
Intro Refinement settings Comparison Results Conclusion

Comparing Refinement Settings

Heiko Schmidt

Christian-Albrechts-Universität, Kiel, Germany

Copenhagen, 20 Sept. 2007

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Motivation

Compare refinement settings, e.g. Modal Transition Systems (MTS)
and Disjunctive Modal Transition Systems (DMTS)

Can every set of TSs described by a DMTS also be
described by an MTS?
Can the refinement structure of MTS be embedded into
DMTS?
Which transformations between MTS and DMTS exist that
preserve sets of implementations or refinement structure?
What are their complexity?

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Agenda

compare refinement settings with respect to relative
expressiveness

e.g., MTS, DMTS, mixed transition systems, modal
automata, µ-automata, transition systems with ready,
failure, ready trace, failure trace inclusion, ...

discuss different comparison approaches via
transformations
present some comparison results

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Refinement settings

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Refinement settings

a set of models
e.g. MTS

a refinement preorder
a distinguished subset of concrete models, called
implementations

usually the smallest elements of the refinement preorder
usually correspond to (deterministic) transition systems
refinement preorder coincides with bisimulation equivalence
e.g. those MTS with equal may- and must transition
relations

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Refinement settings are preorders

preorder induces partial order on refinement equivalence
classes
partial order can be drawn as a Hasse diagram:

?>=<89:;1
����

>>>>
?>=<89:;2

jjjjjjjjjjjjjj

����
>>>>

A B C

?>=<89:;2

qqqqqqqqq

..........

?>=<89:;1
����

>>>>

A B C

models: 1,2,3,A,B,C (refinement equivalence classes)

implementations: A,B,C (bisimulation equivalence classes)

refinement preorder (refinements by transitivity not drawn)

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Implementations: TSs vs. deterministic TSs

refinement settings, where the implementations are...
(possibly nondeterministic) transition systems

• b // •
•

a 33hhhhhhh

a ++VVVVVVV
•

c
// •

nondeterminism of implementations is persistent (not
resolvable by refinement)
deterministic transition systems

• b // •
•

a 33hhhhhhh

nondeterminism is resolvable by refinement

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Implementations are (possibly nondeterministic)
transition systems

Examples:

MTS, DMTS, mixed transition systems
µ-automata, modal automata
a variant called one-selecting modal transition systems
(1MTS) with an exclusive (XOR) interpretation of
hypertransitions

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Implementations are deterministic transition systems

Examples:

transition systems with ready simulation
transition systems with readiness, failure, ready trace,
failure trace inclusion

T1 refines T2 iff every ready/failure/... trace of T1 is a
ready/failure/... trace of T2

MTS, DMTS, mixed transition systems, µ-/modal automata

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Comparison

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Elementwise comparison

Si : refinement settings
�: less or equally expressive

elementwise comparison only makes sense, if the
compared settings have the same models

Definition
S1 � S2 iff every refinement pair in S1 is a refinement pair in S2

S1 � S2 ⇐⇒ ≤S1 ⊆≤S2

⇐⇒ ∀M,M ′ : M ≤S1 M ′ ⇒ M ≤S2 M ′

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Elementwise comparison

?>=<89:;1
����

>>>>
?>=<89:;2

jjjjjjjjjjjjjj

����
>>>>

A B C

?>=<89:;2

qqqqqqqqq

..........

?>=<89:;1
����

>>>>

A B C

�? Yes!
�? No! 1 ≤S2 2, but 1 6≤S1 2
right setting is more expressive

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Implementation-based comparison

Definition
S1 � S2 iff for every model M1 in S1 there is a model M2 in S2
such that the set of implementations refining M1 equals the set
of implementations refining M2

S1 � S2 ⇐⇒ ∀M1 ∈ S1 : ∃M2 ∈ S2 : impl(M1) = impl(M2)

⇐⇒ ∃f : S1 → S2 :

∀M1 ∈ S1 : impl(M1) = impl(f (M1))

such a function f is called implementation-based
embedding

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Implementation-based comparison

?>=<89:;1
����

>>>>
?>=<89:;2

jjjjjjjjjjjjjj

����
>>>>

A B C

?>=<89:;2

qqqqqqqqq

..........

?>=<89:;1
����

>>>>

A B C

�? Yes!
�? Yes!
settings are equally expressive

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Homomorphism

Definition
S1 � S2 iff there is a preorder-based homomorphism
f : S1 → S2, i.e.,

1 f is monotonic, i.e.,
∀M1,M ′

1 : M1 ≤S1 M ′
1 ⇒ f (M1) ≤S2 f (M2)

2 f keeps implementations fixed, i.e., for all implementations
I1, we have I1 ≈ f (I1)

≈ is usually bisimulation equivalence, which coincides with
refinement on implementations
elementwise comparison is the special case f = id

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Homomorphism

?>=<89:;1
����

>>>>
?>=<89:;2

jjjjjjjjjjjjjj

����
>>>>

A B C

?>=<89:;2

qqqqqqqqq

..........

?>=<89:;1
����

>>>>

A B C

�? Yes! id is a preorder-based homomorphism
(this comparison is a generalization of the elementwise comparison!)

�? Yes! f : 1 7→ 2,2 7→ 2 is a preorder-based
homomorphism
settings are equally expressive

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Embedding

Definition
S1 � S2 iff there is a preorder-based embedding f : S1 → S2,
i.e.,

1 ∀M1,M ′
1 : M1 ≤S1 M ′

1 ⇐⇒ f (M1) ≤S2 f (M2)

2 f keeps implementations fixed, i.e., for all implementations
I1, we have I1 ≈ f (I1)

every preorder-based embedding is also an
implementation-based embedding

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Preorder-based comparison: Embedding

?>=<89:;1
����

>>>>
?>=<89:;2

jjjjjjjjjjjjjj

����
>>>>

A B C

?>=<89:;2

qqqqqqqqq

..........

?>=<89:;1
����

>>>>

A B C

�? No! id does not work, because 1 ≤S2 2. So try
f : 1 7→ 2,2 7→ 2? Does not work, because C ≤S2 2, but
C 6≤S1 1
�? No! The homomorphism f : 1 7→ 2,2 7→ 2 from before
is no embedding, because C ≤S1 2, but C 6≤S2 1
settings are incomparable

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

What a mess!

?>=<89:;1
����

>>>>
?>=<89:;2

jjjjjjjjjjjjjj

����
>>>>

A B C

?>=<89:;2

qqqqqqqqq

..........

?>=<89:;1
����

>>>>

A B C

Elementwise comparison: right is more expressive
Implementation-based approach: equally expressive
Preorder-based homomorphism approach: right is more
expressive
Preorder-based embedding approach: incomparable

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Applicability and applications

Elementwise comparison
Pro: clear and simple definition
Pro: checking refinement in a setting with less refinement
pairs could be easier
Con: only settings based on the same models can be
compared
Con: restriction to identity function, structures only
isomorphic are not identified

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Applicability and applications

Implementation-based comparison
Pro: clear and simple definition
Pro: suitable for applications that are based only on
implementations (e.g. generalized model checking)
Con: refinement structure not captured at all
Pro: a change in the refinement structure can be desirable:
checking thorough refinement (impl(M1) ⊆ impl(M2)?): if
checking approximated refinement fails in current setting→
apply a refinement-structure-changing transformation and
re-check

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion Elementwise Implementation-based Preorder-based Apps

Applicability and applications

Preorder-based comparison (homomorphism/embedding)
Pro: takes refinement structures into account

important property of a refinement setting, e.g. for stepwise
refinement or abstraction
algorithm/tool reuse (complexity!)
theoretical results carry over

Con: definition more complicate:
implementations need to remain fixed... why?
existence of a homomorphism only... significance?

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion DMTS/1MTS Comparison wrt. deterministic transition systems

Some results
DMTS/1MTS

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion DMTS/1MTS Comparison wrt. deterministic transition systems

DMTS/1MTS

disjunctive modal transition systems (DMTS)
interpret hypertransitions disjunctively (OR)

1-selecting modal transition systems (1MTS)
interpret hypertransitions exclusively (XOR)

Do we increase expressiveness using the alternative
refinement?
No wrt. implementation-based comparison (equally
expressive)
Yes wrt. preorder-based comparison

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion DMTS/1MTS Comparison wrt. deterministic transition systems

Some results
Comparison wrt. deterministic transition systems

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion DMTS/1MTS Comparison wrt. deterministic transition systems

Comparison wrt. deterministic transition systems

various refinement settings
implementations are deterministic transition systems
implementation-based comparison

Heiko Schmidt Comparing Refinement Settings

The preorder of refinement settings

Modal transition systems

Mixed transition systems

Disjunctive modal transition systems

Disjunctive mixed transition systems

µ-automata (without fairness)

modal automata (without fairness)

TS with ready simulation

OO

TS with ready trace inclusion

OO

TS with ready

pair inclusion

00

TS with failure

trace inclusion

nn

TS with failure pair inclusion

`` >>

Intro Refinement settings Comparison Results Conclusion

Concluding remarks

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Conclusion

comparison via transformations is useful
for the theoretical understanding of refinement settings
for switching between settings to get the best of different
settings: approximation to thorough refinement, algorithms,
tools (complexity!)
to carry over theoretical results (e.g., non-existence)

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Which comparison approach?

elementwise comparison:
clear and simple
limited in application, because “transformation” must be id

implementation-based comparison:
suitable for applications based only on implementations
suitable if it is desirable that the refinement structure
changes (for a different approximation of thorough
refinement)

preorder-based comparison:
takes complete refinement preorder into account

Heiko Schmidt Comparing Refinement Settings

Intro Refinement settings Comparison Results Conclusion

Future Work

lots of work to do:
different comparison approaches (primarily implementation-
and preorder-based)
various refinement settings (weak refinement not
considered so far)
implementations: deterministic or not

understanding better the relevance of different comparison
approaches

further applications for the different kinds of
transformations?
is the requirement to keep implementations fixed always
suitable?
any use for preorder-based homomorphisms?

Heiko Schmidt Comparing Refinement Settings

	Intro
	Refinement settings
	Comparison
	Elementwise
	Implementation-based
	Preorder-based
	Apps

	Results
	DMTS/1MTS
	Comparison wrt. deterministic transition systems

	Conclusion

