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Abstract

Koller, Megiddo and von Stengel showed how to ef-
ficiently compute minimax strategies for two-player
extensive-form zero-sum games with imperfect informa-
tion but perfect recall using linear programming and
avoiding conversion to normal form. Koller and Pf-
effer pointed out that the strategies obtained by the
algorithm are not necessarily sequentially rational and
that this deficiency is often problematic for the prac-
tical applications. We show how to remove this defi-
ciency by modifying the linear programs constructed by
Koller, Megiddo and von Stengel so that pairs of strate-
gies forming a sequential equilibrium are computed. In
particular, we show that a sequential equilibrium for a
two-player zero-sum game with imperfect information
but perfect recall can be found in polynomial time. In
addition, the equilibrium we find is normal-form perfect.
Our technique generalizes to general-sum games, yield-
ing an algorithm for such games which is likely to be
prove practical, even though it is not polynomial-time.

1 Introduction

1.1 Background and statement of main results
It has been known for more than fifty years [27, 36] that
Nash equilibria of matrix games (i.e., two-player zero-
sum games in normal form) coincide with pairs of min-
imax and maximin mixed strategies and can be found
efficiently using linear programming. However, in many
realistic situations where it is desired to compute pre-
scriptive strategies for games with hidden information,
the game is given in extensive form, i.e., as a game tree
with a partition of the nodes into information sets, each
information set describing a set of nodes mutually indis-
tinguishable for the player to move. One may analyze an
extensive form game by converting it into normal form
and then analyzing the resulting matrix game. However,
the conversion from extensive to normal form incurs an
exponential blowup in the size of the representation.
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Koller, Megiddo and von Stengel [15] showed how to
use sequence form representation to efficiently compute
minimax strategies for two-player extensive-form zero-
sum games with imperfect information but perfect recall
by solving linear programs of size linear in the size of
the game trees, and avoiding the conversion to normal
form.

The algorithm by Koller, Megiddo and von Stengel
(henceforth, the KMvS-algorithm) has been used for
constructing prescriptive strategies for concrete, often
very large games, to be used in game playing software.
It was been applied by Billings et al [2] to certain
abstractions of heads-up Texas Hold’Em poker, each
containing roughly ten million positions. Most recently,
it was applied by Gilpin and Sandholm [8] to solve
heads-up Rhode Island Hold’Em poker. The efficient
algorithm based on sequence form representation and
implemented using state of the art linear programming
software was clearly essential for obtaining solutions for
games this large.

Koller and Pfeffer [17] presented the software tool
GALA, one of the applications of which was to encode
and solve games using the KMvS-algorithm. Towards
the end of their paper, they pointed out a certain de-
ficiency of the strategies computed by the algorithm.
Alex Selby [31], analyzing a simplified version of Texas
Hold’Em poker using a variant of the algorithm (the
strategy he computed was later used in the work by
Billings et al mentioned above), found and described es-
sentially the same deficiency. This deficiency and how
to remedy it is the topic of the present paper. The defi-
ciency may be summarized as follow: While the strategy
computed by the KMvS-algorithm is a correct minimax
strategy and thus guaranteed to attain an expected pay-
off of at least the game-theoretic value of the game con-
sidered, it does not necessarily prescribe sensible play in
any particular situation encountered during the game.
Indeed, since the strategy computed is not attempting
to achieve a payoff better than the value of the game, a
player playing by the strategy will gladly give back any
“gift” he receives from his opponent. In game theoretic
terms, the computed strategy is not necessarily sequen-
tially rational, a concept that has been thoroughly in-



vestigated; see the very comprehensive monograph by
van Damme [35] for an overview. As Koller and Pfef-
fer correctly point out in their paper, there are several
different (and to some degree competing) refinements
of the concept of a Nash equilibrium meant to capture
variations of this notion. However, a fairly permissive
and hence relatively non-controversial refinement is the
seminal notion of a sequential equilibrium due to Kreps
and Wilson [18]. A sequential equilibrium is guaran-
teed to exist for any extensive form game. Also, it is an
equilibrium in the usual sense, so for the case of zero-
sum games, a sequential equilibrium will still be a pair
of maximin/minimax strategies. Most importantly, the
intention of the notion is that in a sequential equilib-
rium, at every situation in the game, mistakes made by
the opponent in the past are exploited optimally, rel-
ative to some consistent (“sensible”) belief about the
situation. Thus, intuitively, a strategy prescribed by a
sequential equilibrium cannot “return gifts”.

Insisting on sequentiality removes many intuitively
insensible equilibria but not all: The notion is only
concerned with exploiting mistakes the opponent made
in the past and does not try to deal with mistakes
he may make in the future. An additional “niceness”
property which rules some additional insensible behav-
ior not ruled out by sequentiality is Selten’s notion of
normal-form perfection [32, 9]. For a two-player game,
an equilibrium is normal-from perfect if and only if none
of the two strategies it prescribes are dominated (van
Damme [35, Theorem 3.2.2]). The notions of sequential-
ity and normal-form perfection are incomparable, i.e.,
neither is implied by the other.

For illustration, we present two simple zero-sum
games with equilibria exhibiting anomalies similar to
those described by Koller and Pfeffer and by Selby, and
explain on an intuitive level how insisting on sequential-
ity and normal-form perfection of the equilibria com-
puted would resolve the anomalies. First, consider the
following game, Guess-the-Ace, played by Player I and
Player II. A standard deck of 52 cards is shuffled per-
fectly by a dealer. Player I may now choose to end the
game, in which case no money is exchanged between the
two players. Player I’s other option is to offer Player
II $1000 for correctly answering the following question:
When the dealer reveals the top card of the deck, will
it be the ace of spades? If asked, Player II may answer
either “yes” or “no” and the game ends by the dealer
revealing the top card and Player I paying Player II if
he guessed correctly. Intuitively, it seems obvious that
in any sensible strategy for Player II, he should guess
(if asked) that the top card of the deck is not the ace of
spades. After all, this is the case with probability 51/52.
Indeed, the unique sequential equilibrium for Guess-the-

Ace prescribes that Player II should guess that the top
card is not the ace of spades, with probability 1.

The extensive form for this game, drawn by using
game theory software tool Gambit [22] is given in
Figure 1. The probabilities being written as labels on
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Figure 1: Non-sequential equilibrium for “Guess-the-
Ace” found by the KMvS-algorithm.

the arcs of the game is the Nash Equilibrium found
by Gambit using its implementation of the KMvS-
algorithm. Note that in the equilibrium found, Player II
guesses with probability 1 that the top card is the ace of
spades! Though describing a clearly insensible strategy
for Player II, the strategy profile computed is a Nash
equilibrium as it prescribes for Player I to (sensibly)
stop the game without asking the question and risking
$1000. Any strategy for Player II is in equilibrium with
this strategy. The equilibrium found is subgame perfect
and is found even if Gambit is asked to solve subgames
separately (as the game has no proper subgames). But
imposing the constraint of sequentiality would rule
out this insensible equilibrium. In fact, imposing the
constraint of normal-form perfection would as well:
The strategy of Player II of guessing that the top
card is the ace of space is dominated by guessing
that it is not. We may modify the example into one
where sequentiality eliminates the insensible behavior
but normal-form perfection does not, by adding a second
move of Player I after the guess of Player II: We give
him at this point in time the option of giving Player
II another gift of $1000, no strings attached this time.
Now normal-form perfection does not rule out Player
II guessing that the top card is the ace of space,
but sequentiality still does: In a normal-form perfect
equilibrium Player II is allowed to hope that the second
gift will be given if and only if he makes the insensible
guess, in a sequential equilibrium he is not.

To give an example where normal-form perfection
rules out a particular piece of insensible behavior but
sequentiality does not, we consider a variant of the



celebrated example of three-card poker due to Kuhn
[19]. See e.g. Chvátal [4, pages 235–247] for a textbook
account. In Kuhn’s original version, Player I and Player
II both pay an ante of $1 and are then each dealt a card
from a three-deck card containing an ace, a king and a
queen. Player I must now either bet $1 that his card is
the highest or check to Player II. If he bets, Player II
may choose to call the bet or fold. If Player I checks,
player II can either check himself, or bet. If he bets,
player II can either call the bet or fold. If a player
folds, the other player wins the pot. If no player folds,
the cards are revealed and the player with the highest
card wins the pot.

The variation we consider consists of adding a third
option for the players: In addition to calling a bet or
folding to a bet, one is allowed to raise the bet by an
additional $1, which the other player now must call or
fold to. Such an option is of course standard in real
versions of poker. We only allow a single raise as this
extension is enough to illustrate our point. Thus, the
final size of the pot can be at most $6, including the
antes. The extensive form of the resulting game is

Figure 2: Is the pot really big enough!?

too big to be presented graphically here (it contains
91 positions, including terminal ones). In Figure 2, we
show a single branch of the game, omitting information
sets, namely the one where Player I is dealt the ace
and Player II is dealt the queen. The probabilities on
the arcs are from the (reduced) behavioral strategies
computed using Gambit’s implementation of the KMvS-
algorithm. We see that Player I starts by checking his
ace with probability 1. This behavior, though perhaps
slightly surprising, is in fact perfectly sensible (Player
I does this on all hands, taking some of the positional
advantage away from Player II). The insensible behavior
occurs if Player II then bets: Player I then calls instead
of raising. This is clearly insensible as Player I knows
for sure that he has the best hand. Still, the strategy
profile computed is a Nash equilibrium: Player I knows

that a sensible opponent would never call the raise, so
from a min-max perspective there is no reason to make
it. Unlike in the example of Guess-the-Ace, here the
insensible behaviour is made in an information set which
will be reached with strictly positive probability if both
players play their equilibrium strategies, as Player II
bets his queen with probability 1/3 when checked to, as
a bluff. And indeed, the strategies computed do form
a reduced sequential equilibrium, but it is not normal-
form perfect: A normal-form perfect equilibrium must
raise the ace with probability 1, as raising dominates
calling.

Our discussion motivates the main theoretical result
of the present paper, strengthening the result of Koller,
Megiddo and von Stengel.

Theorem 1.1. A sequential and (simultaneously)
normal-form perfect equilibrium for a given extensive-
form, two-player, zero-sum game with imperfect
information but perfect recall may be computed in
polynomial time.

Our strategy for proving this is to modify the linear pro-
grams of Koller, Megiddo and von Stengel and solve the
resulting modified programs. The modified programs
can be viewed as (symbolically or actually) perturbed
versions of the original programs. This approach not
only leads to a polynomial time algorithm, but also to
a (different) algorithm that is quite efficient in practice.
Indeed, we have made a provisional implementation of
our algorithm and preliminary computational experi-
ments are quite encouraging, efficiency-wise. As stated
above, implementations of the KMvS-algorithm can be
and have been practically applied to very large games
and we think the algorithm of this paper can be simi-
larly applied to large games. As the deficiency pointed
out by Koller and Pfeffer and by Selby is a very real
issue that occurs in practice when the KMvS-algorithm
is applied, we also think that a variant ensuring sequen-
tial rationality such as ours should be applied in such
settings, in order to ensure that strategies prescribing
sensible play are computed!

While our main focus in this extended abstract is on
the zero-sum case, motivated by the applications in arti-
ficial intelligence, the practical variant of our algorithm
generalizes to general-sum games. We describe this in
the full version of the paper, a preliminary version of
which can be found on the homepage of the first au-
thor. Again, we follow the approach of Koller, Megiddo
and von Stengel [15, 16], but now perturb their linear
complementarity programs instead of their linear pro-
grams and solve the perturbed games using Lemke’s al-
gorithm. Thus, the full version of this paper also de-
scribes a practical (but not polynomial-time) algorithm



for finding a sequential and normal-form perfect equilib-
rium of a two-player general-sum game with imperfect
information but perfect recall.

1.2 Previous research using related techniques
As stated above, our technique is based heavily on the
sequence form technique of Koller, Megiddo and von
Stengel. However, as they state it, their technique only
provides reduced behavioral strategies, and to produce
a sequential equilibrium, one has to specify meaning-
ful behavior at every information set, also those off the
equilibrium path. Discussing this issue, McKelvey and
McLennan [20, section 4.3] hypothesized “that a suit-
able generalization of the sequence form will be the nat-
ural vehicle for computation of sequential equilibrium.”
It is exactly this hypothesis that we confirm in this pa-
per. Namely, the versions of our algorithm described in
Section 2.3 for the zero-sum case and in the full version
of the paper for the general-sum case use lexicographic
perturbations of the linear programs and linear comple-
mentarity programs associated with the sequence form,
i.e., perturbations which are formal polynomials in an
indeterminate ε. We can informally think of ε as a value
which is bigger than 0 but infinitesimally small. Such
a perturbation is called lexicographic as two perturbed
values may be compared by comparing the two vectors
of coefficients of the polynomials using the lexicographic
ordering. The lexicographic perturbation technique was
originally introduced as a technical device for eliminat-
ing degeneracies in tableaus occurring during execution
of the simplex algorithm for solving linear programs in
the early 1950s [3, 6]. It was later applied in compu-
tational game theory for similarly eliminating degener-
ate situations when solving linear complementarity pro-
grams using the Lemke-Howson algorithm and Lemke’s
algorithm [7, 16, 40, 20, 39, 23]. The lexicographic
perturbation method was also used by Wilson [41] to
find simply stable equilibria of normal-form games. In
contrast to the applications mentioned above, one may
characterize Wilson’s lexicographic perturbations as be-
ing “meaningful” or “semantic”: In addition to their use
for degeneracy elimination, Wilson’s perturbations have
a game-theoretic interpretation in terms of perturbed
games. Perturbed games being ubiquitous in the theory
of equilibrium refinements, it does indeed seem very nat-
ural to explore the use of symbolic perturbations when
computing such refined equilibria and this approach is
further explored in this paper. Our use of lexicographic
perturbations is purely semantic, i.e., the perturbations
are not meant to care of degeneracies at all (these we
handle separately) but should be interpreted in terms of
a perturbed game where only behavioral strategies that
are fully mixed at every information set are permitted.

1.3 Previous research solving related problems
von Stengel, van den Elzen and Talman [40] showed
how to apply Lemke’s algorithm to find a normal-form
perfect equilibrium for an extensive-form general-sum
game. We similarly apply Lemke’s algorithm to find
an equilibrium which is normal-form perfect as well as
sequential (in the full version of the paper) and thus
give an alternative to their algorithm. It is interesting
that technically our algorithm is much closer related to
the original application of Lemke’s algorithm by Koller,
Megiddo and von Stengel than to the application of
Lemke’s algorithm by von Stengel, van den Elzen and
Talman.

Some theoretical work has been done on computing
sequential equilibria for general-sum games [1, 13]. The
algorithms presented in these works are worst-case
exponential time, as no known procedure guaranteed
to find even a Nash Equilibrium in a general-sum
game (even in normal form) is known to be polynomial
time [10, 28, 5, 30]. In addition to these theoretical
results, the game theory software tool Gambit [22] has
a procedure for computing a sequential equilibrium in
general-sum games. The procedure is oblivious as to
whether the input is zero-sum or not. It is computing
the logit solution of the game, a notion due to McKelvey
and Palfrey [21]. This is, interestingly, also a notion of
equilibria of perturbed games, but different from our
perturbed games. To compute the logit solution, the
payoffs are (randomly) perturbed, separately for each
of the two players and hidden for the other player. This
perturbation thus turns a zero-sum game into a non-zero
sum game. The associated procedure is using floating
point arithmetic and numerical instability causes it
sometimes to fail computing a sequential equilibrium
[33]. Even for quite small games, the procedure runs
very slowly and it seems out of the question that it could
be used to solve games the size of the games considered
by, say, Billings et al. In the three card poker example
presented above, Gambit (a library developed over more
than a decade and coded in C++) used 75 seconds
to find a sequential equilibrium using floating point
arithmetic, while the preliminary implementation of our
algorithm for the zero-sum case (coded by the present
authors in java) used 6 seconds (including the time
required to load java libraries, etc.) to find a sequential
equilibrium using exact rational arithmetic. We have
not yet implemented our algorithm for the general-sum
case, but as it is based on Lemke’s algorithm which has
a reputation of being practical [40], we suspect that our
method will be practical, also in the general-sum case.

1.4 Organization of the remaining paper Sec-
tion 2 is the bulk of the paper, describing our algorithm



for the zero-sum case. In Section 2.1, we outline the
main ideas of the KMvS-algorithm while reminding the
reader about the basic concepts concerning extensive-
form games. In Section 2.2, we state the Kreps-Wilson
definition of a sequential equilibrium. In Section 2.3,
we show how to modify the linear programs of Koller,
Megiddo and von Stengel and use the modified programs
to identify a sequential equilibrium for the given game
and show how to compute it efficiently, in a theoretical
and a practical sense. Due to space constraints, almost
all proofs are omitted. They may be found in the full
version of the paper, a preliminary version of which is
available at the first author’s homepage. The full ver-
sion of the paper also describes our algorithm for the
general-sum case.

2 Finding a sequential equilibrium using linear
programming

2.1 Extensive-form games and the sequence
form By a game G we mean in the following a two-
player extensive-form zero-sum game with imperfect
information but perfect recall. We will name the
two players Max and Min, with Max attempting to
maximize the payoff and Min attempting to minimize
it. The game is given as a game tree with information
sets in the standard way (see, e.g., [15] or any textbook
on game theory).

In order to formally argue that the equilibria we
consider can be found in polynomial time, we assume
that all payoffs of G and all probabilities associated with
chance nodes are rational numbers, given as fractions.
Also, we fix some encoding enc(G) of G as a string over a
finite alphabet using some standard way of representing
trees and information sets and representing rational
numbers as fractions. We assume that the length
|enc(G)| of the encoding is at least 2 for any game.
Finally, we say that a rational number p/q occurring
in our derivation is simple, if the absolute values |p|, |q|
are less than 2|enc(G)|c for some constant c, independent
of G, i.e., if the description of the number as a fraction
has size polynomial in the length of the encoding of G.

Given a game G, a behavioral strategy for Max
(Min) in G is a family of probability distributions,
one for each node belonging to Max (Min), on the
outgoing arcs (representing actions) from that node. For
any two nodes belonging to the same information set,
the two corresponding probability distributions must
be identical. A reduced behavioral strategy is defined
similarly, except that a node z belonging to Max (Min)
is not assigned a probability distribution in a reduced
strategy if some action belonging to Max (Min) on the
path from the root to z has been assigned probability
0. A strategy profile is a behavioral strategy for each of

the two players.
An important insight of Koller, Megiddo and von

Stengel [14, 37, 38, 15] and earlier and independently
Romanovskii [29] is that behavioral strategies are for
computational purposes often better represented in se-
quence form which we describe next. Given a behav-
ioral strategy for one of the players, the corresponding
vector of realization weights is the following assignment
of real numbers to each node z in G: We assign to z
the product of behavioral probabilities of actions be-
longing to the player and appearing on the path from
the root of the game to z. For games of perfect recall,
all nodes in an information set are assigned the same
realization weight. Clearly, the map from reduced be-
havioral strategies to vectors of realization weights is 1-
1, so given a vector of realization weights (a realization
plan), we may talk about the corresponding reduced be-
havioral strategy. We shall later use the fact that each
behavioral probability is the ratio between two realiza-
tion weights.

The crucial observations of Koller, Megiddo and von
Stengel are the following:

1. For a game of perfect recall, the statement that a
vector is a behavioral plan corresponding to some
behavioral strategy can be expressed by a (short)
system of linear equations, containing coefficients
from 0, 1,−1 only. In the following, for a fixed game
G, we let Ex = e be the equations expressing that
x is a realization plan for Max and we let Fy = f
be the equations expressing that y is a realization
plan for Min.

2. If Max plays a strategy with realization plan x and
Min plays a strategy with realization plan y, then
the expected payoff for Max is given by a bilinear
form x>Ay. Here, A is a matrix, depending on G,
containing simple rationals.

These observations are the basis for the derivation
of the linear programs of Koller, Megiddo and von
Stengel expressing a pair of minimax and maximin
strategies for the two players. Due to lack of space, we
do not describe the derivation. However, in Section 2.3,
we make an analogous derivation for a certain perturbed
game G(ε) which is identical to the derivation of Koller,
Megiddo and von Stengel for ε = 0. Since linear
programs are polynomial time solvable [12, 11], there is
a polynomial time algorithm for finding the equilibrium
the programs describe. This is the equilibrium returned
by the KMvS-algorithm.

2.2 The notion of a sequential equilibrium The
definition of a sequential equilibrium due to Kreps and
Wilson [18] is based on the notion of beliefs. Formally,



a belief of a player is a probability distribution on each
of his information sets. Intuitively, the belief should
indicate the subjective probability of the player of being
in each of the nodes in the information set, given that he
has arrived at this information set. An assessment (ρ, µ)
is a strategy profile ρ, and a belief profile µ: a belief for
each of the two players. A sequential equilibrium is an
assessment which is (1) consistent and (2) a sequential
best reply against itself, the former notion capturing
that the beliefs are sensible given the strategies, and the
latter notion capturing that the strategies are sensible
given the beliefs. We define these two notions formally
next, for the case of zero-sum games with perfect recall.

We first define consistency for fully mixed strategy
profiles, i.e., ones where every action in every informa-
tion set has a strictly positive probability of being taken.
For such a strategy profile, the induced belief profile is
the unique one consistent with the strategy profile: The
two strategies being played out against each other in-
duces a probability distribution on possible plays; the
induced belief assigns to information set u the condi-
tional probability distribution on u derived from this
probability distribution. This is well-defined as at most
one node in u may be reached during each particular
play (due to the perfect recall property) and u has a non-
zero probability of being reached (as the strategies are
fully mixed). The crucial insight of Kreps and Wilson
is a generalization of this consistency notion to strat-
egy profiles where some of the information sets may be
reached with probability 0: For this general case, we say
that an assessment is consistent if it is the limit point
(in Euclidean distance) of a sequence of consistent as-
sessments with fully mixed strategy profiles, i.e., a limit
point of a sequence (ρn, µn), n = 1, 2, . . . , so that ρn is a
completely mixed strategy profile and µn is the induced
belief profile.

We next define what it means to be a sequential
best reply against itself. First we define the notion of
the value valρ(z) of a node or leaf z in the game tree,
given a strategy profile ρ. Informally, the value of z is
the expected payoff for a play starting in that node and
played according to ρ. Formally, the value of each leaf z
is defined to be the payoff associated with z. The value
of each node z is defined recursively by

valρ(z) =
∑

j

ρ(j)valρ(sj(z))(2.1)

where the sum is over the possible actions j at z, ρ(j) is
the behavioral probability of action j in the profile ρ (if
the node belongs to nature, we define it to be nature’s
probability that this action is taken) and sj(z) is the
j’th successor of z, i.e., the node or leaf in the game
tree that will be reached if action j is taken at node z.

An assessment (ρ, µ) is a sequential best reply against
itself if

1. for every information set u belonging to Max and
every action j at u for which ρ(j) > 0, we have
that

∑
z∈u µ(z)valρ(sj(z)) is at least as big as∑

z∈u µ(z)valρ(si(z)) for any other action i at u
and

2. for every information set u belonging to Min,
and every action j at u for which ρ(j) > 0, we
have that

∑
z∈u µ(z)valρ(sj(z)) is no bigger than∑

z∈u µ(z)valρ(si(z)) for any other action i at u.

2.3 Identifying a sequential equilibrium The
definition of a sequential equilibrium for a game G sug-
gests looking at limit points of a sequence of assessments
which are not necessarily equilibria for G. This is in-
deed our strategy. Given a game G, the sequence we
shall look at shall be equilibria for a certain perturbed
game, G(ε), for a parameter ε > 0 and we shall consider
limit points as ε → 0.

We obtain the perturbed game G(ε) from G by
restricting the set of valid realization plans for both
players. Specifically, if u is an information set belonging
to player j, we demand that the realization weight of
u is at least εdu , where du is the number of actions
performed by player j before arriving in information set
u. Choosing this exact perturbation will ensure that a
limit point of basic (in the sense of linear programming)
equilibria of the perturbed game will be a sequential
best reply against itself and efficiently computable, as
will be seen below.

Let kε be the vector indexed by information sets u
of Max, so that (kε)u = εdu , where du is the number of
actions performed by Max before arriving in information
set u. Suppose that a strategy of Min is fixed and
given in sequence form by a realization plan y. A best
response by Max as a realization plan x is then given
by

max
x

x>(Ay) so that

Ex = e(2.2)
x ≥ kε

Note that the behavioral strategy corresponding to
a solution of (2.2) has to be fully mixed at every
information set. The dual of (2.2) is

min
p,u

p>e− u>kε so that

E>p ≥ Ay + u(2.3)
u ≥ 0



The program (2.3) expresses the expected payoff that
Max can achieve in the perturbed game G(ε) if Min
plays using strategy y. Min wants to choose a valid
realization plan y so that this is minimized. His
minimax strategy is given by

min
p,u,y

p>e− u>kε so that

E>p ≥ Ay + u(2.4)
Fy = f

y ≥ lε

u ≥ 0

where lε is defined analogously to kε, replacing Max with
Min. Note that it is obvious that (2.4) has a feasible
solution for all sufficiently small ε > 0.

Reversing the roles of the two players and arguing
completely analogously, we obtain the maximin strategy
for Max.

max
q,v,x

q>f + v>lε so that

F>q ≤ A>x− v(2.5)
Ex = e

x ≥ kε

v ≥ 0

Observing that (2.4) and (2.5) are LP duals we have
found an equilibrium for the perturbed game G(ε).

For expositional reasons, we now make an assump-
tion about the game which can be made without loss
of generality: By adding a constant to the payoff of ev-
ery leaf of the original extensive form, we may transform
the game into one where every payoff for Max is positive
and every payoff for Min is negative, and we will assume
that this is indeed the case. Under this assumption, a
reformulation of (2.4) is

max
p,u,y

−p>e + u>kε so that

−E>p + Ay + u ≤ 0(2.6)
−Fy ≤ −f

−y ≤ −lε

p, u, y ≥ 0

i.e., a standard form linear program in the terminology
of Chvátal [4], which we shall use henceforth. We can
make a similar reformulation of (2.5). By introducing
slack variables, we put (2.6) in the following form.

Pε : max
x′

cε
>x′ so that

A′x′ = bε(2.7)
x′ ≥ 0

Here, bε and cε are vectors with entries being either
constants (i.e., not depending on ε) or powers εj of ε
where j is at most d, the maximum possible number
of actions in any play of the game. The matrix A′ has
entries which are either entries from A or in {−1, 0, 1}.

We may put the reformulation of (2.5) in the same
format to obtain Qε. For every statement we make
below about Pε, the corresponding statement holds for
Qε, by syntactic similarity.

Suppose we have a basic (but not necessarily feasi-
ble) solution x∗ to Pε for any particular ε > 0 and let
another value δ > 0 be given. We define the correspond-
ing basic (but not necessarily feasible) solution to Pδ to
be the basic solution with the same set of variables in
the basis as x∗.

Lemma 2.1. For any game G, there is a simple rational
number εG so that for any ε, δ with 0 < ε, δ < εG the
following holds:

1. Pε has a feasible solution.

2. Let x′ be a basic (not necessarily feasible) solution
to Pε. Then x′ is feasible and optimal if and only
if the corresponding solution to Pδ is feasible and
optimal.

Also, the corresponding statements holds with Pε re-
placed with Qε.

Proof. Any basic solution x′ =
(

xB

xN

)
to Pε where xB

is the basic part and xN = 0 is the non-basic part, is
by definition (e.g., Chvátal [4, page 100]) given by a
tableau

x′B = B−1bε −B−1DxN(2.8)

where D and B are submatrices of A′ and the value of
the objective function is given by

z = cBB−1bε + (cN − cBB−1D)xN ,(2.9)

with cε =
(

cB

cN

)
. The entries in A′ and hence D are

simple rational numbers. Cramer’s rule implies that
the entries in B−1 are also simple rational numbers, B
being a submatrix of A′.

The solution x′ is feasible if and only if all entries in
B−1bε are greater than or equal to 0 and it is optimal if
and only if all entries in cN − cBB−1D are smaller than
or equal to 0. By the above bounds on the entries of
the matrices, this condition is equivalent to a system of
linear inequalities

∀i :
d∑

j=0

kijε
j ≥ 0(2.10)



where kij are integers of absolute value less than
some simple integer K. We let εG = 1/(2K). Now, for
any ε < εG, the inequality (2.10) is equivalent to

∀i : [∀j : kij = 0] ∨ [kmin{j|kij 6=0} > 0](2.11)

which does not depend on ε, as was to be proved.

We are now ready to identify the equilibrium we
compute in this paper. Given a game G, let ε < εG. Let
x∗ be a feasible and optimal basic solution to Pε and let
y∗ be a feasible and optimal basic solution to Qε. For
any δ < εG, let x∗δ be the solution to Pδ corresponding
to x∗ and let y∗δ be the solution to Qδ corresponding
to y∗. Also, let π∗δ be the reduced behavioral strategy
corresponding to the realization plan found in x∗δ and
let σ∗δ be the reduced behavioral strategy corresponding
to the realization plan found in y∗δ . Let ρδ = (π∗δ , σ∗δ )
and let µδ be the induced belief profile corresponding to
ρδ. Note that µδ is well-defined as π∗δ and σ∗δ are fully
mixed.

Lemma 2.2. (ρδ, µδ) converges as δ → 0+ in Euclidean
distance to an assessment (ρ, µ).

Proof. To establish convergence, we use that each entry
of π∗δ (resp., σ∗δ ) is a ratio between two realization
weights which are entries in x∗δ (resp., y∗δ ). But by
equation (2.8), each such entry is given by a polynomial
in δ. Thus, each entry of π∗δ and σ∗δ are rational
functions of δ and since we furthermore have that they
are values in the interval (0, 1) (as they are behavioral
probabilities in the perturbed game G(δ)) each must
converge to a value in [0, 1] as δ → 0. As each
probability in the induced beliefs are products of the
behavioral probabilities and probabilities of actions of
nature, a similar argument applies to show that µδ

converges to a belief profile µ.

In the full version of the paper, we prove that the
assessment (ρ, µ) of Lemma 2.2 is a sequential and
normal-form perfect equilibrium. It fact, it can be
shown that the equilibrium is quasi-perfect, a common
generalization of these two concepts due to van Damme
[34]. Also, note that unlike the equilibrium defined by
the original linear programs by Koller, Megiddo and
von Stengel, the equilibrium just described prescribes
behavior in all information sets, including those off
the equilibrium path. We next describe algorithms for
computing it.

The only merit of the first algorithm we describe
is that it is polynomial time. We simply run a poly-
nomial time LP solver on the program Pε with the pa-
rameter ε being fixed to the value εG/2 established in
Lemma 2.1. We can assume that the algorithm outputs

a combinatorial description of a basic optimal solution
(i.e., a partition of the variables into basic and non-basic
ones), which enables us to find a symbolic description
of the corresponding solution to Pδ as a polynomial in
δ by computing the inverse of the basis B−1 and using
equation (2.8). We then compute symbolic expressions
for the corresponding behavioral strategies and beliefs
(each value being a rational function in δ) and finally
find the sequential equilibrium by setting δ = 0 in these
symbolic expressions. This is a very impractical algo-
rithm, since εG is very small (even if we had bothered
to compute and state the best possible bound on εG,
which we haven’t, for precisely this reason), meaning
that one would have to run the linear program on an
input with very large coefficients (containing a number
of digits bigger than the size of G). Nevertheless, as εG

expressed as a fraction does have polynomial length, it
is a polynomial algorithm, thus establishing Theorem
1.1.

We next discuss a much more practical approach.
The equilibrium described above can be found by estab-
lishing a feasible and optimal basic solution to (Pε, Qε)
as a function of ε > 0 and then considering the limit as
ε → 0. A practical way of doing this is by a symbolic
execution of the simplex algorithm with the parameter
of perturbation ε being kept as an indeterminate. As is
apparent from equation (2.8), each tableau in such an
execution will have entries in the leftmost column and
in the row of the cost function being formal polynomials
in ε of degree at most the depth of the extensive form,
with the rest of the tableau containing standard ratio-
nal values. We can decide if we have a terminal tableau
and whether or not a given pivot is allowed by checking
if a system of equations such as (2.10) is true which,
for sufficiently small ε, is equivalent to a lexicographic
rule such as (2.11), which is easily checked symbolically.
When a terminal tableau is reached, we may find each
behavioral probability of the limit point corresponding
to ε → 0 by inspecting the most significant non-zero
terms (with higher degree terms having lower signifi-
cance) of the two polynomials representing the relevant
realization weights. The belief of the limit point can be
found similarly. Note that the algorithm is extremely
similar to the lexicographic perturbation method for en-
suring termination of the simplex algorithm in degener-
ate situations (see, e.g., Chvátal [4, pages 34–37]), the
most striking difference being that we here have a dual
as well as a primal symbolic perturbation, i.e., symbolic
entries in a row of the tableau as well as in a column
rather than in a column only. Here, however, we are
using it for a completely different purpose and as we
have stated it, it does not take care of degeneracies for
us, i.e., the symbolically perturbed tableaus may still



very well be degenerate. If such degenerate tableaus
occur, we can apply a pivoting rule such as Bland’s to
guarantee termination of the algorithm. As the sim-
plex algorithm is worst case exponential, the algorithm
is not polynomial time. On the other hand, it is quite
practical and easy to implement. As a proof-of-concept,
we have made a preliminary implementation in java (us-
ing exact rational arithmetic). Preliminary experiments
seem promising efficiency-wise (but are not part of this
paper). The code and demo programs finding sequen-
tial equilibria in the games Guess-the-Ace and Three
card poker with raise explained in the introduction are
available at http://www.daimi.au.dk/~trold/gtf/

3 Conclusions and open problems

We have established that a sequential and normal-
form perfect equilibrium of a two-player game with
perfect recall can be found efficiently in a practical
sense for the zero-sum case as well as for the general-
sum case (in the full version of the paper) and also
efficiently in a theoretical sense, for the zero-sum case.
In fact, the equilibrium we compute is quasi-perfect, a
common generalization of the notions of sequentiality
and normal-form perfection due to van Damme [34].

An alternative equilibrium refinement notion is
extensive-form perfection (see, e.g., van Damme, [35,
pages 113ff]). It was shown by Mertens [24] that
insisting on an extensive-form perfect equilibrium is, in
general, inconsistent with insisting on a normal-form
perfect one: He exhibits a game where no equilibrium
has both properties. His example is not a zero-sum
game, so one may still ask if our algorithm for the zero-
sum case always computes an extensive-form perfect
equilibrium. This is not the case, as can be seen from
the “solitaire” example in Figure 3. In this example,

I

Safe
(0,0)

Risky
I (0,0)

(−1000,1000)

Figure 3: Safe-or-risky

Player I is the only one who gets to move and he can
choose between a safe action that immediately leads to
a payoff equal to the value of the game and a risky
action which will lead to the same payoff, if Player
I avoids making a mistake in his next move. In the
unique extensive-form perfect equilibrium for the game,
the safe action is taken with probability 1; intuitively,
a player playing a strategy in an extensive-form perfect
equilibrium must not only try to set the opponent up

to make a mistake, but must also worry about the
possibility that he himself makes a mistake later on.
However, as can be easily checked, the strategy taking
the risky action with probability 1 is a limit point of
basic optimal solutions to our perturbed linear programs
for this game and hence this is a possible output of
our algorithm. As a theoretical open problem we thus
leave: Can an extensive-form perfect equilibrium of a
two-player zero-sum game with perfect recall be found in
time polynomial in the size of the given extensive form?

An even more intriguing question is: Can a normal-
form proper equilibrium (in the sense of Myerson [26],
see also van Damme [35, pages 57ff]) of a two-player
zero-sum game with perfect recall be found in time poly-
nomial in the size of the given extensive form? This
latter question is particularly interesting for the appli-
cations in artificial intelligence: Insisting on a proper
equilibrium would rule out some arguably insensible
behavior which is not ruled out by insisting on quasi-
perfection. For further discussion of this, see our recent
paper [25].
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