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Abstract. We study the performance of Fictitious Play, when used as a heuristic
for finding an approximate Nash equilibrium of a two-player game. We exhibit
a class of two-player games having payoffs in the range [0, 1] that show that
Fictitious Play fails to find a solution having an additive approximation guarantee
significantly better than 1/2. Our construction shows that for n×n games, in the
worst case both players may perpetually have mixed strategies whose payoffs fall
short of the best response by an additive quantity 1/2−O(1/n1−δ) for arbitrarily
small δ. We also show an essentially matching upper bound of 1/2 − O(1/n).

1 Introduction

Fictitious Play is a very simple iterative process for computing equilibria of games. A
detailed motivation for it is given in [5]. When it converges, it necessarily converges to
a Nash equilibrium. For two-player games, it is known to converge for zero-sum games
[10], or if one player has just 2 strategies [2]. On the other hand, Shapley exhibited a
3 × 3 game for which it fails to converge [9,11].

Fictitious Play (FP) works as follows. Suppose that each player has a number of ac-
tions, or pure strategies. Initially (at iteration 1) each player starts with a single action.
Thereafter, at iteration t, each player has a sequence of t − 1 actions which is extended
with a t-th action chosen as follows. Each player makes a best response to a distri-
bution consisting of the selection of an opponent’s strategy uniformly at random from
his sequence. (To make the process precise, a tie-breaking rule should also be speci-
fied; however, in the games constructed here, there will be no ties.) Thus the process
generates a sequence of mixed-strategy profiles (viewing the sequences as probability
distributions), and the hope is that they converge to a limiting distribution, which would
necessarily be a Nash equilibrium.

The problem of computing approximate equilibria was motivated by the apparent
intrinsic hardness of computing exact equilibria [8], even in the two-player case [4]. An
ε-Nash equilibrium is one where each player’s strategy has a payoff of at most ε less
than the best response. Formally, for 2 players with pure strategy sets M , N and payoff
functions ui : M × N → R for i ∈ {1, 2}, the mixed strategy σ is an ε-best-response
against the mixed strategy τ , if for any m ∈ M , we have u1(σ, τ) ≥ u1(m, τ) − ε. A
pair of strategies σ, τ is an ε-Nash equilibrium if they are ε-best responses to each other.
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Typically one assumes that the payoffs of a game are rescaled to lie in [0, 1], and then
a general question is: for what values of ε does some proposed algorithm guarantee to
find ε-Nash equilibria? Previously, the focus has been on various algorithms that run in
polynomial time. Our result for FP applies without any limit on the number of iterations;
we show that a kind of cyclical behavior persists.

A recent paper of Conitzer [5] shows that FP obtains an approximation guarantee
of ε = (t + 1)/2t for two-player games, where t is the number of FP iterations, and
furthermore, if both players have access to infinitely many strategies, then FP cannot
do better than this. The intuition behind this upper bound is that an action that appears
most recently in a player’s sequence has an ε-value close to 0 (at most 1/t); generally a
strategy that occurs a fraction γ back in the sequence has an ε-value of at most slightly
more than γ (it is a best response to slightly less than 1 − γ of the opponent’s distri-
bution), and the ε-value of a player’s mixed strategy is at most the overall average, i.e.,
(t + 1)/2t, which approaches 1/2 as t increases.

However, as soon as the number of available pure strategies is exceeded by the num-
ber of iterations of FP, various pure strategies must get re-used, and this re-usage means,
for example, that every previous occurrence of the most recent action all have ε-values
of 1/t. This appears to hold out the hope that FP may ultimately guarantee a signifi-
cantly better additive approximation. We show that unfortunately that is not what re-
sults in the worst case. Our hope is that this result may either guide the design of more
“intelligent” dynamics having a better approximation performance, or alternatively gen-
eralize to a wider class of related algorithms, e.g., the ones discussed in [6].

In Section 2 we give our main result, the lower bound of 1/2 − O(1/n1−δ) for any
δ > 0, and in Section 3 we give the corresponding upper bound of 1/2 − O(1/n).
Proofs omitted due to lack of space may be found in the full version of the paper.

2 Lower Bound

We specify a class of games with parameter n, whose general idea is conveyed in Figure
1, which shows the row player’s matrix for n = 5; the column player’s matrix is its
transpose. A blank entry indicates the value zero; let α = 1+ 1

n1−δ and β = 1− 1
n2(1−δ)

for δ > 0. Both players start at strategy 1 (top left). Generally, let Gn be a 4n × 4n
game in which the column player’s payoff matrix is the transpose of the row player’s
payoff matrix R, which itself is specified as follows. For i ∈ [2 : n], Ri,i−1 = 1. If
i ∈ [n + 1 : 4n], Ri,i = 1. If i ∈ [n + 1 : 4n], Ri,i−1 = α. Also, R2n+1,4n = α.
Otherwise, if i > j and j ≤ 2n, Ri,j = β. Otherwise, if i > j and i− j ≤ n, Ri,j = β.
For j ∈ [3n + 1 : 4n] and i ∈ [2n + 1 : j − n], Ri,j = β. Otherwise, we have Rij = 0.
For ease of presentation we analyze FP on Gn; the obtained results can be seen to apply
to a version of Gn with payoffs rescaled into [0, 1] (cf. the proof of Theorem 2).

Overview. We next give a general overview and intuition on how our main result works,
before embarking on the technical details. Number the strategies 1, . . . 4n from top to
bottom and left to right, and assume that both players start at strategy 1. Fictitious Play
proceeds in a sequence of steps, which we index by positive integer t, so that step t
consists of both players adding the t-th element to their sequences of length t − 1. It is
easy to observe that since the column player’s payoff matrix is the transpose of the row
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Fig. 1. The game G5 belonging to the class of games used to prove the lower bound

player’s, at every step both players play the same action. This simplifies the analysis
since it means we are analyzing a single sequence of numbers (the shared indices of the
actions chosen by the players).

A basic insight into the behavior of Fictitious Play on the games in question is pro-
vided by Lemma 1, which tells us a great deal about the structure of the players’ se-
quence. Let st be the action played at step t. We set s1 = 1.

Lemma 1. For any t, if st '= st+1 then st+1 = st + 1 (or st+1 = 2n + 1 if st = 4n).

Proof. The first n steps are similar to [5]. For step t > n, suppose the players play
st '= 4n (by the above observation, the two players play the same strategy). st is a best
response at step t, and since Rst+1,st > Rst,st > Rj,st (j '∈ {st, st + 1}), strategy
st + 1 is the only other candidate to become a better response after st is played. Thus,
if st+1 '= st, then st+1 = st + 1. Similar arguments apply to the case st = 4n. ()

The lemma implies that the sequence consists of a block of consecutive 1’s followed
by some consecutive 2’s, and so on through all the actions in ascending order until
we get to a block of consecutive 4n’s. The blocks of consecutive actions then cycle
through the actions {2n + 1, . . . , 4n} in order, and continue to do so repeatedly. As it
stands, the lemma makes no promise about the lengths of these blocks, and indeed it
does not itself rule out the possibility that one of these blocks is infinitely long (which
would end the cycling process described above and cause FP to converge to a pure Nash
equilibrium). The subsequent results say more about the lengths of the blocks. They
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show that in fact the process never converges (it cycles infinitely often) and furthermore,
the lengths of the blocks increase in geometric progression. The parameters α and β
in Gn govern the ratio between the lengths of consecutive blocks. We choose a ratio
large enough that ensures that the n strategies most recently played, occupy all but an
exponentially-small fraction of the sequence. At the same time the ratio is small enough
that the corresponding probability distribution does not allocate much probability to any
individual strategy.

The proof. We now identify some properties of probabilities assigned to strategies by
FP. We let (t(i) be the number of times that strategy i is played by the players until
time step t of FP. Let pt(i) be the corresponding probability assigned by the players to
strategy i at step t, also for any subset of actions S we use pt(S) to denote the total
probability of elements of S. So it is immediate to observe that pt(i) = "t(i)∑ 4n

j=1 "t(j)
=

"t(i)
t . The next fact easily follows from the FP rule.

Lemma 2. For all strategies i ≤ n, pt(i) = 1
t and therefore (t(i) = 1 for any t ≥ i.

By Lemma 1, each strategy is played a number of consecutive times, in order, until the
strategy 4n is played; at this point, this same pattern repeats but only for the strategies
in {2n + 1, . . . , 4n}. We let t# be the length of the longest sequence containing all the
strategies in ascending order, that is, t# is the last step of the first consecutive block of
4n’s. We also let ti be the last time step in which i is played during the first t# steps,
i.e., ti is such that (ti(i) = (ti−1(i) + 1 and (t(i) = (t"(i) for t ∈ {ti, . . . , t#}.

Lemma 3. For all strategies n + 1 ≤ i ≤ 3n and all t ∈ {ti, . . . , t#}, it holds:

α − β

α − 1
pt(i − 1) ≤ pt(i) ≤

1
t

+
α − β

α − 1
pt(i − 1)

and therefore,
α − β

α − 1
(t(i − 1) ≤ (t(i) ≤ 1 +

α − β

α − 1
(t(i − 1).

Proof. By definition of ti, strategy i is played at step ti. This means that i is a best
response for the players given the probability distributions at step ti − 1. In particular,
the expected payoff of i is better than the expected payoff of i + 1, that is,

β
i−2∑

j=1

pti−1(j) + αpti−1(i − 1) + pti−1(i) ≥ β
i−2∑

j=1

pti−1(j) + βpti−1(i − 1) + αpti−1(i).

Since α > 1, the above implies that pti−1(i) ≤ α−β
α−1 pti−1(i−1). By explicitly writing

the probabilities, we get

(ti−1(i)
ti − 1

≤ α − β

α − 1
(ti−1(i − 1)

ti − 1
⇐⇒ (ti(i) − 1 ≤ α − β

α − 1
(ti(i − 1) ⇐⇒ (1)

(ti(i)
ti

≤ 1
ti

+
α − β

α − 1
(ti(i − 1)

ti
⇐⇒ pti(i) ≤

1
ti

+
α − β

α − 1
pti(i − 1). (2)
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At step ti + 1 strategy i is not a best response to the opponent’s strategy. Then, by
Lemma 1, i + 1 is the unique best response and so the expected payoff of i + 1 is better
than the expected payoff of i given the probability distributions at step ti, that is,

β
i−2∑

j=1

pti(j) + αpti(i − 1) + pti(i) ≤ β
i−2∑

j=1

pti(j) + βpti(i − 1) + αpti(i).

Since α > 1, the above implies that

pti(i) ≥
α − β

α − 1
pti(i − 1), and then that (ti(i) ≥

α − β

α − 1
(ti(i − 1). (3)

By definition of ti action i will not be played anymore until time step t#. Similarly,
Lemma 1 shows that i − 1 will not be a best response twice in the time interval [1, t#]
and so will not be played until step t#. So, the claim follows from (1), (2) and (3). ()

Using similar arguments, we can prove a similar result on the actions 3n+1, . . . , 4n−1.

Lemma 4. For i ∈ {3n + 1, . . . , 4n− 1} and t ∈ {ti, . . . , t#}, it holds:

α − β

α − 1
pt(i − 1) ≤ pt(i) ≤

1
t

+
α − β

α − 1
pt(i − 1) +

β

α − 1
pt(i − n)

and therefore,

α − β

α − 1
(t(i − 1) ≤ (t(i) ≤ 1 +

α − β

α − 1
(t(i − 1) +

β

α − 1
(t(i − n).

Exploiting the properties given by Lemmata 2, 3 and 4, the next lemma shows that
we can “forget” about the first 2n actions at the cost of paying an exponentially small
addend in the payoff function.

Lemma 5. For any δ > 0, α = 1 + 1
n1−δ and β = 1 − 1

n2(1−δ) ,
∑2n

j=1 pt"(j) ≤ 2−nδ
.

The theorem below generalizes the above arguments to the cycles that FP visits in the
last block of the game, i.e., the block which comprises strategies S = {2n+1, . . . , 4n}.
Since we focus on this part of the game, to ease the presentation, our notation uses
circular arithmetic on the elements of S. For example, the action j + 2 will denote
action 2n+2 for j = 4n and the action j−n will be the strategy 3n+1 for j = 2n+1.
Note that under this notation j − 2n = j + 2n = j for each j ∈ S.

Theorem 1. For any δ > 0, α = 1 + 1
n1−δ and β = 1 − 1

n2(1−δ) , n sufficiently large,
any t ≥ t# we have

pt(i)
pt(i − 1)

≥ 1 +
1

n1−δ
∀ i ∈ S with i '= st, st + 1, and

pt(i)
pt(i − 1)

≤ 1 +
3

n1−δ
∀ i ∈ S.

Proof. The proof is by induction on t.
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Base. For the base of the induction, consider t = t# and note that at that point st" = 4n
and st" + 1 = 2n + 1. Therefore we need to show the lower bound for any strategy
i ∈ {2n + 2, . . . , 4n − 1}. From Lemmata 3 and 4 we note that for i '= 4n, 2n + 1,

pt"(i)
pt"(i − 1)

≥ α − β

α − 1
= 1 +

1
n1−δ

.

As for the upper bound, we first consider the case of i '= 4n, 2n + 1. Lemma 3 implies
that for i = 2n + 2, . . . , 3n,

pt"(i)
pt"(i − 1)

≤ 1
t#

+
α − β

α − 1
,

while Lemma 4 implies that for i = 3n + 1, . . . , 4n − 1,

pt"(i)
pt"(i − 1)

≤ 1
t#

+
α − β

α − 1
+

β

α − 1
pt"(i − n)
pt"(i − 1)

=
1
t#

+
α − β

α − 1
+

β

α − 1
(t"(i − n)
(t"(i − 1)

.

To give a unique upper bound for both cases, we only focus on the above (weaker)
upper bound and next are going to focus on the ratio "t" (i−n)

"t" (i−1) . We use Lemmata 3 and
4 and get

(t"(i − 1) ≥ α − β

α − 1
(t"(i − 2) ≥

(
α − β

α − 1

)2

(t"(i − 3) ≥
(

α − β

α − 1

)n−1

(t"(i − n).

By setting α and β as in the hypothesis and noticing that t# ≥ n ≥ n1−δ we then obtain
that

pt"(i)
pt"(i − 1)

≤ 1 +
2

n1−δ
+

(
1 +

1
n1−δ

)1−n n2(1−δ) − 1
n1−δ

.

We end this part of the proof by showing that the last addend on the right-hand side of
the above expression is upper bounded by 1

4n1−δ . To do so we need to prove

(
1 +

1
n1−δ

)1−n

≤ 1
4n1−δ

n1−δ

n2(1−δ) − 1
, (4)

which is equivalent to
((

1 + 1
n1−δ

)n1−δ
)nδ− 1

n1−δ

≥ 4(n2(1−δ) − 1). We now lower

bound the left-hand side of the latter inequality:
((

1 + 1
n1−δ

)n1−δ
)nδ− 1

n1−δ

> 2nδ

2
1

n1−δ
>

2nδ

2 , where the first inequality follows from the fact that the function (1 + 1/x)x is

greater than 2 for x > 2 and the second one follows from the fact that 2
1

n1−δ < 2 for
n1−δ > 1. Then, since for n ≥ 2(1−δ)

√
4, 5n2(1−δ) ≥ 4(n2(1−δ) − 1), to prove (4) is

enough to show 2nδ ≥ 2(5n2(1−δ)) ⇐⇒ nδ ≥ 2(1− δ) log2(10n). To prove the latter,
since δ > 0, it is enough to observe that the function nδ is certainly bigger than the
function 2 log2(10n) > 2(1 − δ) log2(10n) for n large enough (e.g., for δ = 1/2, this
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is true for n > 639). Similarly to the proof of Lemma 4, we can prove that the upper
bound holds at time step t# for i = 4n, 2n + 1. This concludes the proof of the base of
the induction.

Inductive step. Now we assume the claim is true until time step t − 1 and we show it
for time step t. By inductive hypothesis, the following is true, with j '= st−1, st−1 + 1

1 +
1

n1−δ
≤ pt−1(j)

pt−1(j − 1)
≤ 1 +

3
n1−δ

, (5)

pt−1(st−1 + 1)
pt−1(st−1)

≤ 1 +
3

n1−δ
. (6)

We first consider the case in which st '= st−1. By Lemma 1, the strategy played at time
t is st−1+1, i.e., st = st−1 +1. Let st−1 = i and then we have st = i+1. By inductive
hypothesis, for all the actions j '= i, i + 1, i + 2 we have

α − β

α − 1
= 1 +

1
n1−δ

≤ pt(j)
pt(j − 1)

≤ 1 +
3

n1−δ
. (7)

Indeed, for these actions j, (t−1(j) = (t(j) and (t−1(j − 1) = (t(j − 1). Therefore
the probabilities of j and j − 1 at time t are simply those at time t − 1 rescaled by
the same amount and the claim follows from (5). The upper bound on the ratio pt(i+2)

pt(i+1)

easily follows from the upper bound in (5) as (t−1(i+2) = (t(i+2) and (t−1(i+1) <
(t(i + 1) = (t−1(i + 1) + 1. However, as st = i + 1 here we need to prove lower and
upper bound also for the ratio pt(i)

pt(i−1) and the upper bound for the ratio pt(i+1)
pt(i)

(this
proof can be found in the full version of the paper).

Claim. It holds 1 + 1
n1−δ ≤ pt(i)

pt(i−1) ≤ 1 + 3
n1−δ .

Proof. To prove the claim we first focus on the last block of the game, i.e., the block in
which players have strategies in {2n+1, . . . , 4n}. Recall that our notation uses circular
arithmetic on the number of actions of the block.

The fact that action i + 1 is better than action i after t − 1 time steps implies that

pt−1(i) + αpt−1(i − 1) + βpt−1(i − n) ≤ αpt−1(i) + pt−1(i + 1) + βpt−1(i − 1)

and then since α > 1

pt−1(i)
pt−1(i − 1)

≥α − β

α − 1
+

β

α − 1
pt−1(i − n)
pt−1(i − 1)

− 1
α − 1

pt−1(i − 2n + 1)
pt−1(i − 1)

. (8)

We next show that βpt−1(i−n)−pt−1(i−2n+1)
(α−1)pt−1(i−1) ≥ − 1

4n1−δ or equivalently that pt−1(i−n)
pt−1(i−2n+1)

≥ 1
β − (α−1)pt−1(i−1)

4βn1−δpt−1(i−2n+1) . To prove this it is enough to show that pt−1(i−n)
pt−1(i−2n+1) ≥ 1

β .
We observe that

pt−1(i − n)
pt−1(i − 2n + 1)

=
pt−1(i − n)

pt−1(i − n − 1)
· · · pt−1(i − 2n + 2)

pt−1(i − 2n + 1)
≥

(
α − β

α − 1

)n−1

≥ 1
β

,
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where the first inequality follows from inductive hypothesis (we can use the inductive
hypothesis as all the actions involved above are different from i and i + 1) and the
second inequality follows from the aforementioned observation that, for sufficiently
large n, nδ ≥ 2 log2(2n). Then to summarize, for α and β as in the hypothesis, (8)
implies that

pt(i)
pt(i − 1)

=
pt−1(i)

pt−1(i − 1)
≥ 1 +

1
n1−δ

− 1
4n1−δ

,

where the first equality follows from (t−1(i) = (t(i) and (t−1(i−1) = (t(i−1), which
are true because st = i + 1.

Since action i + 1 is worse than strategy i at time step t − 1 we have that

pt−1(i) + αpt−1(i − 1) + βpt−1(i − n) ≥ αpt−1(i) + pt−1(i + 1) + βpt−1(i − 1)

and then since α > 1, pt−1(i)
pt−1(i−1) ≤ α−β

α−1 + β
α−1

pt−1(i−n)
pt−1(i−1) −

1
α−1

pt−1(i−2n+1)
pt−1(i−1) . Similarly

to the proof of Lemma 3 above this can be shown to imply

pt(i)
pt(i − 1)

≤1
t

+
α − β

α − 1
+

β

α − 1
pt(i − n)
pt(i − 1)

− 1
α − 1

pt(i − 2n + 1)
pt(i − 1)

≤1
t

+
α − β

α − 1
+

β

α − 1
pt(i − n)
pt(i − 1)

. (9)

We now upper bound the ratio β
α−1

pt(i−n)
pt(i−1) . By repeatedly using the inductive hypothe-

sis (7) we have that

pt(i − 1) ≥ α − β

α − 1
pt(i − 2) ≥

(
α − β

α − 1

)2

pt(i − 3) ≥
(

α − β

α − 1

)n−1

pt(i − n).

(Note again that we can use the inductive hypothesis as none of the actions above is i
or i + 1.) This yields

β

α − 1
pt(i − n)
pt(i − 1)

≤ β

α − 1

(
α − 1
α − β

)n−1

≤ 1
4n1−δ

,

where the last inequality is proved above (see (4)). Therefore, since t ≥ n1−δ, (9)
implies the following

pt(i)
pt(i − 1)

≤ 1 +
2

n1−δ
+

1
4n1−δ

.

To conclude the proof we must now consider the contribution to the payoffs of the
actions 1, . . . , 2n that are not in the last block. However, Lemma 5 shows that all
those actions are played with probability 1/2nδ

at time t#. Since we prove above (see
Lemma 1) that these actions are not played anymore after time step t# this implies that∑2n

j=1 pt(j) ≤
∑2n

j=1 pt"(j) ≤ 2−nδ

. Thus the overall contribution of these strategies
is upper bounded by 1

2nδ (α−β) ≤ 1
2nδ ≤ 1

4n1−δ where the last bound follows from the
aforementioned fact that, for n sufficiently large, nδ ≥ (1−δ) log2(4n). This concludes
the proof of this claim. ()
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Finally, we consider the case in which st−1 = st. In this case, for the actions j '=
st, st + 1 it holds (t−1(j) = (t(j) and (t−1(j − 1) = (t(j − 1). Therefore, similarly to
the above, for these actions j the claim follows from (5). The upper bound for the ratio
pt(st+1)

pt(st)
easily follows from (6) as (t−1(st + 1) = (t(st + 1) and (t−1(st) < (t(st) =

(t−1(st) + 1. The remaining case to analyze is the upper bound on the ratio pt(st)
pt(st−1) .

To prove this we can use mutatis mutandis the proof of the upper bound on the ratio
pt(i)

pt(i−1) for the case st−1 '= st (in that proof simply set with st = i). ()

The claimed performance of Fictitious Play, in terms of the approximation to the best
response that it computes, follows directly from this theorem.

Theorem 2. For any value of δ > 0 and any time step t, Fictitious Play returns an
ε-NE with ε ≥ 1

2 − O
(

1
n1−δ

)
.

Proof. For t ≤ n the result follows since the game is similar to [5]. In details, for t ≤ n
the payoff associated to the best response, which in this case is st +1, is upper bounded
by 1. On the other hand, the payoff associated to the current strategy prescribed by FP
is lower bounded by β

i2
∑i−1

j=0 j where i = st. Therefore, the regret of either player
normalized to the [0, 1] interval satisfies: ε ≥ 1

α − β
α

i−1
2i . Since i−1

2i < 1/2, the fact
that 1 − β

2 − α
2 + α

n1−δ ≥ 0 (which is true given the values of α and β) yields the
claim. For t ≤ t# the result follows from Lemmata 3 and 4; while the current strategy
st (for t ≤ t∗) has payoff approximately 1, the players’ mixed strategies have nearly all
their probability on the recently played strategies, but with no pure strategy having very
high probability, so that some player is likely to receive zero payoff; by symmetry each
player has payoff approximately 1

2 . This is made precise below, where it is applied in
more detail to the case of t > t#.

We now focus on the case t > t#. Recall that for a set of strategies S, pt(S) =∑
i∈S pt(i). Let St be the set {2n + 1, . . . , st} ∪{ st + n, . . . , 4n} if st ≤ 3n, or the

set {st − n, . . . , st} in the case that st > 3n. Let S′
t = {2n+ 1, . . . , 4n} \ St. Also, let

smax
t = arg maxi∈{2n+1,...,4n}(pt(i)); note that by Theorem 1, smax

t is equal to either
st or s−t , where s−t = st − 1 if st > 2n, or 4n if st = 2n. We start by establishing the
following claim:

Claim. For sufficiently large n, pt(St) ≥ 1 − 2n−1
2nδ .

Proof. To see this, note that for all x ∈ S′
t, by pt(smax

t ) ≥ pt(smax
t −1) and Theorem 1

we have

pt(smax
t )

pt(x)
=

pt(smax
t )

pt(smax
t − 1)

pt(smax
t − 1)

pt(smax
t − 2)

. . .
pt(x + 1)

pt(x)
≥

(
1 +

1
n1−δ

)k−1

,

where k is the number of factors on the right-hand side of the equality above, i.e., the
number of strategies between x and smax

t . Thus, as k ≥ n,

pt(x) ≤ pt(smax
t )

(
1 + 1

n1−δ

)k−1
≤

(
1 +

1
n1−δ

)1−k

≤
(

1 +
1

n1−δ

)1−n

≤ 4(1−n)/(n1−δ).
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Hence pt(S′
t) ≤ (2n)4(1−n)/(n1−δ) = n41/n1−δ

2nδ < 2n
2nδ , where the last inequality

follows from the fact that, for large n, 41/n1−δ
< 2. Then pt(St) ≥ 1 − pt(S′

t) −
pt({1, . . . , 2n}), which establishes the claim, since Lemma 5 establishes a strong enough
upper bound on pt({1, . . . , 2n}). ()

Claim. The current best response at time t, st, has payoff at least β
(
1 − 2n−1

2nδ

)
.

Proof. The action st receive a payoff of at least β when the opponent plays any strategy
from St; the claim follows using Claim 2. ()

Let Et denote the expected payoff to either player that would result if they both select
a strategy from the mixed distribution that allocates to each strategy x, the probability
pt(x). The result will follow from the following claim:

Claim. For sufficiently large n, Et ≤ α
2 + 6

n1−δ + α 2n
2nδ .

Proof. The contribution to Et from strategies in {1, . . . , n}, together with strategies
in S′

t, may be upper-bounded by α times the probability that any of that strategies
get played. This probability is by Lemma 5 and the claim above exponentially small,
namely 2n/2nδ

.
Suppose instead that both players play from St. If they play different strategies, their

total payoff will be at most α, since one player receives payoff 0. If they play the same
strategy, they both receive payoff 1. We continue by upper-bounding the probability
that they both play the same strategy. This is upper-bounded by the largest probability
assigned to any single strategy, namely pt(smax

t ).
Suppose for contradiction that pt(smax

t ) > 6/n1−δ. At this point, note that by The-
orem 1, for any strategy s ∈ St, we have pt(s

max
t )

pt(s)
≤

(
1 + 3

n1−δ

)k
, where k is the

distance between s and smax
t . Therefore, denoting r =

(
1 + 3

n1−δ

)−1
, we obtain

pt(St) =
∑

s∈St

pt(s) = pt(st) +
st−1∑

i=st−n

pt(i) ≥ pt(smax
t )

n−1∑

k=0

rk.

Applying the standard formula for the partial sum of a geometric series we havept(St) ≥
6

n1−δ

(
1−rn

1−r

)
. Noting that 1 − rn > 1

2 we have pt(St) > 6
n1−δ · (1

2 ) · (n1−δ

3 ) which is
greater than 1, a contradiction.

The expected payoff Et to either player, is, by symmetry, half the expected total
payoff: we have Et ≤ (1 − 2n

2nδ − 6
n1−δ )α

2 + 6
n1−δ + 2n

2nδ α which yields the claim. ()

We now show that Fictitious Play never achieves an ε-value better than 1
2 − O

(
1

n1−δ

)
.

From the last two claims the regret of either player normalized to [0, 1] satisfies:

ε ≥ β

α

(
1 − 2n − 1

2nδ

)
− 1

2
− 6

αn1−δ
− 2n

2nδ =
1
2
− O

(
1

n1−δ

)
.

This concludes the proof. ()
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3 Upper Bound

In this section, n denotes the number of pure strategies of both players. Let a, b denote
the FP sequences of pure strategies of length t, for players 1 and 2 respectively. Let
a[k:"] denote the subsequence ak, . . . , a". We overload notation and use a to also denote
the mixed strategy that is uniform on the corresponding sequence.

Let m∗ be a best response against b, and let ε denote the smallest ε′ for which a is an
ε′-best-response against b. To derive a bound on ε, we use the most recent occurrence
of pure strategy in a. For k ∈ {1, . . . , t}, let f(k) denote the last occurrence of ak in
the sequence a, that is, f(k) := max"∈{1,...,t}, a#=ak

(. It is not hard to show that

ε ≤ 1 +
1
t
− 1

t2

t∑

i=1

f(i). (10)

To provide a guarantee on the performance of FP, we find the sequence a that maximizes
the right hand-side of (10), i.e., that minimizes

∑t
i=1 f(i).

Definition 1. For a FP sequence a, let S(a) :=
∑t

i=1 f(ai) and let â = argmina S(a).

The following three lemmata allow to characterize â, the sequence that minimizes S(a).
Lemma 6. The entries of â take on exactly n distinct values.

We now define a transformation of an FP sequence a into a new sequence a′ so that
S(a′) < S(a) if a '= a′.

Definition 2. Suppose the entries of a take on d distinct values. We define x1, . . . , xd

to be the last occurrences, {f(ai) | i ∈ [t]}, in ascending order. Formally, let xd := at

and for k < d let xk := ai be such that i := arg maxj=1,...,t aj /∈ {xk+1, . . . , xd}. For
i = 1, . . . , d, let #(xi) := |{aj | j ∈ [t], aj = xi}|, which is the number of occurrences
of xi in a. Define a′ as a′ := x1, . . . , x1︸ ︷︷ ︸

#(x1)

, x2, . . . , x2︸ ︷︷ ︸
#(x2)

, · · · , xd, . . . , xd︸ ︷︷ ︸
#(xd)

.

Lemma 7. For any FP sequence a, let a′ be as in Definition 2. If a′ '= a then S(a′) <
S(a).

Lemma 8. Let n, t ∈ N be such that n|t. Let a be a sequence of length t of the form a =
1, . . . , 1, 2, . . . , 2, · · · , n, . . . , n, where the blocks of consecutive actions have length
c1, c2, . . . , cn, respectively. Then S(a) is minimized if and only if c1 = · · · = cn = t/n.

Proof. We refer to the maximal length subsequence of entries with value u ∈ {1, . . . n}
as block u. Consider two adjacent blocks u and u + 1, where block u starts at i and
block u + 1 starts at j and finishes at k. The contribution of these two blocks to S(a) is∑j−1

i (j − 1) +
∑k

j k = j2 − (k + i)j + (i + k). If k + i is even, this contribution is
minimized when j = k+i

2 . If k+ i is odd, this contribution is minimized for both values
j = /k+i

2 0 and j = 1k+i
2 2.

Now suppose for the sake of contradiction that S(a) is minimized when c1 = · · · =
cn = t/n does not hold. There are two possibilities. Either there are two adjacent
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blocks whose lengths differ by more than one, in which case we immediately have a
contradiction. If not, then it must be the case that all pairs of adjacent blocks differ in
length by at most one. In particular, there must be a block of length t/n+1 and another
of length t/n−1 with all blocks in between of length t/n. Flipping the leftmost of these
blocks with its right neighbor will not change the sum S(a). Repeatedly doing this until
the blocks of lengths t/n + 1 and t/n− 1 are adjacent, does not change S(a). Then we
have two adjacent blocks that differ in length by more than one, which contradicts the
fact that S(a) was minimized. ()

Theorem 3. If n|t, the FP strategies (a, b) are a
(

1
2 + 1

t − 1
2n

)
-equilibrium.

Proof. By symmetry, it suffices to show that â is a
(

1
2 + 1

t − 1
2n

)
-best-response against

b. Applying Lemma 6, Lemma 7 and Lemma 8, we have that â = m1, . . . , m1, m2, . . . ,
m2, · · · , mn, . . . , mn, where m1, . . . , mn is an arbitrary labeling of player 1’s pure
strategies and where each block of actions has length t/n. Using (10), we have that

ε ≤1 +
1
t
− 1

t2

t∑

i=1

f(âi) = 1 +
1
t
− 1

t2
t

n

n∑

i=1

(
i · t
n

) = 1 +
1
t
− n + 1

2n
=

1
2

+
1
t
− 1

2n
.

This concludes the proof. ()

4 Discussion

Daskalakis et al. [7] gave a very simple algorithm that achieves an approximation guar-
antee of 1

2 ; subsequent algorithms e.g. [3,12] improved on this, but at the expense of
being more complex and centralized, commonly solving one or more derived LPs from
the game. Our result suggests that further work on the topic might address the question
of whether 1

2 is a fundamental limit to the approximation performance obtainable by
certain types of algorithms that are in some sense simple or decentralized. The question
of specifying appropriate classes of algorithms is itself challenging, and is also consid-
ered in [6] in the context of algorithms that provably fail to find Nash equilibria without
computational complexity theoretic assumptions.
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