
A drag-drop-formula tool for custom visualization 
 

Soren Lauesen, Mohammad Kuhail, Kostas Pantazos, Shangjin Xu, Mads B. Andersen 
The IT-University of Copenhagen 

{slauesen, moak, kopa, xush, mban}@itu.dk 

Keywords: Data visualization, database, interaction, user interface, end-user development. 

Abstract: Popular tools for constructing user screens use the drag-drop-set-property principle. The developer drops 
components (buttons, text boxes, etc.) on the screen and defines their properties, e.g. position, color and 
text. Then the screen looks right, but it has little functionality. If you want real functionality or a custom-
made visualization, you have to switch to tools that are more like programming. Many domain experts are 
familiar with the popular tools and would like to provide functionality and visualize data, but they are un-
comfortable with programming. Could we improve the drag-drop-set-property principle and cover their 
needs without asking them to program? This paper presents a tool (uVis) that takes a long step in this direc-
tion. The principle is to allow each property to be a formula that computes position, color, etc. A formula 
can combine data from several database tables with data about components and data entered by the end-
user. Although aimed at non-programmers, the tool can also boost the performance of programmers. The 
paper presents the formula language, the tool and some user evaluations of the tool. 

1 INTRODUCTION 

A visualization consists of basic components (lines, 
curves, boxes, labels, wedges, etc.) each with its 
own property values (position, size, color, etc.).  
Components may be 2D, 3D or 4D (animation). The 
available components vary from tool to tool, but this 
is not important for our discussion in this paper. 

In order to create a specific visualization, we 
must somehow put the necessary basic components 
on the screen and define their properties. Program-
matic tools require that the developer writes a kind 
of program that creates the components and sets 
their property values. Drag-drop-set-property tools 
allow the developer to manually drag and drop the 
components and set their properties. Predefined 
visualizations contain a program that creates a pat-
tern of components and lets the developer specify 
some of the properties. Combinations of these prin-
ciples exist too, of course. 

Our focus in this paper is custom visualizations 
where predefined visualizations cannot support the 
end-users adequately. Figure 1 shows two examples 
from the medical area. The Lifeline screen shows the 
patient's notes, diagnoses and medicine on a time 
scale with multiple, dragable zoom areas. Icon 
shapes and color indicate the kind of note, the height 

of boxes indicate the medicine dose, etc. You can 
see at a glance which medicines the patient gets 
now, how long the patient has got them, and how 
they time-wise relate to diagnoses and notes. The 
data exist already in the database; we just show them 
in a different way. As far as we know, no health 
record system uses such screens today. 

The bronchial screen shows where biopsies have 
been taken, how they were taken, and what the lab 
results tell. Clinicians use it also to record the bio-
psies and lab results. The diagram of the bronchia is 
a simple drawing made in the department. 

From a theoretical perspective these visualiza-
tions are not novel, just variations of known themes 
such as Lifelines (Plaisant et. al., 1998) and geo-
graphical maps. Yet they are highly useful in their 
domain, and at present they can only be made with 
programmatic tools. 

Ideally we would like a tool where end-users 
could make such visualizations. However, it is not 
realistic that any end-user could make visualizations. 
Our goal is that local domain experts with some IT 
expertise could make these visualizations in co-
operation with local end-users. We will use the term 
local developers to mean these local experts. They 
are familiar with popular tools such as MS Access 
and Excel, and they sometimes make small applica-



2 

Bronchoscopial biopsies 
and the later lab results

Overview of the patient’s medical 
notes, diagnoses and medication

“Lifeline”

Figure 1.  Two screens with custom visualization of medical data

tions for their own use or for use in the department. 
They are rarely comfortable with programming and 
with present tools they cannot make custom visuali-
zations such as Figure 1. 

Myers et al. (2000) gave an excellent overview 
of user interface tools in 2000 and explained why 
drag-drop-set-property tools (called interface build-
ers and interactive graphical tools) were much more 
successful with local developers than program-based 
tools. They also report that spreadsheets are the only 
kind of "programming" widely accepted by end-us-
ers. In this paper we do not consider spreadsheet 
formulas real programming. 

What is the situation today? A recent study (Con-
fidential, 2012a) showed that local developers 
(called savvy users) still need better tools and more 
attention from the information visualization commu-
nity. 

Why are drag-drop-set-property tools so popu-
lar? Most people give up programming. They cannot 
see the connection between the program and the 
visible result, and they cannot write a program 
themselves. Norman describes this as the gulf of 
evaluation and the gulf of execution (Norman, 
1988).  

Uvis is a drag-drop-set-property tool where the 
developer can specify a formula for each property. 
This formula computes and sets the value of the 
property. He is also able to specify formulas that 
create a bundle of components. A formula corre-
sponds to a spreadsheet formula and uses a similar 
notation, but it is able to combine data from data-
bases, visual components and end-user input. 

Using uVis we developed a fully functional ver-
sion of the two screens in Figure 1 in 4+6 hours. The 
database existed already. With a bit of training, local 
developers in the hospital could have made it. Only 
formulas were needed, no real programming.  

 

2 RELATED WORK 

Industry tools such as Microsoft Visual Studio, 
Eclipse and NetBeans allow developers to construct 
user screens with drag-and-drop of text boxes, but-
tons and other components. For each component the 
developer sets size, position, color and other proper-
ties to a constant. This approach can quickly gener-
ate a mockup that looks right, but shows only 
dummy data. In simple cases you can connect a 
database table to a component, for instance to make 
a combo box or a data grid component. However, to 



3 

make something like the Lifeline screen, "program-
ming behind" is needed and only professional pro-
grammers can do this. 

Standard graphical presentations such as pie 
charts and bar charts are provided in Excel, Google 
Spreadsheets (Google Visualization API, 2012) and 
as separate packages. These tools don't require pro-
gramming skills and are widely used. However, to 
integrate them with a production application, the 
end-user has to copy and paste data from the appli-
cation to the tool (or a programmer has to write code 
that does it). Without programming there is no way 
to create visualizations beyond what is predefined. 
For instance, something like the Lifeline couldn't be 
made. Further the end-user has little interaction with 
the data and cannot feed data back to the existing 
application. 

Data analysis tools such as Tableau (2011), 
Polaris (Stolte et al.,2008), Spotfire (2011) and 
Omniscope (2011) integrate well with existing data 
and help users explore the data. They don't require 
programming skills. Here too there is no way to 
create visualizations beyond what is predefined and 
something like the Lifeline couldn't be made. 
Further there is only predefined interaction with the 
data and the end-user cannot feed data back to the 
existing application. 

Graphics libraries such as GDI+ and Java 2D 
are available for many programming languages. 
They provide basic components such as line, poly-
gon, and ellipse. By means of a program you can 
make them create any visualization, bind to any data 
and perform any interaction. However, to accom-
plish this, you must be a professional programmer. 

Visualization Toolkits allow you to construct 
traditional and new visualizations in a programmatic 
way that is simpler than using graphics libraries, for 
instance by means of a domain-specific program-
ming language. Examples are Protovis (Bostock and 
Heer, 2009), D3 (Bostock et al., 2011), Prefuse 
(Heer et al., 2005), Improvise (Weaver, 2004) and 
Infovis (Fekete, 2004). These toolkits don't use a 
drag-and-drop approach, they are not easy to 
integrate with existing relational data, and you 
cannot feed data back to the existing application 
without programming. 
 

3 UVIS 

In this section we will explain how uVis works from 
the developer's point of view and the design ration-
ale behind. Figure 2 shows uVis Studio when the 
local developer has constructed the trivial part of the 
bronchoscopy screen: the components that occur 

only once. He has for instance dropped an icon 
component in the left part of the screen and set its 
File property to show the bronchial diagram. This is 
quite similar to how popular tools work today. 

The IT department has provided a data map file 
that has a connection string to the database and 
specifies the available tables and relationships. The 
local developer will rarely have the skills and rights 
to make a data map file. 

During construction the local developer sees the 
bronchoscopy screen exactly as it will look to the 
end-user. He can also interact with it as the end-user 
would do. Uvis uses the data map file to show a map 
of the tables in the database and how they relate to 
each other.  

The developer's next task is to make the system 
create an icon for each biopsy. The number of icons 
is dynamic; it depends on the database contents. 

 
3.1 Dynamic component creation 
How can we dynamically create components? Since 
we want to use spreadsheet principles, we may ask 
how components are created in a spreadsheet. The 
answer is easy: they are not created - they exist from 
the beginning. A "component" in a spreadsheet is a 
cell, and all the cells exist conceptually from the 
beginning. You can make new tab sheets in a 
spreadsheet, but this is done manually (unless you 
are able to write a macro - a piece of program - that 
does it). In spreadsheets you don't have loops. In-
stead the user copies cells the necessary number of 
times. 

Visualization toolkits create visual components 
dynamically. They use a set of rows or an array of 
data to create a corresponding set of components. 
The crucial point is how the rows are generated. 
Current tools use a programmatic way, which is a 
cognitive barrier to local developers. We want to 
specify the rows as a formula in a component prop-
erty. 

Figure 2 shows how the local developer creates 
dynamic components with uVis. He has dragged a 
Glyph component from the toolbox and dropped it 
on the bronchial diagram. A Glyph can appear as 
different shapes: circle, triangle, etc. Initially it 
appears as a gray hexagon. The property grid shows 
the properties of the Glyph. The developer has set 
the name of the component to sample. Now he sets a 
special repeater property, Rows, in this way: 

 Rows: Bronchial Where ptID = Param[0] 

Bronchial is a table in the database that has a row for 
each biopsy. It has a ptID field that identifies the 
patient. The bronchial screen was opened with the 
current ptID as a parameter, Param[0]. The result of 



4 

Figure 2.  Setting the Rows property to create a bundle of components

A bundle of Glyph 
components

Auto-generated formulas to 
make a staircase of components

Toolbox

the Rows formula is the set of Bronchial rows for 
the current patient. As soon as the developer had 
typed the Rows formula, uVis generated a Glyph 
component for each row and connected it to the row. 
Furthermore, uVis showed the Glyphs as a staircase 
of gray icons to visualize how many there are. 

If the developer had to express the Rows formula 
in the usual way as an SQL statement, it would look 
like this: 

SELECT Bronchial.ptID, Bronchial.y, Bronchial.x, Bron-
chial.kind, Bronchial.result, Bronchial.ant_post, Bron-
chial.splDate, Bronchial.splNumber, Bronchial.remark 
FROM Bronchial WHERE [Bronchial.ptID] = 0103500276 

The developer could have written SELECT * instead 
of listing all the fields he needs, but this would re-
trieve all fields in the database. In a real-life data-
base with many fields, this may be very slow. 

He would also have to insert the actual patient ID 
(0103500276) into the SQL statement in a pro-
grammatic way.  

Uvis generates the SQL statement automatically 
based on the formula, collects the necessary fields 
from all the formulas in the screen, and inserts them 
as the SELECT part. Although the uVis formula still 
has the flavor of an SQL statement (the Where 

clause), it is much simpler to write than the real SQL 
statement. 

The Rows property can specify a set of rows in 
other ways. Some correspond to database joins, ex-
plained later. The simplest Rows property is a num-
ber, e.g. 

 Rows: 12 

It generates 12 components. They could for instance 
be labels for the months of a year. 

When uVis creates components with a Rows 
formula, they become a bundle of components. Each 
component in the bundle has an Index property that 
is 0 for the first in the bundle, 1 for the next, etc.  

When uVis has created the components, it cal-
culates the property formulas and sets the property 
values. In our example, uVis Studio automatically 
defined the formulas for Top and Left so that the 
icons appeared as a staircase: 

 Top: 53 + Index * 7 
 Left: 104 + Index *7 

In this way the first component got Top = 53 (Index 
= 0), the next Top = 60, etc. 

Originally uVis Studio didn't make such an 
automatic staircase, but we observed that developers 
were puzzled when they defined the Rows property. 



5 

Figure 3.  Using database fields to set position, shape and color

Properties can be formulas, e.g.
y from the database - 7
Properties can be formulas, e.g.
Top = y (from the database) - 7

The selected Glyph

Nothing seemed to happen because all the compo-
nents were on top of each other. The automatic stair-
case helped.  

 
3.2 Formulas and data addressing 
In general, a formula is a function that takes some 
data as input and computes a result. In the visualiza-
tion world, we must be able to address these data: 

1. External data (e.g. in a database) 
2. Property values in the same or other compo-

nents. 
3. Data provided by the end user, e.g. the posi-

tion of a scroll bar or the contents of a data 
entry textbox.  

Which functions can we express with formulas? In 
principle any computable function, but in order to 
reach non-programmers we restrict ourselves to 
spreadsheet-like formulas. They are quite powerful, 
but they cannot compute everything. For instance 
there is no recursion, so some functions cannot be 
computed. For performance reasons there are also 
limitations on how we can address databases. We 
will only address databases in ways that can be 
translated into efficient queries. 

We will illustrate database addressing with the 
sample component. Figure 3 shows uVis Studio 

when the local developer has created the sample 
components and defined the property formulas. He 
has selected one of the icons that represent a sample. 
He sees its property formulas in the property grid 
and also the actual property value. The formulas are 
the same for all the components, but the values vary 
between components in the bundle. He has also 
opened the bronchial table. The selected icon corre-
sponds to the first row of the table. 

The Left position of the icon is computed by the 
formula x-7, where x is a field in the database. For 
this specific icon, the formula gave 106 as the result 
and uVis put the icon 106 pixels from the left border 
of the user screen. 

The shape of the Glyph is computed by the Type 
property. The formula retrieves the kind field from 
the database and chooses the corresponding shape: 
triangle, hexagon or circle. When the developer has 
typed the formula or changed it, the system updates 
the user screen immediately. 

A formula may refer to formulas in other com-
ponents, which again may refer to other formulas. 
Just as in spreadsheets, circular references may 
occur. Uvis shows this and other errors in the error 
list panel and as colored marks in the formulas. 

 



6 

Language style: We have based the formula lan-
guage on Visual Basic because it is widely known 
among the developers we aim at. Parts of the Visual 
Basic language are also used in Excel and some SQL 
query languages. This choice means that the devel-
oper can type names without caring about 
upper/lower case, and uVis gives feedback by cor-
recting them to the proper case. It also means that 
"=" means assignment or comparison depending on 
the context, comments are shown by a single quote 
( ' ), and other trivial details. 

Most of the functions available in Visual Basic 
are also available in uVis, for instance Sin( ), To-
Day( ), Format( ) and Choose( i, a1, a2 … ). 

 
Saving the screens: When the developer closes the 
bronchoscopy screen or closes uVis Studio, uVis 
saves the screen as a .vis file that can be read with 
simple tools, e.g. notepad. Figure 4 shows part of the 
.vis file for the bronchoscopy screen. 

 
3.3 End-user data and interaction 
We will show an example of how the end-user can 
interact with the screen. This also illustrates how a 
formula can address properties in other components. 

The developer has decided that when the end-
user clicks a sample icon, it should be marked with 
an orange frame. The details of the sample should be 
shown in the text boxes at the top right (Figure 3). 

The key part of this is a Glyph component that 
serves as a Marker. The developer has given it these 
property formulas: 

Glyph:  Marker 
selected:  Init -1 ' The selected sample 
Visible:  selected >= 0 
Top:  sample[ selected ].Top-3 Default 0 
Left:  sample[ selected ].Left-3 Default 0 
Height:  20 
Width:  20 
Type:  Square 
Weight: 3 
BorderColor: Orange 
BackColor: Transparent 

The developer has added his own property, selected. 
It is not a built-in Glyph property such as Top and 
Type, but what we call a designer property. Init -1 
means that selected initially is -1, but the value can 
change as a result of end-user actions. When the 
end-user selects a sample icon, selected should 
become the Index of the icon. 

Visible is a built-in property. The formula says 
that the Marker should be visible when something is 
selected (selected >= 0). Initially it will be invisible. 

Top says: Walk to the bundle of samples. Take 
the icon with the index given by Selected. Take its 
Top property value and subtract 3 pixels to make the 
orange frame surround the Glyph. If this doesn't 
work, for instance because nothing has been se-
lected, use the default value and make Top = 0. This 
is an example of addressing a property in the same 
component (selected) and in another component 
(sample[i].Top). Notice that uVis can address spe-
cific items in a bundle as if it was an array. 

The remaining properties should now be obvi-
ous. The result is that an orange square shows 
around the icon when it is selected. 

When an icon is selected, the screen should also 
update the text boxes at the top right. The developer 
handles it with formulas like this one for the sample-
date text box: 

TextBox: splDate 
… 

Figure 4.  Saved vis-file



7 

Text: sample[ Marker.selected ].splDate Default "" 

The Text property specifies what to show in the text 
box. The formula says: Walk to the bundle of sam-
ples. Also walk to the marker glyph and get its se-
lected value. Use it as the Index in the bundle to get 
the selected icon. Finally walk to the data row con-
nected to the icon and get its sample date (splDate).  
 
The walk principle: Data references in uVis for-
mulas use the walk principle: The system walks 
from object to object to get the result. The Text for-
mula above is an example of this. The formula walks 
to a bundle of components, then to another compo-
nent to get the index and use it to select a component 
in the bundle, and finally to a row connected to the 
component to get the desired field. 
 
Dot-operators and name ambiguity: Understan-
ding a formula such as the Text formula above re-
quires good knowledge of what are visual compo-
nents and what are database elements. To help the 
developer, uVis can change the dots in the formula 
to show what is what. A dot (.) means database ele-
ments and a bang (!) means visual component ele-
ments. Using these dot-operators, uVis would show 
the Text formula like this: 

sample[ Marker ! selected ] . splDate Default "" 

With a bit of training, the developer can see at a 
glance that "selected" is a component property and 
"splDate" is a database field. The dot-operators also 
help resolving name ambiguity. Assume that the 
database had a field called Top. The developer can-
not change this name, nor can he change the prop-
erty name Top. But he can use bang or dot to tell the 
compiler whether he means a component property or 
a database field. 
 
Event handler properties. We only lack one thing 
to make the selection construction run: a way to set 
Selected. This is done through the sample compo-
nent. It should respond when the end-user clicks it. 
The developer has defined an event handler property 
for it: 

Glyph:  sample 
… 
Click:  selected = Index, Refresh( ) 

When the end-user clicks a sample icon, uVis per-
forms the statements in the click formula. As a re-
sult, selected will become the index of the clicked 
icon. The statement Refresh( ) asks uVis to re-com-
pute all formulas and redraw components where a 
property value has changed. As a result the Marker 

will appear or move, and the text boxes will show 
data about the selected sample. 

In contrast to ordinary formulas such as Top, an 
event handler formula cannot be evaluated at any 
time. An event handler is evaluated only in response 
to an end-user action. In industrial tools, components 
can send a lot of events to each other, for instance 
BorderChanged and ValueChanged. Uvis has no 
such events because all updates are made with Re-
fresh( ), which re-computes and redraws as needed. 
This is the spreadsheet principle, but it assumes 
good performance (see section 5). 

Event handler statements include setting a value 
in a property or a database field, opening a form, or 
committing a database transaction. 

Depending on the application, it may be neces-
sary to perform actions beyond the built-in uVis 
statements, for instance to send an email or transmit 
data to/from an external system. This requires that 
someone makes a piece of real program, tests it and 
exposes it as a method that can be called from an 
event handler formula. This is "programming be-
hind", but it is used far less than in the traditional 
approaches. 

 
3.4 Joins - walking among tables 
Above we showed examples of walking between 
visual elements. It also makes sense to walk between 
database tables.  

The data map shown in Figure 3 is an entity-re-
lation diagram (E/R diagram). The tables are con-
nected with crow's feet and it makes sense to walk 
along these feet. As an example, the Patient table has 
a one-to-many crow's foot to the MedOrder table. It 
symbolizes that we can walk from a patient to many 
medicine orders. Walking the other way from a 
MedOrder to Patient, we come to only one patient. 

Let us look at a tough example, the medicine or-
ders at the bottom of the Lifeline (Figure 1). The 
developer has connected the Lifeline screen to a 
single patient with this formula: 

Rows: Patient Where ptID = Param[0] 

He now wants to generate a box for each of the pa-
tient's medicine orders. He drops a box in the lower 
part of the Lifeline screen and gives it these proper-
ties: 

Box:  MedOrderBox 
Rows:  Parent -< MedOrder 

The Rows formula means: Start in the patient row 
connected to the screen (the screen is the Parent in 
this case).  The -< symbolizes a one-to-many crow's 
foot. Now walk along the crow's foot to the Med-
Order table. The result is a set of rows, one for each 



8 

of the patient's medicine orders. Each row contains 
fields about the medicine order (the type of medi-
cine, the start and stop time for the medication, the 
amount per dose, the dose, and the number of times 
per day). 

The result is a staircase of medicine orders. Next 
the developer aligns them to the time scale at the top 
of the Lifeline with these formulas: 

Left:  timeScale ! HPos(startTime) 
Right:  timeScale ! HPos(stopTime) 

The Left formula means: For this medicine order, 
walk to the time scale component at the top of the 
Lifeline. Call its horizontal position property (HPos) 
and ask it to translate the start time of the medication 
to a pixel position. Use this position as the Left 
property. The Right formula works the same way. 
The result is that each MedOrderBox is stretched 
correctly in the time dimension.  

What about Width? The developer can specify 
any two of Left, Width and Height because we 
observed that they often tried to do so.  

Next the developer wants to show the amount of 
medicine as the height of the boxes. To do this he 
has to multiply the amount per unit, the dose and the 
times per day. These fields are readily available in 
the medicine order row. However, is this a large or a 
small dose? To indicate this, he needs access to the 
MedType table that contains the DDD (normal daily 
dose). Fortunately the E/R diagram has a crow's foot 
from MedOrder to MedType. He can just continue 
walking from MedOrder to MedType. 

To do this, he changes the Rows formula and can 
then include DDD in the Height formula: 

Box:  MedOrderBox 
Rows:  Parent -< MedOrder >- MedType 
Height:  (amount * dosage * timesPerDay) 

/DDD * 8 

The Rows formula now gets the MedOrder rows as 
before and then walks on for each MedOrder row to 
the related MedType. It includes the relevant Med-
Type fields in each of the rows, e.g. DDD. 

The last step of the Rows formula is a one-to-
many relation, symbolized with >-. If the developer 
makes a mistake and types -< instead, or dot or 
bang, the compiler will replace it with >- to show 
what kind of relation it actually is. 

In practice, there are often missing data in the ta-
bles. As an example, the real medicine data we work 
with often lack a reference to MedType. The visuali-
zation can easily deal with this by means of the De-
fault operator explained above. 

If the developer had to write the SQL statement 
for this Rows formula, it would look like this: 

SELECT … FROM MedOrder LEFT JOIN MedType  
ON MedOrder.medID = MedType.medID  
WHERE [MedOrder.ptID] =0103500276 

Some programmers suggest that Microsoft LINQ 
would be more compact. Maybe, but not in these 
cases. A LINQ join also has to specify the join con-
dition in the same way as SQL. 
 
3.5 Walking from data row to control 
Above we have shown how a uVis formula can walk 
from a visual component to a database field (with 
the Rows formula and a dot to refer to the field), 
walk among visual components (with the component 
name and an optional index), and walk between 
table rows (with the join operators -< and >-). 

In some cases it is also necessary to walk from a 
table row to a visual component. The MedOrderBox 
provides an example. To align the box vertically to 
the medicine names at the left, the developer writes 
this formula for the Bottom property: 

Box:  MedOrderBox 
… 
Bottom:  MedType -= PatientMedicines ! Bottom 

The Bottom formula means: For this medicine order, 
walk to the MedType part of its data row. Then walk 
to the medicine label (PatientMedicines) that is con-
nected to the same MedType. Finally, use the label's 
bottom position as the medicine order's bottom. 

 

4 DEVELOPMENT SCENARIO 

In this section we show how a local developer would 
use uVis to construct the screens in Figure 1 and 
deploy them in the department. 
 
Connecting to the database 
First the local developer needs a data-map file that 
gives uVis access to the existing database or to 
equivalent system services. Most likely he will use 
an anonymized test version of the database. The 
central IT department would give him the necessary 
permissions and help him set up the data-map file. 

Next he opens uVis Studio and tells it to select 
the data-map file. His computer screen will now 
look like Figure 2, but the bronchial screen is an 
empty default screen.  

 
Constructing the screens 
The local developer will now drag and drop compo-
nents on the screen and set their properties as ex-
plained above. He can develop several screens at the 
same time.  

 



9 

Testing the screens   
The local developer has made the basic test of the 
screens while he constructed them. Whenever he 
typed or changed a formula, the system immediately 
retrieved data from the database and showed it 
exactly as the end-user would see it. 

However, the local developer should make 
additional tests of the screens. He should make 
usability tests of the screens to ensure that they are 
understandable. He should test that the screens show 
abnormal data correctly; preferably he should have a 
small test database with abnormal data for this. And 
he should test that the queries don't overload the 
database. Here he needs a large test database for 
measuring performance. 

We have paid much attention to the test 
situations. For instance, it is easy to switch between 
databases. You make a copy of the data-map file for 
each database and modify the database connection 
string. When you run a test, you simply open the 
proper map file. You can run uVis in various test 
modes, for instance simulate that the date and time is 
something that matches the data you test with. You 
can avoid that uVis makes real database updates, but 
only simulates that data has been updated. To avoid 
that a database query by mistake takes a very long 
time and blocks testing, you can limit database 
access so that the system never retrieves more than 
for instance 200 rows from a table. 

 
Let the clinical staff use the screens 
After testing, the local developer has to get the nec-
essary rights to access the production database. He 
also sets up a map file for production. Further, the 
end-users need rights to open the map file and access 
the production database. 

He puts the map-file and the vis-files in a folder 
on the department’s file server. The local users can 
now open the map file in the same way as they 
would open a Word file. As a result, uVis will 
connect to the test database and open the start screen 
that the local developer made. From there they can 
navigate to other uVis screens. 

 
Close integration with existing applications 
In the scenario above, end-users opened a map-file 
to see the existing data through uVis screens. 
Another approach is that an existing application asks 
uVis to open the map-file and show the uVis 
screens. This requires a small change to the existing 
application so that it calls uVis when the user for 
instance clicks a certain button on an existing screen. 

Since uVis can boost the work of professional 
developers, they might use it themselves in existing 
applications. 

 

5 EVALUATION 

We have developed many small applications in an 
experimental way with uVis and also developed 
customizable versions of bar charts, pie slices and 
other traditional visualizations (see confidential 
2012c). Most of them became surprisingly simple as 
we learned to utilize the power of the formula 
language.  

 
Performance 

When the end-user has done something, the 
event handler will usually ask uVis to refresh eve-
rything in the same way as a spreadsheet recalcu-
lates all cells. There are various ways to optimize 
refreshing, for instance only recompute properties 
that depend on the item changed. At present we don't 
try to optimize. We get adequate performance with a 
simple algorithm: 

Recompute all formulas, requery the database if 
an SQL statement has changed, set all component 
properties to the new computed value (whether it 
has changed or not), and update the screen accord-
ingly. 

The table below shows the performance for the 
Lifeline with the screen shown in Figure 1 (average 
of 10 measurements on an ordinary 2GHz PC with 2 
GB memory and a local MS Access database). The 
total time to open the screen is 0.7 seconds including 
0.4 seconds to make 8 queries to the database. The 
time to refresh the entire screen is 0.08 seconds. 

 
Usability for developers 
Ease of learning is an issue when we aim at non-
programmers. However, usability is not only a prop-
erty of the formula language. Computerized and 
human assistance is also very important to help de-
velopers get started.  

For the last year we have run usability tests of 
the tool and gradually improved it. We have men-
tioned how the staircase presentation of component 
bundles improved understanding, but have improved 

Time to open Lifeline, Figure 1 ms

Scan the .vis-file (5500 chars) 23    

Compile 180 formulas 20    

Compute and create 146 components 133   

SQL queries (8 queries, 140 rows total) 401   

Show 146 components 94    

Total time to open 671   

Time to refresh Lifeline ms

Compute and create 146 components 46

Show 146 components 32

Total time to refresh 78



10 

many other things too, e.g. terminology (Rows or 
something else?), auto-completion where the tool 
suggests what to type, direct inspection of the 
database contents and direct inspection of the 
property values. We have also developed tutorials 
and other support information. 

We have made usability tests with a total of 24 
typical local developers (non-programmers) and 6 
developers that had experience with other visualiza-
tion tools. We tested with one user at a time. The 
tests took between 2 and 3 hours. 

In spite of testing with gradually improved uVis 
versions, we can make some conclusions. All sub-
jects except one could make simple visualizations 
with uVis, but sometimes had to ask for help. As the 
complexity increased, fewer could make it within 
the 2-3 hours. The subjects understood the concepts 
and could reason about the formulas. However, the 
join operators (-< and >-) were not as intuitive as we 
had hoped. This was related to the subjects having a 
weak understanding of databases in general. 

Some subjects said that they would like to ex-
periment more with the tool on their own. 

The subjects who had programmed visualiza-
tions professionally said that a mature uVis would 
have saved 90% of their time. 

Details of the evaluation are published in (Con-
fidential, 2012b). 

  
Future 

Uvis is currently an operational prototype that 
proves the concept: It is possible to make such a 
tool, it can become sufficiently easy to use for the 
target developers, and it performs well on the com-
puter. However, many things are missing before 
local developers can use it on their own, and the tool 
is too immature to be taken up by others. 

One important limitation is that it at present only 
runs on the Windows Forms platform. 

 

5 CONCLUSION 

We have presented a tool that allows local develop-
ers to implement fully functional custom visualiza-
tions and end-user interactions without writing pro-
gram code. During development the tool shows the 
final screens all the time and allows the developer to 
interact with the screens in the same way as the end-
user. Without changing context, the developer can 
drag and drop components and set their properties to 
formulas. A formula can access databases, visual 
components and end-user input. Access from a for-
mula to program code written for the specific appli-
cation is possible, but rarely necessary.  

 

REFERENCES 

Bostock, M., Heer, J., 2009. Protovis: A graphical toolkit 
for visualization. IEEE Trans. Vis. and Comp. Graph-
ics, 15(6):1121–1128. 

Bostock, M., Ogievetsky, V., Heer, J., 2011. D³ Data-
Driven Documents, Visualization and Computer 
Graphics, IEEE Transactions on, vol.17, no.12, 
pp.2301-2309. 

Confidential authors, 2012a. 
Confidential authors, 2012b. 
Fekete, J.-D., 2004. The InfoVis Toolkit. Proc. IEEE In-

foVis, pages 167–174. 
Google Visualization API, 2012. http://code.google.com/-

apis/visualization/documentation/gallery.html 
Heer,, J., Card, S. K., Landay, J. A. 2005. Prefuse: a tool-

kit for interactive information visualization. Proc. 
ACM CHI, pages 421–430, 2005. 

Myers, B., Hudson, S. E., Pausch, R., 2000. Past, present 
and future of user interface software tools. ACM 
Transaction on Computer-Human Interaction, Vol. 7, 
No. 1, pp. 3-28. 

Norman, D., 1988. The psychology of everyday things, 
Basic Books, New York. 

Omniscope | Visokio, 2011. 
http://www.visokio.com/omniscope. 

Plaisant, C., Heller, D., Li, J., Shneiderman, B., Mushlin, 
R., Karat, J., 1998. Visualizing medical records with 
lifelines. CHI 98 conference on Human factors in 
computing systems, CHI ’98, pages 28–29, New York, 
NY, USA. 

Tableau, 2011. http://www.tableausoftware.com/ 
Spotfire, 2011. http://spotfire.tibco.com/ 
Stolte, C., Tang, D., Hanrahan, P., 2008. Polaris: a system 

for query, analysis, and visualization of multidimen-
sional databases. Commun. ACM 51, 11 (November 
2008), 75-84. 

Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., 
McKeon, M., 2007. ManyEyes: a Site for Visualiza-
tion at Internet Scale. Visualization and Computer 
Graphics, IEEE Transactions on, vol.13, no.6, 
pp.1121-1128, Nov.-Dec.  

Weaver, C. E., 2004. Building Highly-Coordinated Visu-
alizations in Improvise. INFOVIS 2004. IEEE Sympo-
sium on Information Visualization. 
 

http://code.google.com/apis/visualization/documentation/gallery.html
http://code.google.com/apis/visualization/documentation/gallery.html
http://www.visokio.com/omniscope
http://spotfire.tibco.com/

	1 INTRODUCTION
	2 RELATED WORK
	3 UVIS
	4 DEVELOPMENT SCENARIO
	5 EVALUATION
	5 CONCLUSION

