
2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

Marianne Mathiassen and I developed the
Tasks & Support method, which uses anno-
tated task descriptions. They specify what
the computer and user shall accomplish to-
gether without indicating which actor per-
forms which parts of the tasks. This method
produces higher-quality requirements that
are faster to produce and easy to verify and
validate.

Traditional requirements versus
task descriptions

Let’s look at two specific requirements for a
hypothetical hotel-administration system. The
system could have this feature requirement:

R1: The system shall record guest check-in
and automatically allocate free rooms.

This traditional requirement style says what
the computer system shall do. This ap-
proach is often unsuitable because it prema-
turely divides work between the computer
and the user. If we used this style, we might
discover late in the project that automatic

allocation won’t work. Then we’d have to
choose whether to develop a subpar system
or to change its requirements. Premature
work allocation might also handicap us if
we purchased a COTS (commercial off-the-
shelf) system instead of developing our own.
The best available system might not allocate
rooms automatically, so our requirement
would be a barrier.

Now let’s examine a task description. A
single task-based requirement could cover
most of the functional requirements:

R2: The system shall support all the tasks de-
scribed in …

Whether this is a good requirement depends
on how we describe the tasks. The Tasks &
Support method describes them in ways in-
spired by Alistair Cockburn’s use cases. Use
cases tend to describe what the system does
and how it interacts with the user. However,
we want to delay splitting the work between
the system and the user, because this is a de-
sign decision to be made later. So, we use

feature
Task Descriptions as
Functional Requirements

Soren Lauesen, IT-University of Copenhagen

The Tasks & Support
method of
expressing
functional
requirements
specifies what the
user and computer
shall accomplish
together without
indicating who
performs which
actions. This method
ensures that the
system meets
business goals and
supports user tasks
adequately.

R
equirements form a software system’s foundation. Functional re-
quirements indicate what the system shall do, data requirements
indicate what it shall store, and quality requirements indicate how
quickly or how easily it shall perform. This article focuses on

functional requirements, which usually describe a system’s input, output, and
the relationship between the two. Traditional functional requirements spec-
ify the system’s role but ignore the system’s context. To solve that problem,

requirements

the term task rather than use case. (For
more on use cases and how they differ from
task descriptions, see the related sidebar)

Can we verify that the system meets re-
quirement R2? Yes, but we will have to
judge how good the support is.

Task description details
Figure 1 shows task descriptions for the

hotel’s reception work area. A real hotel
system would also support work areas such
as staff scheduling, room maintenance, and
accounting.

Work area description
The work area description states the for-

mal requirement (R2: The system shall sup-
port tasks …). It also explains the work’s
overall purpose, the work environment, the
user profile, and so on. As this information
appears in the example, it is not require-
ments, but rather background information
that helps the developer understand the ap-
plication domain. No matter how complete
we try to make the specification, developer in-
tuition and creativity drive most real-life de-
sign decisions. The background information

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 3

Use cases were introduced by Ivar Jacobson and his col-
leagues,1 and the term is now used extensively for object-
oriented software development. However, people have used
use case in so many ways that it is hard to know what they
are really talking about.2–5 Figure A contrasts two use case
versions against task descriptions, using a hypothetical hotel-
administration system.

Figure A1 shows the Unified Modeling Language version
of use cases. UML use case definitions have changed over
time, but recently Grady Booch, James Rumbaugh, and Ivar
Jacobson offered the following:

A use case is a description of a set of sequences of ac-
tions, including variants, that a system performs to yield an
observable result to an actor.6

The definition only addresses the actions that the system
(computer)—not the user—performs. The UML diagram re-
flects this, showing use cases as bubbles inside the system.

Figure A2 illustrates a use case that distinguishes between
user and computer actions. (Larry Constantine and Lucy Lock-
wood’s essential use cases provide an example.5,7) In the fig-
ure, the booking task consists of two parts—one that the user
performs and one that the system performs.

Figure A3 illustrates the task description concept. The bub-
ble represents the entire task. It floats over the system bound-
ary, illustrating that human and computer carry out the task
together. This approach does not divide the labor—that is a
design issue to be dealt with later.

References
1. I. Jacobson et al., Object-Oriented Software Engineering: A Use Case

Driven Approach, Addison-Wesley, Boston, 1994.
2. A. Cockburn, “Structuring Use Cases with Goals” (Part 1), J. Object-

Oriented Programming, Sept.–Oct. 1997, pp. 35–40; http://members.
aol.com/acockburn/papers/usecases.htm.

3. A. Cockburn, “Structuring Use Cases with Goals,” (Part 2), J. Object-
Oriented Programming, Nov.–Dec. 1997, pp. 56–62; http://members.
aol.com/acockburn/papers/usecases.htm.

4. A. Cockburn, Writing Effective Use Cases, Addison-Wesley, Boston, Mass.,
2001.

5. L. Constantine and L. Lockwood, “Structure and Style in Use Cases for User
Interface Design,” Object Modeling and User Interface Design, M.V. Har-
melen, ed., Addison-Wesley, Boston, Mass., 2001.

6. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley, Boston, Mass., 1999.

7. L. Constantine and L. Lockwood, Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design, Addison-Wesley, Boston,
Mass., 1999.

Use Cases versus Task-Based Descriptions

Hotel system

Receptionist

UML use case diagram:

Human and computer
separated:

Task descriptions.
Split postponed:

(1)

Booking

Check-in

Checkout

Hotel system

Receptionist
(2)

Booking

Hotel system

(3)

Booking

Receptionist

Figure A. Use cases versus tasks: (1) a Unified
Modeling Language use case diagram, which deals
only with the computer system’s actions; (2) a use
case that specifies separate human and computer
actions; (3) task descriptions, which do not separate
human and computer actions.

sharpens the developer’s intuition. Collecting
the information in a work area description
rather than writing something for each task
encourages a more thorough description.

Individual task descriptions
Below the work area description are indi-

vidual task descriptions. Figure 1 illustrates
the booking, check-in, and checkout tasks.
We’ll look at check-in in detail.

Purpose. Check-in’s purpose (also called task
goal and postcondition) is to give the guest a
room, mark it as occupied, and start account-
ing for the guest’s stay. This process translates
well into state changes in the database.

Trigger and precondition. The template has
space for a trigger and a precondition. A
trigger (or business event) indicates the event
that initiates a task. For check-in, the trigger
is a guest’s arrival at the reception desk.

For check-in, we have specified a trigger
but not a precondition. Analysts might con-
sider specifying as a precondition that the
guest must have a reservation or the hotel
must have an available room. However, this
is not actually a precondition because the
receptionist begins the check-in task before
he or she confirms reservations or room
availability. The receptionist must cancel the
check-in if the guest has not reserved a
room and the hotel does not have one avail-

able. Good support for all these variants is
crucial in the user–system dialogue.

Usually, checking conditions and busi-
ness rules is part of the task, so specifying
them as task preconditions makes little
sense. For individual task steps, however, a
precondition often makes sense.

Frequency and critical. The task description’s
Frequency and Critical fields are impor-
tant requirements. In Figure 1, these require-
ments are to support

� On average 0.5 check-ins per room per day
� A group tour with 50 guests

How do these requirements affect system
development? Imagine 50 guests arriving by
bus and checking in individually. Each guest
reports at the reception desk; the reception-
ist finds the guest in the system, prints out a
sheet for the guest to sign, then completes
the guest’s check-in. This could take more
than one minute per guest. The last guest
will be extremely annoyed at having to wait
almost an hour! The system could, for in-
stance, provide a way for the receptionist to
print in advance a sheet for each guest
showing that guest’s room assignment.

Subtasks. The Subtasks list is the task de-
scription’s central part. The receptionist
must find a suitable room for a guest,
record guest data, and record that the guest
is checked in and the room is occupied. Fi-
nally, the receptionist must give the guest
the room key. Subtask 1 and Variant 1a ad-
dress one of the preconditions I discussed.

These subtasks specify what the user and
the computer must do together. Who does
what depends on the system’s design or on
the COTS product the client chooses.
Should the computer also support the sub-
task Deliver key? Maybe. Some hotel sys-
tems provide unique electronic keys for each
guest, but that is expensive. The client must
decide on a solution later in the project, de-
pending on costs and benefits.

One advantage of task descriptions is that
the customer readily understands them. If
we validated the check-in task with an expe-
rienced receptionist, he or she would notice
that something was missing: “In our hotel,
we don’t check guests in until we know they
can pay. Usually, we check their credit card,

4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Work area: 1. Reception
Service guests—small and large issues.
Normally standing. Frequent interrupts.
Often alone, such as during the night shift.

Users: Reception experience, IT novice.
R2: The system shall support tasks 1.1 to 1.5.

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.2 Check-in
Purpose: Give guest a room. Mark it as
 occupied. Start account.
Trigger/Precondition: A guest arrives.
Frequency: Average 0.5 check-ins/room/day.
Critical: Group tour with 50 guests.

Subtasks:
1. Find room.
2. Record guest as checked in.
3. Deliver key.
.
Variants:
1a. Guest has booked in advance.
1b. No suitable room.
2a. Guest recorded at booking.
2b. Regular customer.

Missing
subtask

Task: 1.3 Checkout
Purpose: Release room. Invoice guest.
...

Figure 1. Task
descriptions for a
hotel’s reception
work area.

and sometimes we ask for a cash deposit.
Where is that in your task description?”

“Oops,” said the analyst, and added this
line between Subtasks 1 and 2:

2. Check credit card or get
deposit.

Variants. Finally, we have the list of subtask
variants. For instance, Subtask 1 (Find
room) has two variants:

� 1a: The guest might have booked in ad-
vance, so the hotel has already assigned
the guest a room.

� 1b: The hotel has no suitable room.
(This suggests communication between
the receptionist and guest about room
availability, pricing, and so on.)

Variants relieve analysts from having to
describe rules or specify logic for the many
special cases; analysts simply list the vari-
ants. Later, the customer can easily verify
that the system supports all variants.

Subtask sequence. Although we have enu-
merated the subtasks for reference purposes,
no sequence is prescribed. In practice, users
can vary the sequence. We show a typical se-
quence, but it is not the only one possible.

Tasks on different levels
Many practitioners have difficulty choos-

ing appropriate task levels. They might, for
instance, describe Find room as a separate
task rather than a subtask. However, Find
room is not a meaningful task because a task
must bring closure—the user must feel he has
achieved something when the task is com-
plete. (The task should meet the coffee break
test: The user deserves a cup of coffee after
completing the task.) Describing each subtask
as if it were a separate task is common among
use case practitioners, but it leads to huge
specifications that hide the system’s essentials.

Also, from a requirements viewpoint, we
want to strongly support each whole task.
Providing strong support for each subtask
but cumbersome transitions between sub-
tasks is inadequate.

Development and verification
How can you use task descriptions dur-

ing development and at delivery time? Al-

though customers and developers easily un-
derstand task descriptions, task descriptions
require a larger leap from requirements to
design and development than traditional
feature requirements do. Developers must
be more innovative to effectively support
the tasks. (See the article on Virtual Win-
dows for a systematic way to handle such
innovation.1) However, once developers
suggest a design, they can verify that it sup-
ports the tasks by simulating the tasks and
all their variants. At delivery time, users will
verify the requirements by performing the
tasks and variants.

Tasks & Support descriptions
The ideal task descriptions are indepen-

dent of the computer–user labor division
and of time. In principle, the difference be-
tween how the actors have performed tasks
and how they want to perform them in the
future is merely a matter of dividing the
work differently. In practice, however, we
should identify problems in the old method
and outline future solutions.

A Tasks & Support description is a sys-
tematic way to express problems and poten-
tial solutions. Figure 2 shows hotel check-in
as an example. The description comprises
several parts.

The left column describes the domain-level
activity—what the human and computer do
together. In this example, the description is
simply the subtask name. Real specifications
sometimes require a few descriptive lines. We

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 5

Past:
Problems

Task: 1.2 Check-in
Purpose Give guest a room. Mark it ...
Frequency...

Subtasks:
1. Find room.
Problem: Guest wants
neighboring rooms;
price bargaining.

Example solution:
System shows free
rooms on floor maps.
System shows bargain
prices, time-and day-
dependent.

3. Deliver key.
Problem: Guest forgets
to return the key; wants
two keys.

System prints electronic
keys. New key for each
customer.

Variants:

System uses closest-
match algorithm.

2. Record guest as
checked in.

(Standard data entry)

1a. Guest has booked in
advance.
Problem: Guest
identification fuzzy.

Domain
level

Future:
Computer role

Figure 2. A Tasks &
Support description
of hotel check-in.

use imperative language here (for example,
Find room) to hide whether a human or a
computer carries out the subtask.

The problem part is the only mention of
the existing system. We specify problems
only when they exist. For example, Subtask
2, Record guest, doesn’t have any signifi-
cant problems, so a domain-level activity
description suffices. The Problem part lets
us specify things we cannot specify with
more traditional requirements. For instance,
Subtask 1’s problems demonstrate that fully
automatic room allocation is inadequate.

In the right column (which we call the
Support column, even though the heading is
different), we outline how the new system
could support the activities and solve the
problems. Initially, this column shows what
the system might do and is labeled “Exam-
ple solutions.” To emphasize the computer
aspect, we write explicit subjects such as
System shows free rooms on floor

map in this column.
In a later version, the supplier might

change this column to reflect new ideas or
proposals, and the heading would change to
“Proposal.” Eventually, the column changes
to reflect the services that the two parties
agree to provide, and the heading changes
accordingly to “Agreement.”

Figure 2 shows some nontrivial solutions.
For instance, some hotels might be willing to
negotiate a discount if the customer arrives in
the afternoon and the hotel has many vacan-
cies. The system could guide the receptionist
in such matters (System shows bargain

prices …). Sometimes suppliers propose
ideas that might exceed customer expecta-
tions. A supplier might notice that the
weather influences price negotiation. Because
customers might be reluctant to compare
prices at several hotels during rainy weather,
the supplier offers a feature for entering
weather conditions. The supplier specifies
this proposal in the Support column.

In some cases, solutions are trivial. Sub-
task 2, for instance, calls for ordinary data
entry only; the analysts do not need to spec-
ify anything. Many subtasks in real systems
are trivial data-entry tasks. In these cases,
not much difference exists between the do-
main-level activity, the user activity, and the
computer activity.

In industrial practice, the Problem part
and the Support column are extremely use-
ful for supporting a creative design process.
At the same time, presenting the solutions in
the task context limits the creativity in a
cost-effective way.

High-level tasks
Until now, we have assumed that the same

users will perform the tasks in both the old
system and the new solution. Sometimes that
assumption might be invalid, or we might
plan an entirely new system without present
users. In these cases, a good approach is to
examine the situation from a client’s perspec-
tive. In the hotel example, the receptionist is
the user and the guest is the client.

If we look at the hotel from the guest’s
viewpoint, staying at the hotel is a task. It is
not a traditional human–computer task be-
cause the guest and the computer do not in-
teract directly, but the system’s success de-
pends on how well it serves guests.

Figure 3 shows the high-level guest task
Hotel stay. Booking, check-in, and so on
are tasks to the hotel team but subtasks to
the guest.

We also see two new subtasks: Select a
hotel and Reimburse expenses. They
might help define the system’s requirements.
As an example, business guests need invoices
to request reimbursement. The guest’s Reim-
burse expenses task will be simpler if his
or her personal expenses do not appear on
the main invoice, and the system should sup-
port it.

High-level tasks are extremely helpful for
inventing IT products, reorganizing work-

6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Task: Hotel stay
Actor: The guest
Purpose: ...

Subtasks:
1. Select a hotel.
Problem: We aren't
visible enough.

Example solution:

?

3. Check in.
Problem: Guest wants
two keys.

Electronic keys.

4. Receive service.

5. Check out.
Problem: Long queue
in the morning.

Use electronic key for
self-checkout.

Split into two invoices,
perhaps through TV.

2. Book.
Problem: Language and
time zones. Guest wants
two neighboring rooms.

Web booking.
Choose rooms on Web
for a fee.

6. Reimburse expenses.
Problem: Private
services on the bill.

Figure 3. High-level
tasks for innovation
and business-
process redesign.

flow across many departments, and check-
ing ordinary task descriptions’ completeness
and correctness.

A hospital case
The hotel system example is rather sim-

ple, but the techniques scale up for large,
complex systems. I will show how they
worked in the first complex, real-life case.

Marianne Mathiassen and I invented the
Tasks & Support approach in cooperation
with a large customer (a West Zealand hos-
pital). The hospital had experienced severe
problems acquiring systems through tender
processes. In a tender process, the customer
writes requirements and sends them out as a
request for proposal. A number of suppliers
send in their proposals. We studied what
had happened and how it related to the
requirements.

We looked at a new hospital system that
recently completed the tender process.
Three suppliers had submitted proposals,
and the hospital had signed a contract with
one of them, but the supplier had not yet de-
livered the system. At this point in time, we
developed Tasks & Support descriptions to
express requirements for the system’s most
difficult part: roster planning and work-
hour registration. This was also the most
business-critical area because the hospital
management expected significant savings
from improved roster planning.

The hospital had seven clear business
goals for the new system. We easily traced

those goals to our task descriptions (see
Table 1). For example, the table’s last row
shows the business goal Improve roster

quality, which means “ensure that prop-
erly qualified people are on duty at any
time—for example, not two novices alone.”
The table shows that two tasks—Make

roster and Handle staff illnesses—
must support this goal. Our technique let us
examine the task’s details to confirm that it
addressed the goal properly (by identifying
it as a problem with the existing system). In
contrast, the recent contract’s requirements
made tracing the hospital’s business goals
almost impossible.

What Tasks & Support covered
We compared the 38 old, feature-based

roster-planning requirements to the new
Tasks & Support requirements. These task
descriptions (sometimes in combination
with a data model) addressed 23 of the orig-
inal requirements.

The task descriptions did not cover 15
original requirements. Those requirements
specified that the system produce special re-
ports. The old system could print these re-
ports. However, nobody we talked to could
explain how the hospital used the reports,
so we could not identify any tasks that
needed them. We believe some of those re-
ports were related to tasks that we could
have described, while others were the old
system’s relics.

Eight requirements were new. The task

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 7

Table 1
Tracing business goals to task descriptions for a hospital system.

Business goals User tasks

Dept. planner Dept. staff Personnel Dept.

1.1 Submit 1.2 Make 2.1 Record 2.2 Swap 2.3 Handle 3.1 Check 3.2 Make 3.3 Record
monthly roster actual duties staff rosters payroll new
report to work illnesses amend- employees
Personnel hours ments
Dept.

Personnel Dept.
Automate some tasks • • •
Remove error sources • •
Observe the • • •
120-day rule
Reduce trivial work • •
and stress
Hospital Dept.
Reduce overtime •
pay, and so on
Speed up roster •
planning
Improve roster quality • •

Task
descriptions
don’t cover

quality
requirements

such as
response time
and usability,
but they point

out where
quality is
crucial.

descriptions clearly showed a need for them,
but the old requirements had not mentioned
them. Some of these requirements could not
be met by the new system recently con-
tracted, but nobody had noticed until now.
These system deficiencies prevented the hos-
pital from achieving its main business goals.
They had signed a multimillion-dollar con-
tract for the wrong system.

We found that Tasks & Support can re-
veal critical requirements that traditional
methods easily overlook. However, although
task descriptions can cover most functional
requirements, separate data descriptions are
usually necessary. Task descriptions don’t
cover quality requirements such as response
time and usability, but they point out where
quality is crucial. Analysts could embed
quality requirements in the task descriptions,
but suppliers prefer to have them separate—
preferably with references to the tasks.

Suppliers’ opinions
After we completed our comparison, we

asked the three suppliers to compare Tasks
& Support to traditional requirements. They
felt that the method had these advantages:

� It greatly clarifies the customer’s needs
and prospective solutions.

� It simplifies tracing between require-
ments and business goals.

� The supplier can specify a solution’s ad-
vantages by relating it to the user tasks;
the supplier can also show where its solu-
tion exceeds the customer’s expectations.

� The supplier can demonstrate to the
customer how the system will support
the tasks and handle critical issues.

� Tasks & Support grants all suppliers
equal opportunities because it does not
prescribe a solution.

� The parties can adjust the solution’s am-
bitions according to costs and needs.

They reported these disadvantages:

� Tasks & Support doesn’t specify data.
(A data description is needed too, as we
had found out ourselves.)

� It doesn’t cover quality requirements.
(Suppliers prefer that they are separated
from the tasks.)

� Amending the Support column is an un-
usual reply method; most suppliers will

need careful instructions on how to reply.
� Developers will have to work more to

develop new system parts than with tra-
ditional methods. (Later experience
showed that development time actually
is less once developers learn to design
user interfaces systematically.)

� Tasks & Support creates more work for
the customer than traditional methods
do. (Actually, it turned out to be much
faster, as I explain later.)

A bout a year after we conducted our
comparison, the hospital decided to
use Tasks & Support to acquire a

new COTS product, possibly with tailor-
made extensions. The application managed
cross-departmental patient administration.
The hospital anticipated the contract’s value
at approximately $US4 million plus approxi-
mately $2 million annually in operating costs.

Working as a consultant, I trained two ex-
pert users and one IT specialist for two days.
The users and the specialist had used tradi-
tional feature-oriented requirements, but they
had never seen task or use case techniques.

Next, the two expert users worked alone
to specify some of the tasks. After some ini-
tial mistakes, which I helped them correct,
they completed the entire specification in 10
days. The specification work required ap-
proximately 25 client-days and three con-
sultancy days. The work lasted three weeks.
Later, the hospital team reported that simi-
lar projects used to take 25 weeks using tra-
ditional requirements.

Previously, the IT department had asked
each user department (wards, labs, the per-
sonnel department, and so on) to write
down their system requirements. The IT de-
partment then edited the list and sent it to
each department for comments and ap-
proval. This process caused long debates
about the specification’s completeness and
the users’ needs.

Using Tasks & Support, the IT department
helped a small expert-user group write a set of
task descriptions, sometimes with suggested
solutions. The expert users’ deep task under-
standing was key in the approach. The team
sent the Tasks & Support descriptions to the
user departments for comments and ap-
proval. The departments now primarily com-
mented on the task descriptions’ complete-

8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

ness (factual) instead of on its feature require-
ments (opinion). When a department sug-
gested a solution, the analysts included it as a
possible solution in the right column; that is,
as an example rather than a requirement.

When the suppliers responded, they de-
scribed their proposals in the right-hand
column. The stakeholders reported that
they had a much easier time than usual
comparing the suppliers’ proposals. The
team spent 20 person-days comparing the
two best proposals in detail. The team es-
sentially acceptance-tested the existing
product versions, working through all the
task descriptions and variants to assess how
well the product and the promised exten-
sions would support them. Their compari-
son quickly convinced stakeholders of
which supplier to choose. The traditional
approach required 10 times as much work
because many stakeholders had to review
and comment on the proposals. The new
approach also ensured that stakeholders re-
ceived the task support they needed or at

least knew in advance what they would not
receive.

Acknowledgments
Much of this article is based on material in my

book Software Requirements: Styles and Techniques
(Addison-Wesley, 2002), with permission from the
publisher.

Reference
1. S. Lauesen and M.B. Harning, “Virtual Windows: Link-

ing User Tasks, Data Models, and Interface Design,”
IEEE Software, vol. 18, no. 4, July/Aug. 2001, pp.
67–75.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 9

About the Author

Soren Lauesen is a professor at IT-University of Copenhagen. His research interests in-
clude human–computer interaction, requirements specification, object oriented design, quality
assurance, marketing and product development, and interaction between research and industry.
His industry projects have encompassed business applications, compilers, operating systems,
process control, temporal databases, and software quality assurance. He is a former member of
the Danish Research Council for Science and the Danish Research Council for Technical Sciences.
Contact him at IT-University, Glentevej 67, DK-2400 Copenhagen NV; slauesen@itu.dk.

Fill here?

