter 9
– McKenney: Memory barriers, chapters 1-4

•  Exercises
– You can write responsive and correct user

interfaces involving concurrency

•  Read before next week’s lecture
– Goetz chapter 12

42

