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Abstract. We consider approximating the minmax value of a multi-
player game in strategic form. Tightening recent bounds by Borgs et
al., we observe that approximating the value with a precision of ε log n
digits (for any constant ε > 0) is NP-hard, where n is the size of the
game. On the other hand, approximating the value with a precision of
c log log n digits (for any constant c ≥ 1) can be done in quasi-polynomial
time. We consider the parameterized complexity of the problem, with the
parameter being the number of pure strategies k of the player for which
the minmax value is computed. We show that if there are three players,
k = 2 and there are only two possible rational payoffs, the minmax
value is a rational number and can be computed exactly in linear time.
In the general case, we show that the value can be approximated with
any polynomial number of digits of accuracy in time nO(k). On the other
hand, we show that minmax value approximation is W [1]-hard and hence
not likely to be fixed parameter tractable. Concretely, we show that if
k-CLIQUE requires time nΩ(k) then so does minmax value computation.

1 Introduction

A game G in strategic form between l players is given by a set of players
{1, . . . , l} and for each player j a finite strategy space Sj and a utility func-
tion uj : S1 × S2 × · · · × Sl → R. In this paper, only the utility function for
Player 1 is relevant. When the size of Sj is nj , we shall refer to the game as
an n1 × n2 × · · · × nl game. The minmax (or threat) value of G for Player 1 is
given by minσ−1∈∆(l−1) maxa∈S1 E[u1(a, σ−1)] where ∆(l−1) is the set of mixed,
but uncorrelated, strategy profiles for players 2, . . . , l. A profile σ−1 achiev-
ing the minimum in the expression is called an optimal minmax profile or an
optimal threat. The maxmin (or security) value of G for Player 1 is given by
maxσ1∈∆ mina2,...,al

E[u1(σ1, a2, . . . , al)] where ∆ is the set of mixed strategies
for Player 1.

The minmax value of a finite two-player game is a fundamental notion of
game theory. Its mathematical and computational properties are extremely well-
studied and well-understood, being intimately tied to the theory of linear pro-
gramming. In particular, the duality theorem of linear programs implies that the
minmax value equals the maxmin value. Also, the computation of the minmax

? Work supported by Center for Algorithmic Game Theory, funded by the Carlsberg
Foundation.

?? Supported by a postdoc fellowship from the Carlsberg Foundation.



value of a two-player game in strategic form is essentially equivalent to solv-
ing linear programs and can therefore be done in polynomial time (although a
strongly polynomial time algorithm remains an open problem).

Minmax values of multi-player games are much less well-studied, although
these values are arguably also of fundamental interest to game theory. Most
importantly, the minmax value pays a pivotal role in the statement and proof
of the so-called folk theorem that characterize the Nash equilibria of infinitely
repeated games. Additionally, the minmax value is the equilibrium payoff of the
so-called team-maxmin equilibria studied by von Stengel and Koller [15]. For a
multi-player game, the maxmin value may be strictly smaller than the minmax
value. Computation of the maxmin value easily reduces to the two-player case
and can therefore be done efficiently using linear programming. Rather surpris-
ingly, computation of the minmax value of a multi-player game in strategic form
was not studied until very recently, where Borgs et al. [1] (motivated by com-
putational aspects of the folk theorem) showed that approximating the minmax
value of a three-player game within a certain inverse polynomial additive error
is NP-hard. Our starting point is this important paper.

Given the fundamental nature of the notion of the minmax value, it is im-
portant to understand when the NP-hardness result can be circumvented by
considering special cases or asking for weaker approximations. The purpose of
this paper is to provide a number of results along these lines. First, we observe
that the inapproximability result of Borgs et al. can be tightened and matched
with a positive result, using standard techniques:

Theorem 1. For any constant ε > 0, approximating the minmax value of an
n × n × n game with 0-1 payoffs within additive error 1/nε is NP-hard. On
the other hand there is an algorithm that, given a parameter ε > 0 and a game
in strategic form with l players each having n strategies and all payoffs being
between 0 and 1, approximates the minmax value for Player 1 from above with
additive error at most ε in time nO(l(log n)/ε2).

This suggests the following important problem: Can the minmax value of a
three-player game with payoffs normalized to [0, 1] be approximated within a fixed
constant (say 0.01 or even 0.99) in polynomial (rather than quasi-polynomial)
time? We leave this problem open.

It is of interest to know when the minmax value can be computed exactly. A
prerequisite for this is that it is rational. For three-player games, we characterize
when the minmax value for Player 1 can be an irrational number, in terms of the
number of strategies of Player 1 and the number of distinct (rational) payoffs.
For the special case where the value is guaranteed to be rational we present an
optimal linear time algorithm for exactly computing the minmax value1.
1 As the algorithms of Theorem 1 and Theorem 2 are very simple, we express their

complexity in the unit cost random access machine model. E.g., by “linear time” we
mean a linear number of atomic operations in the number of real payoffs of the input.
On the other hand, the algorithm of Theorem 3 use sophisticated algorithms from
the literature as subroutines and its complexity is better expressed in the Turing
machine model, and in terms of bit complexity.



Theorem 2. Consider k×n×n three-player games with only l distinct rational
payoffs. When either k ≥ 2 and l ≥ 3 or k ≥ 3 and l ≥ 2 there exists a game
such that the minmax value for Player 1 is irrational. Otherwise, when k = 2 and
l = 2 the minmax value for Player 1 is a rational number and we can compute
it exactly in time O(n2) (on a unit cost random access machine model).

Thus having observed that the case of few strategies of Player 1 may be easier
than the general case, we apply the approach of parameterized complexity [6],
considering the number of strategies k of Player 1 as the parameter. Combining
a classical result of Shapley and Snow [14] with Renegar’s decision procedure for
the first order theory of the reals [11,12,13] gives rise to a support enumeration
algorithm for finding the minmax value and we show

Theorem 3. Given a k × n × · · · × n l-player game G with rational payoffs
and a rational number α so that (G, α) has combined bit complexity L, we can
decide in time LO(1)kO(kl)nkl (on a Turing machine) if the minmax value of G
for Player 1 is at most α. Using the terminology of fixed parameter complexity
theory, considering k the parameter, a modification of the algorithm shows that
this problem is in W [P ], and for the case of 0-1 payoffs in W [1].

In particular, if l and k are constants, the complexity is polynomial, and we can
approximate the minmax value with any polynomial number of bits of accuracy
in polynomial time by using the decision procedure in a binary search. As the
exponent in the above complexity bound depends linearly on k with impractical
bounds for large k as consequence, we next ask if the problem of approximating
the minmax value for Player 1 in a three-player game is fixed parameter tractable,
i.e., if an algorithm solving the problem in time f(k)nc exists, where f is any
function and c is a constant not depending on k. We provide a reduction from
k-Clique that gives negative evidence.

Theorem 4. Let G = (V,E) be an undirected graph with |V | = n, then k-
Clique reduces to the problem of approximating the threat value for Player 1
within 1/(4k2) in a three-player 2k × kn× kn game with payoffs 0 and 1.

Downey and Fellows [8] proved that the Clique problem is complete for the
class W [1], and hence it immediately follows that the problem of approximating
the minmax value within 1/(4k2) for Player 1 in a 2k × kn × kn game with k
being a parameter is hard for W [1], even when all payoffs are 0 or 1. Combining
this with Theorem 3, we in fact have that the 0-1 case is W [1]-complete. Readers
not well-versed in the theory of parameterized complexity may find the following
consequence of the reduction more appealing: The minmax value of a 2k×kn×kn
three-player game with 0-1 payoffs cannot be approximated in time no(k), unless
k-Clique can be solved in time no(k). If k-Clique could be solved in time no(k)

then as proved by Chen et al. [3] it would follow that all problems in the class
SNP (e.g. 3-SAT) could be solved in time 2o(n). Thus, under the assumption
that all of SNP cannot be solved in time 2o(n), the algorithm of Theorem 3 is
essentially optimal for the case of 0-1 payoffs, in the sense that its complexity is
nO(k) and nΩ(k) is a lower bound.



2 Proofs

2.1 Proof of Theorem 1

We first prove the hardness claim. Borgs et al. showed hardness of approximation
with additive error 3/n2. Now consider, for a positive integer c ≥ 2 the following
“padding” construction: Given an n × n × n game G with strategy space Si

of Player i and utility function u1 for Player 1. Let n′ = nc and define the
n′ × n′ × n′ game G′ with strategy space S′

i = Si × {1, . . . , nc−1} and utility
function for Player 1 being u′1((x, a1), (y, a2), (z, a3)) = u1(x, y, z). In words,
G′ is simply G with each strategy copied nc−1 times. Now, G′ and G clearly
have the same minmax value. Also, for a given ε > 0, by picking c to be a
large enough constant, we can ensure that 1/(n′)ε < 3/n2, so approximating the
minmax value of G within 3/n2 reduces to approximating the minmax value of
G′ within 1/(n′)ε, which concludes the proof of hardness (we remark that this
simple padding argument also yields a somewhat simpler proof of Lemma 7.1 of
Chen, Teng and Valiant [4]).

We now proceed with the positive approximation result. We only show the
result for the case of three players; the general case being very similar. For the
proof, we will use the following Theorem by Lipton and Young [10, Theorem 2]:

Theorem 5. For a two-player zero-sum n×n game with payoffs in [0, 1], there
is a simple strategy for each player that guarantees that player a payoff within ε
of the value of the game. Here, a simple strategy is one that mixes uniformly on
a multiset of dlnn/(2ε2)e strategies.

Now consider a given 3-player game G and consider the optimal threat strategy
profile (σ2, σ3) of Players 2 and 3 against Player 1. Consider σ3 as fixed and look
at the resulting two-player game G′ between Player 1 (maximizer) and Player 2
(minimizer). Clearly, this game has value equal to the minmax value for Player
1 in G. Applying Theorem 5, there is a simple strategy σ′2 for Player 2 that
guarantees this value within ε. Fix σ′2 to this strategy and look at the resulting
two-player game G′′ between Player 1 and Player 3. By construction of σ′2, this
game has value at most ε larger than the value of G′. Applying Theorem 5 again,
there is a simple strategy σ′2 for Player 2 that guarantees this value within ε.
Thus, if Player 2 and Player 3 play the profile (σ′2, σ

′
3), in the original game,

they are guaranteed the minmax value of G plus at most 2ε.
Now, given some ε′, we let ε = ε′/2 and approximate the threat value of

Player 1 within ε′ by exhaustively searching through all pairs of simple strate-
gies for Player 2 and Player 3, compute the maximum payoff for Player 1, and
return the lowest such payoff. This completes the proof of the theorem.

It is natural to ask if one can get any non-trivial approximation by consid-
ering strategies that mix uniformly over only a constant size multiset, as this
would lead to a polynomial time approximation algorithm rather than a quasi-
polynomial one. Unfortunately, the answer is negative: For given n and c, let m

be maximal such that
(
m
c

)2 ≤ n. Consider the
(
m
c

)2 ×m×m game G defined as



follows. For every two subsets of actions of size c for Player 2 and Player 3 there
is an action for Player 1 such that he receives payoff 1 if the other players chose
an action from the two subsets. Otherwise Player 1 receives payoff 0. If Player
2 and Player 3 choose their actions uniformly at random, Player 1 can ensure
payoff at most ( c

m )2, while on the other hand if the strategies of Player 2 and
Player 3 has support size at most c, then Player 1 can ensure payoff 1. We can
now, in a similar way as in the proof of Theorem 1 above, construct a padded
version of the game, obtaining a n×n×n game G′ such that the minmax value
for Player 1 is at most ( c

m )2 ≤ (2e)2

n
1
c

, but for every strategy profile for Player 2
and Player 3 of support size at most c, Player 1 can ensure payoff 1. Thus to
approximate the minmax value within, say, 1

2 we must have c ≥ ln n
ln(8e2) .

2.2 Proof of Theorem 2

First, we give the claimed examples of games for which the minmax value for
Player 1 is irrational. We describe the games by a matrix for each action of
Player 1, where rows and columns correspond to the actions of Player 2 and
Player 3, respectively. That is, we let u1(i, j, k) = Ai(j, k).

The first game is a 2 × 2 × 2 game where there are 3 distinct payoffs, given
by the following matrices.

A1 =
[

1 0
0 0

]
A2 =

[
0 0
0 2

]
It is easy to see that the strategy for Player 2 and Player 3 yielding the minmax
value for Player 1 is to play the first action with probability 2−

√
2. This results

in a minmax value of 6− 4
√

2 for Player 1.
The second game is a 3×2×2 game where there are 2 distinct payoffs, given

by the following matrices.

A1 =
[

1 0
0 0

]
A2 =

[
0 0
1 1

]
A3 =

[
0 1
0 1

]
It is easy to see that the strategy for Player 2 and Player 3 yielding the minmax
value for Player 1 is to play the first action with probability

√
5−1
2 (golden ratio

conjugate). This results in a minmax value of 3−
√

5
2 for Player 1.

We now examine the special case where there are only two distinct payoffs,
and Player 1 only has two possible actions. For this case, we show that the threat
point is always rational valued, and the threat strategies can be computed in
linear time. We assume without loss of generality that the two possible payoffs
are 0 and 1. The proof is a case analysis, where each case can be identified and
solved in linear time, assuming that none of the previous cases apply. Case 1
and 2 are the trivial cases where either side has a pure optimal strategy.
Case 1: ∃i∀j, k : u1(i, j, k) = 1. Player 1 has a “safe” action, i, such that
no matter what Players 2 and 3 does, Player 1 achieves value 1. Any strategy
profile for Players 2 and 3 is an optimal threat, with minmax value 1.



Case 2: ∃j, k∀i : u1(i, j, k) = 0. Players 2 and 3 have a pure strategy threat,
such that no matter what Player 1 does, the payoff is 0. The strategy profile
(j, k) is an optimal threat, with minmax value 0.
Case 1 and Case 2 can easily be identified and solved in linear time. Notice that
when we are not in case 2, we have that ∀j, k : ∃i : u1(i, j, k) = 1, and therefore
u1(i, j, k) = 0 ⇒ u1(i′, j, k) = 1 where i′ 6= i. This means that Player 1 has a
maxmin (security) value of at least 1

2 , which can be achieved by a uniform mix
of the two strategies. As the minmax (threat) value has to be greater than the
maxmin value, any threat with minmax value 1

2 will be optimal. This is exactly
what can be achieved in the next two cases:
Case 3: ∃j∀i∃k : u1(i, j, k) = 0. Player 2 has a pure strategy, such that Player
3 can play matching pennies against Player 1. Let k and k′ be the strategies of
Player 3 achieving payoff 0 against i and i′ respectively. Then (j, ( 1

2k, 1
2k′)) is

an optimal threat, with minmax value of 1
2 .

Case 4: ∃k∀i∃j : u1(i, j, k) = 0. Player 3 has a pure strategy, such that Player
2 can play matching pennies against Player 1. Let j and j′ be the strategies of
Player 3 achieving payoff 0 against i and i′ respectively. Then (( 1

2j, 1
2j′), k) is an

optimal threat, with minmax value of 1
2 .

Case 3 and Case 4 can again easily be identified and solved in linear time.
Case 5: None of the above. The negation of case 1 implies ∀i∃j, k : u1(i, j, k) =
0. The negation of cases 2, 3 and 4 implies u1(i, j, k) = 0 ⇒ ∀j′, k′ : u1(i′, j′, k) =
u1(i′, j, k′) = 1, where i′ 6= i. That is, any strategy profile of Player 2 or 3 can
achieve payoff 0 against at most one of Player 1’s strategies, and Players 2 and
3 must agree on which strategy of Player 1 to try to get payoff 0 against; if they
disagree, the payoff is 1 no matter what Player 1 does. The best they can hope
for is therefore minp,q∈[0;1] max{1 − pq, 1 − (1 − p)(1 − q)}, which gives a lower
bound on the minmax value of 3

4 . This value can be achieved in this case in the
following way: let u1(i, j, k) = u1(i′, j′, k′) = 0. Then (( 1

2j, 1
2j′), ( 1

2k, 1
2k′)) is an

optimal threat, with minmax value of 3
4 .

2.3 Proof of Theorem 3

We prove the theorem for three players, the general case is similar. Shapley and
Snow [14] showed that every k×n zero-sum game has a minmax mixed strategy
for Player 2 of support at most k, i.e., using at most k strategies. We claim that
from this it follows that in every k×n×n game there are strategies for Player 2
and Player 3 of support at most k so that the resulting strategy profile σ−1 yields
the minmax value for Player 1 when Player 1 chooses a best response. Indeed,
consider the actual minmax strategy profile σ∗−1 = (σ∗2 , σ∗3). If we consider σ∗3
fixed and consider the resulting two-player game between Player 1 and Player
2, it is clear that σ∗2 is a minmax strategy of this game and that Player 2 will
still guarantee the minmax payoff by playing the minmax strategy σ∗2 of support
k which is guaranteed to exist by Shapley and Snow’s result. Similarly, we may
replace σ∗3 with a strategy of support k without changing the payoff resulting
when Player 1 plays a best response.



Our algorithm is a support enumeration algorithm which exhaustively exam-
ines each possible support of size k for Player 2 and Player 3. From the above
observation it follows that the minmax value of the game is the minimum of the
minmax value of each of the resulting k × k × k subgames. Therefore, we only
have to explain how to compare the minmax value of such a subgame to a given
α, and we will be done. For this, we appeal to classical results on the first order
theory of the reals.

The decision procedure for the first order theory of the reals due to Renegar
[11,12,13] can decide a sentence with ω−1 quantifier alternations, the kth block
of variables being of size nk, containing m atomic predicates and involving only
polynomials of degree at most d with integer coefficients of maximum bit length
L using L(log L)2O(log∗ L)(md)2

O(ω) Q
k nk bit operations2 and (md)O(

P
k nk) eval-

uations of the Boolean formula of the atomic predicates. We claim that from this
it follows that given a k × k × k game G with rational payoffs and a rational
number α so that (G, α) has combined bit complexity L, we can decide in time
L(log L)2O(log∗ L)kO(k) (on a Turing machine) if the minmax value of G for Player
1 is at most α. We can assume that the payoffs and α are integers at the expense
of increasing the bitlength of every number to at most the combined bitlength
of the original problem. Define the following polynomials in 2k variables.

pl(x1, . . . , x2k) =
k∑

i=1

2k∑
j=k+1

u1(l, i, j)xixj , ri(x1, . . . , x2k) = xi

q1(x1, . . . , x2k) =
k∑

i=1

xi , q2(x1, . . . , x2k) =
2k∑

i=k+1

xi

The sentence we must decide is then

(∃x ∈ R2k)[p1(x) < α ∧ · · · ∧ pk(x) < α ∧ q1(x) = 1 ∧ q2(x) = 1

∧r1(x) ≥ 0 ∧ · · · ∧ r2k(x) ≥ 0].

For this sentence we have ω = 1, m = 3k+2, d = 2 and n1 = 2k, and the sentence
can thus be decided in the claimed running time using Renegar’s procedure. For
the support enumeration algorithm this decision procedure must be invoked for(
n
k

)2 different k× k× k subgames, and the claimed time bound of the statement
of the theorem follows.

Next, we show how to use this algorithm to show W [P ] and W [1] membership
of the two versions of the problem. We use the framework of aftp-programs of
Chen, Flum and Grohe [5] and Buss and Islam [2] to do this (details of this
model and its relationship to parameterized complexity are given in Appendix
A). To transform the algorithm into an aftp-program showing that the decision
problem is in the class W [P ], we simply replace the enumeration by an existential
steps guessing the sets of indices of size k giving the support of the strategies
2 The bound stated here is the improvement of the bound stated by Renegar due to

the recent breakthrough in integer multiplication due to Fürer [9].



of Player 2 and Player 3. In the remainder of this section we will show that for
the special case 0-1 payoffs the decision problem is in the class W [1]. The idea is
to precompute, for every possible k × k × k game with 0-1 payoffs, whether the
minmax value for Player 1 is at most α. As in the W [P ] case, indices of support
of strategies is computed but now the k × k × k subgame is used as an index
in the precomputed table. To see that this can be turned into an appropriate
aftp-program, we will formally define the relations used.

Assume that the payoffs of Player 1 are given as a k-tuple of m×n 0-1 matrices
(U1, . . . , Uk). Define a unary relation A over k-tuples of k × k 0-1 matrices as
follows. (M1, . . . ,Mk) ∈ A if and only if the minmax value for Player 1 in the
k × k × k subgame given by (M1, . . . ,Mk) is at most α.

Define a 4-ary relation B having as first argument a k-tuple of k × k 0-1
matrices and with the last 3 arguments being indices from 1 to k as follows.

((M1, . . . ,Mk), l, i, j) ∈ B if and only if M l
ij = U l

ij .

The algorithm first computes the relations A and B. In the guessing steps the
algorithm guesses a k-tuple of matrices (M1, . . . ,Mk) and indices i1, . . . , ik and
j1, . . . , jk. The final checks the algorithm must perform are (M1, . . . ,Mk) ∈ A
and ((M1, . . . ,Mk), l, ia, jb) ∈ B for all l, a, b ∈ {1, . . . , k}. The number of steps
used for the guessing the indices and the final check is a function depending only
on the parameter k as required.

As discussed by Buss and Islam [2] we can in a generic way transform an
algorithm utilizing a constant number of relations such that it only utilizes a
single binary relation, thereby obtaining an aftp-algorithm showing that the
decision problem is in W [1].

2.4 Proof of Theorem 4

Before starting the proof, we remark that the reduction is based on similar ideas
as the reduction proving NP-hardness of the problem by Borgs et al. However,
they reduce from 3-coloring rather than clique, and in their coloring based games,
we don’t see how to restrict the strategy space of Player 1 to a small number of
strategies, so as to obtain fixed-parameter intractability.

We now describe the reduction. Given an undirected graph G = (V,E), with
|V | = n. We construct a 2k × kn × kn game from G and compute the threat
value to within 1/(4k2). We construct the game in the following way. Let A1 =
{1, . . . , k}×{2, 3} be the strategy space of Player 1 and A2 = A3 = {1, . . . , k}×V
be the strategy space of Player 2 and Player 3. We define the payoff of Player 1
as:

u1((x1, i), (x2, v2), (x3, v3)) =



1 if x1 = xi

1 if x2 = x3 and v2 6= v3

1 if x2 6= x3 and v2 = v3

1 if v2 6= v3 and (v2, v3) /∈ E

0 otherwise



Player 2 and Player 3 will try to minimize the payoff of Player 1, hence we shall
call them bullies. One can think of the game as the bullies each choosing a label
and a vertex of G. Player 1 then chooses one of the bullies and tries to guess his
label. If he guesses correctly he will get a payoff of 1. If not, he will get a payoff
of 0, unless the bullies do one of the following:

(i) Choose the same label, but different vertices.

(ii) Choose different labels, but the same vertex.

(iii) Choose a pair of distinct vertices that does not correspond to an edge.

In which case he will get a payoff of 1. The intuition behind the proof is that the
bullies will be able to avoid these three cases if the graph contains a k-clique,
thereby better punishing Player 1.

We first notice that if G contains a k-clique, the bullies can bring down
the payoff of Player 1 to 1/k by choosing a vertex from the k-clique uniformly
at random and agreeing on a labeling of the vertices. Let pmax be the highest
probability that any of the bullies choose any label j ∈ {1, . . . , k}. Player 1 will,
on the other hand, always be able to get a payoff of pmax by choosing j and the
corresponding player. It follows that the threat value of the game is 1/k when
G contains a k-clique.

Next, we will show that if G contains no k-clique, the bullies will at most
be able to bring down the payoff of Player 1 to 1/k + 1/(4k2). We will do a
proof by contradiction, so lets assume that the bullies can force Player 1 to get
a payoff less than 1/k + 1/(4k2) and show that this can never be the case. We
have already seen that in this case pmax < 1/k + 1/(4k2).

Consider the case where Player 1 always chooses Player 2 and guesses a label
uniformly at random. In this case Player 1 will always guess the correct label
with probability 1/k independently of the actions of the bullies. Hence, we need
to show that for p being the probability of (i), (ii) or (iii) happening we have
that:

1
k

+
(

1− 1
k

)
p <

1
k

+
1

4k2
⇒ p <

1
4k(k − 1)

In particular the probability of (i) happening is less than 1/(4k(k − 1)). Let
pmin ≥ 1− (k− 1)pmax > 3/(4k)+1/(4k2) be the minimum probability assigned
to any label by either of the bullies. Let (x, v)i denote that Player i chooses the
label x and the vertex v. We will use · as a wildcard, such that (x, ·)i means that
Player i chooses the label x and (·, v)i means that Player i chooses the vertex v.



For v, w ∈ V we see that:

1
4k(k − 1)

> Pr
[
x2 = x3 and v2 6= v3

]
=

k∑
j=1

∑
v 6=w

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(j, ·)2

]
Pr
[
(·, w)3 | (j, ·)3

]
Pr
[
(j, ·)3

]
≥ p2

min

k∑
j=1

∑
v 6=w

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, w)3 | (j, ·)3

]
= p2

min

k∑
j=1

(
1−

∑
v∈V

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, v)3 | (j, ·)3

])

= kp2
min − p2

min

k∑
j=1

∑
v∈V

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, v)3 | (j, ·)3

]
.

This implies that ∀l ∈ {1, . . . , k} :∑
v∈V

Pr
[
(·, v)2 | (l, ·)2

]
Pr
[
(·, v)3 | (l, ·)3

]
> k − 1

4k(k − 1)p2
min

−
∑
j 6=l

∑
v∈V

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, v)3 | (j, ·)3

]
≥ 1− 1

4k(k − 1)p2
min

> 1− 1

4k(k − 1)
(

3
4k + 1

4k2

)2
= 1− 4k3

(k − 1)(3k + 1)2
>

1
2
, for k ≥ 5

Let vj
i be the vertex chosen with highest probability by player i given that he

chooses label j. The above implies that for k ≥ 5 we have for all j ∈ {1, . . . , k}
that vj

2 = vj
3, and we will therefore simply refer to this vertex as vj . We also see

that for k ≥ 5:

∀i ∈ {2, 3},∀j ∈ {1, . . . , k} : Pr
[
(·, vj)i | (j, ·)i

]
>

1
2

That is, for every label j the bullies agree on some vertex vj that they choose
with high probability when choosing j. We will use this to get a contradiction
from case (ii) or (iii). For j, l ∈ {1, . . . , k}, it will either be the case that there
exists some vj = vl, with j 6= l, or that all the vj ’s are distinct. In the first case
Player 1 will, with high probability, get a payoff of 1 when one of the bullies
chooses label j and the other chooses label l (case (ii)). In the second case there
will exist a pair of distinct labels j and l, such that there is no edge between vj

and vl, since the graph doesn’t contain a k-clique. Hence, this will cause Player
1 to get a payoff of 1, with high probability, when one of the bullies chooses label
j and the other chooses label l (case (iii)). In both cases we get that for k ≥ 5:



1∑
i=0

Pr
[
(·, vj)2+i | (j, ·)2+i

]
Pr
[
(j, ·)2+i

]
Pr
[
(·, vl)3−i | (l, ·)3−i

]
Pr
[
(l, ·)3−i

]

> 2p2
min

(
1
2

)2

>
1
2

(
3
4k

+
1

4k2

)2

=
(3k + 1)2

32k4
>

1
4k(k − 1)

Which contradicts that this should happen with probability less than 1/(4k(k−
1)), meaning that if G contains no k-clique the bullies will at most be able to
bring down the payoff of Player 1 to 1/k + 1/(4k2), which completes the reduc-
tion.

3 Conclusions and open problems

As mentioned above, an important open problem is achieving a non-trivial ap-
proximation of the minmax value of an n×n×n game in polynomial, rather than
quasi-polynomial time. Another interesting question comes from the following
notions: The threat point of a game is defined to be the vector of minmax values
for each of its three players. We may consider approximating the threat point of
a game where one of the players has few strategies. For this, we have to consider
the problem of approximating the threat value for Player 1 in a three-player
n × k × n game. That is, it is now one of the two “bullies” rather than the
threatened player that has few strategies. We observe that for constant ε > 0
such an approximation can be done efficiently by simply discretizing the mixed
strategy space of the player with few strategies using a lattice with all simplex
points having distance at most ε to some lattice point, and then for each lattice
point solving the game for the remaining two players using linear programming.
Combining this with Theorem 3 gives us the following corollary

Corollary 1. There is an algorithm that, given an n × k × n game with 0-1
payoffs and an ε > 0, computes the threat point within additive error ε in time
(n/ε)O(k).

The discretization technique gives algorithms with poor dependence on the de-
sired additive approximation ε. We leave as an open problem if the minmax value
of an n× k×n 0-1 game can be approximated within ε in time (n log(1/ε))O(k).
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Appendix A: Parameterized complexity

For the convenience of the reader, we summarize notions from the theory of
parameterized complexity used in this paper.

Definition 1. A parameterized problem is a set of pairs Q ⊆ Σ∗ × Σ∗, where
Σ is a finite alphabet. The second coordinate is the parameter.

We may think of Q as being a subset of Σ∗ ×N, and we will do so henceforth.

Definition 2. A parameterized problem Q ⊆ Σ∗×N is fixed parameter tractable,
if there is a computable function f : N → N, a polynomial p and an algorithm
that given (x, k) ⊆ Σ∗ ×N decides if (x, k) ∈ Q in at most f(k)p(|x|) steps.

Let FPT be the class of parameterized problems that are fixed parameter tractable.
To compare the complexity of problems that are not fixed parameter tractable
the notion of fixed parameter reductions are introduced.

Definition 3. An fpt-reduction from a parameterized problem Q ⊆ Σ∗ ×N to
a parameterized problem Q′ ⊆ (Σ′)∗×N is a function R : Σ∗×N → (Σ′)∗×N
such that

1. For all (x, k) ∈ Σ∗ ×N we have (x, k) ∈ Q if and only if R(x, k) ∈ Q′.
2. There exists a computable function g : N → N such that for all (x, k) ∈

Σ∗ ×N we have k′ ≤ g(k), where R(x, k) = (x′, k′).
3. There exists a computable function f : N → N and a polynomial p such that

R can be computed in at most f(k)p(|x|) steps.

A hierarchy of parameterized complexity classes (the W hierarchy)

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [SAT] ⊆ W [P ]

was defined by Downey and Fellows [7]. The classes W [t] were defined by the
class of problems fpt-reducible to the weighted satisfiability problem for con-
stant depth, so-called weft-t circuits. The class W [SAT] is the class of problems
reducible to the weighted satisfiability problem for Boolean formulas, and finally
W [P ] is the class of problems reducible to the weighted satisfiability problem for
Boolean circuits.

Chen, Flum and Grohe [5] gave a machine based characterization of all classes
in the W hierarchy, except W [SAT], that we will use instead. The remainder of
this section is a description and statement of this characterization.

A WRAM is an alternating random access machine. Its registers are parti-
tioned into two sets: standard registers r0, r1, . . . , and guess registers g0, g1, . . . .
The guess registers will be indirectly indexed by the standard registers. We write
g(ri) for gri

. For accessing the standard registers the machine has all the instruc-
tions of a standard deterministic random access machine. For accessing the guess
registers the machine has the following instructions.



Instruction Semantics
EXISTS ↑ j existentially guess a natural number ≤ r0 and store it in g(rj).
FORALL ↑ j universally guess a natural number ≤ r0 and store it in g(rj).
JGEQUAL i j c if g(ri) = g(rj) jump to the instruction with label c.
JGZERO i j c if r〈g(ri),g(rj)〉 = 0 jump to the instruction with label c.

Here 〈·, ·〉 is any simple pairing function of natural numbers with 〈i, j〉 ≤ (1 +
max(i, j))2 and 〈0, 0〉 = 0.

A program P for a WRAM is an afpt-program, if there exists a computable
function f and a polynomial p such that for every input (x, k) and every possible
run, the program

– performs at most f(k)p(|x|) steps.
– performs at most f(k) existential and universal steps.
– accesses only the first f(k)p(|x|) standard registers.
– only stores numbers ≤ f(k)p(|x|) in any register.

With these definitions we have the following characterization of the classes W [t]
and W [P ].

Theorem 6. A parameterized problem Q is in W [P ] if and only if there is an
aftp-program without universal instructions deciding Q. This also holds if we
allow the aftp-program direct access to the guess registers.

Theorem 7. Let Q be a parameterized problem and t ≥ 1. Then Q is in W [t]
if and only if there is a computable function h, a natural number u and an aftp-
program deciding Q such that every run of the program on any given input (x, k)
satisfies.

– All nondeterministic steps are among the last h(k) steps of the computation.
– The first nondeterministic step is existential.
– There are at most t−1 alternations between existential and universal states.
– Any sequence of steps without alternations, except the first existential se-

quence, contains at most u nondeterministic steps.


