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Plan for today 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  The Java memory model 
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Bank accounts and transfers 
•  An Account object à la Java monitor pattern: 

•  Naively add method for transfers: 
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Acc A 

class Account { 
  private long balance = 0; 
  public synchronized void deposit(long amount) { 
    balance += amount; 
  } 
  public synchronized long get() { 
    return balance; 
  } 
} 

public synchronized void transferA(Account that, long amount) { 
  this.balance = this.balance - amount; 
  that.balance = that.balance + amount; 
} 
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Two clerks working concurrently 

•  Main thread occasionally prints balance sum: 

 
•  Method transferA may seem OK, but is not 
•  Why? 
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account1.deposit(3000); account2.deposit(2000); 
Thread clerk1 = new Thread(new Runnable() { public void run() {  
  for (int i=0; i<transfers; i++)  
    account1.transferA(account2, rnd.nextInt(10000)); 
}}); 
Thread clerk2 = new Thread(new Runnable() { public void run() {  
  for (int i=0; i<transfers; i++)  
    account2.transferA(account1, rnd.nextInt(10000)); 
}}); 
clerk1.start(); clerk2.start(); 

Transfer 
ac1 to ac2 

Transfer 
ac2 to ac1 

for (int i=0; i<40; i++) { 
  try { Thread.sleep(10); } catch (InterruptedException exn) { } 
  System.out.println(account1.get() + account2.get()); 
} 

Acc A 



Losing updates with transferA 
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Clerk 1 Account 1 Clerk 2 

ac2.trA(ac1,200)!

lock(ac2) 
read 2000 from ac2 
write 2000-200 to ac2 

ac1.trA(ac2,500)!
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lock(ac1) 
read 3000 from ac1 

write 3000+200 to ac1 
unlock ac2 

Account 2 
3000 2000 

1800 

read 3000 from ac1 

write 3000-500 to ac1 
2500 

3200 

read 1800 from ac2 
write 1800+500 to ac2 

unlock ac1 2300 

Sum is 
5000 

Sum is 
5500 !! 

Non-
atomic 

ac1 
update 
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TestAccounts version B 
•  TransferA was bad: Only one thread locks ac1 

– This does not achieve atomic update 
•  Attempt at atomic update of each account: 

•  But a transfer is still not atomic 
–  so wrong, non-5000, account sums are observed: 
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Acc B 
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public void transferB(Account that, long amount) { 
  this.deposit(-amount); 
  that.deposit(+amount); 
} 

... 
12919 
-8826 
-11648 
-10716 
Final sum is 5000 
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Must lock both accounts 
•  Atomic transfers and account sums require all 

accesses to lock on both account objects: 

•  But this may deadlock: 
– Clerk1 gets lock on ac1 
– Clerk2 gets lock on ac2 
– Clerk1 waits for lock on ac2 
– Clerk2 waits for lock on ac1 
–  ... forever 
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public void transferC(Account that, long amount) { 
  synchronized (this) { synchronized(that) {  
    this.balance = this.balance - amount; 
    that.balance = that.balance + amount; 
  } } 
} 
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Deadlocking with transferC 

9 

Clerk 1 Account 1 Clerk 2 

ac2.trA(ac1,200)!

acquire lock on ac2 
ac1.trA(ac2,500)!
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acquire lock on ac1 

Account 2 
3000 2000 

Deadlock 

try to get lock on ac1 

Blocked 
forever Blocked 

forever 

try to get lock on ac2 

Acc C 



Avoiding deadlock, serial no. 
•  Always take multiple locks in the same order 

– Give each account a unique serial number: 

– Take locks in serial number order: 
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Acc D 

public void transferD(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
} 

class Account { 
  private static final AtomicInteger intSequence = new AtomicInteger(); 
  private final int serial = intSequence.getAndIncrement(); 
  ... 
} 
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Avoiding deadlock, lock order 
•  All accesses must lock in the same order 

•  Cumbersome, we may encapsulate lock-taking 
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public static long balanceSumD(Account ac1, Account ac2) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      return ac1.balance + ac2.balance; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      return ac1.balance + ac2.balance; 
    } } 
} 

static void lockBothAndRun(Account ac1, Account ac2, Runnable action) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { action.run(); } } 
  else 
    synchronized (ac2) { synchronized (ac1) { action.run(); } } 
} 
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Avoiding deadlock, hashcode 
•  Every object has an almost-unique hashcode 

– Hence no need to give accounts a serial number 
–  Instead take locks in hashcode order: 

•  Small risk of equal hashcodes and so deadlock 
•  See Goetz 10.1.2 + exercise how to eliminate 
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Acc E 

public void transferE(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  if (System.identityHashCode(ac1) <= System.identityHashCode(ac2)) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
} 
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jvisualvm: Runtime Java thread 
state visualization 

•  Included with Java JDK since version 6 
•  Command-line tool: jvisualvm!
•  Can give graphical overview of thread history 

– As in TestCountPrimes.java (50m, 4 threads) 
•  Can display and diagnose most deadlocks 

– As in TestAccountDeadlock.java 
•  But not that in TestPipelineSolution.java 

– The tasks are blocked in Waiting, not in Locking 

•  Can produce much other information 

13 
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Using jvisualvm on 
TestAccountDeadlock.java 

14 
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Thread dump  
points to deadlock scenario 

15 

transferC 
method is 
involved 
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Sources of deadlock 
•  Taking multiple locks in different orders 

– TestAccounts example 
•  Dependent tasks on too-small thread pool 

– Eg running the 4-stage pipeline from week 5 on a 
FixedThreadPool with only 3 threads 

– Or on a WorkStealingPool when only 2 cores 
•  Synchronizing on too much 

– Use synchronized on statements, not methods 
– Maybe the reason C# has lock only on statements, 

not methods 
•  When possible, use only open calls 

– Don’t hold a lock when calling an unknown method 

16 



Deadlocks may be hard to spot 

17 

class Taxi { 
  private Point location, destination; 
  private final Dispatcher dispatcher; 
  public synchronized Point getLocation() { return location; } 
  public synchronized void setLocation(Point location) { 
    this.location = location; 
    if (location.equals(destination)) 
      dispatcher.notifyAvailable(this); 
  } 
} 
 
class Dispatcher { 
  private final Set<Taxi> taxis; 
  private final Set<Taxi> availableTaxis; 
  public synchronized void notifyAvailable(Taxi taxi) { 
    availableTaxis.add(taxi); 
  } 
  public synchronized Image getImage() { 
    Image image = new Image(); 
    for (Taxi t : taxis) 
      image.drawMarker(t.getLocation()); 
    return image; 
  } 
} 
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Lock taxi  

Call notify..., 
locks dispatcher 

Lock dispatcher 

Call getLocation, 
locks taxi 

Deadlock risk! Deadlock risk! 

Taxi A 

Bad 



Locking less to remove deadlock 
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class Taxi { 
  public synchronized Point getLocation() { return location; } 
  public void setLocation(Point location) { 
    boolean reachedDestination; 
    synchronized (this) { 
      this.location = location; 
      reachedDestination = location.equals(destination); 
    } 
    if (reachedDestination) 
      dispatcher.notifyAvailable(this); 
  } 
} 
class Dispatcher { 
  public synchronized void notifyAvailable(Taxi taxi) { ... } 
  public Image getImage() { 
    Set<Taxi> copy; 
    synchronized (this) { 
      copy = new HashSet<Taxi>(taxis); 
    } 
    Image image = new Image(); 
    for (Taxi t : copy) 
      image.drawMarker(t.getLocation()); 
    return image; 
} } 
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Lock taxi, move, test, release 

Call notify... 
with no lock held 

Lock dispatcher, copy 
set, release lock 

Call getLocation 
with no lock held 

Taxi B 



Locks for atomicity do not compose 
•  We use locks and synchronized for atomicity 

– when working with mutable shared data 
•  But this is not compositional 

– atomic access of each of ac1 and ac2 does not 
mean atomic access to their combination, eg. sum 

•  Locks are pessimistic, there are alternatives: 
•  No mutable data 

–  immutable data, functional programming 
•  No shared data 

– message passing, Akka library, week 13-14 
•  Accept mutable shared data, but avoid locks 

– optimistic concurrency, transactional memory, 
Multiverse library, next week 

19 
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Plan for today 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  The Java memory model 
 
 



Using explicit (and try-able) locks 
•  Namespace java.util.concurrent.locks 
•  New Account class with explicit locks: 

21 

class Account { 
  private final Lock lock = new ReentrantLock(); 
 
  public void deposit(long amount) { 
    lock.lock(); 
    try {  
      balance += amount; 
    } finally { 
      lock.unlock(); 
    } 
  } 
 
  public long get() { 
    lock.lock();     
    try {  
      return balance; 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 

Te
st

A
cc

ou
nt

Tr
yL

oc
k.

ja
va

 

Acquire lock 

Always 
release it 

Acquire lock 

Always 
release it 

Acc G 
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Avoiding deadlock by retrying 
•  The Java runtime does not discover deadlock 
•  Unlike database servers 

– They typically lock tables automatically 
–  In case of deadlock: abort and retry 

•  Similar idea can be used in Java 
– Try to take lock ac1 

•  If successful, try to take lock on ac2 
–  If successful, do action, release both locks, we are done 
–  Else release lock on ac1, and start over 

•  Else start over 

•  Main (small) risk: may forever “start over” 
•  Related to optimistic concurrency 

– and to software transactional memory, next week 
22 



IT University of Copenhagen 

Taking two locks, using tryLock() 
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public void transferG(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  while (true) { 
    if (ac1.lock.tryLock()) { 
      try { 
        if (ac2.lock.tryLock()) { 
          try { 
            ac1.balance = ac1.balance - amount; 
            ac2.balance = ac2.balance + amount; 
            return; 
          } finally { 
            ac2.lock.unlock(); 
          } 
        } 
      } finally { 
        ac1.lock.unlock(); 
      } 
    } 
    try { Thread.sleep(0, (int)(500 * Math.random())); } 
    catch (InterruptedException exn) { } 
  } 
} 

Acc G 
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Actual work 

Sleep 0-500 ns 
before retry to 
save CPU time 
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Try locking ac1 

Try locking ac2 

In any case, release 
acquired locks 

In any case, release 
acquired locks first 

If success, do work 
and exit 

Else 
retry 



Livelock: nobody makes progress 
•  The transferG method never deadlocks 
•  In principle it can livelock: 

– Thread 1 locks ac1 
– Thread 2 locks ac2 
– Thread 1 tries to lock ac2 but discovers it cannot 
– Thread 2 tries to lock ac1 but discovers it cannot 
– Thread 1 releases ac1, sleeps, starts over 
– Thread 2 releases ac2, sleeps, starts over 
–  ... forever ... 

•  Extremely unlikely 
–  requires the random sleep periods to be same 

always 
–  requires the operation interleaving to be the same 24 



Correctness = Safety + Liveness 
•  Safety: nothing bad ever happens 

–  Invariants are preserved, no updates lost, etc 
•  Liveness: something good eventually happens 

– No deadlock, no livelock 
•  You must be able to use these concepts: 

25 

Bloch p. 276 while (<condition> is false) { 
  try { this.wait(); }  
  catch (InterruptedException exn) { } 
} // Now <condition> is true 

Lecture 5 
blocking queue 
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Thread scheduler, priorities, ...  
•  Controls the “scheduled” and “preempted” 

arcs in Java Thread states diagram, lecture 5 

•  Thread priorities: Don’t use them 
– except to make GUIs responsive by giving 

background worker threads lower priority 
•  Don’t fix liveness or performance problems 

using .yield() and .sleep(0); not portable 
26 

Bloch p. 286 
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Plan for today 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  The Java memory model 
 
 



Why do I need a memory model? 
•  Threads in Java and C# and C etc 

communicate via mutable shared memory 
•  We need compiler optimizations for speed 

– Compiler optimizations that are harmless in thread 
A may seem strange from thread B 

– Disallowing strangeness leads to slow software 
•  We need CPU caches for speed 

– With caches, write-to-RAM order may seem strange 
•  So we have to live with some strangeness 
•  A memory model tells how much strangeness 
•  The Java Memory Model is quite well-defined 

–  JLS §17.4, Goetz §16, Herlihy & Shavit §3.8 
28 



Surprising results 

•  Without volatile, can get A_won = B_won = 1 !
– Not JIT compiler, but CPU store buffer delay on A 
– Memory updates are not sequentially consistent 

•  With volatile, this is impossible (in Java) 
29 

class StoreBufferExample { 
  volatile boolean A = false,  
                   B = false; 
  int A_Won = 0, B_Won = 0;   
  public void ThreadA() { 
    A = true; 
    if (!B)  
      A_Won = 1; 
  }   
  public void ThreadB() { 
    B = true; 
    if (!A)  
      B_Won = 1; 
  } 
} 
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Executed 
on one 
thread 

Executed 
on another 

thread 



Interleavings assuming sequentially 
consistent memory model 

30 

A=true 
if (!B) 
A_Won=1 
B=true 
if (!A) 

A=true 
if (!B) 
B=true 
A_Won=1 
if (!A) 

A=true 
if (!B) 
B=true 
if (!A) 
A_Won=1 

A=true 
B=true 
if (!B) 
if (!A) 

A=true 
B=true 
if (!A) 
if (!B) 

B=true 
if (!A) 
B_Won=1 
A=true 
if (!B) 

B=true 
if (!A) 
A=true 
B_Won=1 
if (!B) 

B=true 
if (!A) 
A=true 
if (!B) 
B_Won=1 

Initially: A = B = false and A_Won = B_Won = 0!

B=true 
A=true 
if (!A) 
if (!B) 

B=true 
A=true 
if (!B) 
if (!A) 

A won 

B won 

Nobody 
won 

Nobody 
won 
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Experiments on 4-core Intel i7 
•  Java, without volatile and with volatile: 

 
•  On 1-core ARM, double-wins seem impossible 
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A loses A wins 

B loses 2668 438518 

B wins 558814 0 

A loses A wins 

B loses 0 436649 

B wins 550463 12888 
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if (!B) 
B=true 
if (!A) 
B_Won=1 
A=true 
A_Won=1 

Some weird 
execution 

Some weird 
executions?? 

Not sequentially consistent: 
seen from thread A, order 

if (!B) moved before A=true 

Not sequentially consistent: 
seen from thread A, the 

if (!B) moved before A=true 



The happens-before relation in Java 
•  A program order of a thread t is some total order of the thread’s actions 

that is consistent with the intra-thread semantics of t 

•  Action x synchronizes-with action y is defined as follows: 
–  An unlock action on monitor m synchronizes-with all subsequent lock actions on m 
–  A write to a volatile variable v synchronizes-with all subsequent reads of v by any 

thread 
–  An action that starts a thread synchronizes-with the first action in the thread it starts 
–  The write of the default value (zero, false, or null) to each variable synchronizes-with 

the first action in every thread 
–  The final action in a thread T1 synchronizes-with any action in another thread T2 

that detects that T1 has terminated 
–  If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point 

where any other thread (including T2) determines that T2 has been interrupted 

•  Action x happens-before action y, written hb(x,y), is defined like this: 
–  If x and y are actions of the same thread and x comes before y in program order, 

then hb(x, y) 
–  There is a happens-before edge from the end of a constructor of an object to the 

start of a finalizer for that object 
–  If an action x synchronizes-with a following action y, then we also have hb(x,y) 
–  If hb(x, y) and hb(y, z), then hb(x, z) – that is, hb is transitive 

32 Goetz §16.3.1  Java Language Specification §17.4  



Strange but legal behavior in Java 
•  Java Language Specification, sect 17.4: 

– Run these code fragments in two threads 
– Shared fields A, B initially 0; local variables r1, r2 

•  What are the possible results? 
– Strangely, r1==1 and r2==2 is possible 
– An ordering consistent with happens-before relation 

33 

r2=A;  
B=1; 

r1=B;  
A=2; 

Thread 1 Thread 2 

JL
S
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B=1; 
A=2; 
r2=A; 
r1=B;   



Why permit such strange behaviors? 
•  More comprehensible example from JLS 17.4 

– Assume p, q shared, p==q and p.x==0 

– Compiler optimization, common subexpr. elimin.: 

(p.x seems to switch from r2=0 to r4=3 and back to r5=0 

•  Using volatile x prevents this strangeness 
– But makes code slower, see lecture 4: 34 

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r1.x;!

r6 = p; !
r6.x = 3;!

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r2;!

r6 = p; !
r6.x = 3;!

Thread 1 Thread 2 

NB! 

VolatileArray.java 
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C#/.NET memory model? 
•  Quite similar to Java 

– C# Language Specification, Ecma-334 standard 
•  But weaknesses and unclarities 

– C# readonly has no visibility effect unlike final!
– C# volatile is weaker than in Java 
– Allowed to lift variable read out of loop? 
–  “Read introduction” seems downright horrible! 

•  If you write concurrent C# programs, read: 
– Ostrovsky: The C# Memory Model in Theory and 

Practice, MSDN Magazine, December 2012 
– Even though optional in this course 

35 
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•  Visibility effect of C#/.NET readonly fields not mentioned in C# 
Language Specification or Ecma-335 CLI Specification (initonly) 

•  In fact, no visibility guarantee is intended... 

36 Works in Java, dubious in C# 



C#/.NET volatile weaker than Java’s 

•  C#: possible to get A_Won = B_Won = 1 !!!!
– Even with volatile!
– To fix in C#, add MemoryBarrier call 

37 

class StoreBufferExample { 
  volatile bool A = false,  
                B = false; 
  int A_Won = 0, B_Won = 0;   
  public void ThreadA() { 
    A = true; 
    if (!B)  
      A_Won = 1; 
  }   
  public void ThreadB() { 
    B = true; 
    if (!A)  
      B_Won = 1; 
  } 
} 
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public void ThreadA() { 
  A = true; 
  Thread.MemoryBarrier(); 
  if (!B)  
      A_Won = 1; 
}   

public void ThreadB() { 
  B = true; 
  Thread.MemoryBarrier(); 
  if (!A)  
    B_Won = 1; 
} 
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Experiments on 4-core Intel i7 
•  C#/.NET 4.6, without and with volatile: 

•  Volatile in C# not the same as in Java 
•  Volatile keyword in C, C++, Java and C# 

has four different meanings... 

38 
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B loses 522 912084 

B wins 72290 15102 

A loses A wins 

B loses 600 874916 

B wins 108249 16235 

C# volatile 
has no effect!! 



C# volatile vs Java volatile 
 

 
•  A C# volatile read may move earlier, a 

volatile write may move later, hence trouble 
•  Not in Java: 

39 

•  A read of a volatile field is called a volatile read. A volatile 
read has “acquire semantics”; that is, it is guaranteed to 
occur prior to any references to memory that occur after it in 
the instruction sequence. 

•  A write of a volatile field is called a volatile write. A volatile 
write has “release semantics”; that is, it is guaranteed to 
happen after any memory references prior to the write 
instruction in the instruction sequence. 
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If a programmer protects all accesses to shared data via locks 
or declares the fields as volatile, she can forget about the Java 
Memory Model and assume interleaving semantics, that is, 
Sequential Consistency. 

Lochbihler: Making the Java memory model safe, ACM TOPLAS, December 2013 
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MemoryBarrier() in C#/.NET 

 

•  But sometimes is needed anyway 
– also on x86, contradicting the API docs ... 

•  Java does not have MemoryBarrier, because 
Java volatile gives good guarantees 

 40 

Synchronizes memory access as follows: The processor executing 
the current thread cannot reorder instructions in such a way that 
memory accesses prior to the call to MemoryBarrier execute after 
memory accesses that follow the call to MemoryBarrier. 

MemoryBarrier is required only on multiprocessor systems with 
weak memory ordering (for example, a system employing 
multiple Intel Itanium processors). 

System.Threading.Thread.MemoryBarrier API docs 4.5  
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This week 
•  Reading 

– Goetz et al chapter 10 + 13.1 + 16 
–  Java Language Specification §17.4 
– Bloch item 67 

•  Exercises week 9 
– Show that you can write non-deadlocking code, 

and that you can use tools such as jvisualvm 
– Show that you can use locks correctly 

•  Read before next week’s lecture 
– Herlihy and Shavit sections 18.1-18.2 
– Harris et al: Composable memory transactions 
– Cascaval et al: STM, Why is it only a research toy 

41 
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Next week’s reading: 
Software transactional memory STM 
•  Herlihy and Shavit sections 18.1-18.2 

– Brief critique of locking and introduction to STM 
– Scanned PDF on LearnIT 

•  Harris et al: Composable memory 
transactions, 2008 
– Made STM popular again around 2004 
– Using the functional language Haskell 

•  Cascaval et al: STM, Why is it only a 
research toy, 2008 
– Some people are skeptical, but they use C ...  
– STM more likely to be useful in mostly-immutable 

settings than in anarchic imperative/OO settings 
42 


