
Java run-time data storage

Sebastian Mateos Nicolajsen and Peter Sestoft
Computer Science Department, IT University of Copenhagen, Denmark

Version 1.0 of 26 January 2023

Abstract

We use simple drawings, snapshots of the computer memory, to show
how data in Java are stored at run-time. The purpose is to make it
clear how Java assignment, arrays, object creation, subclasses, conver-
sions, casts, method calls, garbage collection, and so on work; in other
words, what does a Java program do when it is run.

Such drawings are intended to be used both by educators to describe
what Java’s language constructs mean, and by students to hand in solu-
tions to exercises about the meaning of Java programs.

An appendix shows how the descriptions apply to the C# language,
with the necessary changes compared to Java.

1 Plan for this document

We start out with simple cases, such as primitive values of integer and floating-
point types, then simple uses of strings, arrays and objects, later add more
complex and subtle features of Java, and how they interact. We draw perfor-
mance lessons, about both time and memory consumption from these. Hence
these notes should be usable and of interest to students from the first semester
right through graduation, and also to Java developers. Thus, these notes may
be used for students wanting an overview of the way in which Java stores data
as an example of a programming language implementation. The intention is
not to give a complete description of how Java is implemented, or how the Java
virtual machine works, but to give just enough details to understand how the
Java programming language works: what is the effect and meaning of each Java
language construct, what is its time and memory consumption. Thus, we re-
duce the Java memory model to be the stack(s) and heap — excluding other
components such as the method area. We encourage curious and experienced
individuals to further explore the components which we do not detail here.

In the rest of the document we discuss one aspect of Java on each page,
using a Java program fragment and a drawing of the computer memory after
executing that fragment.

We encourage the use of the “Python tutor” tool (or similar) to experiment
with the various examples. We also intend to use the Java mode of the online

1

“Python tutor” tool (or similar) to permit interactive experimentation with
these program fragments; a future version of this document may contain direct
links to such examples.

Advanced Aspect. Most of the description of Java is valid for the C# pro-
gramming language also, but with some variations and further aspects; see
Appendix A.

DISCLAIMER for this version: The Java code may contain mistakes.

2 The stack and the heap

The Java run-time memory holds the values of variables, parameters, object
fields and the like during a Java program’s execution. The run-time memory is
divided into the stack and the heap. The stack stores the values of local variables
and parameters of all currently executing method calls. The heap stores all
objects (that is, instances of classes) including all the objects’ fields. Note
that strings, arrays, collections, file handles, closures of anonymous functions
(lambdas) and so on are also objects, and therefore stored in the heap.

Both the stack and the heap are stored in the computer’s RAM, or random
access memory.

A variable in the stack may refer to a value (which is an object) in the
heap. This is shown by an arrow that points from the stack to the value in the
heap. Likewise, an array element or an object field in the heap may refer to
a value in the heap, similarly shown by an arrow that points from inside the
array or object to a value in the heap. There are never references (arrows) from
the heap to the stack, and never references (arrows) that point to something
inside a value (object, string, array, lambda closure, . . .) in the heap, only to
the value as a whole. Here we show a snapshot of a stack with a single frame
containing parameter args and variable s, and a heap containing an array of
strings, referred to by args, and two strings "Alice" and "Bob", referred to
from the array elements and from the variable s:

Heap

args

s

Stack

: String[]

: String “Alice”

: String “Bob”

m
ai

n

0 1

Each object in the heap has a header describing the value’s run-time type,
followed by the value’s contents. For strings and arrays we draw the header and
contents on the same line; for other objects we draw the object’s fields below
the header:

2

HeapStack

: String “Junjun”

… ….

: int[] 7 9 13

0 1 2

: Person
Name

String

Array

Object

(Nothing here)

Advanced Aspect. The stack is divided into frames. When a method call
m(...) is executed, a new frame is added to the top of the stack to hold
the values of the variables and parameters of method m. When the method
call returns, the top frame is removed from the stack, and those variables and
parameters are no longer in the stack. Until Section 3.15 we will consider only
stacks with a single frame, namely the frame holding the mainmethod’s variables
and parameters.

Advanced Aspect. The run-time type in an object’s header is used during
Java program execution in virtual method calls (Section 3.19), reference-type
casts (Section 3.12), unboxing operations (Section 3.13), array element assign-
ments (Section 3.8), exception catching (Section 3.22) and during garbage col-
lection (Section 3.25).

Advanced Aspect. In a multi-threaded Java program, there is a separate stack
for each executing thread but there is only one heap, shared between all threads.
Until Section 3.26 we will consider only programs with a single thread, namely
the initial thread that calls the main method. In a multi-threaded program,
threads can communicate and collaborate with each other only through reading
and writing data in the shared heap.

2.1 Value types and reference types

A value type in Java is a primitive type, such as an integer type, floating-
point type, or boolean. Variables of value type are stored directly in the stack.
Likewise, array elements and object fields of value type are stored directly inside
the array or object (which is stored in the heap).

A reference type in Java is String, an array type, a class, an interface, or
a generic parameter T as in Set<T>. A variable of reference type is either
null and refers to nothing, or is non-null and refers to an object stored in the
heap. Hence, the stack cannot actually contain a reference-type value; instead
it contains a reference to the reference-type value, which is in the heap.

Advanced Aspect. C# has additional value types, namely structs and tuples;
see Appendix A.

3

3 Java features and resulting data storage

We always show the stack on the left and the heap on the right. Each object
in the heap is shown as a box with the object’s run-time type first, followed
by the object’s contents. The run-time type may be String, String[], Person,
Person[], and the like. The object’s contents is the characters of the string, the
elements of the array, the instance fields of the object, and so on.

3.1 Primitive types

Primitive value types include the integer number types such as int and long,
the floating-point types float and double, the truth-value type boolean, and
the character type char. Values of variables of these types are stored directly
in the stack, and assignment such as x = i13 will copy the values:

1 int i13 = 13;

2 long l13 = 13;

3 float f13 = 13.0;

4 double d13 = 13.0;

5 boolean b = true;

6 char c = ’U’;

7 int x = i13;

Running the above Java code produces the following stack and heap contents:

HeapStack

13

13.0

13

i13

x 13

l13

13.0d13

f13

true

‘u’

b

c

(Nothing here)

4

3.2 Strings

The String type is a reference type, so a string value is stored in the heap.
A string value consist of the type String, followed by the characters of the
string. A variable of type String in the stack refers to a String object in the
heap. Assignment of a string value to a variable of type String copies only the
reference, not the string value. A string value is immutable (that is, cannot be
updated), so evaluation of an expression of type String typically creates a new
string object in the heap.

Advanced Aspect. While the String type is a reference type, one can utilise
the String Constant Pool of Java, a particular area of the heap, to allow com-
parison and reuse of identical strings. Literals are automatically stored here,
and generated strings can be stored using the method intern.

1 String s = "IT University";

2 String t = s;

3 String itu = s + " of Copenhagen";

4 char c = itu.charAt (3);

Running the above Java code produces the following stack and heap contents:

Heap

s

t

itu

c

Stack

: String “IT University”

: String “IT University of Copenhagen”

m
ai

n

‘u’

5

3.3 Arrays of primitive type

Every array type is a reference type, so an array value is stored in the heap. An
array value consists of a header describing the array’s run-time type, followed
by the array’s elements, with indexes 0, 1, 2, A variable of array type
contains a reference to the array value in the heap. Assignment of an array
value to a variable of array type copies only the reference, not the array value.
The elements of an array are mutable (that is, can be updated). Assignment
arr[1] = 42 to an array element changes only that array element; it does not
create a new array value.

When the array elements are of primitive type, such as int, the values are
stored directly inside the array elements.

1 int[] arr = new int[] { 7, 9, 13 };

2 int[] another = arr;

3 arr [1] = 42;

4 boolean [] prime =

5 new boolean [] { false , false , true , true , false , true , false ,

true};

6 int x = another [1];

Running the above Java code produces the following stack and heap contents:

Heap

arr

another

prime

x

Stack

42

: int[] 7 42 9 13

0 1 2

: boolean[] F F T T F T F T

0 1 2 3 4 5 6 7

6

3.4 Arrays of strings

An array of strings has type String[], which is a reference type like all other
array types. Since String is a reference type, assignment names[1] = s to an
array element just copies the reference to the string value s, it does not copy
the string value.

When the array elements are of reference type, such as String, only a refer-
ence to the value is stored in each array element, and all array elements initially
hold the value null.

1 String s = "IT University";

2 String [] names = new String [4];

3 names [0] = s;

4 names [1] = s;

5 names [3] = s + " of Copenhagen";

Running the above Java code produces the following stack and heap contents:

Heap

s

names

Stack

: String “IT University”

: String[]

0 1 2 3

null

: String “IT University of Copenhagen”

7

3.5 Classes and objects

An object is a value; it is an instance of a class, created with new, it is a reference
type, and is stored in the heap. An object consists of a header describing the
object’s run-time type, followed by the object’s instance fields. A variable of
class or interface type contains a reference to an object in the heap, or is null.
Assignment of an object value to a variable of class or interface type copies only
the reference, not the object. The fields of an object are mutable (that is, can
be updated), unless declared final. Assignment phd2.name = "Max" to a field
of an object changes only that field; it does not create a new object.

When a field of an object has reference type, such as String, the field stores
only a reference to its value, not a copy of the value.

Inside an object’s instance methods and constructors, the keyword this is
a reference to the object itself. It is never null.

1 class Person {

2 public String name;

3 public Person(String name) { this.name = name; }

4 }

5 Person phd1 = new Person("Nina");

6 Person phd2 = new Person("Junjun");

7 Person postdoc = phd1;

8 phd2.name = "Max";

Running the above Java code produces the following stack and heap contents:

Heap

phd1

phd2

postdoc

Stack

: Person
Name

: Person
Name

: String “Nina”

: String “Junjun”

: String “Max”

8

3.6 Subclasses and objects

An object of a subclass is an instance of a class that is a subclass of another
class. An object value consists of a header describing the object’s run-time type,
which is the subclass, followed by the object’s instance fields; these are all the
instance fields of the base class, and possibly more. A reference to an instance
of a subclass can be assigned to a variable whose type is that subclass, or any
base class or base interface.

Continuation of the example in Section 3.5:

1 class Student extends Person {

2 public int id;

3 public Student(String name , int id) { super(name); this.id =

id; }

4 }

5 Student stu1 = new Student("Aline", 20220014);

6 Student stu2 = new Student("Brian", 20220017);

7 Person phd3 = stu1;

Running the above Java code produces the following stack and heap contents:

Heap

stu1

stu2

phd3

Stack

: String “Aline”

: String “Brian”

: Student
Name

id 20220014

: Student
Name

id 20220017

9

3.7 Subclasses and arrays of objects

An array of Person objects has run-time type Person[]. Each element must
contain a reference to an object whose run-time type is Person or one of its
subclasses, or contain null. Since Student is a subclass of Person, an array of
Person objects can contain a reference to a Student object.

Continuation of the examples in Sections 3.5 and 3.6:

1 Person [] persons = new Person [] { phd1 , stu1 , stu2 }

2 Student [] students = new Student [] { stu1 , stu2 };

Running the above Java code produces the following stack and heap contents:

Heap

stu1

stu2

phd1

students

persons

Stack

: String “Aline”

: String “Brian”

: String “Nina”

: Student
Name

id 20220014

: Student
Name

id 20220017

: Person
Name

: Person[]

0 1 2

: Student[]

0 1

10

3.8 Advanced Aspect: Array type covariance and array
element assignment

Since Student is a subclass of Person, also the array type Student[] is consid-
ered a subtype of the array type Person[], so the assignment alsoStudents =

students is allowed. This is called array type covariance.
Due to array type covariance, each assignment to an element of an ar-

ray of reference type must check that the run-time type of object to be as-
signed is a subtype of the array’s run-time element type. These run-time
types are found in the array header and the object header. The assignment
alsoPersons[0] = stu1 is allowed because the run-time type of the array
referred to by alsoPersons is Student[], and the run-time type of stu1 is
Student. On the other hand, the assignment alsoPersons[0] = phd1 would
throw an exception at run-time because the run-time type of the value of phd1
is Person, which is not a subtype of Student, the run-time element type of
alsoPersons. The compiler does not discover this, because the compile-time
type of alsoPersons is Person[] and so it believes that the assignment is legal.

Continuation of the examples in Sections 3.5, 3.6 and 3.7:

1 Person [] alsoStudents = students;

2 alsoStudents [0] = stu1; // Compiles OK; works at run -

time

3 // alsoStudents [0] = phd1; // Compiles OK; throws at run -

time

Running the above Java code produces the following stack and heap contents:

Heap

stu1

stu2

phd1

students

alsoStudents

persons

Stack

: String “Aline”

: String “Brian”

: String “Nina”

: Student
Name

id 20220014

: Student
Name

id 20220017

: Person
Name

: Person[]

0 1 2

: Student[]

0 1

11

3.9 Static fields in classes

An object instance of a class holds only the class’s instance fields — those fields
not declared static. In the heap there will be as many copies of each instance
fields as there are objects of the class, but there will be exactly one copy of
each static field, stored in a special object that represents the class at run-time.
Below, three objects of class Car are created, each with a distinct value of the
id instance field. But even before the first object is created, an automatically
created object holds the single copy of the static field nextId.

Advanced Aspect. While the class definition and static fields of a class are
stored on the heap, it is so in a particular area named the class(method) area.

1 class Car {

2 public static int nextId = 1000;

3 public int id;

4 public Car() {

5 this.id = nextId;

6 nextId = nextId + 1;

7 }

8 }

9 Student Car car1 = new Car(), car2 = new Car(), car3 = new Car()

;

10 int car3Id = car3.id;

11 int next = Car.nextId;

Running the above Java code produces the following stack and heap contents:

Heap

car1

car2

car3

next

car3Id 1002

1003

Stack

: class Car

nextId 1003

: Car

id 1000

: Car

id 1001

: Car

id 1002

12

3.10 Primitive-type conversions and casts

A conversion of a primitive type value to another primitive type, for instance
of integer 13 to a float, typically produces a new bit pattern to represent the
value. Primitive type conversions may be narrowing (and possibly change the
value), or widening (and preserve the value), or may be lossy (and preserve the
value but cause some loss of precision); see [JP, §5.7]. A narrowing conversion
must be written with an explicit cast such as (int)13.7, which truncates the
floating-point number 13.7 to the integer 13.

Section 3.12 describes reference type casts such as (Student)r which look
exactly like primitive-type conversions, but never change the reference r. Sec-
tion 3.13 describes unboxing and boxing such as (Integer)i13 which look ex-
actly the same, but convert between primitive values and objects.

The primitive types that can be converted to each other are char, byte,
short, int, long, float and double; there is no conversion to or from boolean.

1 int i13 = 13;

2 long l13 = i13; // Widening conv., result 13

3 float f13 = i13; // Lossy conv., result 13.0 (no actual

loss)

4 double d13 = i13; // Widening conv., result 13.0

Running the above Java code produces the stack contents below (and an

empty heap). We use the actual bit patterns to show that the number 13 is rep-
resented in four different ways: integer versus floating-point, and 32-bit (int,
float) versus 64-bit (long, double). See [CA] and [DG] for more information
about computer number representations.

Heap

i13

l13

f13

d13

00000000 00000000 00000000 00001101

Stack
(Nothing here)

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00001101

0 10000010 10100000000000000000000

0 10000000010 101000000000000000000
0000000000000000000000000000000

Here is an example showing a conversion (to float) that loses precision, and
one that does not:

1 float f = 1000111222; // Lossy , f is 1.00011123 E9 = 1000111230

2 double d = 1000111222; // Widening , d is 1.000111222 E9 =

1000111222

13

3.11 Instance-of tests

An instance-of test has the form (r instanceof C) where C is a class or in-
terface and r has reference type. It evaluates to true if r is non-null and its
run-time type, found in the object header in the heap, is C or a subtype of C.
Otherwise the test returns false; in particular if r is null.

1 interface INamed { String getName (); }

2 interface INumbered { int getId(); }

3 interface INamedNumbered extends INamed , INumbered { }

4 class Person implements INamed {

5 public String name;

6 public Person(String name) { this.name = name; }

7 public String getName () { return name; }

8 }

9 class Student extends Person implements INamedNumbered {

10 public int id;

11 public Student(String name , int id) { super(name); this.id =

id; }

12 public int getId () { return id; }

13 }

14 Object p = new Person("Nina"), s = new Student("Brian",

20220017);

The class and interface declarations above create the subtype relations shown on
the right below. Running the Java code produces the stack and heap contents
shown on the left below; note that variables p and s of compile-time type Object
point to values with run-time type Person and Student.

Heap Subtype hierarchy

p

s

Stack

: String “Nina”

: String “Brian”

: Person
Name

: Student
Name

id 20220017

Object

INamed INumbered

Person INamedNumber

Student

The following instance-of tests would all return true: (p instanceof Person)

and (s instanceof Student) and (s instanceof Person) and (p instanceof

INamed) and (s instanceof INamed) and (s instanceof INumbered) and
(s instanceof INamedNumbered) and (p instanceof Object) and (s instanceof

Object). The following instance-of tests would all return false: (null instanceof

Object) (p instanceof Student) and (p instanceof INamedNumbered) and
(p instanceof INumbered).

14

3.12 Reference-type casts

A reference-type cast has the form (C)r where C is a class or interface and r

has reference type. The cast succeeds if r is null, or if r is non-null and its
run-time type, found in the object header in the heap, is C or a subtype of C.
Otherwise the cast fails by throwing a CastClassException. In fact, the cast
(C)r will succeed if the test (r instanceof C) returns true or r is null; and
will fail if the test (r instanceof C) returns false and r is not null.

A reference-type cast is a pure check: the run-time result of the expres-
sion is always r itself; unlike primitive-type conversions and boxing/unboxing
operations it does not change any data.

Using the interface, class and variable declarations shown in Section 3.11,
the following reference-type casts would succeed:

• (Person)p

• (Student)s

• (Person)s

• (INamed)p

• (INamed)s

• (INumbered)s

• (INamedNumbered)s

• (Object)p

• (Object)s

• (Person)null and all other reference-type casts of null

The following casts would fail, throwing ClassCastException:

• (Student)p

• (INamedNumbered)p

• (INumbered)p

15

3.13 Boxing and unboxing

Sometimes a primitive type value needs to be represented as an object in the
heap. For instance, to store an int value in a collection Set<Integer>, it must
be wrapped as an object of class Integer. There exist such a wrapper class
(Boolean, Float, Double and so on) for each primitive type.

The conversion from primitive type to object is called boxing, and the op-
posite conversion is called unboxing. Boxing and unboxing are performed au-
tomatically when needed. Boxing and unboxing may also be performed explic-
itly using operations such as Integer.valueOf(i) to box the integer i, and
o.intValue() or the cast (int)o to unbox the Integer object o. If o is null,
then unboxing of o will fail at run-time by throwing NullPointerException.

Boxing requires creating a new object on the heap and then copying the value
into a field of that object. Creating an object takes time, so avoid unnecessary
boxing if performance is important. The for loop below would be 8 times faster
if sumo and j had been declared as primitive type int instead.

Unboxing requires checking the run-time type of the object, and then copying
the value out of the object; both are relatively fast operations.

1 int i13 = 13;

2 Integer io = i13;

3 int a = io.intValue ();

4 int b = (int)io;

5 Object o = i13;

6 int c = (int)o;

7 Integer sumo = 0;

8 for (Integer j=1000; j <100000; j++)

9 sumo += j;

Running the above Java code produces the following stack and heap contents:

Heap

13i13

io

13

13

a

b

o

c 13

sumo

j

Stack

: Integer

value 13

: Integer

value 13

: Integer

value 704483204

: Integer

value 100000

16

3.14 Closure of an anonymous function (lambda)

An anonymous function, or lambda expression, is an expression that evaluates
to a so-called object. The body of a lambda may mention variables, such as i13
or arr, that are defined outside the lambda; these are called captured variables.
Any captured variable must be effectively final: it must not be updated neither
outside nor inside the lambda.

The lambda expression evaluates to a closure object, whose fields hold copies
of the values that the captured variables had when the lambda was created.
Since the captured variables are effectively final, these values remain the same
as those of the original variables.

Advanced Aspect. If you need the body of a lambda to update a variable, say
variable x of type int, then declare instead a variable final int[] xholder =

new int[1] outside the anonymous function, and everywhere use xholder[0]

instead of x. The variable xholder on the stack will be effectively final, but the
array element xholder[0] in the heap can still be updated.

1 int i13 = 13;

2 int[] arr = new int[] { 7, 9, 13 };

3 Function <Integer ,Integer > f =

4 x -> { arr [2] = arr[2] + 10; return x + i13 + arr [2]; };

5 int r = f.apply (20);

6 // Now arr [2] is 23, and r is 20 + 13 + 23 = 56

Running the above Java code produces the following stack and heap contents:

Heap

13i13

arr

56

f

r

Stack

: Lambda17

i13

arr

13

: int[] 7 9 13

0 1 2

17

3.15 Static methods and parameter passing

A call m(x+1, y, z[0]) to a static method int m(int a, int[] b, int c)

creates a new stack frame for holding the method’s parameters a, b and c,
evaluates the three argument expressions x+1, y and z[0] to values v1, v2 and v3,
and then assigns the resulting values to the parameters, exactly as if assignments
a = v1 etc had been executed. That is, a parameter of primitive type is assigned
a copy of the value of the argument, whereas a parameter of reference type is
assigned a reference to the value of the argument.

Advanced Aspect. Thus Java always uses call-by-value, since a method pa-
rameter will either receive a copy of a primitive value or a copy of a memory
reference to some object in the heap. By contrast, C# also has call-by-reference;
see Appendix A.

1 static int m(int a, int[] b, int c) { b[1] = a + 2 + c; return b

[0]; }

2 int x = 10;

3 int[] y = new int[] { 21, 22 };

4 int[] z = new int[] { 30 };

5 int r = m(x+1, y, z[0]);

6 // Now y[1] is (10+1) + 2 + 30 = 43, and r is 21

Running the above Java code produces the following stack and heap contents:

Heap

10x

y

21

z

r

11a

b

30c

m
ai

n

Stack

: int[] 21 43 22

0 1

: int[] 30

0

18

3.16 Recursive method calls

A method that may directly or indirectly call itself is recursive. When a method
calls itself there will be multiple frames on the stack, each corresponding to a
different call to the method.

The static method int fac(int n) below computes the factorial n! = 1 · 2 ·
. . . · (n− 2) · (n− 1) · n of its argument n. The base case is n = 0, for which the
result is 1. The inductive case, where n ̸= 0, is computed as (n− 1)! · n.

When the Java code is executed, the initial call fac(3) will lead to a recursive
call fac(2), which will lead to a recursive call fac(1), which will lead to a
recursive call fac(0), which will return 1 without any further calls.

1 static int fac(int n) {

2 int r = n==0 ? 1 : fac(n-1) * n;

3 return r;

4 }

5 int arg = 3;

6 int res = fac(arg);

Running the above Java code produces this stack and heap contents, where we
show the stack right before the last call to fac returns 1. At this point there
are five frames on the stack, one for main and four for fac, corresponding to n

being 3, 2, 1 and 0:

Heap

3arg

r

3n

r

m
ai
n

fa
c

2n

rfa
c

Stack

(Nothing here)

1n

rfa
c

0n
1rfa

c

19

3.17 Instance methods and the this reference

A call seat.card(p) to an instance method card(String name) creates a new
stack frame for holding the method’s parameter name, evaluates the argument
expression, and assigns the resulting values to the parameters, using call-by-
value exactly as for a static method (Section 3.15). In addition, an implicit
parameter this points to the object on which the instance method was called,
here the object referred to by seat. This object is often called the receiver of
the method call.

1 class Seat {

2 int row;

3 public Seat(int row) { this.row = row; }

4 String card(String name) { return name + " at " + row; }

5 }

6 Seat seat = new Seat (22);

7 String passenger = "Alice";

8 String r = seat.card(passenger);

Running the above Java code produces the following stack and heap contents:

Heap

seat

passenger

r

this

name

Stack

: String “Alice”

: String “Alice at row 22”

: Seat

row 22

m
ai

n

20

3.18 Inner classes and multiple this references

If class Seat is declared inside another class Flight and is not static, then it
is an inner class, and every object instance of Seat will contain a reference to
some instance of the enclosing class Flight. An instance method card in Seat
can refer to fields of both the Seat object and the Flight object. For this to
work, the stack frame for card will contain two this references, one for the
Seat instance, called this, and one for the Flight instance, called Flight.this.

If class Seat were declared static inside class Flight, it would not be an inner
class but a nested class, and Seat instances would not contain a reference to a
Flight instance.

Advanced Aspect. The C# language does not have inner classes, only nested
classes; see Appendix A.

1 class Flight {

2 int no;

3 public Flight(int no} { this.no = no; }

4 class Seat {

5 int row;

6 public Seat(int row) { this.row = row; }

7 String card(String name) { return name + " at " + row + "

on " + no; }

8 }

9 }

10 Flight flight1 = new Flight (714);

11 Seat seat = flight1.new Seat (22);

12 String passenger = "Alice";

13 String r = seat.card(passenger);

Running the above Java code produces the following stack and heap contents:

Heap

flight1

seat

passenger

r

flight.this

this

name

Stack

: String “Alice”

: Flight

no 714
: Seat
Flight.this

row 22

m
ai

n
ca

rd

: String “Alice at row 22 on 714”

21

3.19 Virtual method calls and the run-time object type

In Java, every non-private instance method is virtual. This means that in a
call p2.show() to the method, the run-time type of the value referred to by p2,
that is the receiver object, determines which override of method show is called.
A static method is non-virtual because it has no receiver object (this), and
private method is non-virtual because it cannot be overridden.

Let us continue with example classes Person and Student from Section 3.6,
but add an instance method show to Person and override it in subclass Student.
We then call p1.show() and p2.show(), where both p1 and p2 have compile-
time type Person, but the run-time types of the values they refer to differ (Person
and Student) and that determines which show method is called in each case:

1 class Person {

2 ... as before

3 String show() { return name; }

4 }

5 class Student extends Person {

6 ... as before

7 String show() { return name + " has id " + id; }

8 }

9 Person p1 = new Person("Nina");

10 Person p2 = new Student("Aline", 20220014);

11 String r1 = p1.show(); // Will call Person ’s show method

12 String r2 = p2.show(); // Will call Student ’s show method

Running the above Java code produces the following stack and heap contents:

Heap

p1

p2

r1

r2

Stack

: Person

name

m
ai

n

: String “Nina”

: String “Alice”

: String “Nina”

: String “Alice with id 20220014”

: Student
Name

id 20220014

22

3.20 Representing a tree structure with objects

Objects are very useful for representing tree-structured data. Tree-structured
data are found everywhere, in text documents (chapters, sections, paragraphs,
sentences), JSON documents, XML documents, organization charts, abstract
syntax of expressions and programs, and much more. Class Tree below can be
used to represent trees where there is an integer in each tree node, and possibly
a left and a right subtree; if a subtree field is null, then there is no subtree.

Method count computes the number of nodes in the tree; see Section 3.21.
The code below builds builds the 5-node tree informally shown in the lower right
corner of the figure at the bottom.

1 class Tree {

2 public int item;

3 public Tree left , right; // Tree node’s subtrees

4 public Tree(int item) { this.item = item; }

5 public int count () {

6 int r = 1 + (left==null ? 0 : left.count())

7 + (right ==null ? 0 : right.count());

8 return r;

9 }

10 }

11 Tree t0 = new Tree (40), t1 = new Tree (30), t2 = new Tree (50),

12 t11 = new Tree (10), t12 = new Tree (20);

13 t0.left = t1; t0.right = t2; t1.left = t11; t2.right = t12;

Running the above Java code produces the following stack and heap contents:

Heap

to

t1

t2

t11

t12

5c

Stack

: Tree

left

right

item 30

: Tree

left

right

item 40

: Tree

left

right

item 10

: Tree

left

right

item 20

: Tree

left

right

item 50

40

5030

10 20

23

3.21 Recursive methods on tree structures

Method count from the example in Section 3.20 computes the number of nodes
in a given tree. The method is recursive, so during the computation of t0.count()
the stack will hold multiple frames corresponding to different calls to count.

1 res = t0.count ();

Below we show the stack and head contents at the point where main has called
count on t0, which has called count on t0.left, which has called count on
t0.left.left, which has computed r = 1 and is ready to return.

co
un

t

r

Heap

30

: Tree

: Tree

co
un

t

left

item

left

item

r

right

1

m
ai

n

right

item

res

10

: Tree

right

co
un

t

this

this

left

this

40

to

item

r

: Tree

left

20

right

: Tree

right

left

item

Stack

50

Later, there will be frames corresponding to calling count on t0.left.right

and then t0.right; when all those calls are finished, res in the frame for
main will contain 5, the number of Tree nodes. The total sequence of stacks is
summarized below from left to right; the stack marked (*) is that shown above.
The heap is unchanged throughout.

main main

count
to

count
to

count
to, left

count
to

count
to, left

count
to, left

count
to

count
to, left, left

count
to, left, right

main main mainmain main mainmain

count
to, left

count
to, right

count
to

count
to

count
to

(*)

24

3.22 Throwing and catching exceptions

25

3.23 Cyclic references in the heap

The heap may contain reference cycles. This can be useful and is often unprob-
lematic; Java certainly has no problem handling such cycles.

This is a continuation of the example in Section 3.20, using the same class
Tree, but now intentionally creating a cyclic structure:

1 Tree t = new Tree (8);

2 t.left = t;

Running the above Java code produces the following stack and heap contents:

Heap

t

Stack

: Tree

left

right

item 8

The Tree object pointed to by t has itself as a left child, since t.left == t. One
may think of this data structure as representing an infinite tree, or one might
think that the data structure is ill-formed. Certainly, an attempt to compute
t.count() would not terminate with a result; see Section 3.24.

Section 3.25 described how the garbage collector will remove heap objects
that are not live, that is, not reachable from the stack. Since variable t refers to
the Tree object above, it is live and hence will not be removed by the garbage
collector. But if we make an assignment such as t = new Tree(0) or t = null

so that there is no longer anything in the stack that refers to the old Tree object,
it will be dead and can be garbage collected — despite there being a reference to
that Tree object (from itself). Java’s garbage collector handles cyclic references
without problems, as does C#’s.

26

3.24 Infinite recursion on cyclic data

One reason to avoid cyclic data (Section 3.23) is that they may cause otherwise
sensible and well-defined recursive functions such as count from Section 3.20
to go into an infinite recursion and cause a StackOverflowError exception at
run-time.

This will happen if we attempt to compute t.count() with t as defined in
Section 3.23:

1 Tree t = new Tree (8);

2 t.left = t;

3 res = t.count ();

Running the above Java code will attempt to create a stack containing an infinite
number of frames, corresponding to infinitely many recursive calls to count.
This is because each call to count on t will find that t.left is not null, and
will try to recursively compute t.left.count(), but t.left equals t, so this
would go on forever. In practice, the stack has no space for more stack frames,
and the program execution will fail with a StackOverflowError:

HeapStack

: Tree

left

right

item 8

t

res

this

res

this

res

this

resco
un

t
co

un
t
m

ai
n

co
un

t

this

resco
un

t

this

resco
un

t

...

27

3.25 Garbage collection of unreachable objects

An object in the heap is live if there is a chain of references that leads from a
stack frame to the object, possibly through other objects in the heap. An object
that is live can be reached and used by the running Java program and therefore
needs to remain in the heap. An object that is not live can be removed by the
garbage collector, so that the heap memory previously occupied by the object
can be reused for new objects.

The example in Section 3.5 showed how the string "Junjun" was allocated
(and was initially live because reachable via phd2.name) but is not longer live
after the assignment of a new value to phd2.name. Therefore that string object
can be removed by the garbage collector; this will typically happen with some
delay, when the Java system needs space for new objects. Sections 4.1 and 4.3
contain further examples of garbage collection.

This example uses class Person from Section 3.5:

1 static String m(Person p) {

2 String s = p.name + " Hansen";

3 p.name = "Dr " + p.name;

4 return p.name + " Olsen";

5 }

6 Person p = new Person("Kim");

7 String q = m(p);

Method m(p) creates three new string objects, all live at the point right before
the call m(p) returns, but the string formerly pointed to by p.name is not:

Heap

p

q

Stack

: Person
Name : String “Dr Kim”

: String “Kim Hansen”

: String “Dr Kim Olsen”

: String “Kim”

m
ai

n
m

s

return

After the call has returned and q = m(p) has been performed, two of the new
strings are live, reachable as p.name and q.name, but since variable s has been
removed, the string it pointed to is no longer live and can be removed by the
garbage collector:

28

Heap

p

q

Stack

: Person
Name : String “Dr Kim”

: String “Kim Hansen”

: String “Dr Kim Olsen”

: String “Kim”
m

ai
n

29

3.26 Multiple threads and multiple stacks

A thread is a sequential activity that may run concurrently with (that is, at the
same time as) other threads. Each thread has its own stack for method calls,
but all threads share the same heap. When a Java program starts, there is a
single thread, the one that calls the main method.

The code below declares a class Counter for holding a long integer counter,
it creates an instance of the counter, and creates a new thread from the lambda
bound to the incrementer lambda. The closure for this lambda will hold a
reference to the Counter object (as described in Section 3.14). When the incre-
menter thread is started, a stack (shown on the right) is created for that thread,
with a stack frame that holds a reference to the Counter object in the shared
heap (shown in the middle).

1 class Counter {

2 private long count = 0;

3 private final Object myLock = new Object ();

4 public void inc() { synchronized (myLock) { count = count + 1;

} }

5 public long get() { synchronized (myLock) { return count; } }

6 }

7 Counter counter = new Counter ();

8 Runnable incrementer = () -> { while (true) counter.inc(); };

9 new Thread(incrementer).start ();

10 while (true) { System.out.println(counter.get()); Thread.sleep

(500); }

Running the above Java code produces the following stack and heap contents:

: Counter

myLock

count 381585545

: Runnable217
counter

Heap

counter

incrementer

counter

Stack Stack(main) (incrementer)

: Object

The Counter class has only private fields and all its public methods take the
same lock myLock (using the synchronized statement) before manipulating the
mutable state, that is, the count field; the class is a properly written monitor
and is thread-safe. The thread-safety is easily undermined, though. If the next
developer adds a public method to Counter, but forgets to take the lock, or
declares the method synchronized so that it takes a different lock (namely the
Counter object itself rather than myLock), then all thread-safety is lost.

30

3.27 Java 5 generics and erasure semantics

Java 5 introduced generic types and methods in 2004. They are implemented
using so-called erasure semantics or homogenous representation at run-time,
meaning that at run-time, the type parameter T in a generic type C<T> is
replaced by Object or by a bound given on the type parameter. As a consequence
there are some inefficiencies and limitations on Java generics. This is in contrast
to C#, whose implementation of generic types and methods is more advanced
and avoids these problems; see Appendix A.

[JP §21.10, §21.11]

31

4 Performance of Java programs

32

4.1 Time consumption

As can be seen from Sections 3.1, 3.2, 3.3 and 3.5, an assignment x = y of a
variable y to another variable x just copies a primitive value, or copies a reference
to a string, array or object (unless it also performs a primitive conversion or a
boxing). In all cases, the assignment itself is very fast, copying only 4–8 bytes
of memory.

Also, computing an assignment x = e where the right-hand side expression
e involves only primitive values will usually be fast, unless it involves advanced
mathematical functions such as exp or sin.

However, computing an assignment x = e where the right-hand side ex-
pression e involves heap-allocated objects may take a lot more time than one
thinks. A typical mistake is to build a string by repeated concatenation result

+= name, which of course means result = result + name:

1 String [] names = { "Abe", "Al", "Alice", "Ben", "Bo", "Cheryl",

... };

2 String result = "";

3 for (String name : names)

4 result = result + name; // BAD repeated string

concatenation

The innocent-looking string operator “+” (or “+=”) here creates a new string
object in each iteration, and each one is longer than the previous one. Running
the above Java code produces this stack and heap contents, where one can see
that a lot of intermediate string objects have been created:

Heap

names

result

Stack

: String “ ”

: String “Abe”

: String “AbeAl”

: String “AbeAlAlice”

: String “AbeAlAliceBen”

: String “AbeAlAliceBenBo”

: String “AbeAlAliceBenBoCheryl”

: String[]

0 1 2 3 4

… … … … …

…

The intermediate string objects are unreachable, so the garbage collector can
remove them and the memory can be reused. Nevertheless a lot of time has
been spent allocating and computing them.

33

4.2 Memory consumption: allocation

A running program may inadvertently allocate a lot of short-lived objects in the
heap, typically by boxing (Section 3.13) or by computing many intermediate
objects, such as strings (Section 4.1). The many object allocations will take
time, but if the objects are short-lived they will quickly be deallocated and the
memory reused, so the heap will stay small.

Nevertheless, it is obviously best to avoid allocating a lot of superfluous
objects, so the flawed string concatenation code from Section 4.1 should be
replaced by this, using a single StringBuilder instead of allocating thousands of
the short-lived strings:

1 String [] names = { "Abe", "Al", "Alice", "Ben", "Bo", "Cheryl",

... };

2 StringBuilder builder = new StringBuilder ();

3 for (String name : names)

4 builder.append(name); // GOOD string concatenation

5 String result = builder.toString ();

Running the above Java code produces the following stack and heap contents:

Heap

names

builder

result

Stack

: String “AbeAlAliceBenBoCheryl”

: String[]

0 1 2 3 4

… … … … …

…

: StringBuilder

value

count 1000

: char[] A b e A l A l i c e … r …

0 1 2 3 4 5 6 7 8 9 999 1023

34

4.3 Memory consumption: retention

Needlessly creating many short-lived objects in the heap is bad, because it
makes the computation slower. But it is much worse to needless keep objects
alive (reachable from the stack), because the heap may grow very large and the
computation may fail with OutOfMemoryError.

Example: A queue can be represented by a linked list with first (dequeue)
and last (enqueue) references, and first pointing to a dummy element:

1 class Node { int item; Node next; }

2 class Queue {

3 Node first , last; // Dequeue from first.next.item; empty if

first==last

4 public Queue { first = last = new Node(); } // Initial dummy

node

5 public void enqueue(int item) { Node n = new Node(); n.item =

item; last.next = n; last = n; }

6

7 public int dequeue () {

8 if (first==last) throw new RuntimeError("Empty queue");

9 else { first = first.next; return first.item; }

10 }

11 }

This works fine: after 100,000 enqueues and 99,999 dequeues, there will be two
live Node objects in the heap, reachable from first. One might instead, by
mistake, bind the dummy node to a field:

1 Node dummy = new Node();

2 public Queue { first = last = dummy; } // Initialize with a

dummy node

This would be very bad, because the field will keep the dummy Node object
alive, and it will keep all the other 100,000 Node objects alive:

Heap

queue

Stack

: Queue

first

last

dummy

: Node

next

0item

: Node

next

1item

: Node

next

99999item

: Node

nullnext

100000item

…

35

4.4 Time consumption of multi-threaded programs

Some sources of time waste and non-scalable parallelism, where throughput (the
amount of work that gets done) does not grow linearly in the number of available
compute cores:

• Lock contention: Multiple threads are ready to run (on separate cores) but
are waiting to take the same lock, and then hold it for a long time, keeping
other threads waiting. Symptom: Some cores are idle, CPU utilization is
low. Mitigation: Reduce the time lock is held, possibly by reducing the use
of shared mutable state. Use lock striping. Switch to lock-less optimistic
concurrency.

• Busy wait: Multiple threads repeatedly test whether a condition has
become true (because some other thread changed some data). Symp-
toms: CPU utilization is high, number of instructions executed is high,
but little work gets done. Almost always a very bad idea. Mitigation:
Use locks, barriers, semaphores, asynchronous computations, streams or
events, which allow the threads to “wait” without consuming compute
resources.

• Lock-less, optimistic concurrency, using compare-and-set: Multiple threads
perform updates, but undermine each others’ work by updating the state
from which the optimistic computation started. Symptom: CPU utiliza-
tion is high, number of instructions executed is high, throughput is low.
Mitigation: Reduce the use of shared mutable state.

• Low-level cache effect: Different cores (running different threads) invali-
date each others’ memory caches, causing cache lines to cycle between the
M and I states rather than stay in the E, M or S states (MESI protocol).
Subtle point: Taking a lock very frequently can cause this to happen, since
taking a lock requires M access of a memory location. Symptoms: CPU
utilization is high, number of instructions executed is low. Mitigation:
Reduce the use of shared mutable data.

• Subtle low-level cache effect: Mutable data values that “have nothing to
do with each other” happen to be on the same cache line (each typically 64
bytes), and therefore unrelated updates can invalidate cache lines as per
the previous item. Since locks are objects, this may even affect the taking
of distinct locks, if they happen to be allocated on the same cache line.
Symptoms as above. Mitigation: Rearrange field order in objects. Use
memory “padding” to make sure that frequently updated object fields,
array elements and heap-allocated objects (such as locks) are on distinct
cache lines.

In languages with garbage collection, such as Java and C#, one way to “reduce
the use of mutable state”, as suggested above, is to use immutable data, causing
more allocation and garbage collection, with little loss of efficiency.

36

5 Literature

CA Peter Sestoft: Computer arithmetics. Lecture slides, 2021; at
https://www.itu.dk/people/sestoft/papers/computer-numbers-2021.pdf

DG David Goldberg: What every computer scientist should know about floating-
point arithmetic, ACM Computing Surveys, Volume 23 Issue 1, March
1991, pp. 5-48.

JLS James Gosling et al.: The Java Language Specification, March 2022, Or-
acle; at https://docs.oracle.com/javase/specs/jls/se18/jls18.pdf

JP Peter Sestoft: Java Precisely, 3rd edition 2016, MIT Press.

37

A C# run-time data storage

The C# programming language is in most respects very similar to Java, and
most of the description above applies to C# also. However, C# has additional
aspects, described in this appendix:

• user-defined value types (structs)

• reference parameters in method calls

• lvalue capture in anonymous functions (lambdas)

• non-virtual instance method calls o.m(...), where the compile-time type
of the receiver expression o, not the run-time type of the value of o,
determines which method is called

• a more advanced implementation of generic types and methods

A future version of this document may elaborate on these aspects.

38

	Plan for this document
	The stack and the heap
	Value types and reference types

	Java features and resulting data storage
	Primitive types
	Strings
	Arrays of primitive type
	Arrays of strings
	Classes and objects
	Subclasses and objects
	Subclasses and arrays of objects
	Advanced Aspect: Array type covariance and array element assignment
	Static fields in classes
	Primitive-type conversions and casts
	Instance-of tests
	Reference-type casts
	Boxing and unboxing
	Closure of an anonymous function (lambda)
	Static methods and parameter passing
	Recursive method calls
	Instance methods and the this reference
	Inner classes and multiple this references
	Virtual method calls and the run-time object type
	Representing a tree structure with objects
	Recursive methods on tree structures
	Throwing and catching exceptions
	Cyclic references in the heap
	Infinite recursion on cyclic data
	Garbage collection of unreachable objects
	Multiple threads and multiple stacks
	Java 5 generics and erasure semantics

	Performance of Java programs
	Time consumption
	Memory consumption: allocation
	Memory consumption: retention
	Time consumption of multi-threaded programs

	Literature
	C# run-time data storage

