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On the Formal Semantics

of VisualSTATE Statecharts

Andrzej Wąsowski and Peter Sestoft

IT-University of Copenhagen
{wasowski,sestoft}@it-c.dk

Abstract. This paper presents a formal semantics of statecharts – a visual language successfully
employed in design of control algorithms. Our formalization is implementation oriented, with efficiency
in the focus. It has been used as a specification in development of scope, an experimental code generator
for embedded systems.
The version of statecharts we describe is that implemented in commercial development tool IAR visual-
state . IAR visualstate statecharts are similar to Harel’s original statecharts, with several addi-
tions and some restrictions. They mostly agree with UML state diagrams on syntax and semantics. A
small survey is appended comparing visualstate statecharts terminology and concepts with those of
D. Harel’s original statecharts and UML statechart diagrams. The paper may be perceived as a formal
equivalent to the official Concept Guide delivered with the visualstate software package from IAR.

1 Introduction

Statecharts are widely recognized as a suitable for-
malism for design of sophisticated control algo-
rithms, specific for embedded software. Statecharts
are precise enough to be formalized and thus used
not only in design but also in verification and auto-
matic synthesis of programs. This approach is advo-
cated by vendors of CASE tools for embedded de-
velopment (see [20, 9, 10] among others).
One argument for using abstract modeling with

statecharts is the common availability of model-
checking software. Reliable and efficient automatic
code synthesis should be another convincing argu-
ment. Surprisingly, research on theoretically well-
founded and efficient compilers for statecharts has
not been very intensive. This weakens the impact of
verification technologies and discourages developers
from using high level description techniques. Main-
stream imperative languages (C/C++ variants) and
assemblers still lead on the market of embedded soft-
ware development.
We believe that current code generation schemes

can be significantly improved. The present paper is
a first step in our long-term work on development
of a correct and robust code generator. We start
with giving an extensive, implementation-oriented
semantics for a variant of statecharts. Our formal-
ization is intended to be used as a specification for
a compiler implementation.

The variant of statecharts we consider has been
implemented in IAR visualstate, an environment
specifically devoted to development of embedded
software1. It covers all development stages, includ-
ing verification and software synthesis. The stat-
echarts of visualstate resemble Harel’s original
statecharts[5] and only slightly differ from UML
statechart diagrams[19]. Most notably there is no
explicit support for different synchronization states.
Fork transitions are generalized and local events
are syntactically distinguished from external events
(there is no scoping for events though). The run-to-
completion semantics is also somewhat different in
UML.

The most important difference is that UML
statecharts are defined in an object-oriented set-
ting while visualstate charts remain at the event-
processing reactive level. One can expect however
that IAR visualstate will evolve in the object-
oriented direction in the future.2

We give an exhaustive semantics definition,
which means that we aim to cover all parts of the
language, not only the parts which are relevant and
feasible for verification (though some elements are
factored out from the main presentation to an ap-
pendix for clarity). We discuss also features that are
often glossed over, such as history, deep history, ex-
ternal function calls, shared variables, etc. We pre-
cisely describe the C language interface. One cannot

1 We use IAR visualstate ver. 4.3
2 The newest release include interfaces to object-oriented languages.
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avoid such details in an implementation-oriented ap-
proach, because all parts of the model have some
impact on the generated code.

We also focus on making the semantics complete
in another sense: it should describe the lifetime of
the system from initialization till its death (omitting
initialization and finalization sections is a common
practice).

Our semantics is hierarchical and syntax-driven,
which means that we directly give meaning to syntax
elements of a hierarchical system. This is a common
thing, yet still contrasting with alternatives based
on flattening. It is possible to give semantics and im-
plementation of hierarchical model in terms of flat-
tening to a set of plain Mealy machines having a
well-known semantics (see [17, 1, 3, 4] and others).
Hierarchical semantics can be used both to create hi-
erarchy aware implementations of statecharts and to
prove correctness of flattening algorithms (and thus
support flattening based implementations).

Last but not least, the semantics given here is
global, which means that it lacks compositionality.
The behavior is only defined in terms of the whole
system. There is no notion of subprogram and no
notion of equivalence for subprograms. This may
be considered a drawback, but we decided to follow
closely the semantics of the actual implementation,
which is not compositional. IAR visualstate does
not currently support code reuse, exchangeable mod-
ules and libraries, so there is no need for firmly de-
fined equivalence for such systems from a user point
of view. Still some restricted equivalence definition
would be useful for formalization of various compiler
optimizations. It is questionable, though, whether
full compositionality in the spirit typical for textual
languages is needed.

The paper proceeds as follows. Section 2 summa-
rizes some related work on visualstate and on the
semantics of statecharts in general. Then we con-
tinue with defining the syntax of systems (sections
3–4), state of execution (section 5) and operational
semantics (section 6). Section 7 gives a brief argu-
ment that our semantics is deterministic. Some sug-
gestions for future work on semantics of statecharts
are given in the conclusion.

Appendix A presents an example in concrete syn-
tax. Appendix B discusses some elements excluded
from the main text, while appendix C contains a
small dictionary of terms that are used in conflict-
ing ways in different papers and implementations.

2 Related Work

Statecharts were introduced by Harel [5] in 1987.
Soon after that they were formally described in [7].
The present paper owes much to this early attempt,
generally following its structure. The main difference
is that our definition is deterministic, which has been
imposed by two goals: it has to be feasible for both
implementation and verification. Harel’s semantics
is nondeterministic and as such describes many pos-
sible implementations, making verification a much
harder problem.
A more detailed rigorous description of Harel’s

statecharts appeared in [6], partly formalized in [18].
Numerous attempts have been made since then. Al-
ready in 1994 Beeck[21] described as many as 20
statechart variants. It should be emphasized that
verification-oriented specifications dominated this
list. Even more proposals of formalization emerged
after statecharts had been incorporated in the family
of UML languages [19].
IAR visualstate lacks a full, formal and

implementation-oriented semantics. The existing de-
scriptions are either informal [13, 11, 12] or incom-
plete. The informal descriptions are aimed at end
users of statecharts (developers). A slightly outdated
developer-oriented description of static structure of
visualstate models can be found in unpublished in-
ternal IAR documentation [14].
The formal descriptions are often devised for lan-

guage subsets with model-checking application in
mind. The most complete verification-oriented se-
mantics has been included in Lind Nielsen’s thesis
[15]. He however omits use of external C functions in
actions and conditions, leaving out the subtle prob-
lems of side effects. We follow his approach and pa-
rameterize the semantics with a priority function for
states in order to avoid non-determinism.
Argos[17] is a statechart-like language with fully

formal semantics. An implementation oriented se-
mantics for Argos has been given in [16] in terms of
boolean flow equations, which is an entirely different
approach than presented below.

3 Abstract syntax

A statechart system is built of basic elements which
may be divided into four primitive groups: states,
identifiers (variables and named values), events, and
outputs (also called action functions or functions).
These basic entities are then arranged together in
various constructs like state hierarchy, state rules,
history markings and transitions.
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We define four mutually disjoint finite sets to rep-
resent primitive elements of a given system: State,
Id , Event and Output.

3.1 List Notation

Various elements of the system are described using
finite lists of simpler entities. We will write X∗ for
set of lists of elements of X . The list may be easily
modeled as union of sets of tuples with finite number
of components. We will use angle brackets to write
list values with 〈〉 symbol denoting the empty list.

3.2 State Hierarchy

States are structured in a hierarchy as follows.

Definition 1 (Hierarchy Relation). The hierar-
chy relation @ is an irreflexive binary relation on
states such that s @ s′ if s is a child of s′, i.e.:

1. There is a unique root state having no parents:
∃!root ∈ State. ∀s ∈ State. ¬(root @ s)

2. Each non-root state has a single parent:
∀s ∈ State. (s 6= root ⇒ ∃!s′ ∈ State. s @ s′)

3. Each state is reachable from root:
∀s ∈ State. s @

∗ root

We will further refer to irreflexive and reflexive tran-
sitive closures of hierarchy relation with symbols @+

and @
∗ respectively. We will also write s 6@ s′ as

shorthand for ¬(s @ s′) and similarly for negations
of closure relations.

Observation 2. Following properties hold for hier-
archy relation @ on set of states State:

1. Relation @ is irreflexive: ∀s ∈ State. s 6@ s
2. All chains are acyclic: ∀s ∈ State. s 6@+ s
3. Relation @ is strongly not symmetric:

∀s, s′ ∈ State. s @ s′ ⇒ s′ 6@ s
4. Relation @ defines a rooted tree structure on
Stateset.

Proof. The properties follow directly from defini-
tion 1. ut

Definition 3 (Parent, Children). If s, s′ are sta-
tes and s @ s′ then s′ is the unique parent of s. We
will write s′ = parent(s) to denote it. Similarly we
will say that s is a child of s′ and write children(s)
for set of children of s′.

parent : State ↪→ State

parent(s) = s′ ⇔ s @ s′

children : State → P(State)

children(s) = {s′ ∈ State | s′ @ s}

Note that parent is a partial function and

dom(parent) = State \ {root} ,

which follows from the assumption that only non-
root states have parents.
Above we defined the reflexive and irreflexive clo-

sures of the hierarchy relation. Following the same
scheme, we define the corresponding closures of the
parent and children relations:

Definition 4 (Ancestors, Descendants). If
s′ @

∗ s then s′ is a descendant of s, and descend∗(s)
denotes the set of all descendants of s, including s.
Similarly, if s @

∗ s′ then s′ is an ancestor of s
and we write ancest∗(s) for the set of all ancestors
of s, including s.

ancest∗ : State → P(State)

ancest∗(s) = {s′ ∈ State | s @
∗ s′}

descend∗ : State → P(State)

descend∗(s) = {s′ ∈ State | s′ @
∗ s}

Note that for any given state

children(s) ⊆ descend∗(s)

and for any non-root state

parent(s) ∈ ancest∗(s).

We define sets of proper descendants and proper an-
cestors to be

ancest+(s) = ancest∗(s) \ {s}

descend+(s) = descend∗(s) \ {s}

Definition 5 (Siblings). If two distinct states
have the same parent we say that they are proper
siblings.

siblings(s) = {s′ | s′ 6= s ∧ (∃p. s @ p ∧ s′ @ p)}

This is easily relaxed to inclusive function:

siblings∗(s) = siblings(s) ∪ {s}

A statecharts hierarchy exhibits two kinds
of encapsulation: AND-decomposition and XOR-
decomposition. The former describes concurrent ac-
tivities, the latter sequential control flow. At this
point we introduce the syntactic difference between
the two kinds of states and impose some require-
ments on how they can be combined. These require-
ments are relatively rigid in visualstate compared
to other versions of statecharts.
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Definition 6 (State Typing). A total function
ΓS : State → {and, or} is a state typing for state set
and hierarchy relation iff

1. ΓS(root) = and
2. ∀s ∈ State. ΓS(s) = or⇒ children(s) 6= ∅
3. ∀s, s′ ∈ State. ΓS(s) = or ∧ s′ @ s ⇒

⇒ ΓS(s′) = and
4. ∀s, s′ ∈ State. ΓS(s) = and ∧ s′ @ s ⇒

⇒ ΓS(s′) = or

Such typing is not possible for arbitrary state sets
and hierarchy relations. From now on we will con-
sider only well-structured state sets, i.e. state sets
with a hierarchy relation and state typing as defined
above. Clearly, such well-structured sets exist.
In a well-structured state set a root element must

be of type and. So must all minimal elements. The
types of states alternate along any chain defined by
the relation @.
Thus a well-structured state set is a rooted tree

whose root is the state root of type and . All leaves
are also of type and and each branch in the tree
connects two nodes of different types: types alter-
nate on each path in the tree. The depth of the tree
is odd: each path from root to a leaf state contains
an odd number of nodes. For each node, all children
have the same type.
It should be noted that the typing is not strictly

needed while describing the structure of our state-
charts3. The type of each state can be uniquely de-
termined by its placement in the hierarchy.
Instead of introducing state typing and restrict-

ing ourselves to well-structured models, we could
have imposed the same structure in definition of hi-
erarchy relation and, if needed, infer the types based
on locations of states. This would however result in
a more cluttered description.
We say that a state s is an and-state if

ΓS(s) = and. Similarly s is an or-state if ΓS(s) = or.
We will write Stateor and Stateand for the respec-
tive disjoint subsets of State. An and-state with no
children will be called a basic state.
Note that visualstate user documentation uses

the term region for what we call an or-state and the
term state for what we call and-state (while state is
a more general notion in our definition).

3.3 Basic properties of the hierarchy

All dynamic changes in the system are local. In the
first approximation the locality of a transitions (the

scope of the transition) is determined by the dis-
tance between its source and target. The parts of
the system outside the areas containing a transition
are not affected by its execution. As transitions may
cross different levels of hierarchy and explicitly refer
to other parts of the system, the notion of transition
scope becomes more elaborate.
Below we present basic properties of locality and

dependence of states in statechart language. This
will allow us to speak about distance between states
and the scopes of a transition.

Definition 7 (Nearest Common Ancestor).
The Nearest Common Ancestor of a set of states
X ⊆ State is a state y such that:

1. ∀x ∈ X. x @
+ y

2. ∀s ∈ State. ∀x ∈ X. x @
+ s ⇒ y @

∗ s

We will denote it writing

y = NCA(X).

For any non-empty set of states X ⊆ State not con-
taining root , NCA(X) exists and is uniquely deter-
mined.

Definition 8 (Orthogonality). Two states x and
y are orthogonal if one is not an ancestor of the other
(they are not ancestrally related) and their NCA is
an and-state.

∀x, y ∈ State. x⊥y ⇔

(x 6@∗ y ∧ y 6@∗ x ∧ ΓS(NCA {x, y}) = and)

We will occasionally write a6⊥ b for ¬(a⊥b).

Definition 9 (Orthogonal Set). A set of states is
orthogonal if (it is a singleton or) any two distinct
elements are mutually orthogonal.

Definition 10 (Relative Orthogonal Set). A
set X of states is an orthogonal set relative to state
s iff X is an orthogonal set of descendants of s.

Definition 11 (Maximal Orthogonal Set). A
set of states X is a maximal orthogonal set of states
relative to state s iff adding any new descendant of
s would create a non-orthogonal set, i.e.

∀y ∈ State \X. y @
∗ s ⇒ X ∪{y} is not orthogonal.

Definition 12 (Configuration). A maximal or-
thogonal set of states relative to state s is said to
be a state configuration of s iff all its elements are
basic states.

3 As opposed to original statecharts described by D. Harel[5], which allowed a bit less uniform structure.
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Note that a state configuration of root fully de-
scribes one possible global state of the hierarchical
state machine. We will often write state configura-
tion when we actually mean a state configuration of
the root state.

Observation 13 (Properties of Orthogonal-
ity). The following simple properties hold for the
orthogonality relation in a well structured statechart.

1. ∀a ∈ State. a6⊥ a (irreflexive
)

2. ∀a, b ∈ State. a⊥b ⇔ b⊥a (symmetric)
3. ∃a, b, c ∈ State. a⊥b ∧ b⊥c ∧ a6⊥ c

(not transitive)
4. ∀a, b, c ∈ State. a⊥b ∧ c @

∗ a
⇒ NCA {a, b} = NCA {c, b}

5. ∀a, b, c ∈ State. a⊥b ∧ c @
∗ a ⇒ c⊥b

6. ∀a, b, c ∈ State. a⊥b ∧ a @
∗ c ∧ c @

+ NCA(a, b)
⇒ c⊥b

7. ∀a, b, c ∈ State. a6⊥ b ∧ c @
∗ a ⇒ c6⊥ b

Proof. (sketch) Symmetry follows from definition
of orthogonality. The counterexample for non-
transitivity is a⊥b and c = b. Property (4) follows
from definition of orthogonality and it implies prop-
erties (5)–(7). ut

Observation 14 (Properties of Orthogonal
Sets). The following property holds for orthogonal
sets: any subset of an orthogonal set is itself or-
thogonal. The contrapositive can be used to prove
nonorthogonality: any set containing a nonorthog-
onal subset is itself nonorthogonal.

Following three theorems will help us to define
semantics of transition firing recursively on subtrees
of decomposition tree.

Theorem 15 (Configuration Union). Let s be
an and-state, s1, ..., sk children of s and σ1, ..., σk

state configurations of s1, ..., sk respectively. Then
σ =

⋃k

i=1
σi is a state configuration of s.

Proof. (Sketch) We need to prove that elements of
σ are basic (trivial), that σ is an orthogonal set, and
that σ is a maximal orthogonal set. The state con-
figuration σ is orthogonal because any two of states
belonging to it either belong to the same σi (and are
orthogonal by assumption) or belong to two differ-
ent subtrees and are orthogonal by definition (their
NCA is state s, which is an and-state). The set is
maximal because adding any fresh basic state would
make one of σi nonorthogonal (and further make σ
nonorthogonal by observation 14). ut

Theorem 16. Let σ be a state configuration of
state s and s′ a child of state s (s′ @ s). Then
σ′ = σ ∩ descend∗(s′) is itself a state configuration
of s′.

Proof. (Sketch) Orthogonality is easily proved us-
ing observation 14. As far as maximality is con-
cerned assume that s′′ /∈ σ′ is a basic descendant
of s′. Then σ∪{s′′} is not orthogonal. But any state
s′′′ in σ but outside σ′ would automatically have
NCA(s′′, s′′′) = s, which is an and-state, so σ′′⊥σ′′′.
So only states in σ′ may violate orthogonality. We
showed that for any newly added state there exists
a state within σ′ which is not orthogonal to it. It
means that σ′ is a maximal orthogonal set. As all
its members are trivially basic σ′ is a state configu-
ration of s′. ut

Note that the above theorem can be easily gen-
eralized for arbitrarily nested configuration subsets:

Theorem 17 (Configuration Subset). Let σ be
a state configuration of state s and let s′ a be de-
scendant of s (s′ @

∗ s). Then σ′ = σ ∩ descend∗(s′)
is itself a state configuration of s′.

Proof. By induction on distance between s and s′

using theorem 16. ut

Theorem 18. Let σ0 be a state configuration
of and-state s and state s′ a child of state
s. If σ′ is a state configuration of s′ then
σ1 = σ0 \ descend

∗(s′) ∪ σ′ is itself a state configu-
ration of s in which a subconfiguration for s′ has
been substituted with σ′.

Proof. (sketch) Divide σ in configurations for chil-
dren of s using theorem 16. Then exchange one of
them for σ′ and use theorem 15 to prove that σ1 is
a state configuration. ut

Again the above theorem can be inductively gen-
eralized for substitution of arbitrarily nested subcon-
figuration:

Theorem 19 (Configuration Substitution).
Let σ0 be a state configuration of and-state s and
state s′ a descendant of s. If σ′ is a state configura-
tion of s′ then σ1 = σ0 \ descend

∗(s′) ∪ σ′ is itself a
state configuration of s in which a subconfiguration
for s′ has been substituted with σ′.
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3.4 Initial and History States

Some or-states enclose a visual mark indicating
which of its children should be entered when no tar-
get is explicitly indicated on the transition. The indi-
cator is called an initial marking. Each or-state must
have either an initial marking or a history marking.

Definition 20 (Initial Marking). An ini-
tial marking on the set Stateor is a partial
function initial : Stateor ↪→ Stateand such that
∀s ∈ dom(initial). initial(s) @ s.

State s′ is called an initial state of or-state s iff
s′ = initial(s). In visualstate initial marks are visu-
ally attached to and-states instead of or-states. If a
mark is attached to state s in a visualstate system
then initial(parent(s)) = s in our formal model.
A history marking resembles an initial marking.

These two are strongly connected.

Definition 21 (History). A history marking η is
defined to be a total function of type:

η : (Stateor \ dom(initial)) → Stateand

such that
∀s ∈ dom(η). η(s) @ s.

States belonging to dom(η) are called history states.

Initial markings and history markings are com-
plementary with respect to domain and similar in
many other aspects. Beware, though, that there
is only one fixed initial marking for the project,
while the history marking is changing dynami-
cally throughout the execution (its domain is fixed
though). Thus history marking is not a purely syn-
tactic notion, although the very first history marking
just after resetting the system is expressed syntacti-
cally.
Note that, contrary to Harel’s statecharts, only

one kind of default entry is allowed for each or-state
here. In particular it is not possible that the same
entry is entered via the history path by some tran-
sitions and via the initial path by others.

3.5 Types

Entities such as variables, functions and expressions
are typed. Their types resemble data types of typi-
cal programming languages and they should not be
confused with state types in the hierarchy.

Types are only moderately significant for visual-
state code generators and interpreters since all
typed entities are forwarded to the underlying C
compiler which performs its standard type checking
algorithm. This is why we only present a restricted
type system, and we do not give typing rules even
for that. Occasionally type-correctness checks have
been embedded in operational rules. This does not
mean that the language is dynamically typed, but
reflects our decision not to give a full static seman-
tics here.

We only distinguish two simple arithmetic types:

SimpleType = {int, real} .

Simple types have domains Dint = Z and Dreal = R

respectively (Dint ⊂ Dreal). We also consider aggre-
gations of simple types in one-dimensional vectors:

Type = SimpleType ∪

∪ {int[n] | n > 0 ∧ n ∈ Dint} ∪

∪ {real[n] | n > 0 ∧ n ∈ Dint}

We will write D(t) for the domain of type t, where
D(t) is defined to return Dint or Dreal for simple
types and a set of fixed-length vectors for aggregated
types.4

Occasionally we will need to write conditions
about types of various non trivial elements (such
as expressions). We will use a type oracle function
τ [[· ]] when expressing these conditions, without giv-
ing typing rules. It is assumed that the type ora-
cle returns a proper typing for the expression which
agrees with the static semantics of C.

3.6 Identifiers and Variables

The set of global variables Var is a subset of the
set of identifiers Id . Identifiers may also be used for
other purposes than variables (for instance binding
event parameters to names – see later). There is no
support for local variables in visualstate. All vari-
ables are global.

Variables are typed as in C.

Definition 22 (Variable typing). A variable typ-
ing ΓV is a total function ΓV : Var → Type.

4 Strictly speaking visualstate disallows single cell arrays. We are slightly more general here following the definition
of ANSI C and allowing arrays of length one.
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3.7 Variable Accesses

The grammar for variable accesses is a subset of the
C grammar for lvalues. There are no pointers, and
therefore no pointer dereferencing. Similarly the ar-
ray variable cannot be accessed as a whole. Only
simple variables and array cells are syntactically le-
gal:

Access ::= x | x[Aexp] ,

where Aexp denotes arithmetic expression (defined
later) and x ranges over variable names.5

3.8 Expressions

We distinguish two kinds of expressions: expres-
sions belonging to actions, and guard expressions.
They roughly correspond to arithmetic expressions
and boolean expressions in programming languages.
They follow the same syntax and similar evaluation
rules, so we will treat them jointly in many cases.
Our expressions are restricted C arithmetic ex-

pressions. They are generated by the following gram-
mar:

Exp ::= v | a | unop e1 | e1 binop e2 | o(e1, ..., ek),

where v is a constant (integer or real), a is a vari-
able access, e1, ..., ek are expressions, unop is a unary
C operator, binop is any binary C operator except
for the assignment operators, and o(e1, ..., ek) is an
output instance (defined below).
Expression syntax applies both to boolean and

arithmetic expressions. Boolean expressions are used
in guards – conditions evaluated in order to check if
given transition is enabled. Arithmetic expressions
are used in assignments – executable parts of tran-
sitions. We will write Bexp for the set of all boolean
expressions and Aexp for set of all arithmetic expres-
sions. They are both subsets of Exp, but we make
distinct semantic assumptions for them. Boolean ex-
pressions are assumed to be pure while arithmetic
expressions may not be pure in general. The differ-
ence will be formalized while giving dynamic seman-
tics of expression evaluation.

3.9 Outputs

Action functions (also called outputs) represent ex-
ternal C functions which will be called by the con-
trol kernel to query or change the environment. We

avoid giving a full formal semantics for execution
of action functions as this would demand giving a
complete dynamic semantics for the C programming
language. Instead we model only function prototypes
and define their behavior informally.

Definition 23 (Output Typing). An output typ-
ing is a total function:

ΓO : Output → SimpleType × Type∗.

The first result component represents the return
type, and the second component represents the pa-
rameter types. Note that only simple types may be
returned from action functions.

Definition 24 (Output Instance). Output in-
stance is a term o(v1, ..., vk), where v1, ..., vk are con-
stants:

Oinst = {o (v1, ..., vk) | k = |π2(ΓO(o))|

∧ ∀i∈ {1..k}. vi ∈ D(πi(π2(ΓO(o))))

∧ o ∈ Output }

Definition 25 (Output Expression). An output
expression is a term o(e1, ..., ek), where e1, ..., ek are
properly typed expressions:

Oexpr = {o (e1, ..., ek) | o ∈ Output

∧ k = |π2(ΓO(o))| ∧

∧ ∀i∈ {1..k}. ei ∈ Exp ∧

∧ (τ [[e1 ]], ..., τ [[ek ]]) = π2(ΓO(o)) }

We shall use the terms function and action func-
tion instead of output, depending on the context
(when the output is a part of an assignment or ex-
pression).

3.10 Assignments

The executable parts of the system are called ac-
tions. Actions may be executed while firing a tran-
sition or when entering/leaving a state. There are
three possible kinds of actions: assignments, out-
put expressions and signaling events. We will define
them formally now.

Definition 26 (Assignments). The set of all pos-
sible assignments Assgn is defined to be

Assgn = {(a, e) | a ∈ Access ∧ e ∈ Aexp ∧

∧ τ [[e ]] = τ [[a ]]} .

5 In reality the visualstate grammar is even more limited. General expressions are not allowed in accesses. The
actual grammar is: Access ::= x1 | x2[n] | x2[x1], where x1 runs over simple type variables, x2 over arrays and n
over integer constants. Expressions cannot be freely used in external function calls, outputs, and signal expressions.
We abandon these restrictions to simplify both the presentation and our tools, and to increase generality.
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3.11 Events

Events in the Event set correspond to both external
and internal stimuli. Some events may carry param-
eters (event fields). Consequently events are typed
in a manner similar to C function prototypes.

Definition 27 (Event Typing). Event typing is
defined to be a total function

ΓE : Event → SimpleType∗,

For a given event e, event type value ΓE(e) de-
scribes types of subsequent parameters. An event
binding assigns local names to these parameters.

Definition 28 (Event Binding). A name binding
for event e is a term e(p1, ..., pk), where e is an event
and p1, ..., pk are identifiers, i.e.

Ebind = {e(p1, ..., pk) | k = |ΓE(e)| ∧

∧ ∀i∈ {1..k}. pi ∈ Id}

The identifiers p1, ..., pk will usually be fresh in
the context. If a variable name is used for pi then the
parameter will hide the variable in the scope of the
event binding (which extends over single transition).

A related concept is event instance, which assigns
concrete runtime values to event parameters. Name
bindings are used statically, like formal parameters
in C, and instances are used dynamically to repre-
sent actual values of event parameters.

Definition 29 (Event Instance). An instance of
an event e is a term e(v1, ..., vk), where v1, ..., vk are
values consistent with event typing, i.e.

Einst = {e(v1, ..., vk) | k = |ΓE(e)| ∧

∧ ∀i∈ {1..k}. vi ∈ D(πi(ΓE(e)))} .

Event instances Einst convey information about
events as present at runtime. They also emerge as
results of evaluation of signal expressions:

Definition 30 (Signal Expression). A signal ex-
pression describes the computation of an event in-
stance to be triggered (signaled), i.e.

Sexpr = {e(e1, ..., ek) | e ∈ Event ∧

∧ ∀i∈ {1..k}. ei ∈ Exp ∧

∧ (τ [[e1 ]], ..., τ [[ek ]]) = π2(ΓE(e)) }

3.12 Actions

Definition 31 (Action). An action is a triple of
type Action = Assgn∗ ×Oexpr∗ × Sexpr∗, contain-
ing a sequential list of assignments, outputs, and
events to be signaled. Action components are sup-
posed to be executed from left to right and may have
side effects.

Each and-state may have assigned two actions: one
for entry and one for exit.

entry : Stateand → Action

exit : Stateand → Action

Note that these mappings are total. States that do
not have actions assigned in visual syntax, are as-
signed the empty action (〈〉, 〈〉, 〈〉) in our semantics.

3.13 Transitions

Finally we can give a formal definition of transition.

Definition 32 (Multitarget Transition). Each
system has a final set of transitions Trans such that:

Trans ⊆ Ebind × Stateor ×P(Stateand)×

×P(Stateand) × Bexp×

×Action ×P(Stateand)

Each transition has seven components. We define
a family of functions to access components of transi-
tions. The event function determines the triggering
event for the transition.

event(t) = e if π1(t) = e(p1, ..., pk) ∈ Ebind

In order to access local identifiers set we define the
predicate params:

params(t) = {p1, ..., pk} if π1(t) = e(p1, ..., pk)

The third and fourth components represent negative
and positive state conditions. Negative and positive
conditions are constraints put on transition. It may
only be fired if all states in the positive condition set
are active and none of those in the negative condi-
tion set is.

pos(t) = π3(t) neg(t) = π4(t)

Each transition is attached to a pair of states: target
and source (possibly the same state, for self-loops).
We will call these two states the explicit source and
the explicit target. The explicit source and target
states determine the explicit scope of the transition.
The explicit scope of a transition is always an

or-state: the arrow will never cross the boundary
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between or-states (regions). In visualstate, the ex-
plicit scope of a transition is defined to be the nearest
common ancestor of the explicit source and explicit
target. The transition’s scope obtained this way from
the concrete syntax is represented in the abstract
syntax by the transition’s second component:

scope(t) = π2(t)

It is noteworthy that the explicit transition scope
has only a limited impact in the semantics of tran-
sition firing. The actual scope of a state change de-
pends solely on the current state configuration and
the target state. We will formalize this later, using
the notion of generalized implicit scope.6 The explicit
scope of a transition (and hence the visual arrow in
concrete syntax) simply indicates the priority of the
transition, used in conflict resolution. This is dis-
cussed under the operational semantics rules.
As we said, a visualstate transition must have

at least one target – the explicit one. Other targets
may be added as so-called force state actions, a spe-
cial kind of actions which force states to become ac-
tive. They generalize UML fork transitions (which
can only target inactive states). Force state actions
can change the state of a currently operating com-
ponent. Both force state actions and explicit targets
are modeled together in one set:

targets(t) = π7(t)

You may think of transitions as changes from one
state configuration pattern to another. The initial
state configuration pattern is described by positive
and negative conditions while the target pattern is
given by an orthogonal set of targets.
We use the name multitarget transition when we

want to distinguish from UML transitions. Multi-
target transitions are more general than UML fork
transitions, since they can target states orthogonal
to the source state. They are a bit more limited than
UML join (or synchronization) transitions, because
there is no direct support for synch pseudostates.
However, the corresponding behavior may be easily
described using a regular state instead of a UML
pseudostate.
Force state actions complicate designs and se-

mantics, especially correctness conditions, and con-
flict detection and resolution. On the other hand
they may be very efficient if implemented carefully.
The remaining transition components are a

guard and an action. The guard is a boolean expres-
sion, evaluated to determine whether the transition

is active. The action is executed when an enabled
transition fires. Both are optional. An omitted ac-
tion is modeled by an empty action triple. An omit-
ted guard is modeled by the constant true expression
(integer constant 1).

guard(t) = π5(t) action(t) = π6(t)

3.14 Closed Formulæ

Below we give exact specification of what are free
variables for different elements, thus extending the
notion of closedness for various objects. We will
write fvars(X) for the set of free variables of ele-
ment X .

fvars : Access → P(Id)

fvars(a) =

{

{x} if a = x

{x} ∪ fvars(e) if a = x[e]

fvars : Oexpr → P(Id)

fvars(o(e1, ..., ek)) =

k
⋃

i=1

fvars(ei)

fvars : Sexpr → P(Id)

fvars(e(e1, ..., ek)) =

k
⋃

i=1

fvars(ei)

fvars : Exp → P(Id)

fvars(e) =







































∅ if e = v ∈ Dint ∪ Dreal

fvars(a) if e = a ∈ Access

fvars(e1) if e = unop e1

fvars(e1) ∪ fvars(e2)

if e = e1 binop e2

fvars(o) if e = o ∈ Oexpr

fvars : Assgn → P(Id)

fvars(a = e) = fvars(a) ∪ fvars(e)

fvars : Action → P(Id)

fvars(〈a1, ..., ak〉, 〈o1, ..., om〉, 〈s1, ..., sn〉) =

k
⋃

i=1

fvars(ai) ∪
m
⋃

i=1

fvars(oi) ∪
n
⋃

i=1

fvars(si)

fvars : Trans → P(Id)

fvars(t) = (fvars(guard(t)) ∪

∪ fvars(action(t))) \ params(t)

6 The explicit target has slightly different scoping semantics in the actual visualstate implementation. We consider
this a design mistake in the tool and propose a cleaner semantics. See transition firing later on.
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Definition 33 (Closedness). A model element X
(transition, action, etc.) is said to be closed iff
fvars(X) ⊆ Var. We will write closed(X) meaning
that element X is closed.

4 Static Correctness

Definition 34 (Consistent entry/exit Ac-
tions). The entry and exit actions of the system
are consistent if all of them are closed:

∀s ∈ Stateand. closed(entry(s)) ∧ closed(exit(s))

Definition 35 (Consistent Transitions). Tran-
sition t is consistent if it fulfills all of the following
conditions:

1. closed(t)
2. root /∈ pos(t) ∪ neg(t) ∪ targets(t)
3. targets(t) is an orthogonal set.
4. targets(t) 6= ∅
5. pos(t) 6= ∅
6. guard(t) and action(t) contain only well-typed
expressions and function calls.

We will only give dynamic semantics for consis-
tent systems as defined below.

Definition 36 (System). A consistent system is
a tuple (State, @, ΓS , initial, η0, exit, entry,Var ,
Event ,Trans), such that State is a well-structured
state set with hierarchy relation @ and typing ΓS ,
initial and η0 are respective markings, entry and exit
are mappings of rules, and Trans is a set of consis-
tent transitions.

5 Global State

The language of statecharts is imperative. The state
of execution is built from four main components:
explicit state of hierarchical state machine, variable
store, history marking, and signal queue. We defined
history marking above; now we we describe the re-
maining components.
The explicit state describes activity/inactivity

properties of states at given point in time.

Definition 37 (Explicit State). The state config-
uration σ of the root state describes the explicit state
of execution.

A variable store gives the values of system vari-
ables at a given point of execution.

Definition 38 (Store). A store % is a total map-
ping of type

% ∈ Store ≡ Var →
⋃

Type

such that ∀x ∈ Var . %(x) ∈ D(ΓV (x)).

The signal queue is a list of pending local events,
i.e. events that have been signaled as result of some
actions and have not yet been processed.

Definition 39 (Signal Queue). Signal queue ω
is defined to be an ordered list of event instances:
ω ∈ Einst∗. We will use the caret symbol (ˆ) for
expressing concatenation and pattern matching el-
ements in the queue.

The signal queue is a first-in-first-out queue. The
notational convention is that new elements are con-
catenated at the end of the list (suffixed). In this
sense ˆ is a queue constructor. Concatenation in
front is used to express internal structure of the list
(prefixed event instance). It may be understood as
pattern matching.
The signal queue is always empty at the begin-

ning of event processing. First, an external event is
processed. As a result some internal events may be
signaled, that is, stored in the signal queue. These
internal events (signals) are then processed consecu-
tively, until the signal queue is empty. At that point
the system is ready for the next external event.
The signal queue is not used to buffer exter-

nally detected events. There is no queue for exter-
nal events, though it can be implemented in user C
code. The semantics of this external implementation
is beyond the scope of this paper.

6 Operational Dynamic Semantics

We define the dynamic semantics of a visualstate
system by describing how expressions are evaluated,
rules executed, states (scopes) exited and entered,
and transitions fired. Then we describe the process-
ing of a single internal event in a so-called microstep,
and specify how a sequence of microsteps makes up
a macrostep, processing a single external event. Last
but not least we also say how a system is initialized.
Note that visualstate systems are reactive syn-

chronous systems. Reactive means that the sys-
tem responds to incoming events, and synchronous
means that the response is considered to be infinitely
fast [2, 8]. In practice this means that the system
must be much faster than the environment. Full syn-
chrony in the sense of Berry [2] is not guaranteed,
though. This is because of the explicit microsteps
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and the use of queues (instead of boolean signals
mimicking the behavior of hardware output wires).
Another strong assumption, which is different

from Harel’s original statecharts, is that only one ex-
ternal event may be present at a time. These three
assumptions together eliminate the need for main-
taining a queue of pending external events.
We start the description with semantics of basic

elements (expressions, functions, variable accesses).
Those simple definitions mostly follow the general
semantics of the C programming language. They
have been included here to understand and de-
scribe the subtleties of evaluation, mainly purity
constraints on some parts. Also this elements cannot
be simply executed under C semantics, as technically
some variables are not visible in the C interface (see
appendix B.3).
After behavior of basic elements is defined we

proceed with specific statechart features in sec-
tion 6.8.

6.1 Access Evaluation

Accesses to variables and array cells are evaluated to
values of variables and contents of array cells. The
evaluation of an access may yield a new store as non-
pure expressions might be present in array indices.
Definition is given only for closed variable ac-

cesses. It is mutually recursive with arithmetic ex-
pression evaluation. We say that access a evaluates
in store %1 to value v and store %2 and write:

〈 a, %1 〉 −−−−→
access

〈 v, %2 〉 .

The relation is given by two rules:

x ∈ Var ΓV (x) ∈ SimpleType

〈 x, % 〉 −−−−→
access

〈 %(x), % 〉

x ∈ Var ΓV (x) /∈ SimpleType e ∈ Aexp
〈 e, %1 〉 −−−→

Aeval
〈 n, %2 〉 ∧ n ∈ Dint

〈 x[e], %1 〉 −−−−→
access

〈 πn(%2(x)), %2 〉

6.2 Output Expression Evaluation

Output expressions evaluate to output instances
which then evaluate according to C semantics. There
is a single evaluation rule given for closed output ex-
pressions:

o ∈ Output ∀i. 〈 ei, %i−1 〉 −−−→
Aeval

〈 vi, %i 〉

〈 o(v1, ..., vk), %k 〉 −−−−→
C-sem

〈 v, %k+1 〉

〈 o(e1, ..., ek), %0 〉 −−−−→
output

〈 v, %k+1 〉
.

The definition is mutually recursive with evalua-
tion of arithmetic expressions defined below. The C-
sem relation denotes execution of an external func-
tion according to the usual C semantics.

6.3 Boolean Expression Evaluation

Boolean expressions in visualstate are assumed to
be side-effect free. They can rely on external state
(like registers of some device), but their computation
is assumed to be infinitely fast, so the value of ex-
ternal physical properties may not change through-
out execution of all guards in the system. The two
assumptions support a deterministic semantics of
guards.
The definition is given by structural induction

and only for closed expressions. We say that expres-
sion b evaluates to value v in store % and write:

〈 b, % 〉 −−−→
Beval

v

where b ∈ Bexp, % ∈ Store and v ∈ Dreal ∪ Dint. The
relation is given by rules:

v ∈ Dint ∪Dreal
〈 v, % 〉 −−−→

Beval
v

a ∈ Access 〈 a, %0 〉 −−−−→
access

〈 v, %1 〉

〈 a, %0 〉 −−−→
Beval

v

o ∈ Oexpr 〈 o, %0 〉 −−−−→
output

〈 v, %1 〉

〈 o, %0 〉 −−−→
Beval

v

〈 e0, % 〉 −−−→
Beval

v0 〈 e1, % 〉 −−−→
Beval

v1

〈 e0 binop e1, % 〉 −−−→
Beval

v0 binop v1

〈 e, % 〉 −−−→
Beval

v

〈 uop e, % 〉 −−−→
Beval

unop v

In contrast to standard C evaluation, the above
expressions are pure: there is no assignment oper-
ator in our grammar. Note that the new store is
discarded in both the second and the third rule.
This is implementationally feasible because we as-
sume that boolean expressions are pure, so %1 = %2

in both cases.
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6.4 Arithmetic Expression Evaluation

In contrast to boolean guards, arithmetic expres-
sions may be impure and have a more C-like seman-
tics. The evaluation relation is given by structural
induction for closed expressions. We say that expres-
sion e is evaluated in store %0 to value v and finishes
in store %1, written:

〈 a, %0 〉 −−−→
Aeval

〈 v, %1 〉

where a ∈ Aexp, %0, %1 ∈ Store and v ∈ Dreal ∪ Dint.
The rules are very similar to those for boolean ex-
pressions. Assignments are not allowed in expres-
sions. The only source of potential impurity are ex-
ternal function calls. This time the resulting store is
propagated after modifications made by the C func-
tion.

v ∈ Dint ∪Dreal
〈 v, % 〉 −−−→

Aeval
〈 v, % 〉

a ∈ Access 〈 a, %0 〉 −−−−→
access

〈 v, %1 〉

〈 a, %0 〉 −−−→
Aeval

〈 v, %1 〉

o ∈ Oexpr 〈 o, %0 〉 −−−−→
output

〈 v, %1 〉

〈 o, %0 〉 −−−→
Aeval

〈 v, %1 〉

〈 e0, %0 〉 −−−→
Aeval

〈 v0, %1 〉 〈 e1, %1 〉 −−−→
Aeval

〈 v1, %2 〉

〈 e0 binop e1, %0 〉 −−−→
Aeval

〈 v0 binop v1, %2 〉

〈 e, %0 〉 −−−→
Aeval

〈 v, %1 〉

〈 unop e, %0 〉 −−−→
Aeval

〈 unop v, %1 〉

6.5 Variable Assignments

Assume that a is a variable access and e is an arith-
metic expression. Then we say that % is updated with
value of expression e at location of lvalue a, writing:

〈 a = e, %0 〉 −−−→
Asgn

%1

The relation is given by rules on figure 1.

6.6 Signal Expression Evaluation

Signal expressions evaluate to (internal) event in-
stances, which are then queued and processed in
subsequent steps. The rule for signal evaluation re-
sembles the rule for output evaluation:

e(e1, ..., ek) ∈ Sexpr
∀i∈ {1..k}. 〈 ei, %i−1 〉 −−−→

Aeval
〈 vi, %i 〉

∀i∈ {1..k}. vi ∈ D(πi(ΓE(e)))

〈 e(e1, ..., ek), %0, ω 〉 −−−→
signal

〈 %k, ωˆ〈e(v1, ..., vk)〉 〉

6.7 Action Execution

The execution relation for actions is defined in terms
of assignments, output evaluation, and signal ex-
pression evaluation. Consider an action (as, os, ss),
where as is a sequence of assignments, os a sequence
of output expressions, and ss a sequence of signal
expressions. The action is executed in a given store
%0 and signal queue ω0, possibly affecting both. We
denote it by writing:

〈 (as, os, ss), %0, ω0 〉 −−−→
exec

〈 %1, ω1 〉

Figure 2 presents a single inference rule defining this
relation.

6.8 Priority Function

Our semantics is fully deterministic. We follow Lind-
Nielsen [15] in parameterizing the semantics with an
arbitrary priority function to impose order on pro-
cessing of otherwise unordered elements.

Definition 40. Let δ be a natural function on State
such that δ is a bijection:

δ : State → {1, ..., |State|}

Then δ is a good priority function for semantics of
statecharts. Priority function is a total ordering of
elements of State. Priority value 1 is assigned to the
state with highest priority.

This way we can describe many different ap-
proaches to conflict resolution (most of them com-
pletely useless though). The UML statecharts defi-
nition in [19] assigns higher priority to more nested
transitions and lower to outer ones. In his classic
paper [5], Harel proposes a converse approach: out-
ermost transitions having the highest priority.
A priority function is also used to determine the

order in which components of an and-state are pro-
cessed. Reasonable priority function choice will as-
sign consecutive values to children of an and-state
providing left to write processing of components.
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x ∈ Var ΓV (x) ∈ SimpleType 〈 a, %0 〉 −−−→
Aeval

〈 v, %1 〉 v ∈ D(ΓV (x))

〈 x = e, %0 〉 −−−→
Asgn

%1[v/x]

x ∈ Var ∧ ΓV (x) /∈ SimpleType ∧ 〈 e0, %0 〉 −−−→
Aeval

〈 v0, %1 〉

v0 ∈ Dint ∧ v0 > 0 ∧ 〈 e1, %1 〉 −−−→
Aeval

〈 v1, %2 〉 ∧ v = %2(x)[v1/v0]

〈 x[e0] = e1, %0 〉 −−−→
Asgn

%2[v/x]

Fig. 1. The assignment execution relation. The last premise in the second rule means that v is equal to the vector
assigned to x in %2, but with the v0’th element changed to v1.

as = 〈a1, ..., ak〉 ∧ ∀i∈ {1..k}. 〈 ai, %i−1 〉 −−−→
Asgn

%i

os = 〈o1, ..., om〉 ∧ ∀i∈ {1..m}. 〈 oi, %k+i−1 〉 −−−−→
output

〈 vi, %k+i 〉

ss = 〈s1, ..., sn〉 ∧ ∀i∈ {1..n}. 〈 si, %k+m+i−1, ωi−1 〉 −−−→
signal

〈 %k+m+i, ωi 〉

〈 (as, os, ss), %0, ω0 〉 −−−→
exec

〈 %k+m+n, ωn 〉

Fig. 2. The action execution relation. Note that the return values of output calls are discarded. The only way to get
the value of a function call is to use it in an expression.

σ = {s}

〈 s, σ, %, η, ω 〉 −−→
exit
〈 %, η, ω 〉

ΓS(s) = or ∧ s′
�

s ∧ σ ⊆ descend∗(s′) ∧ s /∈ dom(η0)
〈 s′, σ, %0, η0, ω0 〉 −−→

exit
〈 %1, η1, ω1 〉 〈 exit(s′), %1, ω1 〉 −−−→

exec
〈 %2, ω2 〉

〈 s, σ, %0, η0, ω0 〉 −−→
exit
〈 %2, η1, ω2 〉

ΓS(s) = or ∧ s′
�

s ∧ σ ⊆ descend∗(s′) ∧ s ∈ dom(η0)
〈 s′, σ, %0, η0, ω0 〉 −−→

exit
〈 %1, η1, ω1 〉 〈 exit(s′), %1, ω1 〉 −−−→

exec
〈 %2, ω2 〉

〈 s, σ, %0, η0, ω0 〉 −−→
exit
〈 %2, η1[s

′/s], ω2 〉

s /∈ σ ∧ ΓS(s) = and ∧ {s1, ..., sk} = children(s) ∧ ∀i, j∈ {1..k}. i < j ⇒ δ(si) < δ(sj)
∀i∈ {1..k}. 〈 si, σ ∩ descend

∗(si), %i−1, ηi−1, ωi−1 〉 −−→
exit
〈 %i, ηi, ωi 〉

〈 s, σ, %0, η0, ω0 〉 −−→
exit
〈 %k, ηk, ωk 〉

Fig. 3. The exit relation.

13



6.9 Exiting a State

As we said before, each state has an exit action as-
signed. The action should be executed before the
state is exited. Also the actions of all descendant
states should be executed in proper order (out-
wards). Occasionally we will also have to leave some
levels up above our source state. This depends on
where the target state is. Actually the scope to be
left only depends on current state configuration and
target state. For this reason we define the exit rela-
tion for current configuration and the scope which
should be left. The scope itself is not left but all its
active descendants are.
Assume that state s is the above mentioned

scope, σ is a maximal orthogonal set relative to s,
%0 is current store, η0 is the current history marking
and ω0 is the current symbol queue. Then we write:

〈 s, σ, %0, η0, ω0 〉 −−→
exit

〈 %1, η1, ω1 〉

meaning that all descendants of s have been exited
and the corresponding exit rules executed in proper
order, resulting in new store %1, new history marking
η1 and new signal queue ω1. The relation is defined
by rules (see figure 3).
Exit rules are executed in bottom-up order. First

the most nested descendants are exited, then their
parents and recursively until the direct children of s.
Descendants of and-state components are exited in
components priority ordering δ. For example if or-
der is from left to right, the exit relation performs a
postorder traversal of the statechart hierarchy.
Exit rules are only executed for and-states, as

only those states may have rules assigned. Also note
that history marking is updated directly after a state
has been exited (third rule).
The well-formedness of the rule (that it is always

called on a proper state configuration) follows from
theorem 17, the Configuration Subset theorem.

6.10 Entering a State

Entering a state resembles exiting. The entry rules
of a state and its descendants should be executed in
proper order. Moreover, for each or-state it should
be determined which of its children is the default
state, determined by the current history marking or
the initial marking.
States are normally entered after a certain scope

has been exited. So we start not with a proper con-
figuration, but with a maximal orthogonal set of
root where some non-basic states are contained. Also
apart from the default path (indicated by initial and

history markings), there is a bunch of targets which
take precedence before default values. This makes
entering slightly more complex than exiting.

Definition 41 (Default state). The default child
of a given or-state s in the current history marking
η is given by:

default(s, η) =

{

initial(s) if s ∈ dom(initial)

η(s) if s ∈ dom(η)

Note that default is total and deterministic on
Stateor set, since dom(η) = Stateor \ dom(initial).

When a transition is fired we are not only in-
terested in entering its target state. Obviously the
descendants of the target state should also be en-
tered in the process (via the default path). Some-
times, when the transition goes down the hierarchy,
we will also enter some ancestors of target, or even
some states orthogonal to the target. The latter hap-
pens when control enters a component of an and-
state from outside: then one must initialize all other
components of the and-state as well.

Thus we give the enter relation definition for
scope s and the set of target states T such that
T ⊆ descend∗(s) and write

〈 T, s, %0, η0, ω0 〉 −−−→
enter

〈 σ, %1, ω1 〉,

meaning that descendants of s have been properly
entered, resulting in σ, a state configuration of s. All
actions have been executed in top-down order (prior-
ity order for elements on the same level of hierarchy).
If priority function δ orders children of and-states
from left to right then the enter relation performs
preorder traversal of statechart hierarchy.

The history marking is not changed in entering
phase. The relation is defined by rules given in fig-
ure 4.

6.11 Transition Firing

The scope of changes involved in switching to an ar-
bitrary state s depends on the target state s itself
and the current configuration σ. For a given tar-
get state s we need to find the closest relative in
the current configuration (the state s′ ∈ σ minimiz-
ing NCA(parent(s), parent(s′))). The nearest com-
mon ancestor found is the implicit scope of the tran-
sition. The explicit and implicit scopes of a transi-
tion are identical for one of the transition’s targets:
the explicit target.
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T = ∅ ΓS(s) = and children(s) = ∅

〈 T, s, %, η, ω 〉 −−−→
enter

〈 {s}, %, η 〉

T ⊆ descend∗(s) ∧ ΓS(s) = and ∧ {s1, ..., sk} = children(s)
∀i, j∈ {1..k}. i < j ⇒ δ(si) < δ(sj) ∀i∈ {1..k}. 〈 T ∩ descend∗(si), si, %i−1, η, ωi−1 〉 −−−→

enter
〈 σi, %i, ωi 〉

〈 T, s, %0, η, ω0 〉 −−−→
enter

���
k
i=1 σi, %k, ωk �

T 6= ∅ ∧ T ⊆ descend+(s) ∧ ΓS(s) = or ∧ NCA(T )
� ∗ s′

�
s

〈 entry(s′), %0, ω0 〉 −−−→
exec

〈 %1, ω1 〉 〈 T\{s′}, s′, %1, η, ω1 〉 −−−→
enter

〈 σ, %2, ω2 〉

〈 T, s, %0, η, ω0 〉 −−−→
enter

〈 σ, %2, ω2 〉

T = ∅ ∧ ΓS(s) = or ∧ s′ = default(s, η)
〈 entry(s′), %0, ω0 〉 −−−→

exec
〈 %1, ω1 〉 〈 ∅, s′, %1, η, ω1 〉 −−−→

enter
〈 σ, %2, ω2 〉

〈 T, s, %0, η, ω0 〉 −−−→
enter

〈 σ, %2, ω2 〉

Fig. 4. The enter relation. Well-formedness of the configuration resulting in second rule is ensured by theorem 15,
the configuration union theorem.

iscopes(t, σ0) = {s1, ..., sk} ∧ ∀i, j∈ {1..k}. i < j ⇒ δ(si) < δ(sj)
∀i∈ {1..k}. 〈 si, σ0 ∩ descend

∗(si), %i−1, ηi−1, ωi−1 〉 −−→
exit
〈 %i, ηi, ωi 〉

〈 action(t), %k, ωk 〉 −−−→
exec

〈 %k+1, ωk+1 〉

∀i∈ {1..k}. 〈 targets(t) ∩ descend∗(si), si, %k+i, ηk, ωk+i 〉 −−−→
enter

〈 σi, %k+i+1, ωk+i+1 〉

σk+1 = σ0 \ � � k
j=1 descend

∗(sj) � ∪ � � k
j=1 σj �

〈 t, σ0, %0, η0, ω0 〉 −−→
fire
〈 σk+1, %2k+1, ηk, ω2k+1 〉

Fig. 5. The single-transition firing relation. Configuration σk+1 is guaranteed to be a well-formed state configuration
by theorem 19, the substitution theorem for configurations.
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Definition 42 (Implicit scope). Let s be the tar-
get state and σ the current state configuration (global
state). The implicit scope is defined recursively:

iscope(σ, s) =











parent(s)

if descend∗(parent(s)) ∩ σ 6= ∅

iscope(σ, parent(s)) otherwise

The implicit scope determines the impact of an ac-
tual state change. All descendants of the scope will
be exited when firing a transition, and some new
states (depending on targets and markings) will be
entered. Each transition has several implicit scopes:
at most as many as there are target states. Two or-
thogonal targets may have the same implicit scope
(for instance when simultaneously entering several
components of the same and-state).

Definition 43 (Generalized Scope). The gener-
alized scope of transition t in configuration σ is the
set of its implicit scopes:

iscopes(σ, t) = {iscope(σ, s) | s ∈ targets(t)}

Observation 44 (Scope Properties).

1. The implicit scope is always an or-state.
2. ∀σ, t. |iscopes(σ, t)| ≤ |targets(t)|.
3. The generalized scope is an orthogonal set.

Proof. (Sketch) The first property follows from the
fact that only and-states are targets and from defi-
nition of implicit scope. The two other facts can be
proved from static correctness conditions for transi-
tions. ut

The single-transition firing relation relates a
transition, the current state, store, history marking
and signal queue with a new state, store, history
marking and signal queue. This means that while
the transition is fired, a new state configuration may
arise, some variables may be modified, the history
marking may be updated, and some signals may be
issued. The relation is defined by combined applica-
tion of formerly specified exit, exec and enter rela-
tions. See figure 5.
The transition must be enabled and all local sub-

stitutions for event parameters should be done be-
fore the firing (see microstep definition, figure 6 for
the context).
Our semantics of firing has a subtle difference

compared to the visualstate implementation. All
targets are treated in the same way: there is no spe-
cial semantics for the explicit target. This is because
we use the same iscope definition for all targets. As

a result, a transition forcing an additional already
active state behaves as a safe loop transition on the
forced state: it is exited and entered again. In visual-
state such transitions will not perform the forced
state’s exit and entry actions: they behave as if the
those actions have been disabled.
We think that having different semantics for ex-

plicit and implicit targets is not necessary. It compli-
cates both definition and implementation. If neces-
sary, a model transformation could decorate tran-
sitions with extra conditions to guarantee strict
visualstate behavior also within our framework.
Our approach presents a minor difference from user
point of view and allows cleaner semantics and
slightly more efficient implementations.

6.12 Enabled Transitions Set

This section’s main concern is the scheduling of tran-
sitions:

Definition 45 (Enabled Transition). A transi-
tion t is enabled for event instance e(v1, ..., vk) in
state σ and store % iff

1. e = event(t)
2. ∀s ∈ pos(t). ∃s′ ∈ σ. s′ @

∗ s
3. ∀s ∈ neg(t). ∀s′ ∈ σ. s′ 6@∗ s
4. If π1(t) = e(p1, ..., pk) then ∃v 6= 0.

〈 guard(t) [v1/p1, ..., vk/pk] , % 〉 −−−→
Beval

v

Definition 46 (Enabled Transitions Set). We
will write enabled(e(v1, ..., vk), σ, %) for the set of
all enabled transitions for current event instance
e(v1, ..., vk), state σ, and store %.

Note that boolean expression evaluation plays
an important role in the definition of enabledness.
Here the assumption of pure boolean expressions is
important. We required boolean expressions to be
pure (having no side effects). This guarantees that
whatever order we take to iterate over transitions in
the system, the same transitions will be considered
enabled. Moreover, this would permit an optimized
implementation to duplicate or skip the evaluation
of a boolean expression, without affecting the global
variable state.
Unfortunately, this is insufficient to guarantee

determinism of the enabledness property. C func-
tions called in boolean expressions may (and nor-
mally should) refer to external properties of devices,
which in turn are dynamic in time. Only the full syn-
chrony assumption [2], that all guards are computed
infinitely fast, can achieve a deterministic enabled
set computation.
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For efficiency reasons we impose yet another as-
sumption: actions executed in the current microstep
should not influence the value of guard conditions in
the same microstep. In this way we guarantee that
the computation of action functions and guards may
be interleaved at runtime, so there is no need for an
expensive explicit computation of the set of enabled
transitions. This assumption seems to be restrictive
and unclear at the first sight, but actually it agrees
with the informal understanding of statechart se-
mantics. Two transitions in concurrent components
are fired in parallel, so if determinism is to be en-
sured, there should be no interaction between their
guards and actions.

6.13 Conflict Resolution

Informally two transitions are in conflict if they
should both happen in the same scope. Formally:

Definition 47 (Conflicting Transitions). Two
distinct transitions t1, t2 are in conflict iff

∃s1 ∈ iscopes(t1), s2 ∈ iscopes(t2). s1 @
∗ s2∨s2 @

∗ s1

This means some activities of transitions overlap.
The current version of visualstate assumes that

systems containing possible conflicts are illegal. Ver-
ification tools aid developers in detecting and elimi-
nating potential (reachable) conflicts. Here we follow
[5, 19] and distinguish resolvable and non-resolvable
conflicts. This distinction is also likely to be imple-
mented in future releases of visualstate.

Definition 48 (Non-resolvable conflict). Two
transitions are in non-resolvable conflict if they are
conflicting and their explicit scopes are identical.
This can be rephrased as priorities of transitions be-
ing the same (the priority function was defined to be
a bijection).

We assume that systems containing non-resolvable
conflicts are illegal and we do not consider this kind
of conflicts from now on.
The remaining conflicts are resolvable. For any

pair of transitions in a resolvable conflict, UML dis-
cards the outermost one, whereas Harel’s statecharts
preserve the outermost one and discard the inner
one. In our semantics we use the priority function
δ to pick one of the conflicting transitions: if two
transitions are in conflict the one with lower pri-
ority is discarded from the active set. The priority
approach allows modeling of both the UML and the
Harel styles.

Note that it may often happen that only some
parts of transitions are in conflict; transitions hav-
ing many scopes may only interfere on some of them.
Nevertheless with this approach one of the transi-
tions is discarded as a whole – not only the conflict-
ing part.

Definition 49 (Resolved Set). Let {t1, ..., tk} =
enabled(e(v1, ..., vm), σ, %) be a set of enabled transi-
tions, possibly containing some resolvable conflicts,
i.e.

∀i, j∈ {1..k}. i < j ⇒ δ(scope(ti)) < δ(scope(tj))

A resolved enabled set renabled(e(v1, ..., vm), σ, %) is
a set such that:

1. The set renabled(e(v1, ..., vm), σ, %) is a maxi-
mal subset of enabled(e(v1, ..., vm), σ, %) contain-
ing no conflicting transitions.

2. If for any t′, t′′ ∈ enabled(e(v1, ..., vm), σ, %) it
holds that δ(t′) < δ(t′′) and t is in conflict with
t′, then t′′ /∈ renabled(e(v1, ..., vm), σ, %)

Note that this definition is the only place where
the actual arrow of a transition’s concrete syntax is
used, in the guise of the static scope() function. Re-
member that we only model the (explicit) scope of a
visual arrow in the abstract syntax, and this scope is
used (maximized) in condition (2) of the definition
of resolved enabled set.
Dynamic conflict resolution is a well-known con-

cept in history of statechart languages. Still we be-
lieve that this is an expensive concept to implement
at runtime, and that it does not aid good modeling
practices. It is doubtful whether it should be im-
plemented in a code generator targeting embedded
systems. The assumption that there are no conflicts
requires a cleaner model and gives better opportu-
nities for compile-time optimizations.

6.14 Microstep

A single microstep of execution constitutes of firing
all transitions that are active, given a state, store,
and event instance. We denote it

〈 e(v1, ..., vm), σ0, %0, η0, ω0 〉 −−−−→
micro

〈 σ1, %1, η1, ω1 〉

and the semantics is to fire all enabled transitions
ordered by priority. See figure 6.
Microstep execution also implies event parame-

ter substitution in transition arrows. This is a tex-
tual substitution at the syntactical level. Note that
substitution cannot be made on the variable store
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renabled(e(v1, ..., vm), σ0, %0) = {t1, ..., tk} ∧ ∀i, j∈ {1..k}. i < j ⇒ δ(scope(ti)) < δ(scope(tj))

∀i∈ {1..k}. ∃!e(xk
1 , ..., xk

m) = π1(tk). � ti[v1/xk
1 , ..., vm/xk

m], σi−1, %i−1, ηi−1, ωi−1 � −−→
fire
〈 σi, %i, ηi, ωi 〉

〈 e(v1, ..., vm), σ0, %0, η0, ω0 〉 −−−→
micro

〈 σk, %k, ηk, ωk 〉

Fig. 6. The microstep relation.

〈 σ0, %0, η0, 〈〉 〉 −−−−→
macro

〈 σ0, %0, η0 〉

〈 e(v1, ..., vm), σ0, %0, η0, ω0 〉 −−−→
micro

〈 σ1, %1, η1, ω1 〉 〈 σ1, %1, η1, ω1 〉 −−−−→
macro

〈 σ2, %2, η2 〉

〈 σ0, %0, η0, 〈e(v1, ..., vm)〉ˆω0 〉 −−−−→
macro

〈 σ2, %2, η2 〉

Fig. 7. The macrostep relation.

instead, which is often equivalent in typical imper-
ative languages. This would overwrite the values of
global variables, affecting execution of external C
functions (which are not supposed to access values
of event parameters anyway).

6.15 Macrostep

A macrostep is a chain of microsteps initiated by sin-
gle external event. After performing the microstep
for the external event the microsteps are reiter-
ated over internally signaled events until the system
reaches stability (the signal queue is empty).

The macrostep relation is defined for an initial
state configuration, store, history marking, and an
external event instance (embedded as the first ele-
ment of the signal queue).

〈 σ0, %0, η0, 〈e(v1, ...., vm)〉 〉 −−−−→
macro

〈 σ1, %1, η1 〉

See figure 7 for the rules. Not surprisingly the rules
resemble while-loop execution rules for imperative
languages: a macrostep is usually implemented as a
while loop over microsteps.

6.16 Initialization Step

The step execution relations above are given for a
system in operation. They demand a state configu-
ration to begin with. However, the initial state con-
figuration is not given in concrete syntax, but must
be derived from the initial and history markings. In
fact, the system must be initialized, that is, entry ac-
tions of and-states must be executed while building
the initial state configuration. The process is given

by execution of enter relation for root scope with
empty explicit target set:

〈 ∅, root , %0, η0, 〈〉 〉 −−−→
enter

〈 σ1, %1, ω1 〉

where %0 is an initial variable environment (part of
the system) and η0 is an initial history marking. Be-
fore the execution may proceed with first external
event instance, events signaled during the initializa-
tion step should be processed:

〈 σ1, %1, η0, ω0 〉 −−−−→
macro

〈 σ, %, η 〉

The state configuration σ, variable store % and his-
tory marking η together with empty queue consti-
tute the initial global state for processing of first
external event.

7 Determinism

We claim that the semantics presented above is de-
terministic. The formal proof would be lengthy and
not particularly inventive, so let us argue only in-
formally. The semantics is deterministic because we
ensured that every construction step of semantics
can be taken deterministically. This was achieved
by several means:

1. Whenever a relation is defined by rules we en-
sure that rules are exclusive.

2. All auxiliary functions are normal algebraic
functions, so they are deterministic.

3. Strong assumptions have been made about ab-
sence of interdependencies between guards and
actions, and about the purity of guards, to facil-
itate a deterministic result regardless of order of
execution.
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4. Whenever nondeterministic choice appeared
naturally in the unordered set of elements we
ordered it with priority function to ensure fixed
control flow.

5. We used existential quantifications in relation
rules generously. The context is always simple
enough to prove that the choice of value is
unique.

Note that the trick with parameterizing the se-
mantics with priority functions allows to keep some
advantages of nondeterminism, while determinism
needed in the implementation is still guaranteed. We
still allow various implementations, but all of them
have to be deterministic (see for instance figure 4,
third rule).

8 Conclusions and Future Work

We presented a global operational semantics for
visualstate systems. The core of the semantics has
been presented formally. The presentation was an-
notated with various comments on implementation
issues. We also provide some hints on how other el-
ements may be incorporated in this framework (see
appendix B).
The present specification has been used in the

implementation of scope, an experimental code
synthesizer for visualstate models maintained at
the IT University of Copenhagen. Scope focuses
on efficient, though formally motivated generation
of embedded software.
Our semantics does not include a notion of equiv-

alence of subprograms. We believe that a general
notion of compositionality is not needed for stat-
echarts. Still we hope to propose some restricted
notions for equivalence of states and transitions so
some model optimizations may be performed.
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A Concrete Syntax Example

Figure A presents a system in concrete syntax. This
is a simplified microwave oven controller. The main
components are: standby button, door, microwave
emitter, grill heater, mode switch, and safety unit.
The initial state of the system is OFF, which can be
changed by pressing the Standby button. The door
is built in such a way that it can only be opened
when the power is on. Moreover, the system cannot
enter the OFF state if the door is opened. This is
guaranteed by adding a positive condition Closed to
the transition triggered when the Standby button is
pressed.
The right region of the system represents the

state of the user interface. Currently there is only
one switch having three modes. It indicates the kind
of heating which should be used in the system: mi-
crowave heat (H), electrical grill (G), or both (HG).
Note that microwave heat is the default, as indicated
by the initial marking placed on state H. The mode
can be changed by consecutive presses to the Mode
button, which generates ModePressed events.
The light inside the oven is switched on whenever

the door is closed. It is switched back off as soon as
the user opens the door. The first time the oven is
turned on and the door is closed, both heaters do not
operate (they are in the idle mode). The user needs
to initiate heating using the Start button. Note that
the proper heater (or both heaters) are started de-
pending on the state of mode.
Whenever the door is opened (regardless of

heaters states) all heating is switched off (see exit
actions of Closed state). The corresponding C func-
tions presumably perform the task of communicat-
ing with the actual hardware. The same happens

whenever a HeatAlarm is issued by the safety unit.
If the door is closed the heating units resume in the
state in which they were interrupted (due to use of
history marking). When the safety alarm is off the
heaters are not restored to their original state; in-
stead they enter the idle mode (to increase safety).
Note that the transition from Overheated to Closed
has two targets: one explicit (Grill.idle) and one im-
plicit (MicroIdle).

B Omitted Language Features

We have left some language constructs and proper-
ties out of the description. The reason was to sim-
plify the presentation, which is already full of details.
We discuss them in this section, giving some advice
how they can be incorporated into the above frame-
work. This section is not as self-contained as the
main text, but assumes some basic knowledge about
statecharts. This can be obtained from informal de-
scriptions since these features are rarely discussed in
formal definitions.

B.1 Qualified State Names

The abstract syntax used in the above description
operates on abstract objects such as states, ignoring
their identifiers (except for variables and parame-
ters). This does not reflect the full static semantics
of state names needed to implement a compiler.
State names have local scope in visualstate, so

they need not be unique. For uniqueness, qualified
names may be used. The qualified name of state s
includes dot-separated ancestor names. The name of
s is fully qualified if it starts with the root state and
ends with s. The fully qualified names are isomor-
phic to states in our presentation.

B.2 Name Spaces

State names have a name space on their own. Other
elements, such as events, variables and outputs,
share a space name because all of them exist to-
gether in the synthesized C program.

B.3 External and Internal Variables

In visualstate, variables come in two flavors: ex-
ternal and internal. External variables are visible in
user space routines. Internal variables can only be re-
ferred and modified from visualstate system space
(for instance in assignments put on transitions). The
important semantical difference is that whenever a
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Fig. 8. Simple microwave system.
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Fig. 9. Hierarchy tree (decomposition tree) for microwave oven system. Edges connect nodes representing related
states. For instance Panel

�
MicrowaveOven. Nodes with solid boundaries represent and-states, nodes with dash-

line boundaries represent or-states.
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C function is called, there is a guarantee that in-
ternal variables will remain unchanged. This mainly
aids verification of visualstate models.

B.4 Named Constants

IAR visualstate supports named constants, which
we have not modeled. They may be modeled as a
mapping from subset of identifiers to values. One
should add constants to rules using substitution.
Static correctness conditions would have to be ex-
tended too. For instance name clashes between vari-
ables and constants should be avoided.

B.5 Internal and External Events

We have not distinguished between external and in-
ternal events in our definition. The semantics of both
kinds of events is the same. The only difference
is that external events (also called events) are de-
tected in external environment while internal events
(also called signals) are only generated internally
(in actions). Events are then fed to the step with
macrostep relation (section 6.15). The microstep re-
lation (see section 6.14) starts with processing an
external event and then continues processing sig-
nals (internal events) until the queue is empty. The
next external event must be consumed by a new
macrostep.
The distinction between (external) events and

(internal) signals is mostly helpful in verification, to
limit the number of potential input events in a step.
It may also prove to be helpful in code generation,
though. The mechanism for internal event broad-
cast and reception can sometimes be transformed to
a multitarget transition, which may be implemented
more efficiently.

B.6 Event Groups

Our transitions can only contain one triggering
event. Contrary to other statechart variants, event
conjunctions are not allowed. This is because only
one event is active at a time in the system. Still the
triggering conditions are slightly more flexible than
what we presented. A disjunction of events may be
used instead of single event. This may be modeled
as syntactic sugar for several transitions. However,
implementation-wise this may prove to be an expen-
sive approach.
One can instead propose a notion of triggers of

union type (of event binding and event sets) and
make them the first component of a transition, in-
stead of the event binding. A special rule should

be provided for firing event group transitions. This
complicates the semantics on one hand, but explic-
itly represents a sharing between transitions on the
other, which definitely is an interesting implementa-
tion issue.

Disjunctions of events are called event groups in
visualstate. Transitions with event group triggers
do not have access to parameters of events.

B.7 Type System

We have already mentioned that the type system
presented above is very restricted. In reality visual-
state tools support a handful of various arithmetic
types with several precisions and void pointer types.
As for aggregations, only one-dimensional vectors
are supported. The most notable features of the ac-
tual type system is the support for void functions
(to be used as outputs on transitions), void pointers
and variable ranges.

Void pointer is the only pointer type currently
supported. Moreover there is no support for typical
pointer related operations such as dereferencing, ad-
dress taking, and type casting. Consequently point-
ers behave like plain integers. They can only be rea-
sonably used in external code. This is the reason why
we have not devoted any special attention to them.

Another important verification-oriented feature
of visualstate is ranges. A range is a restriction on
the value set of an integer variable. Ranges may be
put on variable types and on array types. In the
latter case, it means that all variable cells are sup-
posed to obey the range restriction. Ranges may sig-
nificantly decrease the state space of the model and
may thus make verification feasible.

Ranges may also become interesting in some code
generation schemes, namely those targeting typical
workstations, where there is enough environment
and resources to implemented full runtime correct-
ness checking. This is true for instance for simula-
tors, animation tools, etc.

Ranges may be implemented by extending the
type system and decorating evaluation rules with
guards on assignments. It should be stressed, how-
ever, that there is no compile-time means available
to analyze the correctness of assignments in the gen-
eral case (because expressions may call external C
functions). For this reason ranges, cannot be cur-
rently efficiently used in embedded systems oriented
code synthesizers.

22



B.8 History

There are three types of markings available: initial
marking, history marking and deep history marking.
We only defined the former two: initial and history
marking. The deep history marking may be under-
stood as syntactic sugar for a history marking on an
entire subtree of the hierarchy tree. If a deep his-
tory state is entered, not only is its default child
activated from the last saved value, but the whole
subconfiguration of its descendants is restored.
Again one could try to model deep history mark-

ings more efficiently than by using a syntactic sugar
expansion, which may result in explosion. A deep
history marking is a marking from or-states to state
configurations. For each state s the value of a mark-
ing would be a state configuration of state s. In this
case only a basic state assignment would be saved
instead of an assignment for all internal nodes of the
decomposition subtree.

B.9 Internal Reactions

Internal reactions are transitions with no targets.
They behave like self loop transitions, except that
no states are entered nor exited when the internal
rule if fired. Introducing internal reactions to the
above framework demands relaxing consistency con-
dition for transitions. A transition should be allowed
to have an empty target set (see section 4). Also an-
other rule in firing relation specific for internal re-
actions should be introduced (see section 6.11). It
would omit the exit and enter sections as internal
reactions do not modify current configuration.
Internal reactions can also be conveniently de-

scribed as syntactic sugar without excessive memory
cost. In this case no modifications in the framework
are need. Each internal reaction can be translated
to a state machine containing a single state and a
single transition, placed in a newly created or-state
(region) in the state where it belongs. The transi-
tion will safely loop over a single state without call-
ing any exit/entry rules and yet still perform the
intended transition actions.

B.10 Do-Reactions

A do-reaction (or do-invocation) is a state machine
belonging to an and-state s which is active while
the parent state is active. It differs from a typical
state machine belonging to the or-state child of an
and-state by having a special final state and a ter-
mination transition going out of the parent state.
Whenever the do-reaction enters a designated final

state the termination transition fires instantly (in
the same step).
Do-reactions can be modeled as an ordinary state

machine within an and-state. The do-reaction should
be placed in a region (or-state) of its own, preserving
all its structure, transitions etc.
Assume that there is one termination transition

and a number of transitions targeting a final state
(called finalizing transitions). We add a fresh tran-
sition for each finalizing transition, but redirect its
target to the target of the termination transition
(so it becomes a cross level transition). The new
transitions should have a firing condition which is
a conjunction of firing conditions for finalizing tran-
sition and termination transition. Similarly, the ac-
tion parts should be sequenced: first execute final-
izing transition actions, then termination transition
actions.
A problem arises if side effects of one action in-

terfere with other actions. This may be overcome by
building a small action language so we can easily in-
terleave actions of different kinds (signals, outputs,
assignments). In the current triple model, actions of
different types cannot be interleaved.
To ensure determinism we conjoin guards of all

existing finalizing transitions with the negation of
the termination transition’s firing condition.
Note that we will double the number of finalizing

transitions for each termination transition outgoing
from s. To avoid a size explosion, one could model
do-reactions explicitly, introducing final states, ter-
mination transitions and special firing rules for tran-
sitions targeting final states. However this would
complicate the execution model seriously.

B.11 Timers

There is some support for time in visualstate mod-
els. Timer is a special kind of action which starts a
timer and issues an indicated event when the timer
expires. The language provides this construct only
syntactically. A timer action actually calls a user-
provided function which should start a system timer
and issue appropriate (external) time events. Be-
cause of the implementation’s simplicity there is no
difference between timer actions and other outputs,
from a code synthesis point of view. In our frame-
work we simply translate them to outputs.

B.12 Models versus Systems

The module language distinguishes systems and
models. Systems are full visualstate specifications
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which may be composed in parallel with other (per-
haps identical) systems. Only one of the systems is
operational at a time. The user code is supposed to
call a provided API function, switching system ac-
tivity. Systems are totally isolated. There may be
no communication among them, except for a set of
common variables.
We do not define multisystem models as this is

not a statechart issue specifically. If one needs to de-
scribe a model like that, one should define it as tuple
of systems, an activity indicator, and a global vari-
able store. The store of each system is composed of
the system’s store and the global store. The switch-
ing/scheduling algorithm needs to be given in terms
of C semantics.

B.13 Partly Defined Elements

The visualstate syntax is somewhat more flexible
than the one presented above. It is syntactically le-
gal to have states with no identifiers or without a
default (history or initial) indicator. Similarly, other
elements may be only partially specified. This is a
common feature in commercial tools: the user should
be allowed to save a (possibly incomplete) model at
any stage of design.
As incomplete programs do not have reason-

able semantics, we tightened the syntax conditions,
only considering complete designs. Alternatively one
could try to give semantics of incomplete design (by
ignoring incomplete elements for instance) to facil-
itate compilation of programs at any design stage.

This may be useful for tools like simulators. A sys-
tem could be analyzed before the end of development
process.

C Terminology Survey

Numerous kinds of statecharts have been described.
We have already mentioned a survey by von
Beeck[21] listing 20 variants, and many new ver-
sions of syntax and semantics have appeared since
that survey was written, most notably UML stat-
echart diagrams and their industrial implementa-
tions. The abundance of statechart variants discour-
ages exchange of information and cooperation be-
tween various groups working on verification and im-
plementation.

Table 1 contains a brief comparison of four state-
chart versions: present definition, visualstate man-
uals, UML statechart diagrams and Harel’s original
proposal. The aim is to make visualstate state-
charts easier to understand for those readers who
are familiar with statechart techniques. For this rea-
son the survey is informal and incomplete. Also it is
not self-contained in many aspects.

All native term variants are written in italics.
Comments and descriptive names (when the term is
not defined explicitly in given variant) are written in
Roman font. If a feature is not supported we place
a dash (–), arrows are sometimes used to refer to
content of adjacent cell to indicate similarities.
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Table 1: Comparison of statechart terminology and semantics.

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]

Language, diagrams and modules

[def. 36] −→ system visualstate system
roughly corresponds
to a state diagram for
a composite complex
object

–

– model model is a very broad
term referring to the
whole object-oriented de-
sign, encompassing many
diagrams of various types

–

visualstate statechart or
statechart

statechart diagram (state
diagram in older releases
of visualstate)

statechart diagram statechart

States and Hierarchy

[p. 3] state state or region state or subregion state or component

[p. 4] basic state or child-
less and-state

simple state simple state A simple state not partic-
ipating in any abstraction
or refinement

[p. 4] and-state having
children

state composite state result of and-decomposi-
tion of its children

[p. 4] or-states region a subregion, a special
type of composite state

result of xor-decomposi-
tion of its children

[def. 8] orthogonal states concurrent states concurrent states orthogonal states or com-
ponents

[def. 1] root topstate a toplevel state ←−

– final state see termina-
tion transition

final state see completion
transition

–

– – synch pseudostate is used
with concurrent transi-
tions

there is some notation for
transitions with common
target which contains a
pseudostate in the mid-
dle, but the semantics is
unclear

– – – overlapping states

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]
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Table 1: Comparison of statechart terminology and semantics.

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]

Default states indication

[def. 20] The initial
marking is not a state.
No transitions incoming
and none outgoing. May
not coexist with a history
marking but this can be
overcome using explicit
targets in transition.

an initial state is the
state marked with some
kind of initial indicator.
It corresponds to the tar-
get of initial transition in
UML. Initial state is a
value of initial marking
function from this paper.

an initial pseudostate
may have many transi-
tions incoming and one
outgoing. The outgoing
transition may have an
action assigned

default state is what
visualstate calls an ini-
tial state. The pseu-
dostate is also present as
in UML with similar se-
mantics, but it is not
named

[def. 21] history marking
is not a state. No transi-
tions incoming and none
outgoing. May not coex-
ist with initial marking
in the same state, but
this can be overcome by
using explicit targets in
transitions.

A history state is the
state marked with a his-
tory indicator. It corre-
sponds to the first value
of the history state indi-
cator in UML.

history state indicator
can have many transi-
tions incoming and one
outgoing

history of the state has
semantics which is even
more general than UML.
For instance it is possible
to go back as many steps
in history as needed. His-
tory may be reset to ini-
tial value by special kind
of action.

[app. B.8] deep history
marking (comments as
above)

A deep history state is a
state indicated with deep
history sign. (comments
as above)

deep history indicator see
above for comments

deep history is available
but has no special name
(denoted by H

∗). Com-
ments as above.

– – – Condition entry to the
state

– – – Selection entry to the
state

Transitions

[def. 32] multitarget tran-
sition

transition A simple transition or
fork transition. Some
visualstate transitions
do not have related
terms in UML (those
activating targets in
components orthogonal
to transition source)

transition but more re-
stricted than in visual-
state. See UML column.
←−

[def. 32] −→ A special case of transi-
tion

simple transition ←−

[def. 32] −→ see below concurrent transition is
either a join transition or
fork transition – see be-
low

see below

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]
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Table 1: Comparison of statechart terminology and semantics.

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]

−→ No direct support for
joins but they can be eas-
ily described as syntactic
sugar

synchronization transi-
tion or join transition
is a special case of
concurrent transition

limited notational sup-
port for transitions with
common target. The
semantics is unclear
though.

[def. 32]−→ A special case of transi-
tion

fork transition is a spe-
cial case of concurrent
transition

split transitions or splits

– the notion of initial tran-
sition exists but the tran-
sition has no labels

initial transition is the
transition outgoing from
initial pseudostate

the transition is present
but has no special name

– termination transition is
an unlabeled transition
firing when the activ-
ity enclosed in its source
state reaches the final
state

completion transition is
an unlabeled transition
firing when state ma-
chine enclosed in its
source reaches final state

there seems to be no spe-
cial construct and name
for completion transi-
tion, but similar behav-
ior may be achieved with
conditions detecting end
of activity and normal
transitions

Events

[p. 3, sec. 3.11] −→ event event Arbitrary condition may
cause a transition to fire

[sec. 3.11] −→ event (also external
event) is a simple tag
with several parameters

Various kinds of events
occurring when a condi-
tion is true or transition
fires or state is entered
etc. Still only one event
can be processed at a
time (as in visualstate)

←−

[def. 30, app. B.5] −→ signal or internal event
conveys a message from
one part of the system to
another (there are no ob-
jects)

signal conveys a message
from one object to an-
other object

broadcast

[app. B.6] event disjunc-
tion

event group not precisely formulated
but may be allowed
depending on language
used for expressing
guards

arbitrary combinations
of events are allowed in
guard conditions

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]
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Table 1: Comparison of statechart terminology and semantics.

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]

Actions

[sec. 3.12] −→ action action or action expres-
sion

action

[sec. 3.9] output or action
function

action function (output
in older releases of visual-
state)

special case of action or
action expression

special case of action

[app. B.10] −→ do reactions do activities activities

Steps

[sec. 6.15] −→ macrostep executes until
there are no more events
in the signal queue

run-to-completion se-
mantics is a different
approach to event
processing. It roughly
corresponds to maintain-
ing a stack of signals
instead of FIFO queue

semantics is unclear;
formalization has been
attempted many times
since then

This Paper visualstate [11, 12] OMG UML Spec.[19] D.Harel[5]
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