
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 9

Peter Sestoft
IT University of Copenhagen

Friday 2015-10-30

IT University of Copenhagen 3

Plan for today
•  Locking on multiple objects
•  Deadlock and locking order
•  Tool: jvisualvm, a JVM runtime visualizer
•  Explicit locks, lock.tryLock()!
•  Liveness
•  Concurrent correctness: safety + liveness
•  The Java memory model

IT University of Copenhagen

Bank accounts and transfers
•  An Account object à la Java monitor pattern:

•  Naively add method for transfers:

4

Acc A

class Account {
 private long balance = 0;
 public synchronized void deposit(long amount) {
 balance += amount;
 }
 public synchronized long get() {
 return balance;
 }
}

public synchronized void transferA(Account that, long amount) {
 this.balance = this.balance - amount;
 that.balance = that.balance + amount;
}

Te
st

A
cc

ou
nt

U
ns

af
e.

ja
va

Bad

IT University of Copenhagen

Two clerks working concurrently

•  Main thread occasionally prints balance sum:

•  Method transferA may seem OK, but is not
•  Why?

5

account1.deposit(3000); account2.deposit(2000);
Thread clerk1 = new Thread(new Runnable() { public void run() {
 for (int i=0; i<transfers; i++)
 account1.transferA(account2, rnd.nextInt(10000));
}});
Thread clerk2 = new Thread(new Runnable() { public void run() {
 for (int i=0; i<transfers; i++)
 account2.transferA(account1, rnd.nextInt(10000));
}});
clerk1.start(); clerk2.start();

Transfer
ac1 to ac2

Transfer
ac2 to ac1

for (int i=0; i<40; i++) {
 try { Thread.sleep(10); } catch (InterruptedException exn) { }
 System.out.println(account1.get() + account2.get());
}

Acc A

Losing updates with transferA

6

Clerk 1 Account 1 Clerk 2

ac2.trA(ac1,200)!

lock(ac2)
read 2000 from ac2
write 2000-200 to ac2

ac1.trA(ac2,500)!

Te
st

A
cc

ou
nt

U
ns

af
e.

ja
va

lock(ac1)
read 3000 from ac1

write 3000+200 to ac1
unlock ac2

Account 2
3000 2000

1800

read 3000 from ac1

write 3000-500 to ac1
2500

3200

read 1800 from ac2
write 1800+500 to ac2

unlock ac1 2300

Sum is
5000

Sum is
5500 !!

Non-
atomic

ac1
update

N
ot

 h
ol

di
ng

lo

ck
 o

n
ac

1

Acc A

TestAccounts version B
•  TransferA was bad: Only one thread locks ac1

– This does not achieve atomic update
•  Attempt at atomic update of each account:

•  But a transfer is still not atomic
–  so wrong, non-5000, account sums are observed:

7

Acc B

Te
st

A
cc

ou
nt

U
ns

af
e.

ja
va

public void transferB(Account that, long amount) {
 this.deposit(-amount);
 that.deposit(+amount);
}

...
12919
-8826
-11648
-10716
Final sum is 5000

IT University of Copenhagen

Must lock both accounts
•  Atomic transfers and account sums require all

accesses to lock on both account objects:

•  But this may deadlock:
– Clerk1 gets lock on ac1
– Clerk2 gets lock on ac2
– Clerk1 waits for lock on ac2
– Clerk2 waits for lock on ac1
–  ... forever

8

public void transferC(Account that, long amount) {
 synchronized (this) { synchronized(that) {
 this.balance = this.balance - amount;
 that.balance = that.balance + amount;
 } }
}

Te
st

A
cc

ou
nt

D
ea

dl
oc

k.
ja

va

Bad

Acc C

Deadlocking with transferC

9

Clerk 1 Account 1 Clerk 2

ac2.trA(ac1,200)!

acquire lock on ac2
ac1.trA(ac2,500)!

Te
st

A
cc

ou
nt

D
ea

dl
oc

k.
ja

va

acquire lock on ac1

Account 2
3000 2000

Deadlock

try to get lock on ac1

Blocked
forever Blocked

forever

try to get lock on ac2

Acc C

Avoiding deadlock, serial no.
•  Always take multiple locks in the same order

– Give each account a unique serial number:

– Take locks in serial number order:

10

Acc D

public void transferD(Account that, final long amount) {
 Account ac1 = this, ac2 = that;
 if (ac1.serial <= ac2.serial)
 synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2
 ac1.balance = ac1.balance - amount;
 ac2.balance = ac2.balance + amount;
 } }
 else
 synchronized (ac2) { synchronized (ac1) { // ac2 < ac1
 ac1.balance = ac1.balance - amount;
 ac2.balance = ac2.balance + amount;
 } }
}

class Account {
 private static final AtomicInteger intSequence = new AtomicInteger();
 private final int serial = intSequence.getAndIncrement();
 ...
}

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a

Atomic
and

deadlock
free

IT University of Copenhagen

Avoiding deadlock, lock order
•  All accesses must lock in the same order

•  Cumbersome, we may encapsulate lock-taking

11

public static long balanceSumD(Account ac1, Account ac2) {
 if (ac1.serial <= ac2.serial)
 synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2
 return ac1.balance + ac2.balance;
 } }
 else
 synchronized (ac2) { synchronized (ac1) { // ac2 < ac1
 return ac1.balance + ac2.balance;
 } }
}

static void lockBothAndRun(Account ac1, Account ac2, Runnable action) {
 if (ac1.serial <= ac2.serial)
 synchronized (ac1) { synchronized (ac2) { action.run(); } }
 else
 synchronized (ac2) { synchronized (ac1) { action.run(); } }
}

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a

Acc D
Acc F

IT University of Copenhagen

Avoiding deadlock, hashcode
•  Every object has an almost-unique hashcode

– Hence no need to give accounts a serial number
–  Instead take locks in hashcode order:

•  Small risk of equal hashcodes and so deadlock
•  See Goetz 10.1.2 + exercise how to eliminate

12

Acc E

public void transferE(Account that, final long amount) {
 Account ac1 = this, ac2 = that;
 if (System.identityHashCode(ac1) <= System.identityHashCode(ac2))
 synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2
 ac1.balance = ac1.balance - amount;
 ac2.balance = ac2.balance + amount;
 } }
 else
 synchronized (ac2) { synchronized (ac1) { // ac2 < ac1
 ac1.balance = ac1.balance - amount;
 ac2.balance = ac2.balance + amount;
 } }
}

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a

Almost unbad

IT University of Copenhagen

jvisualvm: Runtime Java thread
state visualization

•  Included with Java JDK since version 6
•  Command-line tool: jvisualvm!
•  Can give graphical overview of thread history

– As in TestCountPrimes.java (50m, 4 threads)
•  Can display and diagnose most deadlocks

– As in TestAccountDeadlock.java
•  But not that in TestPipelineSolution.java

– The tasks are blocked in Waiting, not in Locking

•  Can produce much other information

13

IT University of Copenhagen

Using jvisualvm on
TestAccountDeadlock.java

14

IT University of Copenhagen

Thread dump
points to deadlock scenario

15

transferC
method is
involved

IT University of Copenhagen

Sources of deadlock
•  Taking multiple locks in different orders

– TestAccounts example
•  Dependent tasks on too-small thread pool

– Eg running the 4-stage pipeline from week 5 on a
FixedThreadPool with only 3 threads

– Or on a WorkStealingPool when only 2 cores
•  Synchronizing on too much

– Use synchronized on statements, not methods
– Maybe the reason C# has lock only on statements,

not methods
•  When possible, use only open calls

– Don’t hold a lock when calling an unknown method

16

Deadlocks may be hard to spot

17

class Taxi {
 private Point location, destination;
 private final Dispatcher dispatcher;
 public synchronized Point getLocation() { return location; }
 public synchronized void setLocation(Point location) {
 this.location = location;
 if (location.equals(destination))
 dispatcher.notifyAvailable(this);
 }
}

class Dispatcher {
 private final Set<Taxi> taxis;
 private final Set<Taxi> availableTaxis;
 public synchronized void notifyAvailable(Taxi taxi) {
 availableTaxis.add(taxi);
 }
 public synchronized Image getImage() {
 Image image = new Image();
 for (Taxi t : taxis)
 image.drawMarker(t.getLocation());
 return image;
 }
}

G
oe

tz
 p

.
21

2

Lock taxi

Call notify...,
locks dispatcher

Lock dispatcher

Call getLocation,
locks taxi

Deadlock risk! Deadlock risk!

Taxi A

Bad

Locking less to remove deadlock

18

class Taxi {
 public synchronized Point getLocation() { return location; }
 public void setLocation(Point location) {
 boolean reachedDestination;
 synchronized (this) {
 this.location = location;
 reachedDestination = location.equals(destination);
 }
 if (reachedDestination)
 dispatcher.notifyAvailable(this);
 }
}
class Dispatcher {
 public synchronized void notifyAvailable(Taxi taxi) { ... }
 public Image getImage() {
 Set<Taxi> copy;
 synchronized (this) {
 copy = new HashSet<Taxi>(taxis);
 }
 Image image = new Image();
 for (Taxi t : copy)
 image.drawMarker(t.getLocation());
 return image;
} }

G
oe

tz
 p

.
21

4

Lock taxi, move, test, release

Call notify...
with no lock held

Lock dispatcher, copy
set, release lock

Call getLocation
with no lock held

Taxi B

Locks for atomicity do not compose
•  We use locks and synchronized for atomicity

– when working with mutable shared data
•  But this is not compositional

– atomic access of each of ac1 and ac2 does not
mean atomic access to their combination, eg. sum

•  Locks are pessimistic, there are alternatives:
•  No mutable data

–  immutable data, functional programming
•  No shared data

– message passing, Akka library, week 13-14
•  Accept mutable shared data, but avoid locks

– optimistic concurrency, transactional memory,
Multiverse library, next week

19

IT University of Copenhagen 20

Plan for today
•  Locking on multiple objects
•  Deadlock and locking order
•  Tool: jvisualvm, a JVM runtime visualizer
•  Explicit locks, lock.tryLock()!
•  Liveness
•  Concurrent correctness: safety + liveness
•  The Java memory model

Using explicit (and try-able) locks
•  Namespace java.util.concurrent.locks
•  New Account class with explicit locks:

21

class Account {
 private final Lock lock = new ReentrantLock();

 public void deposit(long amount) {
 lock.lock();
 try {
 balance += amount;
 } finally {
 lock.unlock();
 }
 }

 public long get() {
 lock.lock();
 try {
 return balance;
 } finally {
 lock.unlock();
 }
 }
}

Te
st

A
cc

ou
nt

Tr
yL

oc
k.

ja
va

Acquire lock

Always
release it

Acquire lock

Always
release it

Acc G

IT University of Copenhagen

Avoiding deadlock by retrying
•  The Java runtime does not discover deadlock
•  Unlike database servers

– They typically lock tables automatically
–  In case of deadlock: abort and retry

•  Similar idea can be used in Java
– Try to take lock ac1

•  If successful, try to take lock on ac2
–  If successful, do action, release both locks, we are done
–  Else release lock on ac1, and start over

•  Else start over

•  Main (small) risk: may forever “start over”
•  Related to optimistic concurrency

– and to software transactional memory, next week
22

IT University of Copenhagen

Taking two locks, using tryLock()

23

public void transferG(Account that, final long amount) {
 Account ac1 = this, ac2 = that;
 while (true) {
 if (ac1.lock.tryLock()) {
 try {
 if (ac2.lock.tryLock()) {
 try {
 ac1.balance = ac1.balance - amount;
 ac2.balance = ac2.balance + amount;
 return;
 } finally {
 ac2.lock.unlock();
 }
 }
 } finally {
 ac1.lock.unlock();
 }
 }
 try { Thread.sleep(0, (int)(500 * Math.random())); }
 catch (InterruptedException exn) { }
 }
}

Acc G

Te
st

A
cc

ou
nt

Tr
yL

oc
k.

ja
va

Actual work

Sleep 0-500 ns
before retry to
save CPU time

Li
ke

 G
oe

tz
 p

.
28

0

Try locking ac1

Try locking ac2

In any case, release
acquired locks

In any case, release
acquired locks first

If success, do work
and exit

Else
retry

Livelock: nobody makes progress
•  The transferG method never deadlocks
•  In principle it can livelock:

– Thread 1 locks ac1
– Thread 2 locks ac2
– Thread 1 tries to lock ac2 but discovers it cannot
– Thread 2 tries to lock ac1 but discovers it cannot
– Thread 1 releases ac1, sleeps, starts over
– Thread 2 releases ac2, sleeps, starts over
–  ... forever ...

•  Extremely unlikely
–  requires the random sleep periods to be same

always
–  requires the operation interleaving to be the same 24

Correctness = Safety + Liveness
•  Safety: nothing bad ever happens

–  Invariants are preserved, no updates lost, etc
•  Liveness: something good eventually happens

– No deadlock, no livelock
•  You must be able to use these concepts:

25

Bloch p. 276 while (<condition> is false) {
 try { this.wait(); }
 catch (InterruptedException exn) { }
} // Now <condition> is true

Lecture 5
blocking queue

G
oe

tz
 p

.
8

Thread scheduler, priorities, ...
•  Controls the “scheduled” and “preempted”

arcs in Java Thread states diagram, lecture 5

•  Thread priorities: Don’t use them
– except to make GUIs responsive by giving

background worker threads lower priority
•  Don’t fix liveness or performance problems

using .yield() and .sleep(0); not portable
26

Bloch p. 286

IT University of Copenhagen 27

Plan for today
•  Locking on multiple objects
•  Deadlock and locking order
•  Tool: jvisualvm, a JVM runtime visualizer
•  Explicit locks, lock.tryLock()!
•  Liveness
•  Concurrent correctness: safety + liveness
•  The Java memory model

Why do I need a memory model?
•  Threads in Java and C# and C etc

communicate via mutable shared memory
•  We need compiler optimizations for speed

– Compiler optimizations that are harmless in thread
A may seem strange from thread B

– Disallowing strangeness leads to slow software
•  We need CPU caches for speed

– With caches, write-to-RAM order may seem strange
•  So we have to live with some strangeness
•  A memory model tells how much strangeness
•  The Java Memory Model is quite well-defined

–  JLS §17.4, Goetz §16, Herlihy & Shavit §3.8
28

Surprising results

•  Without volatile, can get A_won = B_won = 1 !
– Not JIT compiler, but CPU store buffer delay on A
– Memory updates are not sequentially consistent

•  With volatile, this is impossible (in Java)
29

class StoreBufferExample {
 volatile boolean A = false,
 B = false;
 int A_Won = 0, B_Won = 0;
 public void ThreadA() {
 A = true;
 if (!B)
 A_Won = 1;
 }
 public void ThreadB() {
 B = true;
 if (!A)
 B_Won = 1;
 }
}

O
st

ro
vs

ky
 2

01
3

Te

st
S
to

re
B
uf

fe
r.j

av
a

Executed
on one
thread

Executed
on another

thread

Interleavings assuming sequentially
consistent memory model

30

A=true
if (!B)
A_Won=1
B=true
if (!A)

A=true
if (!B)
B=true
A_Won=1
if (!A)

A=true
if (!B)
B=true
if (!A)
A_Won=1

A=true
B=true
if (!B)
if (!A)

A=true
B=true
if (!A)
if (!B)

B=true
if (!A)
B_Won=1
A=true
if (!B)

B=true
if (!A)
A=true
B_Won=1
if (!B)

B=true
if (!A)
A=true
if (!B)
B_Won=1

Initially: A = B = false and A_Won = B_Won = 0!

B=true
A=true
if (!A)
if (!B)

B=true
A=true
if (!B)
if (!A)

A won

B won

Nobody
won

Nobody
won

IT University of Copenhagen

Experiments on 4-core Intel i7
•  Java, without volatile and with volatile:

•  On 1-core ARM, double-wins seem impossible

31

A loses A wins

B loses 2668 438518

B wins 558814 0

A loses A wins

B loses 0 436649

B wins 550463 12888

Te
st

S
to

re
B
uf

fe
r.j

av
a

if (!B)
B=true
if (!A)
B_Won=1
A=true
A_Won=1

Some weird
execution

Some weird
executions??

Not sequentially consistent:
seen from thread A, order

if (!B) moved before A=true

Not sequentially consistent:
seen from thread A, the

if (!B) moved before A=true

The happens-before relation in Java
•  A program order of a thread t is some total order of the thread’s actions

that is consistent with the intra-thread semantics of t

•  Action x synchronizes-with action y is defined as follows:
–  An unlock action on monitor m synchronizes-with all subsequent lock actions on m
–  A write to a volatile variable v synchronizes-with all subsequent reads of v by any

thread
–  An action that starts a thread synchronizes-with the first action in the thread it starts
–  The write of the default value (zero, false, or null) to each variable synchronizes-with

the first action in every thread
–  The final action in a thread T1 synchronizes-with any action in another thread T2

that detects that T1 has terminated
–  If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point

where any other thread (including T2) determines that T2 has been interrupted

•  Action x happens-before action y, written hb(x,y), is defined like this:
–  If x and y are actions of the same thread and x comes before y in program order,

then hb(x, y)
–  There is a happens-before edge from the end of a constructor of an object to the

start of a finalizer for that object
–  If an action x synchronizes-with a following action y, then we also have hb(x,y)
–  If hb(x, y) and hb(y, z), then hb(x, z) – that is, hb is transitive

32 Goetz §16.3.1 Java Language Specification §17.4

Strange but legal behavior in Java
•  Java Language Specification, sect 17.4:

– Run these code fragments in two threads
– Shared fields A, B initially 0; local variables r1, r2

•  What are the possible results?
– Strangely, r1==1 and r2==2 is possible
– An ordering consistent with happens-before relation

33

r2=A;
B=1;

r1=B;
A=2;

Thread 1 Thread 2

JL
S
 8

 T
ab

le
s

17
.1

,
17

.5

B=1;
A=2;
r2=A;
r1=B;

Why permit such strange behaviors?
•  More comprehensible example from JLS 17.4

– Assume p, q shared, p==q and p.x==0

– Compiler optimization, common subexpr. elimin.:

(p.x seems to switch from r2=0 to r4=3 and back to r5=0

•  Using volatile x prevents this strangeness
– But makes code slower, see lecture 4: 34

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r1.x;!

r6 = p; !
r6.x = 3;!

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r2;!

r6 = p; !
r6.x = 3;!

Thread 1 Thread 2

NB!

VolatileArray.java

IT University of Copenhagen

C#/.NET memory model?
•  Quite similar to Java

– C# Language Specification, Ecma-334 standard
•  But weaknesses and unclarities

– C# readonly has no visibility effect unlike final!
– C# volatile is weaker than in Java
– Allowed to lift variable read out of loop?
–  “Read introduction” seems downright horrible!

•  If you write concurrent C# programs, read:
– Ostrovsky: The C# Memory Model in Theory and

Practice, MSDN Magazine, December 2012
– Even though optional in this course

35

IT University of Copenhagen

•  Visibility effect of C#/.NET readonly fields not mentioned in C#
Language Specification or Ecma-335 CLI Specification (initonly)

•  In fact, no visibility guarantee is intended...

36 Works in Java, dubious in C#

C#/.NET volatile weaker than Java’s

•  C#: possible to get A_Won = B_Won = 1 !!!!
– Even with volatile!
– To fix in C#, add MemoryBarrier call

37

class StoreBufferExample {
 volatile bool A = false,
 B = false;
 int A_Won = 0, B_Won = 0;
 public void ThreadA() {
 A = true;
 if (!B)
 A_Won = 1;
 }
 public void ThreadB() {
 B = true;
 if (!A)
 B_Won = 1;
 }
}

O
st

ro
vs

ky
 2

01
3

public void ThreadA() {
 A = true;
 Thread.MemoryBarrier();
 if (!B)
 A_Won = 1;
}

public void ThreadB() {
 B = true;
 Thread.MemoryBarrier();
 if (!A)
 B_Won = 1;
}

Te
st

S
to

re
B
uf

fe
r.c

s

IT University of Copenhagen

Experiments on 4-core Intel i7
•  C#/.NET 4.6, without and with volatile:

•  Volatile in C# not the same as in Java
•  Volatile keyword in C, C++, Java and C#

has four different meanings...

38

Te
st

S
to

re
B
uf

fe
r.c

s A loses A wins

B loses 522 912084

B wins 72290 15102

A loses A wins

B loses 600 874916

B wins 108249 16235

C# volatile
has no effect!!

C# volatile vs Java volatile

•  A C# volatile read may move earlier, a

volatile write may move later, hence trouble
•  Not in Java:

39

•  A read of a volatile field is called a volatile read. A volatile
read has “acquire semantics”; that is, it is guaranteed to
occur prior to any references to memory that occur after it in
the instruction sequence.

•  A write of a volatile field is called a volatile write. A volatile
write has “release semantics”; that is, it is guaranteed to
happen after any memory references prior to the write
instruction in the instruction sequence.

C
#

 L
an

gu
ag

e
S
pe

c
20

06
,

§1
7.

4.
3

If a programmer protects all accesses to shared data via locks
or declares the fields as volatile, she can forget about the Java
Memory Model and assume interleaving semantics, that is,
Sequential Consistency.

Lochbihler: Making the Java memory model safe, ACM TOPLAS, December 2013

IT University of Copenhagen

MemoryBarrier() in C#/.NET

•  But sometimes is needed anyway
– also on x86, contradicting the API docs ...

•  Java does not have MemoryBarrier, because
Java volatile gives good guarantees

 40

Synchronizes memory access as follows: The processor executing
the current thread cannot reorder instructions in such a way that
memory accesses prior to the call to MemoryBarrier execute after
memory accesses that follow the call to MemoryBarrier.

MemoryBarrier is required only on multiprocessor systems with
weak memory ordering (for example, a system employing
multiple Intel Itanium processors).

System.Threading.Thread.MemoryBarrier API docs 4.5

IT University of Copenhagen

This week
•  Reading

– Goetz et al chapter 10 + 13.1 + 16
–  Java Language Specification §17.4
– Bloch item 67

•  Exercises week 9
– Show that you can write non-deadlocking code,

and that you can use tools such as jvisualvm
– Show that you can use locks correctly

•  Read before next week’s lecture
– Herlihy and Shavit sections 18.1-18.2
– Harris et al: Composable memory transactions
– Cascaval et al: STM, Why is it only a research toy

41

IT University of Copenhagen

Next week’s reading:
Software transactional memory STM
•  Herlihy and Shavit sections 18.1-18.2

– Brief critique of locking and introduction to STM
– Scanned PDF on LearnIT

•  Harris et al: Composable memory
transactions, 2008
– Made STM popular again around 2004
– Using the functional language Haskell

•  Cascaval et al: STM, Why is it only a
research toy, 2008
– Some people are skeptical, but they use C ...
– STM more likely to be useful in mostly-immutable

settings than in anarchic imperative/OO settings
42

