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Inadequate requirements cause many problems in

software products. This paper reports on an experiment

to reduce the number of requirement defects. We

analysed the present defects in a real-life product and

estimated the likely effect of 44 prevention techniques.
We had hoped a novel combination of techniques would

come up, but the best approach was quite well known,

although new to the company: study the user tasks

better, make early prototypes of the user interface, and

test them for usability. This approach was tried out in a

new development project in the same company. Due to

the new approach, there was no doubt about require-

ments during programming, and as a result it became the
first project in the company that was completed on time

and without stress. Usability was drastically improved,

and as a result the product sold twice as many units as

similar products, and at twice the unit price.
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1. Background

The difference between requirement-related defects and
other defects in a product is often debated. In this paper
we will use this distinction:

. Implementation defects: The term implementation has
many meanings. Here we mean the development
activities that produce a workable program. Imple-
mentation is mainly carried out by programmers. We
have an implementation defect if the product doesn’t

work as intended by the programmers. Typically,
implementation defects show up as program crashes
or obviously wrong results.

. Requirement defects: We have a requirement defect if
the product works as intended by the programmers, but
doesn’t match the surroundings. One example is that
users and customers are not satisfied with it. They may
find it too difficult to use, unable to support certain user
tasks, etc. Another example is that the program doesn’t
cooperate properly with existing, surrounding soft-
ware. Unstated user expectations (tacit requirements),
misunderstood requirements and misunderstood exist-
ing software are typical causes of requirement defects.
The requirement defects can relate to functional as
well as non-functional requirements.

Requirement defects may creep in at any stage of
development. Many of them creep in at the analysis/
elicitation stage, others are caused by developers making
wrong guesses during design or programming, and some
may even be caused by testing if the tester believes that
things should work differently. Implementation defects
may also creep in at all stages, except the analysis/
elicitation stage. The difference between the two kinds
of defects is whether the programmer could see that
something was wrong (implementation defect), or
whether only users or surrounding systems could
reveal the problem.

Defects of both kinds may be detected at various
stages of development. The earlier they are detected, the
easier they are to repair. Ideally, they should be
prevented from creeping in. However, detection as
well as prevention requires some effort in addition to
usual development. The question is whether it pays to
spend this additional effort.

In this paper we discuss only requirement defects.
Compared to implementation defects they are more
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costly to repair. And due to their nature, we need other
techniques to prevent or detect them than we need for
implementation defects. Programmers can, for instance,
find implementation defects through testing or inspection
of each others programs, but they can rarely find
requirement defects that way. Usually the surroundings
must be involved to find these defects.

2. Outline of the Experiment

The purpose of our experiment was to find cost-effective
ways to avoid requirement defects in the products. We
could see two basically different approaches to this:

1. The maturity approach: Compare the existing
development processes against one of the maturity
models and identify weaknesses. Then improve the
weak processes (see Paulk et al. [1]).

2. The defect analysis approach: Analyse the defects in
present products, identify techniques that could
prevent them, and try the best of them in new projects.

The maturity approach is widely used, but we could see
no guarantee that the improved processes are cost-
effective. Finding the most cost-effective processes was
even more elusive. The maturity approach tends to
measure its success as conformance to the process
model, rather than as improvement on the bottom line.
Also, the models have few specific guidelines for better
processes.
So we decided to try the defect-driven approach.

However, there are few reports on such experiments in
industrial settings.
Sutcliffe et al. [2] have investigated a project where

they first identified requirement-related defects, weak-
nesses in the written requirements, and weaknesses in
the requirement processes. Next they suggested many
improvements to the processes, pointing out that they
most likely would have avoided the problems. We see
this as a hybrid between the maturity approach and the
defect-driven approach. In our project we wanted to
narrow down the necessary new processes, estimate their
benefits and costs, and try them out in practice.
A straight defect-driven approach is Defect Causal

Analysis (DCA; see Card [3]), developed by IBM and
used there and at several other places. The principle of
DCA is to collect defect reports, find frequent types of
defects, discuss them with local developers, and let them
suggest improved procedures. Then the new procedures
are deployed. Improvements are measured as changes in
defect frequencies.
We wanted to do something similar, but had to face

several differences. DCA looks primarily at implementa-
tion defects, where developers have good expertise. We

wanted to look at requirement defects, where developers
have less expertise. Typical developers know rather few
requirement techniques. Further, they often reject
techniques they know, due to the risk involved in any
new technique. For this reason we wanted process expert
and researcher advice on improvements.

Since our advice came from outside the development
team, we reasoned that it was important to motivate
developers to use the techniques, and planned to involve
them when promising techniques had been identified. An
important motivational factor was the expected cost and
benefit to their project. We wanted to estimate this
before the new techniques were deployed.

DCA is used in large companies (e.g., IBM) and could
rely on statistical data to identify benefits over a period of
several years. We worked in a smaller company with just
700 employees, 70 of whom were software developers.
We had to identify benefits based on a few projects.

We ended up organising the process improvement as a
typical action research project. The plan was as follows:

1. Analyse existing requirement defects in a base

project.
2. Find cost-effective prevention techniques.
3. Use the techniques in a new project.
4. Compare results.

The company was reluctant to spend money on such a
project, but the European Union’s ESSI programme
(European System and Software Initiative) was set up to
fund such initiatives. We applied for and got the
necessary funding, without which we could not have
carried out the experiment.

3. Summary of Findings

The following sections give details of each step. Here is
a summary of the findings in each step.

3.1. Analyse Existing Requirement Defects

We classified the requirement defects according to
several criteria: error source (where had the true
requirement been ‘lost’); quality factor (functionality,
usability, performance, etc); related interface (user
interface, third-party software, etc); cost of handling
and repair. The Appendix shows examples of defects and
their classification.

The figures showed that about 60% of the defects
related to unstated demands (tacit requirements). Almost
70% of the defects had to do with ease of understanding
or ease of use (usability). Most defects related to the user
interface, but defects with costly repairs related to
misunderstood interfaces to third-party software. Most
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usability defects had not been repaired because they
were not considered ‘errors’.

3.2. Find Cost-Effective Prevention Techniques

From the defect analysis, it was tempting to jump to
conclusions: since tacit requirements dominate, specify
requirements more completely (but how?). Since
usability defects dominate, use prototypes plus usability
testing or heuristic evaluation (did it pay?). Since
problems with third-party interfaces are costly, do
something about that (but what?).

Most of these suggestions were rather vague, and did
they pay on the bottom line?

Instead of jumping to conclusions, we looked system-
atically at 44 techniques we knew from literature or
found in practice. For each defect we identified the
techniques that might find or prevent the defect – and
with what probability. On the way, we narrowed down
what exactly we meant by using this or that technique.
We also invented some new techniques that might
prevent defects that seemed hard to prevent in other
ways.

It was rather easy to estimate the cost of each
technique. However, finding the benefit of preventing a
specific defect was difficult. There might be an improved
market value of the product or the technique might have
implicit effects on other parts of development. We didn’t
dare to use such benefits as arguments, so we decided on
a conservative benefit consisting of the saved costs of
handling and repairing the defect. Then it was rather
straightforward to find the net cost/benefit of each
technique. It was more complex to find the cost/benefit
when several techniques were applied together, because
each technique filters away some defects, leaving fewer
defects for the next technique.

We had imagined that the filtering effect was
significant, so that a technique that wasn’t very efficient
alone could combine in optimal ways with other
techniques. This did not occur with our data. In general,
the best techniques in combination were the techniques
that were also best in isolation.

The conclusion was that only about 10 techniques
were worth considering in a project of this kind. The rest
were either a waste of time or gave only microscopic net
benefits.

3.3. Use the Techniques in a New Project

One thing is to identify promising techniques, another is
to introduce them into a new project in the stress of the
day. We involved the developers in the final choice.
Several surprises came up. (1) Some of our top

techniques were useful in one kind of project, but
much less important in other projects. (2) The
organisational surroundings may block the use of some
techniques. (3) Developers have difficulties using many
new techniques at the same time. (4) Unforeseen events,
such as a new project manager, can overturn earlier
decisions to use a certain technique.

However, one project team managed to use two of the
promising techniques: (1) bypass marketing and study
user tasks directly; (2) make early mock-ups of the user
interface and usability test them with real, potential
users.

3.4. Compare Results

When the project was completed, we studied the defect
reports, the final product, the time spent, and we
interviewed developers. We had expected to find small
overall performance improvements and a different
distribution of defect types. None of this was visible in
the figures, and we realised that the projects were so
different in their inherent characteristics that these
differences were not observable – even if they were
there. We had more or less suspected this, and had
planned to look for other success indicators.

Among the other success indicators, we found three
surprises. (1) The number of usability problems per
screen picture was reduced by bout 70% (we had
expected 18%). (2) The project was the first one ever in
the company that had been completed on time and
without stress. The reason was directly attributable to the
new approach, where the user interface was designed
and usability tested before any part of it was
programmed. (3) The product sold twice as many units
as comparable products and at twice the unit price.
Again the reason was the new approach where user tasks
were studied directly and the user interface tested early.
The result was a user interface that supported tasks much
better and could be used by non-experts. Competitors did
not show the same degree of understanding of the tasks
and users to be supported.

Compared against our predicted benefits of the
techniques, we can conclude that we very much under-
estimated the secondary benefits. The market value of
the approach was big and its influence on other parts of
the project highly beneficial. A prediction of this kind
early in the project had not been credible, however.

The success of this project – in particular the vastly
improved usability – caused other project teams to seek
training in the new techniques, and today they are
standard approaches in the company. The techniques
seem to be equally successful in other projects.
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4. The Base Project

The experiment was conducted at Brüel & Kjaer (B&K)
in Denmark. They manufacture professional equipment
for sound and vibration measurement, and more than
half of the product developers are software people. B&K
develop products according to a waterfall model where
phases can overlap to some extent. They talk about
phases such as requirements specification, design,
programming, module test, integration test, etc. From
the integration test on, B&K routinely records all defects
detected by programmers, in-house product testers,
marketing and customers. These defect reports were
our primary source of data.
B&K had for several years classified the reports

according to Beizer’s taxonomy [4]. They had success-
fully improved detection of implementation defects, and
now wanted to improve requirements. The experiment
was made as a close cooperation between experienced
requirements staff at B&K (Vinter) and a requirements
researcher (Lauesen).
The first product we studied was a Noise Source

Location system (NSL) developed and marketed by
B&K. It was a brand-new product that allowed engineers
to measure the sound field around an object, for instance
a washing machine or an aeroplane, and show the sound
field in three dimensions. This is helpful in locating
noise sources. As an initial step, the engineer defines a
set of grids surrounding the object. Next he measures the
sound in each grid point. The results can be shown in
many ways: as three-dimensional contour maps, as
spectra, as noise power, etc. The system can also control
a robot that moves the microphone and makes the
measurements.

The system is based on a PC with Windows NT. It

connects to various front-end equipment, e.g. a

computerised sound measurement unit with calibration

and filtering for several microphones. The source code

consists of about 90,000 lines of C++, and software

development took about 12,000 hours (77 developer

months).

The system uses external software packages, i.e.,

packages developed by a third party for a general

market. The packages were Windows NT, a 3D-graphics

package, and a communication package. It was the first

time B&K used these packages in their products. The

project team had no influence on the external software

packages. If they had defects, the team might report the

defects but there was little chance of getting a repair or

improvement. Since requirements deal with the relation

between the product and all its surroundings, the external

software plays a significant role as a potential source of

requirement defects.

The requirement specification consists of 20 pages

with 107 enumerated and annotated requirements. Figure

1 shows two requirements, R-25 and R-35, chosen to

illustrate the style. Note that the specification talks about

what the user should be able to see and do, but not how

that is to be done. In other words, the user interface (e.g.,

a prototype) is not part of the specification. Note also

that the reason for each requirement is explained in order

for developers to better imagine the tasks the user is

carrying out. B&K had used this requirement style for

some time and were quite satisfied with it.

In addition to this specification, there is a generic

requirement specification for all B&K applications

running under MS Windows. It consists of 18 pages

Product-specific requirements (examples)
A good way of assuring the measurement quality is to examine the measured spectra.
This allows the experienced user to determine the quality of the measurement:

(R-25) During the measurement the application must show the latest measured
spectrum.
. . .

It is sometimes impossible to measure some of the desired points. It may be too hot in the
environment, or there may not be enough space to position the probe:

(R-35) The application must be able to display all results, even if some of the points have
not been measured.

. . .

Generic requirements - company wide (examples)
(G-14) The application must have a graphical user interface compliant with MS-Windows

and a common (B&K) style.
. . .
(G-18) Applications must, on user request, be capable of storing their state and later

restart in that state.

Fig. 1. Sample requirements from the Noise Source Location system.
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with 94 enumerated and annotated requirements. Figure
1 shows two generic requirements (G-14 and G-18).

A supplement to the requirements specification is an
object class model on the analysis level. It has served as
a cross-check of the requirements.

5. The Requirement Defects

The product had about 800 defect reports when we
investigated it a few months after product release. To
avoid a heavy analysis burden, we looked at every fourth
report – 200 in total – and interviewed developers to find
out whether it was a requirement defect or an imple-
mentation defect. The distinction was not easy in
practice and we grappled for a long time with definitions
and classifications. Finally, we used the above definition
of requirement defects and then identified 107 reports
that related to requirements. We analysed these 107
reports in detail, interviewing developers further as
needed.

In this product, slightly more than half of the reported
problems were requirement defects. The rest were
implementation defects (and a few reports that we
couldn’t analyse for various reasons).

Beizer [4] reports a much lower fraction of
requirement defects. However, we had to include several
of his defect classes to cover the above definition of
requirement defects. Our figures are similar to those
reported by many other companies.

According to the books (e.g., Jones [5]), requirement
defects that are detected late should be much more costly
to repair than implementation defects. This is probably
true, but developers have another choice: reject the
problem if it is too costly to repair compared with the
perceived benefit. The users just have to live with the
inconveniences. In our study we observed few costly
repairs, many partial repairs or work-arounds, and many
rejections. In general, late in the project, the ideal
solution is no longer feasible, so it is important to
prevent the requirement defects or detect them early in
order to deal with them in a cost-effective manner.

What are the causes of the requirement problems?
After many attempts, we used the model shown in Fig. 2.
The assumption in the model is that requirement defects
are requirements that somehow are ‘lost’ on their way to
the programmers. The model shows how requirements
flow to the programmers, and how many requirements
are lost or distorted on the way (shown by the arrow
thickness and the numbers). As an example, require-
ments flow from the requirement specification to the
programmers. Along this path, 14 requirements in our
sample are mistaken. (Actually, there are about 170

written requirements flowing this way, 14 of which are
mistaken.)

Some defect reports reflected two ‘lost’ requirements,
so actually there are 118 losses for the 107 reports.

Most requirements start out as demands in the
application domain. Some of them become written
requirements in the requirements specification, others
flow as tacit requirements to the programmers, and some
are never transferred to the programmers (missing
requirements). Written requirements flow on to the
programmers later. During implementation, new de-
mands may flow from new application opportunities
(new markets) or the surroundings. Some requirements
flow from external products that the system has to
cooperate with.

The major source of defects was missing require-

ments, i.e., requirements that had not been written down
in the spec and were not otherwise transferred to
developers (45 cases). The cause could be recognised
demands that were ignored or forgotten in development
(21 of the 45). Or it could be demands that were not
recognised although they had been present in the domain
all the time (24 of the 45).

The second largest source was mistaken tacit

requirements, i.e., the developer somehow knew about
the demand, but made a wrong solution (24 cases). The
cause could be that the developer made a wrong guess
(nine of the 24) or couldn’t resolve apparently
conflicting or inconsistent demands (15 of the 24).

Fig. 2. How requirements pass to programmers or get lost. Arrow
thickness and numbers indicate requirements ‘lost’ on the way.
(Based on an analysis of 107 requirement defect reports.)
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Note that if product testing had just been a traditional
acceptance test, where all requirements are verified,
none of these defects had been detected.
Next come mistaken specs, i.e., written requirements

that were implemented incorrectly (14 cases). The cause
could be a simple mistake (four of the 14), a
misunderstanding of the spec (two of the 14), incon-
sistent requirements (two of the 14) or broad require-
ments that were not fully implemented everywhere, e.g.
that ‘the interface shall follow the Windows style guide’
(six of the 14).
Defects relating to external software were the hardest

to repair or circumvent. In nine cases the developers had
misunderstood how external software worked, and in 11
cases the external software didn’t work correctly or
didn’t fulfil expectations.
The diagram shows other, less important, distortions

of the requirement flows. In one case a new market was
considered for the product in the middle of development.
In two cases an external product changed in the middle
of development. In eight cases wrong requirements were
written down, i.e., requirements that didn’t correctly
reflect the demand. In three cases a written requirement
was forgotten or intentionally left out.
We also classified each defect according to the quality

factor that was impaired, e.g., functionality, usability or
maintainability. (We used McCall’s quality factors [6],
which we had good experience with.) Almost 70% of the
defects related to usability (ease of understanding and
use). We further classified the defect according to the
impaired product interface, e.g., user interface, 3-D
package, operating system. All the costly repairs that
were actually carried out related to the 3-D package and
the operating system.
Examples of the different kinds of defects are found in

the Appendix. Further statistics of the defects are found
in Vinter et al. [7].

6. Prevention Techniques

Although these classifications gave us much insight into
the nature of the defects, they were not really useful for
finding efficient techniques. For instance, since many
defects were caused by tacit requirements, an obvious
cure seemed to be a more thorough elicitation of
requirements in order to reduce the number of tacit
requirements and make them explicit.
However, we could not immediately suggest a few

techniques that could elicit most of these tacit
requirements. Further, it was difficult to say whether it
would pay to use the technique. So a more systematic
approach was called for. We decided to look at many

potential techniques and systematically identify those
defects they could have prevented.

6.1. Potential Techniques

We started out with a list of known techniques ranging
from focus groups and usability testing, to inspections
and mathematical specifications. As requirement experts
we knew many techniques from literature as well as
from industry experience. We didn’t care whether the
techniques had tool support, full manuals, etc. That was
a matter of cost to be considered later. Our prime
concern was whether the technique might be able to find
or prevent some of the defects we had observed.

While we classified the defects, we tried to imagine
what could have prevented each defect. When no
technique on the list seemed able to prevent the defect
in question, we tried to invent a new technique or a
variation of an existing one. As an example, we knew no
technique that could have revealed some hard problems
with the 3-D package (defects D1 and D389 in the
Appendix). So we invented three techniques:

1. External software modelling: Model the third-party
package as objects and operations, and test that the
model is correct.

2. External software stress test: Test the third-party
package against the planned product design with
realistic data in extreme cases. (A kind of prototype
exercising the package.)

3. External expert review: Have a package expert review
the planned product design to point out potential
problems with using the package in that way.

We removed many well-known techniques from the final
list, because we could see no use for them in relation to
the actual defects. Initially, for instance, we thought that
argument-based techniques could be useful, e.g., gIBIS
[8]. They might be useful in other projects or during
design, but our defect reports did not show a need for
them.

The net result was a list of 44 promising requirement
techniques, divided into these eight groups:

1xx: Elicitation techniques: focus groups, scenarios,
work with users, etc.

2xx: Usability techniques, prototype testing, style
guides, heuristic evaluation with domain experts.

3xx: Checks of third-party packages.
4xx: Tracing requirements to design documents.
5xx: Risk analysis.
6xx: Formal specifications.
7xx: Inspections, checks, and reviews.
8xx: Specify non-functional requirements better: per-

formance, robustness, interoperability, etc.
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As an example, technique 230 (in group 2xx, subgroup
23x) prescribes ‘usability test of a functional prototype
with daily tasks’. A full description of all the techniques
is found in Vinter et al. [7].

6.2. Estimating Hit-Rates

The next step would be to find the best of these
techniques. However, what was ‘best’? The techniques
that best improved the market value of the product; or
the techniques that best reduced the development cost?
We will discuss that later, but as an initial step we
wanted to see which defects each technique could
prevent.

To do this, we estimated the hit-rates for each
combination of defect and prevention technique. The
hit-rate h(t,d) is the probability that technique t will
prevent defect d. Preventing a defect means that the
technique either has to prevent the defect, or at least
detect the defect sufficiently early so that the defect
report wouldn’t be made.

We were three experts looking at each defect to
identify the techniques that might have revealed the
problem, and estimate their hit-rates. To avoid hair
splitting, we decided to use only hit-rates of 0, 5, 20, 50,
80, and 95%. (These figures were our numeric version of
a subjective scale like impossible, unlikely, . . . almost

sure.)
We didn’t take averages, but reached consensus for

each hit-rate. When we disagreed, we explained how we
imagined that the technique would be carried out.
Usually we realised that we disagreed on the hit-rate
only because we had different assumptions on how well
developers would master the technique, how carefully
the technique was applied, and how well the result was
checked. We then agreed on how to carry out the
technique, improved the description of the technique
accordingly, and had no difficulty stating the hit-rate in
question. As an example, technique 230 (usability test of
functional prototype with daily tasks) was defined as a
particular variant of usability testing when our discus-
sions revealed different assumptions on the kind of
prototype and which user tasks to use for testing.

For each defect, there were around five prevention
techniques with a positive hit-rate. Unfortunately,
around three of them had a low potential as we estimated
that they would hit the defect with at most 20% chance.

About 25% of the defects were hard to prevent by any
technique. Even the best of our techniques would hit
them with at most 20% chance. Almost 40% of the
defects could be easily prevented, because some
technique would hit them with at least 80% chance.

When we had estimated all hit-rates h(t,d), it was easy
to find the total hit-rate for each technique as the sum of
h(t,d) for all d. This gives the expected number of defect
reports that would have been prevented in the sample.
Scaling up from the sample to the entire set of error
reports gave the expected number of defect reports that
would have been prevented in the entire project. As an
example, we have these figures for the apparently
strongest of our techniques, technique 230:

Usability test of functional prototype with daily tasks

(technique 230):

Sum of hit-rates, h(230,d): 22.6 out of 200 defects
Expected defects found in total project: 90.4 out of
800 defects

In other words, in projects like NSL, we would expect
technique 230 to prevent an average of 90 defect reports,
i.e., 11% of all reported defects or 20% of the
requirement defects.

The weakness in this approach is, of course, that the
figures depend entirely on the expert’s ability to estimate
the hit-rates. We have tried to guard against this by using
three experts with different backgrounds and insisting on
them reaching consensus rather than taking an average.

Later experience showed that we grossly under-
estimated the hit-rate of usability tests – or maybe
there was an accelerator effect at work, so that removal
of some usability defects caused users to pass over other
potential defects (see Section 8.2).

In another case, we hit quite precisely. We had
estimated that a careful inspection of the requirements
specification would hit an average of two defects in our
sample – a bit low, considering that inspection is
considered a very important technique. Later we
remembered that such an inspection had been made.
Looking at the inspection report, we found predictions of
exactly two of the defects in our sample. Counting as
above, we would expect that the report predicted a total
of eight defects in the entire project.

Actually the inspection report contained 84 predic-
tions of wrong, missing or ambiguous requirements. But
most of them were ‘false positives’ in the sense that they
predicted problems that did not appear in the defect
reports. Although the requirements looked wrong or
ambiguous, the developers had got the necessary tacit
understanding to avoid creating defects.

6.3. Cost of the Techniques

Based on the detailed technique descriptions, it was
rather straightforward to estimate the cost of each
technique, measured as the number of work hours
needed to carry it out. We assumed that the technique
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had adequate tool support. With the rather short
requirement specs we dealt with, it wasn’t a critical
issue anyway.
As an example, we had this cost calculation for the

usability test technique above (training time for
developers were included but have been omitted here
for simplicity):

Usability test of functional prototype with daily tasks

(technique 230):

Cost estimate Hours

Test planning, designing about 30 tasks 30
Basic functionality for 35 windows, one day each 245
Three test sessions, each with 3 users 54
Total 329

This calculation covers only the time to detect the
usability defects. The time to repair the defects is not
considered, as we argued that it would occur also if the
defects were detected late and then corrected.

6.4. Benefit of the Techniques

Estimating the benefit of each technique turned out to be
very hard. Ideally, we wanted to look for improved
market value of the product, but we couldn’t find reliable
ways to assess it. The literature didn’t give us many
clues to the real-life benefit of each technique. After
some time, we realised that many benefit factors were
involved:

1. Saved work hours to report and handle a defect.
2. For reported defects where some repair was made:

saved work hours for repairing the wrong solution
(net rework time).

3. For reported defects that were not repaired or repaired
only partially: the market value minus development
time if it had been dealt with earlier.

4. Effect on early development if requirements had been
better known.

Factors 1 and 2 dealt with simple savings in develop-
ment time, and in principle they could easily be
estimated. Surprisingly, most defects were either
considered unnecessary to repair, or just a few hours
were spent repairing them. In many cases the repair was
only partial or a work-around, because the kind of
solution one would have made if realising the problem
early was too costly at the late stage. An example is
given for defect D1 in the Appendix.
We realised that factors 3 and 4 might be very

important, but it was impossible to give a reasonable
estimate of them. To avoid being accused of unrealistic
expectations, we included only the tangible benefits of
factors 1 and 2 in our cost/benefit calculations. Actually,

factors 3 and 4 turned out to be highly significant, but we
couldn’t have estimated their effect early.

The pragmatic decision was a prevention benefit for
each defect of either 5, 25 or 50 hours. Surprisingly, 100
out of the 107 defects would save just 5 hours each if
prevented. The total expected benefit if all requirement
defects were prevented was as follows:

Total possible benefit in NSL project:

Prevention benefit of 5 hours: 100 defects
Prevention benefit of 25 hours: 2 defects
Prevention benefit of 50 hours: 5 defects
Total saved in sample: 800 hours: 107 defects
Total saved in project: 3200 hours: 428 defects

Compared to the total development cost of 12,000 hours,
this saving is about 27%. Unfortunately this does not
include the cost of the necessary prevention techniques.
Carrying out all of the 44 techniques would cost about
6000 hours and still we would catch less than 60% of the
defects. The result would look real bad on the bottom
line.

In order to find the best techniques, we computed the
net benefit of each technique. As an example, we can
compute the net benefit for the usability test technique
above as follows: it had a 5% hit-rate for eight defects,
each of which would save 5 hours if prevented. These
defects would save an average of 2 hours total. It had a
20% hit-rate for 23 other reports, etc. In total the
computation looks like this:

Technique 230 (Usability test with . . .) Hours saved

8 reports with 5% hit-rate and 5 hours benefit: 2

23 reports with 20% hit-rate and 5 hours benefit: 23

14 reports with 50% hit-rate and 5 hours benefit: 35

7 reports with 80% hit-rate and 5 hours benefit: 28

4 reports with 95% hit-rate and 5 hours benefit: 19

2 reports with 20% hit-rate and 50 hours benefit: 20

1 report with 80% hit-rate and 50 hours benefit: 40

Total benefit in sample (hours) 167

Total benefit in project (hours) 668

Cost of technique (hours) 329

Net benefit (hours) 339

According to the calculation, the total benefit for this
technique would be 668 hours. Carrying out the
technique, however, would cost 329 hours, so the net
benefit would be just 339 hours, or about 3% of the
entire development time.

6.5. Selecting Techniques

Calculations showed that more than half of the
techniques would be a waste of time. They had higher
costs than benefits according to our estimates, so the best
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combination of techniques was to be found among the
rest. When using techniques in combination, the benefits
are reduced because each technique filters away some
defects, leaving fewer defects for the next technique.
Taking this into consideration, we could compute
optimal combinations of techniques by means of
dynamic programming.

According to our calculations, the best combination of
any four techniques would prevent 37% of the
requirement defects and reduce the total development
cost by 6%. Combinations with more than four
techniques showed very little improvement.

We observed that the filtering effect had little influence
on the optimal combination of techniques. In general, the
best techniques in combination were also the best in
isolation. For instance, the six techniques that formed the
best combination were among the top eight techniques in
isolation. Further, the two top eight techniques left out
were variants of one of those included.

We had hoped that somehow a few techniques farther
down the list could combine like a jigsaw puzzle and
detect most defects. This was not possible according to
our calculations.

The conclusion is that we could select the best
techniques one by one rather than as an optimal
combination. This was very important when we came
down to selecting the techniques in cooperation with
developers. It allowed us to consider organisational
factors in addition to the cost/benefit estimate, without
invalidating particular optimal combinations.

We tried a few variations of the benefit factor. Above
we used a simple net benefit (benefit minus cost) as the
important factor, and we also tried benefit divided by
cost to optimise the return of the hours invested in the
techniques. The results didn’t change a lot.

However, the calculations showed that the optimal
combinations were rather sensitive to the assessment of
individual, expensive defects. As an example, we had
lengthy discussions about the hit-rate for the last defect
in the above table. Much later we realised that a change
from 80% to 5% for this single defect would have caused
the entire technique to move from number two on the top
eight list to number six. In contrast, the sensitivity for the
‘cheap’ defects (the majority) was small.

Irrespective of the calculations, we were convinced
that one technique was highly important: studying
potential user tasks and writing down the results as
scenarios (technique 101). There were two reasons for it:
(1) The technique would be useful for identifying the
tasks to be used in usability tests. (2) We had seen in
another project that market opportunities could be
improved this way. The choice of this technique could
not be justified by the NSL defect reports, because they
focused on defects in the product, not on lost market

opportunities. As we will see later, this technique
became highly important.

Scenarios mean different things to different people, as
explained by Campbell [9]. In our variant, we study what
the users actually do or try to do – irrespective of any
possible computer support. We write down the results as
descriptions of the user profile, the work environment
and the user tasks. Our approach is much like the ones
reported in Carlshamre and Karlsson [10], Graham [11],
and Hooper [12]. We do not mean scenarios in the
object-oriented or UML sense, which is quite close to the
computer and describes the detailed interaction with a
proposed computer solution.

The end result was that we presented two development
teams with a list of potentially good techniques,
including the following:

101 Scenarios, including description of user tasks.
230 Usability test of daily tasks with a functional

prototype.
220 Usability test of daily tasks based on a screen mock-

up.
280 Product expert screen review (a kind of heuristic

evaluation).
301 External software stress test. Aimed at preventing

the very costly defects associated with new external
software.

721 Orthogonality check of object model. A specific
check to see whether an operation (or feature) could
be applied to all user objects where it might be
useful.

730 Initial value check. A specific check to see whether
screens would contain the proper values initially.

820 Performance specification. A check to see whether
proper limits had been defined for certain perfor-
mance factors (time, size, amount, and precision).

The developers selected five techniques based on many
criteria: e.g., the cost/benefit that we had calculated;
whether the technique matched their project; whether
there were non-quantified advantages and disadvantages
of the technique; whether the technique seemed to
duplicate other techniques.

During these discussions we realised that the best
techniques in NSL might not be the best in other projects.
As an example, the external software stress test, which
had been the top technique for NSL, was useless in their
projects since they didn’t use new external software.

Usability test with a functional prototype had been top
two in our calculations, and the teams favoured it. But it
had a serious disadvantage: the rather large effort spent
on making a functional prototype meant that the team
would be reluctant to discard the prototype and rethink
the user interface completely. We therefore persuaded
the teams to replace it with the technique ‘usability test
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based on a screen mock-up’. This too turned out to be an
important decision.
The teams received training in the five techniques they

had selected and started using them in the project.
Shortly after, they realised that it was too many new
things at once. It seems unrealistic to introduce more
than one or two techniques at once in the midst of all the
other daily activities. (Card [3] has made similar
observations for Defect Causal Analysis). So actually
they used only two new techniques:

1. Scenarios, including description of user tasks (tech-
nique 101).

2. Usability tests with daily user tasks, based on screen
mock-ups (technique 220). This technique used
prototypes with carefully designed screens and some
screen switching features, but no real functionality.

According to our estimates, these two techniques should
be able to prevent about 15% of all requirement-related
defects. They should save about 3% of total development
time (350 developer hours).
Many developers believe that usability testing is very

costly, but we had good experience using a low-cost
usability test, and that was what we prescribed (see
Jørgensen [13] or Lauesen [14]). For a more full descrip-
tion of usability testing, see Dumas and Redish [15].
Since both techniques are rather usability-oriented,

you would expect that they mainly detect usability
defects. This wasn’t the case. Calculations showed that
they should detect 18% of all usability defects (13 out of
72 usability defects in our sample) and 11% of the others
(functionality, interoperability, etc.).

7. Using the Techniques

Both teams used the techniques with great enthusiasm.
However, there was a major barrier to overcome: getting
access to real users (customers). In a product-developing
company like B&K, marketing is the link between
developers and customers, but marketing staff are
reluctant to give developers direct access to customers.
Also, in an international market, it is hard to find
representative users. These problems are known at many
companies as described by Grudin [16]. In spite of all,
developers managed to get across the barrier.

Team A developed a new product, a portable sound
intensity meter (PT-2). The hardware was available: a
nice, slim case with a special screen and keyboard, CPU,
exchangeable flash memory, battery, two microphones;
length 50 cm, total weight 3 kg. The product reused the
operating system and some other basic modules from a
different portable product.

Developers expected it to be used when measuring
noise intensity in houses, traffic noise, etc. Anyone could
imagine how these tasks were performed, but just to
make sure they decided to observe potential users and
write scenarios and task descriptions.

To their surprise a major demand was to measure
noise levels on the surface of tall ventilation shafts,
chimneys, etc. One scenario looked like this (much
abbreviated):

Chimney scenario. The user climbs the chimney on the small
steps attached to it, carrying the meter. With an arm stretched
out around the chimney, he measures the noise level in various
points. He checks that the measurements are of adequate quality,
repeats measurements as needed, and climbs back down.

This revealed a few problems in the planned design. (1)
Although portable, there was no easy way to carry the
sound meter on the ladder. (2) The user had to answer a
few dialogue boxes to start the measurement (with arm
stretched out). (3) Reviewing the measurements for
quality was not easy standing on the ladder because the
display was upside down relative to normal operation.

The team came up with a revised design of the meter.
It should have a carrying belt. The user dialogue should
allow single-button start and stop of measurements with
audible feedback. The display should be reversible
programmatically, etc.

These details made the meter a great success when
released. Competitors did not show the same under-
standing of the tasks to be supported.

The team made usability tests very early, testing the
chimney scenario among other scenarios. The tests made
them revise their first design completely, and the next
design significantly. Had the team developed functional
prototypes, the cost of doing so would have discouraged
them from significant redesigns. The mock-ups, how-
ever, could be redesigned in a day or two.

This approach made the product so easy to use that
even non-experts could use it.

What did the requirement specification look like with
the new approach compared to the old approach? In
principle the scenario descriptions and the prototypes
could largely replace the traditional numbered require-
ments. (Some numbered requirements had to remain, for
instance platform requirements). But this step was not
taken. The old kind of numbered requirements remained,
but scenarios and prototypes were supplementary
information serving as justification of the requirements
and as well-tested examples of how they could be
implemented.

Team B developed another new product, a sound
power meter. They followed a similar approach, wrote
scenarios, produced and tested prototypes. But then
something unexpected happened. The project got a new
project manager. He didn’t believe in the techniques,
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discarded the prototypes, and designed the user interface
in a style he knew from another, typical B&K product.
Development then continued from there. The team
overshot their budget significantly and didn’t complete
on time. However, we have not had opportunities for
studying the project further.

8. Results

When team A had completed the project, we started
analysing the effects of the new approach. Could we see
a reduction of 15% defect reports? Could we see a
reduction in work hours? Well, we hadn’t imagined how
difficult it was to compare two very different projects.
Traditionally one would compare the number of defects
per KLOC (thousand lines of code), but it didn’t make
much sense in our case because one project struggled
heavily with new external software, while the other
largely reused special platform software they knew very
well, but made comparatively many screen pictures.

To improve our understanding of the results, we
looked at the previous product based on team A’s
portable platform, and analysed its defect reports. So in
total we had three projects to compare:

1. NSL: The first product we studied (the base project).
It was the first one in B&K that used Windows NT. It
also used 3-D presentations of measurements for the
first time.

2. PT-1: The previous product on the portable platform.
It was developed by some team A members plus other
staff. The main focus in this product had been the
technical side of this kind of sound measurement.

3. PT-2: The new, different product on the portable
platform, developed by team A. Nobody in the team
had been involved with NSL. The main focus in PT-2
was on the usability side. The complexity of the
screen pictures was comparable to the complexity of
the windows in NSL.

In Table 1 are some figures for comparing the three
projects.

8.1. Looking for Planned Benefits

One goal was to reduce development time, but it is hard
to tell whether total development time was reduced. One
reason is that an expected reduction of 3% is hardly
possible to measure, given all the other differences
between the projects – particularly in a company with
little systematic recording of employee time. PT-1 used
about the same number of developer months as PT-2.
Although the team produced four times as many screens,
they didn’t grapple with new measurement techniques.

Did we reduce the number of requirement defects?
The total number of requirement defects per month is
much smaller than in NSL, but roughly the same as in
PT-1. So there doesn’t seem to be a significant reduction
from PT-1 to PT-2. However, this may be a result of two
opposing changes, shown in the table: slightly more
usability defects per month in PT-2 (due to many more
screen pictures, which still carry a relatively high defect
rate), and fewer requirement defects of other kinds.
Fewer requirement defects of other kinds are very likely,
given that much measurement software was reused.

8.2. Unexpected Results

We had suspected that it might be a problem to compare
the projects in the planned way, because they were rather
different. So we looked at other indicators too.

The most striking effect was that the new techniques
had reduced the number of usability problems per screen
by about 70%. This was most likely the result of
usability testing and willingness to redesign the inter-
face. However, the effect was much more than the 18%
reduction in usability defects that we expected in our
expert predictions. It was even more surprising when you
knew that the usability tests were carried out far less
carefully than prescribed in the original description of
the technique. Either the experts were too pessimistic or
some accelerator effect was at work.

The accelerator effect could work as follows. Assume
that we have a user interface with no usability problems
in the central screen pictures. It might then suggest a
‘correct’ mental model to the users that would allow
them to better understand other less frequently used
screens. In other words, removal of the central usability
problems would make the users pass over other potential
usability problems. Since the usability test covered only
the most central screens, this could explain its much
larger effect.

Table 1. Comparison of old projects (NSL and PT-1) with PT-2
that uses the new approach

NSL PT-1 PT-2

Developer months 77 20 19
New screen pictures 45 6 23
Implementation defect reports 352 113 71
Total req. defect reports 428 77 66
Usability defect reports 288 41 43

Total req. defects/month 5.6 3.8 3.5
Usability defects/month 3.7 2.0 2.3
Non-usability req. defects/month 1.8 1.8 1.2

Implementation defects/month 4.6 5.6 3.7
Usability defects/screen 6.4 6.8 1.9
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A small effect is that the number of implementation
defects per month is reduced by more than 20%. This was
unexpected – why would better requirement techniques
reduce raw programming errors? An independent
researcher, Jan Pries-Heje, had interviewed developers
during the project, and his report provided the answer:
According to the developers, the new approach

created a solid foundation at an early stage. There was
no doubt about requirements and user interface during
the rest of the development. Detailed design and
programming became straightforward tasks. Previously,
things had to be changed all the way during program-
ming and integration. With the new approach, there
could still be new requirements coming in from
marketing, but developers responded by asking for a
scenario where this feature would be useful. Only rarely
could such a scenario be identified.
Developers had also explained that development

proceeded without the usual stress and still on time.
Further, already the first trade fair showed high customer
satisfaction. Competitors did not show the same under-
standing of the customer’s needs.
Hearing about these results, other project managers

wanted to learn the new techniques, and several courses
had to be given. These project managers found the
techniques effective too, and today the techniques are
used throughout the company.
Later, sales figures showed that the PT-2 product sells

twice as many units as comparable B&K products, and at
twice the unit price.

9. Discussion

Looking at the final choice of techniques (scenarios and
early usability testing), you may wonder why it took so
much effort to reach a conclusion that afterwards looks
obvious. Did we just reinvent the wheel? No, we knew
that the techniques existed, but little was known about
their effectiveness in a real-world project. We managed
to estimate the effectiveness. We also learned a lot about
how to select and introduce new techniques in general,
which is a critical point in action research.
Scenarios and usability testing are not widely used,

but Weidenhaupt et al. [17] identified and compared 15
European projects that used some kind of scenarios.
There was a difference in the approaches, but the typical
approach was very similar to the one B&K chose:
scenarios are initially used to describe what is going on
in the user domain without regard to the exact role of the
new product. Later, developers make prototypes and
usability test them against the scenarios.
However, it was not possible to quantify the

advantages of the techniques in those projects.

The B&K projects seem to differ from those 15
projects because B&K develop products with embedded
software for a market. We believe this difference helped
us quantify the effectiveness of the techniques because a
lot of the environmental factors, e.g. the development
process, market analysis and defect reporting, were the
same from one project to another.

Still the B&K projects were so different technically
that we could not see improvement in developer per-
formance such as defects per person-month or KLOC per
person-month. We could see other significant effects,
however.

10. Conclusion

We can summarise our conclusions in this way:

1. Scenarios and early usability testing (based on a
mock-up) are highly beneficial techniques. They gave
a much more predictable development, had a low
cost, reduced the number of usability defects by 70%,
and vastly improved user satisfaction as shown by
market acceptance and sales price.

2. Looking at the individual requirement defects, we
were able to identify or invent cost-effective
prevention techniques. In contrast, classifying the
defects according to the source of the defect, the kind
of requirement violated, etc. did not help identify or
invent cost-effective prevention techniques.

3. Selecting the best techniques involves many factors,
some of them quantifiable, others more subjective.
Estimating the hit-rate of a technique is helpful, but is
only one of the factors.

4. Estimating the value of a prevention technique is
possible if you look only at the saved ‘rework’ time.
For some techniques, however, there are huge
secondary benefits in improved market value and
improved overall development, as observed for our
chosen techniques. For other techniques such second-
ary benefits are dubious.

5. A technique may be very beneficial although it cannot
be justified by defect prevention. The use of scenarios
is one example. It vastly increased market share,
although it hardly prevented any defect reports. Lost
market opportunities are simply not recorded as
‘defects’.

6. Tangible benefits (e.g., the number of prevented
defects) are important to convince developers to use a
new technique. However, the value of a technique
depends on the kind of project. What is a definite
advantage in one project may be a waste of time in
another.

7. One could imagine that a combination of medium-hit
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techniques would be advantageous to a single high-hit
technique. According to our calculations, this did not
happen in our case. Techniques that were good in
combination were also good in isolation.

8. Developers cannot handle more than one or two new
techniques at a time. This is no problem according to
our calculations. If you first introduce the best single
technique, then the next best and so on, you end up
with an optimal combination of techniques. There are
probably exceptions to this, but none we could see in
our case.
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Appendix: Examples of Defect Reports

Below follow examples of defect reports from NSL.
There is at least one example for each of the main
sources of defects. In the examples we refer to various
quality factors according to McCall’s classification.

The defect reports in the original files were numbered
from one upwards. Below, D461 etc. refer to these
original numbers. The explanations are not the original
ones – which would be impossible for outsiders to
understand – but attempts at more popular explanations.
Still, we have selected examples that are easier to
understand than the average. All defects below were
easy to repair, or at least work around, except for defect
389.

New market requirement

D461: The product should show a PI index in order to
determine sampling time. A PI index is convenient for
setting up robot control and knowing manual sampling
time. This is related to a potential new application area,
where the microphones were robot-controlled. From a
quality factor viewpoint, it was a question of missing
functionality.

External product changes

D441: The communication format in another, indepen-
dent B&K product changed in a new release. This
product was used as a front-end to NSL and provided the
measurement data. The NSL product crashed when
communicating with this new version. From a quality
factor viewpoint, it was a question of robustness,
interoperability and maintainability.

Missing requirement and external product
mistake

D1: The essential feature of the NSL product was to
show spectra, etc. on a 3-D surface. An external (third-
party) graphics package was used for the 3-D display. It
turned out that when a 3-D picture was rotated or
zoomed, the annotations on coordinate axes, grid
surfaces, etc. were also rotated and zoomed. This could
make the annotations unreadable.

The problem related to both the user interface, where
it was a missing requirement, and to the external
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software interface, where it was a mistaken specification
of external software. From a quality factor viewpoint, it
was a question of usability. It would have been very
expensive to repair the defect at this stage, so only a
work-around was made in the form of a separate
annotation window.

Wrong requirement spec

D133: When measurements in a grid are missing, the
product should interpolate a value according to
requirement R-35. However, users were confused
whether the point had been measured or not, so the
requirement was (partially?) wrong. From a quality
factor viewpoint, it was a question of usability.

Mistaken tacit requirement

D137: The product could measure sound in a grid of
points. The measurement sequence could be Z-shape, S-
shape, or Free shape. However, users couldn’t find a
‘Free shape’ button. Two buttons said Z-shape and S-
shape. When both buttons were out, it meant Free-shape,
which the users didn’t figure out. From a quality factor
viewpoint, it was a question of usability. Although the
developer understood the tacit requirement for choosing
between the alternatives, he made a wrong guess on how
to deal with it.

External product error

D389: The external 3D package couldn’t correctly hide
surfaces behind narrow objects. A small gap was needed
to tell the package that a grid inserted into a larger grid
should hide the main grid. From a quality factor
viewpoint, it was a question of correctness in the

external software. A real repair was needed, amounting
to an estimated 50 work hours.

Omitted requirement

D189: According to the written requirements, ‘zero
interpolation’ should be available in grid maps. The
feature was omitted without changing the requirements
because the external package didn’t support it. Old B&K
systems supported it, but the facility was not important.

The problem related to both the user interface, where
it was an omitted requirement, and to the external
product interface, where it was an error in the external
software. From a quality factor viewpoint, it was a
question of usability.

Mistaken requirement spec

D501: When the user clicked on the scroll bar in the Map
Table (outside the arrows), the window scrolled one line
only, rather than a page. Although the developer
understood the broad requirement of following the
Windows style, he made a mistake in this case. From a
quality factor viewpoint, it was a question of usability.

Incomplete change

D773: In some cases a large text was clipped so that it
became unreadable. It was a consequence of repairing
other requirement defects through computing the text
size, rather than having a fixed size. In this case,
however, the size was computed wrongly. Prevention of
some other requirement defects (D737 and D1) would
have prevented this too. From a quality factor viewpoint,
it was a question of correctness.
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