__Inro_Refinement setings _Comparison _Results_Conclusion |
Comparing Refinement Settings

Heiko Schmidt

Christian-Albrechts-Universitat, Kiel, Germany

Copenhagen, 20 Sept. 2007

Heiko Schmidt Comparing Refinement Settings

Intro
Motivation

Compare refinement settings, e.g. Modal Transition Systems (MTS)
and Disjunctive Modal Transition Systems (DMTS)

@ Can every set of TSs described by a DMTS also be
described by an MTS?

@ Can the refinement structure of MTS be embedded into
DMTS?

@ Which transformations between MTS and DMTS exist that
preserve sets of implementations or refinement structure?
What are their complexity?

Heiko Schmidt Comparing Refinement Settings

@ compare refinement settings with respect to relative
expressiveness
e e.g., MTS, DMTS, mixed transition systems, modal
automata, p-automata, transition systems with ready,
failure, ready trace, failure trace inclusion, ...

@ discuss different comparison approaches via
transformations

@ present some comparison results

Heiko Schmidt Comparing Refinement Settings

Refinement settings

Refinement settings

iko Schmidt Comparing Refi

Refinement settings

Refinement settings

@ a set of models
e e.g. MTS

@ a refinement preorder

@ adistinguished subset of concrete models, called
implementations
e usually the smallest elements of the refinement preorder
e usually correspond to (deterministic) transition systems
e refinement preorder coincides with bisimulation equivalence
e e.g. those MTS with equal may- and must transition
relations

Heiko Schmidt Comparing Refinement Settings

Refinement settings

Refinement settings are preorders

@ preorder induces partial order on refinement equivalence
classes

@ partial order can be drawn as a Hasse diagram:

/@

e K

@ models: 1,2,3, A, B, C (refinement equivalence classes)

o

@ implementations: A, B, C (bisimulation equivalence classes)
@ refinement preorder (refinements by transitivity not drawn)

Heiko Schmidt Comparing Refinement Settings

Refinement settings

Implementations: TSs vs. deterministic TSs

@ refinement settings, where the implementations are...

e (possibly nondeterministic) transition systems
a [] $ [}
° /
*—\ o ————>
nondeterminism of implementations is persistent (not
resolvable by refinement)
e deterministic transition systems

b
a o —>0
/

nondeterminism is resolvable by refinement

Heiko Schmidt Comparing Refinement Settings

Refinement settings

Implementations are (possibly nondeterministic)

transition systems

Examples:

@ MTS, DMTS, mixed transition systems
@ p-automata, modal automata

@ a variant called one-selecting modal transition systems
(1IMTS) with an exclusive (XOR) interpretation of
hypertransitions

Heiko Schmidt Comparing Refinement Settings

Refinement settings

Implementations are deterministic transition systems

Examples:

@ transition systems with ready simulation

@ transition systems with readiness, failure, ready trace,
failure trace inclusion

e Ty refines T, iff every ready/failure/... trace of Ty is a
ready/failure/... trace of Ty

@ MTS, DMTS, mixed transition systems, p-/modal automata

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Ap

Comparison

iko Schmidt Comparing Refi

Comparison Elementwise Implementation-based Preorder-based Apps

Elementwise comparison

@ S;: refinement settings
@ =:less or equally expressive

@ elementwise comparison only makes sense, if the
compared settings have the same models

S1 X S iff every refinement pair in Sy is a refinement pair in S,

S1 jSQ < SS1§S82
< VM,M,:M§S1 M/:>M§32 M

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Elementwise comparison

®
o @ —

aa AT

@ <? Yesl!
@ =?Nol'1<g,2,but1£g 2
@ right setting is more expressive

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Implementation-based comparison

Definition

S1 < S, iff for every model M; in S; there is a model M, in S,
such that the set of implementations refining My equals the set
of implementations refining M-

S12S <<= VM€ S :3M €S, : impl(My) = impl(My)
— df: 81 — 82 :
WMy € Sy - impl(My) = impl(f(M;))

@ such a function f is called implementation-based
embedding

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Implementation-based comparison

/@

e N,

@ <7? Yes!
@ =7 Yes!
@ settings are equally expressive

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Homomorphism

S1 X S iff there is a preorder-based homomorphism
f:5 — S, ie.,
@ fis monotonic, i.e.,

My, My - My <s, My = f(My) <s, f(Mz)

© f keeps implementations fixed, i.e., for all implementations
l;, we have [} = f(/1)

@ = is usually bisimulation equivalence, which coincides with

refinement on implementations
@ elementwise comparison is the special case f = id

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Homomorphism

/@

e o,

@ <7? Yes! id is a preorder-based homomorphism
(this comparison is a generalization of the elementwise comparison!)

@ =?VYes! f:1+— 2,2+ 2is a preorder-based
homomorphism
@ settings are equally expressive

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Embedding

Si <X S, iff there is a preorder-based embedding f : S; — S,
i.e.,
° VM1,M4 ; M1 §S1 M4 <~ f(M1) SSZ f(Mg)
© f keeps implementations fixed, i.e., for all implementations
l1, we have /; ~ f(/1)

@ every preorder-based embedding is also an
implementation-based embedding

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Embedding

/@

o

@ =<7 No! id does not work, because 1 <g, 2. So try
f:1+—2,2— 2?7 Does not work, because C <g, 2, but

C £s, 1
@ =7 No! The homomorphism f: 1 — 2,2 +— 2 from before
is no embedding, because C <g, 2, but C £g, 1

@ settings are incomparable

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

What a mess!

/@

OO
7

@ Elementwise comparison: right is more expressive
@ Implementation-based approach: equally expressive

@ Preorder-based homomorphism approach: right is more
expressive

@ Preorder-based embedding approach: incomparable

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Applicability and applications

@ Elementwise comparison

e Pro: clear and simple definition

e Pro: checking refinement in a setting with less refinement
pairs could be easier

e Con: only settings based on the same models can be
compared

e Con: restriction to identity function, structures only
isomorphic are not identified

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Applicability and applications

@ Implementation-based comparison

e Pro: clear and simple definition

e Pro: suitable for applications that are based only on
implementations (e.g. generalized model checking)

e Con: refinement structure not captured at all

e Pro: a change in the refinement structure can be desirable:
checking thorough refinement (impl/(M;) C impl(Mz)?): if
checking approximated refinement fails in current setting —
apply a refinement-structure-changing transformation and
re-check

Heiko Schmidt Comparing Refinement Settings

Comparison Elementwise Implementation-based Preorder-based Apps

Applicability and applications

@ Preorder-based comparison (homomorphism/embedding)
e Pro: takes refinement structures into account

@ important property of a refinement setting, e.g. for stepwise
refinement or abstraction
@ algorithm/tool reuse (complexity!)
@ theoretical results carry over
e Con: definition more complicate:
@ implementations need to remain fixed... why?
@ existence of a homomorphism only... significance?

Heiko Schmidt Comparing Refinement Settings

Results DMTS/1MTS Comparison wrt. deterministic transition systems

Some results

DMTS/AMTS

iko Schmidt Comparing Refi

DMTS/1IMTS Comparison wrt. deterministic transition systems

DMTS/1MTS

@ disjunctive modal transition systems (DMTS)
e interpret hypertransitions disjunctively (OR)
@ 71-selecting modal transition systems (1MTS)
e interpret hypertransitions exclusively (XOR)
@ Do we increase expressiveness using the alternative
refinement?
@ No wrt. implementation-based comparison (equally
expressive)

@ Yes wrt. preorder-based comparison

Heiko Schmidt Comparing Refinement Settings

DMTS/1MTS Comparison wrt. deterministic transition systems

Some results

Comparison wrt. deterministic transition systems

Heiko Schmidt Comparing Refinement Settings

Results DMTS/1MTS Comparison wrt. deterministic transition systems

Comparison wrt. deterministic transition systems

@ various refinement settings
@ implementations are deterministic transition systems
@ implementation-based comparison

Heiko Schmidt Comparing Refinement Settings

The preorder of refinement settings

Modal transition systems

Mixed transition systems
Disjunctive modal transition systems
Disjunctive mixed transition systems

p-automata (without fairness)
modal automata (without fairness)

TS with ready simulation

)

TS with ready trace inclusion

TS with failure
trace inclusion

TS with ready
pair inclusion

TS with failure pair inclusion

Concluding remarks

Heiko Schmidt Comparing Refinement Settings

Conclusion

Conclusion

@ comparison via transformations is useful
e for the theoretical understanding of refinement settings
e for switching between settings to get the best of different
settings: approximation to thorough refinement, algorithms,
tools (complexity!)
e to carry over theoretical results (e.g., non-existence)

Heiko Schmidt Comparing Refinement Settings

Conclusion

Which comparison approach?

@ elementwise comparison:
e clear and simple
e limited in application, because “transformation” must be id
@ implementation-based comparison:
e suitable for applications based only on implementations
e suitable if it is desirable that the refinement structure
changes (for a different approximation of thorough
refinement)
@ preorder-based comparison:
o takes complete refinement preorder into account

Heiko Schmidt Comparing Refinement Settings

Conclusion

Future Work

@ lots of work to do:

e different comparison approaches (primarily implementation-
and preorder-based)

@ various refinement settings (weak refinement not
considered so far)

e implementations: deterministic or not

@ understanding better the relevance of different comparison
approaches
e further applications for the different kinds of
transformations?
e is the requirement to keep implementations fixed always
suitable?
e any use for preorder-based homomorphisms?

Heiko Schmidt Comparing Refinement Settings

	Intro
	Refinement settings
	Comparison
	Elementwise
	Implementation-based
	Preorder-based
	Apps

	Results
	DMTS/1MTS
	Comparison wrt. deterministic transition systems

	Conclusion

