
Published in: Proceedings of REFSQ’98, Presses Universitaires de Namur, 1988
© Lauesen & Younessi

1

Six Styles for Usability Requirements

Soren Lauesen & Houman Younessi

slauesen@cbs.dk, HYounessi@swin.edu.au
Copenhagen Business School, Howitzvej 60

DK-2000 Frederiksberg

Abstract. A system can have adequate functionality, but inadequate usability because
it is too difficult to use. The purpose of usability requirements is to guard against that.
This paper shows six styles for usability requirements seen in practice or recom-
mended by experts. For each style we discuss how we can verify the requirements,
how we can use them during development, how we elicit the data for the specification,
and to what extent the style covers the essence of usability.

Introduction

The largest part of the requirements specification deals with the functional re-
quirements, that is the system input, processing, and output. These requirements say
nothing about how easy the system is to use, yet ease-of-use is a major concern with
most systems.

A usability requirement specifies how easy the system must be to use. Usability
is a non-functional requirement, because in its essence it doesn't specify parts of the
system functionality, only how that functionality is to be perceived by the user, for
instance how easy it must be to learn and how efficient it must be for carrying out user
tasks.

Surprisingly, the literature has very little to say about usability requirements
and rarely provides real-life examples. Nielsen (1993), Preece (1994, chapter 19), and
Macaulay (1996) give much advise on usability requirements, but in a rather abstract
setting without real-life examples.

Also practitioners have great difficulties specifying usability requirements and
often end up stating that "the system shall be easy to use". Every now and then, how-
ever, we have come across more meaningful and precise usability requirements. They
have been important for this study.

The usability requirements must be tangible so that we are able to verify them
and trace them during the development. They must also be complete so that if we ful-
fill them, we are sure that we get the usability we intend. Meeting these goals is dif-
ficult in practice and no approach seems to cover all of them. Below we study six us-
ability styles and discuss their strengths and weaknesses. In practice you can use the
styles in combination.

Usability Factors

Before we look at the different styles, we will briefly discuss what usability is.
According to a traditional definition, usability consists of five usability factors:

1. Ease of learning. The system must be easy to learn for both novices and users with

experience from similar systems.
2. Task efficiency. The system must be efficient for the frequent user.

2

3. Ease of remembering. The system must be easy to remember for the casual user.
4. Understandability: The user must understand what the system does.
5. Subjective satisfaction. The user must feel satisfied with the system.

The different styles specify and measure these factors more or less directly.

Developers often say that it is impossible to make a system that scores high on
all factors. This may be true, and one purpose of the usability requirements is to
specify the necessary level for each factor.

Usability Testing

An important fact, confirmed by many experiments, is that nobody can foresee
the usability problems for a given user interface - not even usability experts. Usability
experts may predict many usability problems with a design, but about half of the pre-
dicted problems are false, in the sense that users don’ t feel they are problems. What is
worse, the usability experts miss about half of the problems that real users experience
(Cuomo & Bowen, 1994; Desurvire et al., 1992; Jeffries et al.,1991). Only some kind
of testing with real users can reveal the usability problems. In order to correct the
problems, we need to identify them early during development. As a result, usability

Example1.1: Performance-based usability spec of an ATM
This is an example of a performance-based usability specification for an auto-

matic teller machine (an ATM). There are five enumerated requirements (R1.1 to
R1.5). To help developers understand them, they are justified by higher-level goals.

. . .
It must be easy to learn how to use the ATM. Otherwise we cannot expect customers to switch to
our system. In particular, success with the first attempt at withdrawing cash is important. Attract-
ing new customers is also important.

R1.1 Customers with ATM experience from other banks: In their first attempt, they must be

able to withdraw a preset amount of cash within an average of 2 minutes.
R1.2 Customers without previous ATM experience: In their first attempt, 90% of them must be

able to withdraw a preset amount of cash within 4 minutes.
R1.3 Customers having tried to withdraw a preset amount: In their first attempt, 70% of them

must be able to withdraw a non-preset amount within 6 minutes.

To reduce waiting time when many customers queue up to withdraw cash, the performance for
experienced users is important too.

R1.4 Customers with at least 6 withdrawals over at least a month: They must be able to with-

draw a preset amount of cash within an average of 30 seconds.

To reduce customer annoyance and need for personal help from staff, it is important that cus-
tomers understand the causes of malfunctions.

R1.5 When the system rejects a transaction: In 90% of such cases, the customer must be

able to explain in his own terms what the cause is and what he can do about it. Exam-
ples: it is a transmission problem (I should try again later), I used a wrong PIN code, I
have overdrawn the account, I have exceeded my daily allowance, the card has expired.

3

specifications that cannot be tested during development have a serious weakness.
The kind of testing needed to reveal usability problems is called usability

testing. It is an experiment where real users with relevant background try to perform
real tasks by means of the system or a prototype. Observers record the problems en-
countered by the user and the time to perform the tasks.

1. Performance style
In a performance-based usability specification we define a set of tasks where

usability is important, we define one or more user groups, and we define performance
objectives for the user groups when performing these tasks.

Example 1.1 shows a performance-based usability specification for an ATM. It
is based on three tasks:

1. Withdraw a preset amount of cash chosen by the user from a short list of choices.
2. Withdraw another amount.
3. Handle transaction rejections (trouble shooting). This is not a separate task, but a

common variation of other tasks.

The specification mentions three user groups:

1. Users with other ATM experience
2. Users without ATM experience
3. Routine users of the new ATM

Performance objectives for group 1 and 2 specify something about ease of learning,
while performance objectives for group 3 specify something about efficiency for the
experienced user.

Tasks

A task is a piece of work that the user wants to perform with support from the
system. The task must be closed, that is with a limited duration and with a well-de-
fined, meaningful purpose to the user.

Readers knowing about use cases might notice that a use case and a task is al-
most the same. The term task is preferred among experts in human-computer interac-
tion while use case is preferred among experts in object-oriented analysis.

Which tasks do we choose as basis for the requirements? We recommend that
you specify usability for all critical tasks, i.e. those that are closely related to the
higher-level goals of the system. This is the reason for the tasks chosen in the ATM
case. The justification for each requirement shows the relation to a higher-level goal.

User Groups

Usually a system has several groups of users with different usability require-
ments. The ATM example looked only at the customers, but the bank staff and the
technical service staff are other user groups with different usability requirements. Us-
ability for them must be specified based on the tasks they perform by means of the
ATM, e.g. loading cash into the machine, setting up new security codes for the ATM,
diagnosing and repairing faults.

4

1.1. Verification and Tracing
Although the specifications in example 1.1 are quite precise, they give only a

rough guideline for how to verify them in the final system. Are we going to observe
users of the final system on the street? How many users do we have to observe? Or are
we going to make a usability test? How do we select users for the test? How much
help do they get?

In practice it is not sufficient to verify the usability at end of development. It is
necessary to estimate it several times during development. A test-based approach in an
experimental setting can help us. If we specify verification as in example 1.2, we can
use the same procedure during development.

This usability test procedure is not completely faithful to the specification. For
instance the samples are quite small, so that requiring that 9 out of 10 persons do
something is not statistically reliable. The verification of R1.4 (using three days of
experience rather than a month) is just a coarse approximation, since we cannot get
real experienced users. On the other hand, the procedure is quite easy and cheap to
carry out, and it gives acceptable precision in practice (Lauesen, 1997).

1.2. Getting the Data
In order to set up a performance-based usability requirement, you need to col-

lect three kinds of data: A list of the critical tasks, a list of user groups and experi-
ences, and performance objectives for each task/user combination.

Finding the critical tasks is part of the general analysis of the domain. During
interviews, group discussions, and observations you try to identify the tasks to be
supported by the system. A complete list of tasks is essential to define the required
functionality of the system, but it is usually too cumbersome to define and verify us-
ability objectives for all of them.

So you have to identify the critical tasks. One way is to ask these questions:

1. Which tasks are critical to meet the goals of the system?
2. Which tasks take a large part of the user’s work day?
3. Which tasks have to be done under stress?
4. Which tasks are difficult to perform?

The usual analysis of user groups, stakeholders, and work domains will give you a
good list of user groups. Additional questions are needed to identify what experience
the users have and which usability factors are most important.

Example 1.2: Verification of performance-based usability
Requirements R1.1-1.3 and R1.5 are verified with this usability test: 10 test subjects with experi-
ence from other banks, and 10 without previous ATM experience are selected through telephone
interviews. In the laboratory they try the two basic tasks and they try tasks causing the system to
reject the transaction for many different reasons. Task completion times are measured manually.
The percentages are interpreted relative to the sample of 10 persons. For instance 9 of the 10
novices must be able to withdraw cash within 4 minutes.

R1.4 is verified in this way: 3 test subjects from each group are allowed to practice withdrawal six
times. They are asked to come back three days later and try withdrawal again.

It is important that users get no other help than what they would get in a real-life situation.

5

Based on the critical tasks, the user/experience groups, and the importance of
the usability factors, you can easily write requirements in the style of example 1.1.

But from where do you get the target values, e.g. the time to learn a task? If
you set up unrealistic requirements, nobody will enter a contract to provide the sys-
tem, but what is realistic? If you specify too weak requirements, the users may be an-
noyed with the system or the customer’s business may be slowed down. Here are some
ways to get the figures:

1. Are some figures critical to the system goals? For instance a certain total task time

might be essential to serve the customers or react to failures. Or you cannot allow
more than x days to make the transition from the old system to the new, so the
learning time must be less than x days.

2. What is the present performance in these tasks? If you don’ t want the new system
to be slower, you can specify the present performance as a limit.

3. Visit other companies that use similar or related systems and see what performance
they get, what learning time they experience, etc.

4. If you plan to buy a standard system, leave the figures out and ask the supplier to
provide them. He should have experience that allows him to specify for instance
the learning time for his product, various task times, etc. In a tender situation, you
may compare the figures from various vendors and use them in the selection pro-
cedure.

1.3. Pros & Cons
Usability consists of several factors, ease of learning, efficiency, etc. We can

cover most of them with the performance-based approach.
The understandability factor, however, is somewhat outside the scope of the

performance-based approach. When measuring user performance, we see only indi-
rectly whether the users understand what is going on. We can, however, ask users
specific questions relating to the task and count the correct answers to get a perform-
ance measure for understandability. Requirement R1.5 in the ATM case is an exam-
ple.

The last usability factor, subjective satisfaction, cannot be measured in a per-
formance-based fashion. Satisfaction does not relate to individual tasks but to the
whole work situation.

The main problem with the performance style is that the choice of tasks is
critical. If an important task has been left out from the specification, users may find
that task so difficult to perform that it impairs the value of the system. Careful re-
quirements engineering can guard against that, however.

Another problem is that tests to measure the task performance give rather little
feedback to developers. They may observe that users take a long time to learn how to
use the system, but what is the underlying problem? Didn’ t the user see the correct
menu point? Or didn’ t he understand the error message? The defect style avoids this
problem.

2. Defect Style
A variant of the performance style is the defect style. It identifies the usability

problems in the system and sets limits on the number of problems and their severity.
Example 2 shows an example. It is based on a classification of the problems according
to severity.

6

Usability Problems and Usability Defects

When a user makes a mistake or finds the system too cumbersome to use, we
have a usability problem. There are many kinds of usability problems and some
problems are more severe than others. A task failure, for example, is a situation where
the user is unable to complete the task or unable to understand why it cannot be com-
pleted. Lauesen (1997) gives a taxonomy of usability problems.

A usability defect is a design defect which causes usability problems. The same
defect can appear as a task failure to some users, as an inconvenience to others, and
isn’ t noticed by the rest. In practice you can report the observed usability problems as
a list of defects with indication of the associated problems.

2.1. Verification and Tracing
In order to verify the requirements or check them during development, you

have to observe and count usability problems. The best way is to use prototypes and
usability tests with a slight modification: ask the users to think aloud. This slows them
down, but gives excellent feedback to developers.

2.2. Getting the Data
You can elicit the requirements in much the same way as for the performance

style, but it is much more difficult to target values for problem frequencies than for
performance times.

2.3. Pros & Cons
The advantage of the approach is that the requirements can be checked easily

during system design by means of usability tests. Properly done this gives excellent
feedback to developers about the usability problems.

As with the performance style, the choice of tasks and the choice of users are
critical, but the same approaches can be used in both cases.

The main problem is that we don't fully cover the usability factors. For instance
we assume that if the user doesn’ t complain about slow performance, then the system
is efficient. We also assume that the user is satisfied with the system and would
recommend it to others if he hasn’ t encountered defects. These are dubious as-
sumptions as discussed in section 4.

3. Process Style
It can be quite difficult to set proper limits on the usability, e.g. the number of

defects allowed or the maximum time to learn the system. One way to avoid that is to

Example 2. Defect style for an ATM
In their first attempts to carry out tasks A and B, users may not encounter more usability prob-
lems than these:

R2.1. Task failures: at most 0.2 per user.
R2.2. Efficiency problems: at most 0.2 per user.
R2.3. Inconveniences: no limit.

Task A: Withdraw a preset amount of cash.
Task B: Withdraw a non-preset amount.

7

specify the usability aspects of the design process rather than the product. One design
aspect is prototyping, and we have often seen requirements saying “development must
be based on prototypes” . However, a prototype doesn’ t guarantee usability unless it is
usability tested.

Another pitfall is that the prototype is only taken as a guideline in later devel-
opment, so that the final user interface is designed by the programmers without further
usability testing. Experience shows that this introduces many usability defects.
Example 3 shows process-based requirements that try to guard against these pitfalls.

You can add additional requirements to ensure that the right users and the right
tasks are used in the usability tests. You might also add that after the last usability test,
the customer decides whether to use the last version of the prototype or pay for more
redesigns and tests.

3.1. Verification and Tracing
Verifying the process-based requirements is a matter of checking that the de-

velopment process proceeds as specified. It is normally a part of the general quality
assurance. A useful approach is to collect the various prototypes to see that appropri-
ate changes have been made and to inspect the problem logs resulting from the us-
ability tests.

3.2. Getting the Data
How do you know that the process-based requirements result in the desired us-

ability? This depends on the actual process, of course. If the process is to inspect the
interface or check that standards have been followed, the process cannot guarantee
usability. But with the process outlined in example 3, we can get a high level of us-
ability, provided that we have experienced developers and use an adequate number of
iterations. Actually, the iterative prototype technique with usability tests is the best
known way to ensure usability.

If you have chosen the process, the only other data you need is the proper
number of iterations. It is difficult to choose, but three is definitely the lowest number
that gives significant effect. Professional interface developers say that they often need
six iterations to reach the desired usability level. So it is a good idea to leave an option
for the customer to influence the number of iterations.

3.3. Pros & Cons
A major advantage of the process style is that you don’ t need limits on defects,

learning time, etc. You leave that to subjective judgement during design. With the
current state-of-the-art, however, there is an even larger advantage: Suppliers are re-
luctant to guarantee any absolute level of usability, but they might commit to an it-
erative, prototype-based approach. This means that in many cases the process style is
the best you can specify.

The weakness of the approach is that developers need skill and experience to

Example 3. Process style
R3.1: During design, a sequence of 3 prototypes has to be made. Each prototype must be us-
ability tested and the most important defects corrected.

R3.2: During programming and testing, inspection must be made to ensure that the prototype is
accurately implemented in the final system.

8

follow the process and obtain the desired result. Experience also shows that develop-
ment rarely is truly iterative. The first prototype tends to be the basis for all the later
prototypes, which become minor modifications of the first. In contrast, the best de-
signers often start from scratch, rethinking the entire approach after the first usability
test (Lauesen, 1997).

4. Subjective Style
In the subjective style we define a set of criteria for satisfaction with the sys-

tem. Example 4 shows a usability requirement in this style for an ATM. It catches
quite well the usability factor called subjective satisfaction. You can define criteria for
other usability factors too, such as ease of learning, task efficiency, etc. in a similar
manner by asking users whether they find the system easy to learn, efficient for their
daily tasks, etc. In principle, the style can come very close to the definition of usabil-
ity.

4.1. Verification and Tracing
When the system has been in operation for some time, you can verify the sub-

jective requirements. You have to design a questionnaire and ask a suitable sample of
users to complete it. To verify R4.1 you could simply ask the users to what extent they
find the system pleasant to use and whether they would recommend it to their friends.

4.2. Getting the Data
In order to set up subjective-style criteria, you have to find the right subjective

factors and the right percentages of satisfied users. Little is known about how to do
that, but we would expect that the subjective factors should be closely related to the
overall goals of the system. In the ATM example, for instance, a major goal for the
bank was to promote itself through the ATMs. The subjective criteria were selected to
support that.

Finding the right percentages is more difficult. What are realistic objectives?
Probably the best approach is to study satisfaction with similar products, decide
whether that is sufficient, whether it seems possible to raise the level of satisfaction,
and then select the necessary level.

Some suppliers investigate satisfaction with their products, and you could use
their figures as a basis. In a tender situation, you might ask the supplier to provide the
figures and use them as part of the total evaluation of the proposals.

4.3. Pros & Cons
Compared with the performance and defect styles, the subjective style is not

dependent on defining the correct tasks. It covers whatever work situation the users
are in. Further, it is the only style that directly can cover the subjective satisfaction
factor.

A major problem is that it is difficult to check the requirements during devel-

Example 4. Subjective style
Customers associate us with the ATM and it is important that our image is supported by the sys-
tem.

R4.1 80% of customers having tried the ATM at least once must find the system pleasant and

helpful. 60% must recommend it to friends if asked.

9

opment. Making prototypes and usability tests can give us early information about
task times and usability problems, but nobody knows at present how that relates to the
subjective satisfaction. The best approach is probably to end each usability test ses-
sion by asking the user to complete a questionnaire like the one above. Many usability
specialists practice that, but it is not known how well it predicts satisfaction in real use
with all the task variations that were not tested in the usability lab.

Another problem is that a lack of subjective satisfaction is difficult to deal
with. If users are dissatisfied, developers don’ t know what changes to make. What are
the causes of the dissatisfaction?

Subjective satisfaction is not solely a matter of the right user interface. The
way the system is introduced, the general motivation and stress level of users, and
other organisational factors seem to have a dominating influence. For instance, we
have observed that users can state high satisfaction although observations of their in-
teraction with the system show that the system is awfully slow and often cause prob-
lems that the user doesn’ t know how to deal with. From a management point of view,
the system wastes human labour, but users seem satisfied.

This puzzling fact might have several explanations. In some cultures, people
don’ t criticise, and they state satisfaction even if dissatisfied. In cultures where people
readily criticise, they may be proud of mastering the system in spite of its shortcom-
ings, and the pride results in a positive evaluation. Nielsen & Levy (1994) have
compared several studies of subjective satisfaction against performance factors and
found weak correlations.

5. Design Style
The traditional requirements style is to specify the screen pictures and screen

functions, for instance as a prototype. Example 5 shows requirements based on a fin-
ished design in the form of a prototype.

Essentially, this approach has turned the usability requirements into functional
requirements. The requirements engineer has taken responsibility for the ease-of-use,
and the designer and programmer can do little to change it. In some situations this is
the right approach; but if we also specify usability, e.g. time to learn or task efficiency,
we will most likely have a contradiction in the requirements.

5.1. Verification and Tracing
Design-based requirements are easy to verify in the product and easy to trace

during development. For instance, you can inspect the final interface and the design
artifacts to see that they accurately reflect the prototype. Inspection is quite important
because developers often consider the prototype a guideline, and they design some-
thing different without further usability testing. Experience shows that this introduces
many usability defects.

5.2. Getting the Data
If you use a design style, how do you get the data, that is the design? There is

only one feasible way: You have to use prototyping and usability tests, but as part of
the requirements engineering.

Example 5. Design style
R5.1: The system shall use the screen pictures shown in App. xx.
R5.2: The menu points and push buttons shall function as shown in App. yy.

10

5.3. Pros & Cons
The design style eliminates the need to specify usability factors such as ease of

learning or task performance. The price is that the requirements team has to ensure the
necessary degree of usability in the prototypes.

What we often see are untested prototypes as part of the requirements. Appar-
ently the requirements engineers thought that they could inspect the prototype to check
that it had the necessary usability. Nobody can do that at present, not even usability
experts.

Another common problem is prototypes made by participative development
where users became absorbed by their own creations. They forgot the real goals and
the tasks to be supported, and the resulting system had serious functional as well as
usability defects. The remedy is to state the usability goals and essential tasks early on,
and frequently verify that the system meets the goals and supports the tasks.

6. Guideline Style
It is a common belief that if you follow user interface style guides and stan-

dards, you get high usability. Example 6 shows usability requirements based on this
assumption. Although guidelines are quite useful, they are very far from ensuring us-
ability.

6.1. Verification and Tracing
It is possible but not easy to verify guidelines in the product and during devel-

opment. Some guidelines are supported by development tools. In other cases you must
inspect the final interface and the design artifacts to see that they accurately reflect the
guidelines.

Inspection is not that easy because there are many rules in the guidelines
(typically several hundred), or the guidelines are quite broad so that they have to be
interpreted in each case. Unless inspectors are well trained, many defects are missed in
such inspections, or they give rise to debate about whether a specific rule is violated
or not.

6.2. Getting the Data
If you use a guideline style, how do you get the data, that is the guidelines?

There is no simple answer to this. One important factor is the user’s background. Are
they accustomed to applications in a specific style? Is it important to reduce switching
costs? Is it likely that other products following a specific style will be introduced. An-
swers to these questions may help decide the required standard.

Available standards such as MS-Windows or CUA are helpful, but more spe-
cific rules are often used. Some companies maintain a list of additional rules triggered
by usability problems in previous products. Requirements R6.2 and R6.3 are examples
of such experience-based rules. After some time, however, the list tends to be too long

Example 6. Guideline style
R6.1: The system shall follow the MS-Windows style guide.
R6.2: For input fields with a limited set of values, it must be possible for the user to select the
value from a list.
R6.3. All dialogue boxes must be non-modal so that users can look at other windows while re-
sponding to the dialogue box.
R6.4. The interface must resemble the interface of application xx.

11

for practical use.
Other companies develop a domain-specific standard, for instance for all their

business applications. A good approach is to develop a prototype of such an applica-
tion, usability test it, and then use the prototype as a guideline. This works well in
many cases, and an additional advantage is that developers find it more easy to use an
example than a set of rules.

6.3. Pros & Cons
Guidelines can be great, particularly to help users switch between many appli-

cations. However, in general, guidelines have little relation to how easy the system is
to use. In other words, you can have a system that users find very hard to use although
it follows the guidelines. Such systems are actually quite common, as demonstrated by
the many programs that follow the MS-Windows guidelines, yet are very difficult to
use.

Experiments have shown that checking a design against a good guideline can
reveal about 25% of the real usability defects. The checking process also finds a lot of
guideline violations that are not really problems to the users (Cuomo & Bowen, 1994;
Desurvire et al., 1992; Jeffries et al.,1991).

7. Match with Requirement Scenarios
In practice we meet different requirement scenarios, e.g. requirements for

product development versus requirements for a tender process. Below we will sum-
marise the usability styles useful in common requirement scenarios.

7.1. Product Development
1. The performance style is useful, and it doesn't have to be very exact since devel-

opers and marketing can modify and interpret the requirements along the way.
2. The defect style is more useful since it provides better feedback to developers.
3. The process style (with iterative prototypes and usability tests) is equally useful.

The number of iterations can be adjusted during development according to the
outcomes.

4. The subjective style is less useful, but it can be used for setting overall goals. You
can deviate from them if it is too difficult to fulfill them. The criteria can be quite
useful for marketing, and planning the next release can get important input from
measuring the criteria in the previous release.

5. The design style is useful, but in order for it to work, you have to do a lot of design
work and usability testing during requirements specification.

6. The guideline style is useful as a supplement to other styles.

7.2. In-house Development
The styles can be used in a similar way as in the product scenario. Essentially,

the user organization serves the role of marketing.

7.3. Contract Development
1. The performance style is useful, and in some cases you have to be very exact about

how to verify the requirements. Many vendors will not commit to it, however.
2. The defect style is useful too and it provides better feedback to developers. Still,

many vendors will not commit to it.

12

3. The process style (with iterative prototypes and usability tests) is very useful and
most vendors can commit to it.

4. The subjective style is hardly useful. Few vendors would be willing to provide us-
ability according to the subjective criteria. This is not only a matter of state-of-the-
art in usability, but also the fact that the vendor has no influence on the or-
ganizational factors at the customer site.

5. The design style is possible, but in order for it to work, you have to do a lot of de-
sign work and usability testing during requirements specification. The approach is
particularly useful in cases where a main contractor designs the system, and the
sub-contractors get the usability specifications in the form of prototypes.

6. The guideline style is useful as a supplement to other styles.

7.4. Tender with Standard System
1. The performance style is useful, and it doesn't have to be very exact since a more

detailed specification might be made as part of the contract. It may be difficult to
select the actual performance figures, but ask the vendor for the figures and com-
pare the figures from different vendors.

2. The defect style is useful too, but it is more difficult to get reliable figures from the
vendor due to different interpretations of defect severity.

3. The process style (with iterative prototypes and usability tests) is not useful since
the standard system has been developed already. However, for additions to the
standard system, you may use the process style.

4. The design style is not useful for the same reason.
5. Few vendors would be willing to provide usability according to the subjective

style, but it is possible to ask them for figures about the actual subjective satisfac-
tion with their product. The customer can then compares the vendor’s figures.

6. The guideline-based style is not useful since the standard system most likely has its
own style.

References
Cuomo, D.L. & Bowen, C.D. (1994): Understanding usability issues addressed by

three user-system interface evaluation techniques. Interacting with Computers,
Vol.6, No.1, pp. 86-108.

Desurvire, H.W., Kondziela, J.M & Atwood, M.E. (1992): What is gained and lost
when using evaluation methods other than empirical testing. Proceedings of
HCI 92, pp. 89-102. Cambridge University Press.

Jeffries, R., Miller, J.R., Wharton, C., and Uyeda, K.M. (1991): User interface
evaluation in the real world: A comparison of four techniques. CHI'91 Pro-
ceedings, pp. 119-124. ACM 0-89791-383-3/91/0004/0119..0124.

Lauesen, S. (1997): Usability engineering in industrial practice. In Howard et al.
(eds.): Human-Computer Interaction, Interact'97, Chapman & Hall, pp. 15-22.

Macaulay, L. (1996): Requirements engineering. Springer.
Nielsen, J. (1993): Usability engineering. Academic Press.
Nielsen, J. & Levy, J. (1994): Measuring usability, Preference vs. performance.

Communications of the ACM, 37(4), pp.66-75.
Preece, J. (1994): Human-computer interaction, Addison Wesley.

