Practical Concurrent and
Parallel Programming 9

Peter Sestoft
IT University of Copenhagen

Friday 2015-10-30

IT University of Copenhagen

e Locking on multiple objects

e Deadlock and locking order

e Tool: jvisualvm, a JVM runtime visualizer
e Explicit locks, 1lock.tryLock ()

e Liveness

e Concurrent correctness: safety + liveness

e The Java memory model

IT University of Copenhagen

Acc A
Bank accounts and transfers —

e An Account object a la Java monitor pattern:

class Account {
private long balance = 0;
public synchronized void deposit(long amount) {
balance += amount;

}
public synchronized long get() ({

return balance;

}
}

e Naively add method for transfers:

TestAccountUnsafe.java

public synchronized void transferA (Account that, long amount) ({
this.balance this.balance - amount;
that.balance that.balance + amount;

} Bad

IT University of Copenhagen 4

Acc A
Two clerks working concurrently

accountl .deposit (3000) ; account2.deposit (2000) ;
Thread clerkl = new Thread(new Runnable() { public void run() {

for (int i=0; i<transfers; i++)
accountl. transferA (account2,

rnd.nextInt (10000)) ;

}})

Thread clerk2 = new Thread(new Runnable() { public void run() {

for (int i=0; i<transfers; i++)
account2. transferA (accountl, rnd.nextInt(10000)) ; -

}Y) g
clerkl.start(); clerk2.start()

e Main thread occasionally prints balance sum:

for (int i=0; i<40; i++) {
try { Thread.sleep(10); } catch (InterruptedException exn) { }

System.out.println (accountl.get() + account2.get())

}
e Method transferA may seem OK, but is not

e Why?

IT University of Copenhagen

Losing updates with transferA 2<%

Clerk 1 Account 1 Account 2 Clerk 2
13000 2000/

I I ac2.trA(acl,b200)
| | < o
| | lock(ac2) &
I j read 2000 from ac2 “
| | write 2000-200 to ac2 §
1800 S
| | |
acl.trA(ac2,500) I I g
> w
r-———=—"====" lock(act) 1~~~ 7 r—— """ " 7777 =

read 3000 from acl

write 3000-500 to ac1l

read 1800 from ac2
write 1800+500 to ac2
unlock acl

m.

Acc B

e TransferA was bad: Only one thread locks acl
— This does not achieve atomic update

o Attempt at atomic update of each account:

public void transferB (Account that, long amount) {
this.deposit (-amount) ;
that.deposit (+amount) ;

}

TestAccountUnsafe.java

e But a transfer is still not atomic
— so wrong, non-5000, account sums are observed:

12919
-8826
-11648
-10716
Final sum is 5000

Acc C
Must lock both accounts -

e Atomic transfers and account sums require all
accesses to lock on both account objects:

public void transferC (Account that, long amount) ({
synchronized (this) { synchronized(that) {
this.balance = this.balance - amount;
that.balance = that.balance + amount;

} o}
} Bad

TestAccountDeadlock.java

e But this may deadlock:
— Clerk1 gets lock on acl
— Clerk2 gets lock on ac2
— Clerk1 waits for lock on ac2
— Clerk2 waits for lock on acl

- ... forever
IT University of Copenhagen 8

Deadlocking with transferC [A<¢

Clerk 1 Account 1 Account 2
13000 2000l
I I ac2.trA(acl,200)
| | <
I] acquire lock on ac2
acl.trA(ac2,500) I I
> !
acquire lock on acl I I
" trytogetlockonac2! T ‘

Clerk 2

TestAccountDeadlock.java

Avoiding deadlock, serial no. A<®

e Always take multiple locks in the same order
— Give each account a unique serial number:

class Account {
private static final AtomicInteger intSequence = new AtomicInteger() ;
private final int serial = intSequence.getAndIncrement() ;

TestAccountLockOrder.java

— Take locks in serial number order:

public void transferD (Account that, final long amount) ({
Account acl = this, ac2 = that;
if (acl.serial <= ac2.serial)
synchronized (acl) { synchronized (ac2) { // acl <= ac2
acl.balance = acl.balance - amount;
ac2.balance = ac2.balance + amount;
} o}
else
synchronized (ac2) { synchronized (acl) { // ac2 < acl
acl.balance = acl.balance - amount;
ac2.balance = ac2.balance + amount;

b}

10

e All accesses must lock in the same order

public static long balanceSumD (Account acl, Account ac?2) {
if (acl.serial <= ac2.serial)
synchronized (acl) { synchronized (ac2) { // acl <= ac2
return acl.balance + ac2.balance;
o}
else
synchronized (ac2) { synchronized (acl) { // ac2 < acl
return acl.balance + ac2.balance;

bl

Acc D
Avoiding deadlock, lock order [acr

TestAccountLockOrder.java

e Cumbersome, we may encapsulate lock-taking

static void lockBothAndRun (Account acl, Account ac2, Runnable action) {
if (acl.serial <= ac2.serial)
synchronized (acl) { synchronized (ac2) { action.run(); } }
else
synchronized (ac2) { synchronized (acl) { action.run(); } }

IT University of Copenhagen 11

Avoiding deadlock, hashcode [A«<E

e Every object has an almost-unique hashcode
— Hence no need to give accounts a serial number
— Instead take locks in hashcode order:

public void transferE (Account that, final long amount) {
Account acl = this, ac?2 = that;
if (System.identityHashCode (acl) <= System.identityHashCode (ac2))
synchronized (acl) { synchronized (ac2) { // acl <= ac2

acl.balance = acl.balance - amount;
ac2.balance = ac2.balance + amount;
bl
else
synchronized (ac2) { synchronized (acl) { // ac2 < acl

acl.balance - amount;
ac?2.balance + amount;

acl.balance
acz.balance

\ . Almost unbad

TestAccountLockOrder.java

e Small risk of equal hashcodes and so deadlock

e See Goetz 10.1.2 + exercise how to eliminate

IT University of Copenhagen 12

jvisualvm: Runtime Java thread

state visualization
e Included with Java JDK since version 6

e Command-line tool: jvisualvm

e Can give graphical overview of thread history
— As in TestCountPrimes.java (50m, 4 threads)

e Can display and diagnose most deadlocks
— As in TestAccountDeadlock.java

e But not that in TestPipelineSolution.java
— The tasks are blocked in Waiting, not in Locking

e Can produce much other information

IT University of Copenhagen 13

Using jvisualvm on

TestAccountDeadlock.java

Z TestAccountDeadlock (pid 10862)

’ Threads

Live threads: 12
Daemon threads: 9

Deadlock detected!
Take a thread dump to get more info.

 Threads visualization ‘

[Thread Dump]

‘ Timeline | Table | Details

x|
\QHQ||Q| Show: | All Threads ;|
Threads | 0:00 0:10 0:20 0:30 m:s]

@ RMI TCP Connection(2)-1...
O JMX server connection ti...
O RMI Scheduler(0)

@ RMI TCP Connection(1)-1...
B RMI TCP Accept-0

@ Attach Listener

@A Thread-1

@A Thread-0

@ Signal Dispatcher

O Finalizer

O Reference Handler

8 main

|

IT University of Copenhagen

14

Thread dump
points to deadlock scenario

Found one Java-level deadlock:

"Thread-1":
waiting to lock monitor 0x00007fc43a010b48 (object 0x0000000740088b40, a Account),
which is held by "Thread-0"

"Thread-0":
waiting to lock monitor 0x00007fc43a010d58 (object 0x0000000740088b28, a Account),
which is held by "Thread-1"

Java stack information for the threads listed above:

"Thread-1":
at Account.transferC(TestAccountDeadlock.java:61)
- waiting to lock <0x0000000740088b40> (a Account)
— locked <0x0000000740088b28> (a Account)
at TestAccountDeadlock$2.run(TestAccountDeadlock.java:29)
at java.lang.Thread.run(Thread.java:745)

"Thread-0":
at Account.transferC(TestAccountDeadlock.java:61)
- waiting to lock <0x0000000740088b28> (a Account)
— locked <0x0000000740088b40> (a Account)
at TestAccountDeadlock$l.run(TestAccountDeadlock.java:23)
at java.lang.Thread.run(Thread.java:745)

IT University of Copenhagen 15

e Taking multiple locks in different orders
— TestAccounts example

e Dependent tasks on too-small thread pool

— Eg running the 4-stage pipeline from week 5 on a
FixedThreadPool with only 3 threads

— Or on a WorkStealingPool when only 2 cores

e Synchronizing on too much
— Use synchronized on statements, not methods

— Maybe the reason C# has lock only on statements,
not methods

e When possible, use only open calls
— Don't hold a lock when calling an unknown method

IT University of Copenhagen

Deadlocks may be hard to spot .=*4

class Taxi {
private Point location, destination;
private final Dispatcher dispatcher;
public synchronized Point getLocation() { return location; }
public synchronized void setLocation (Point location) {
this.location = location;
if (location.equals(destination))
dispatcher.notifyAvailable (this) ;

| Goetz p. 212 | l

class Dispatcher ({

private final Set<Taxi> taxis;

private final Set<Taxi> availableTaxis;

public synchronized void notifyAvailable (Taxi taxi) {
availableTaxis.add(taxi) ;

}

public synchronized Image getImage () ({
Image image = new Image() ;
for (Taxi t : taxis)

image.drawMarker (t.getLocation()) ;
return image;

}

= i '

7

Locking less to remove deadlock! ™<=

class Taxi {
public synchronized Point getLocation() { return location; }
public void setLocation (Point location) {
boolean reachedDestination;
synchronized (this) ({
this.location = location;
reachedDestination = location.equals (destination) ;
}
if (reachedDestination)
dispatcher.notifyAvailable (this) ;

‘ Goetz p. 214 ‘

}

class Dispatcher ({
public synchronized void notifyAvailable (Taxi taxi) { ... }
public Image getImage () ({
Set<Taxi> copy;
synchronized (this) ({
copy = new HashSet<Taxi> (taxis) ;
}
Image image = new Image() ;
for (Taxi t : copy)
image.drawMarker (t.getLocation()) ;
return image;

b}

= i '

8

We use locks and synchronized for atomicity
— when working with mutable shared data

But this is not compositional

— atomic access of each of acl and ac2 does not
mean atomic access to their combination, eg. sum

Locks are pessimistic, there are alternatives:

No mutable data
- immutable data, functional programming

No shared data
— message passing, Akka library, week 13-14

Accept mutable shared data, but avoid locks

— optimistic concurrency, transactional memory,
Multiverse library, next week

e | ocking on multiple objects

e Deadlock and locking order

e Tool: jvisualvm, a JVM runtime visualizer
o Explicit locks, lock.tryLock()

e Liveness

e Concurrent correctness: safety + liveness
e The Java memory model

IT University of Copenhagen

Using explicit (and try-able) locks A«<¢
e Namespace java.util.concurrent.locks
e New Account class with explicit locks:

class Account {
private final Lock lock = new ReentrantLock() ;

public void deposit(long amount) ({
lock.lock() ;
try {
balance += amount;
} finally {
lock.unlock() ;
}
}

TestAccountTryLock.java

public long get() {
lock.lock() ;

try {
return balance;
} finally {

lock.unlock() ;

}
}

} 21

Avoiding deadlock by retrying

e The Java runtime does not discover deadlock

e Unlike database servers
— They typically lock tables automatically
— In case of deadlock: abort and retry

e Similar idea can be used in Java

— Try to take lock acl

e If successful, try to take lock on ac2
— If successful, do action, release both locks, we are done
— Else release lock on acl, and start over

e Else start over
e Main (small) risk: may forever “start over”

e Related to optimistic concurrency
— and to software transactional memory, next week

IT University of Copenhagen 22

Acc

Taking two locks, using tryLock()

G

‘ Like Goetz p. 280 ‘

public void transferG(Account that, final long amount) ({
Account acl = this, ac2 = that;
while (true) {
if (acl.lock.tryLock()) { —;
try {
it (ac2 lock.trytock() (—_ (TANSERREIEE
try {
acl.balance = acl.balance - amount;
ac2.balance = ac2.balance + amount; -
return;
} finally {

ac2.lock.unlock() ;

}
}
} finally {
acl.lock.unlock () ;

}

}
try { Thread.sleep (O, (int) (500 * Math.random())); }

catch (InterruptedException exn) { }

TestAccountTryLock.java

IT University of Copenhagen 23

Livelock: nobody makes progress

e The transferG method never deadlocks

e In principle it can livelock:
- Thread 1 locks acl
- Thread 2 locks ac2
— Thread 1 tries to lock ac2 but discovers it cannot
— Thread 2 tries to lock acl but discovers it cannot
— Thread 1 releases acl, sleeps, starts over
— Thread 2 releases ac2, sleeps, starts over
- ... forever ...

e Extremely unlikely

— requires the random sleep periods to be same
always

— requires the operation interleaving to be the samg

Correctness = Safety + Liveness

e Safety: nothing bad ever happens
- Invariants are preserved, no updates lost, etc

Goetz p. 8

e Liveness: something good eventually happens
— No deadlock, no livelock

e You must be able to use these concepts:

e v e——
Testing the condition bcfore waiting and skipping the wait if the condmon

already holds are necessary to ensure liveness. If the condition already holds and
the notify (or notifyAl11) method has already been invoked before a thread
waits, there is no guarantee that the thread will ever wake from the wait.

Testing the condition after waiting and waiting again if the condition does not
hold are necessary to ensure safety. If the thread proceeds with the action when
the condition does not hold, it can destroy the invariant guarded by the lock. There

Bloch p. 276
while (<condition> is false) { och p

try { this.wait(); }
catch (InterruptedException exn) { }
} // Now <condition> is true

25

Thread scheduler, priorities, ...

e Controls the “scheduled” and “"preempted”
arcs in Java Thread states diagram, lecture 5

Item 72: Don’t depend on the thread scheduler Bloch p. 286

When many threads are runnable, the thread scheduler determines which ones get
to run, and for how long. Any reasonable operating system will try to make this
determination fairly, but the policy can vary. Therefore, well-written programs
shouldn’t depend on the details of this policy. Any program that relies on the
thread scheduler for correctness or performance is likely to be nonportable.

e Thread priorities: Don’t use them

— except to make GUIs responsive by giving
background worker threads lower priority
e Don't fix liveness or performance problems
using .yield() and .sleep(0); not portable

26

e | ocking on multiple objects

e Deadlock and locking order

e Tool: jvisualvm, a JVM runtime visualizer
e Explicit locks, lock.tryLock()

e Liveness

e Concurrent correctness: safety + liveness
e The Java memory model

IT University of Copenhagen

Threads in Java and C# and C etc
communicate via mutable shared memory

We need compiler optimizations for speed

— Compiler optimizations that are harmless in thread
A may seem strange from thread B

— Disallowing strangeness leads to slow software

We need CPU caches for speed
- With caches, write-to-RAM order may seem strange

So we have to live with some strangeness
A memory model tells how much strangeness

The Java Memory Model is quite well-defined
- JLS §17.4, Goetz §16, Herlihy & Shavit §3.8

Surprising results

class StoreBufferExample ({
volatile boolean A =
B =

int A Won = 0, B Won = 0;

public void ThreadA() {

A = true;

if (!'B)

A Won = 1;

}
public voi
B = true;
if ('A)

B Won = 1;

rea

}

}

e Without volatile, can get A _won

false,
false;

—
—

B_won

— Not JIT compiler, but CPU store buffer delay on A

- Memory updates are not sequentially consistent

e With volatile, this is impossible (in Java)

29

‘ Ostrovsky 2013 ‘ TestStoreBuffer.java

1

consistent memory model

Initially: A = B

false and A Won = B Won = 0

Interleavings assuming sequentially

A=true A=true A=true

if (1B) if (1B) if (1B)
A_Won=1 B=true B=true
B=true A_Won=1 if (1A)

if (1A) if (1A) A_Won=1
B=true B=true B=true

if (1A) if (1A) if (1A)

B Won=1 A=true A=true
A=true B_Won=1 if (1B)

if (1B) if (1B) B Won=1

CBwon

A=true A=true
B=true B=true
if (1B) if (1A)
if (1A) if (1B)
B=true B=true
A=true A=true
if (1A) if (1B)
if (1B) if (1A)
h §

Experiments on 4-core Intel 17

e Java, without volatile and with volatile:

A loses A wins A loses A wins
B loses 0 436649 B loses 2668 438518
B wins 550463 12888 B wins 558814 0

if (1B)
B=true

if (1A)

B Won=1
A=true

A Won=1

e On 1-core ARM, double-wins seem impossible

TestStoreBuffer.java

IT University of Copenhagen 31

The happens-before relation in Java

e A program order of a thread t is some total order of the thread’s actions
that is consistent with the intra-thread semantics of t

e Action x synchronizes-with action y is defined as follows:

An unlock action on monitor m synchronizes-with all subsequent lock actions on m

Al‘_lwritde to a volatile variable v synchronizes-with all subsequent reads of v by any
threa

An action that starts a thread synchronizes-with the first action in the thread it starts

The write of the default value (zero, false, or null) to each variable synchronizes-with
the first action in every thread

The final action in a thread T1 synchronizes-with any action in another thread T2
that detects that T1 has terminated

If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point
where any other thread (including T2) determines that T2 has been interrupted

e Action x happens-before action y, written hb(x,y), is defined like this:

If x and y are actions of the same thread and x comes before y in program order,
then hb(x, y)

There is a happens-before edge from the end of a constructor of an object to the
start of a finalizer for that object

If an action x synchronizes-with a following action y, then we also have hb(x,y)
If hb(x, y) and hb(y, z), then hb(x, z) - that is, hb is transitive

Java Language Specification §17.4 Goetz §16.3.1 32

Strange but legal behavior in Java

e Java Language Specification, sect 17.4:
- Run these code fragments in two threads

— Shared fields A, B initially O; local variables r1, r2

r2=A;
B=1;

e What are the possible results?
— Strangely, rl==1 and r2==2 is possible

rl=B;
A=2;

| ILS 8 Tables 17.1, 17.5 |

- An ordering consistent with happens-before relation

B=1;
A=2;

rl=

r2=A;

4

°
4

33

Why permit such strange behaviors?

e More comprehensible example from JLS 17.4
- Assume p, g shared, p==q and p.x==

r2 = rl.x; r6.x = 3;
r3 = q;
r4é = r3.x;
r5 = rl.x;
— Compiler optimization, common subexpr. elimin.:
rl = p; ré6 = p;
r2 = rl.x; r6.x = 3;
r3 = q;
r4 = r3.x;
r5 = r2; «4'...

(p.x seems to switch from r2=0 to r4=3 and back to r5=0

e Using volatile x prevents this strangeness
— But makes code slower, see lecture 4: [voatiearayjava | -,

C#/.NET memory model?

e Quite similar to Java
- C# Language Specification, Ecmma-334 standard

e But weaknesses and unclarities
— C# readonly has no visibility effect unlike £inal
— C# volatile is weaker than in Java
— Allowed to lift variable read out of loop?
— “Read introduction” seems downright horrible!

e If you write concurrent C# programs, read:

— Ostrovsky: The C# Memory Model in Theory and
Practice, MSDN Magazine, December 2012

— Even though optional in this course

IT University of Copenhagen

35

e Visibility effect of C#/.NET readonly fields not mentioned in C#
Language Specification or Ecma-335 CLI Specification (initonly)

e In fact, no visibility guarantee is intended...

Right. The CLI doesn't give any special status to initonly fields, from a memory ordering/visibility
perspective. As with ordinary fields, if they are shared between threads then some sort of fence is needed to
ensure consistency. This could be in the form of a volatile write, as Carol suggests, or any of the common
synchronization primitives such as releasing a lock, setting an event, etc.

Eric

————— Original Message-----

From: Carol Eidt

Sent: Tuesday, December 4, 2812 18:14 AM

To: Peter Sestoft; Mads Torgersen; Eric Eilebrecht

Cc: Carol Eidt

Subject: RE: Visibility (from other threads) of readonly fields in C#/.NET?

Hi Peter,

I apologize for not responding more quickly to your email. I am adding Eric Eilebrecht to this thread, since he
is the CLR's memory ordering expert.

I believe that section I.12.6.4 Optimization addresses this, but one has to read between the lines:

"Conforming implementations of the CLI are free to execute programs using any technology that guarantees, within
a single thread of execution, that side-effects and exceptions generated by a thread are visible in the order
specified by the CIL. For this purpose only volatile operations (including volatile reads) constitute visible
side-effects. (Note that while only volatile operations constitute visible side-effects, volatile operations also
affect the visibility of non-volatile references.)"

Where it says " volatile operations also affect the visibility of non-volatile references", this implies (though
vaguely) that volatile reads & writes behave as some form of memory fence, though whether it is bi-directional or
acquire-release is left unstated. I also believe that the above implies that, in order to achieve the desired
visibility of initonly fields, one would have to declare a volatile field that would be written last, effectively
“publishing" the other fields.

I certainly wouldn't say that the Java memory mode o much fuss over this - it's just fundamentally

tricky!

36

Carol

C#/.NET volatile weaker than Java’s

class StoreBufferExample { 8
volatile bool A = false, public void ThreadA() { %
_ B = false; A = true; :
int A Won = 0, B Won = 0; Thread.MemoryBarrier () ; @
public void ThreadA() { if (1B) @

A = true; A Won = 1;: -
if (!'B) } — ©
A Won = 1; N
} <
public void ThreadB() { public void ThreadB() { g
B = true; B = true; %
if ('A) Thread.MemoryBarrier () ; ©
B Won = 1; if ('A)
} - B Won = 1;

li
=

e C#: possible to get A Won = B Won
- Even with volatile
— To fix in C#, add MemoryBarrier call

37

Experiments on 4-core Intel 17
o C#/.NET 4.6, without and with volatile:

A loses A wins A loses A wins

B loses 600 874916 B loses 522 912084

B wins 108249 16235 B wins 72290 15102

e,

e Volatile in C# not the same as in Java

e \olatile keyword in C, C++4, Java and C#
has four different meanings...

TestStoreBuffer.cs

IT University of Copenhagen 38

« A read of a volatile field is called a volatile read. A volatile
read has “acquire semantics”; that is, it is guaranteed to
occur prior to any references to memory that occur after it in
the instruction sequence.

« A write of a volatile field is called a volatile write. A volatile
write has “release semantics”; that is, it is guaranteed to
happen after any memory references prior to the write
instruction in the instruction sequence.

e A C# volatile read may move earlier, a
volatile write may move later, hence trouble

e Not in Java:

If a programmer protects all accesses to shared data via locks
or declares the fields as volatile, she can forget about the Java
Memory Model and assume interleaving semantics, that is,
Sequential Consistency.

Lochbihler: Making the Java memory model safe, ACM TOPLAS, December 2013

C# Language Spec 2006, §17.4.3

MemoryBarrier() in C#/.NET

Synchronizes memory access as follows: The processor executing
the current thread cannot reorder instructions in such a way that
memory accesses prior to the call to MemoryBarrier execute after
memory accesses that follow the call to MemoryBarrier.

MemoryBarrier is required only on multiprocessor systems with
weak memory ordering (for example, a system employing
multiple Intel Itanium processors).

System.Threading.Thread.MemoryBarrier API docs 4.5

e But sometimes is needed anyway
— also on x86, contradicting the API docs ...

e Java does not have MemoryBarrier, because
Java volatile gives good guarantees

IT University of Copenhagen 40

e Reading
— Goetz et al chapter 10 + 13.1 + 16
- Java Language Specification §17.4
— Bloch item 67

e Exercises week 9

- Show that you can write non-deadlocking code,
and that you can use tools such as jvisualvm

- Show that you can use locks correctly

e Read before next week’s lecture
- Herlihy and Shavit sections 18.1-18.2
— Harris et al: Composable memory transactions
— Cascaval et al: STM, Why is it only a research toy

IT University of Copenhagen

Next week’s reading:
Software transactional memory STM

e Herlihy and Shavit sections 18.1-18.2
— Brief critique of locking and introduction to STM

— Scanned PDF on LearnIT

e Harris et al: Composable memory
transactions, 2008
— Made STM popular again around 2004
- Using the functional language Haskell

e Cascaval et al: STM, Why is it only a
research toy, 2008
- Some people are skeptical, but they use C ...

— STM more likely to be useful in mostly-immutable
settings than in anarchic imperative/OO0 settings

IT University of Copenhagen 42

