
20 Y M M S

Adam Antonik & Michael Huth∗

Kim G. Larsen & Ulrik Nyman† Andrzej Wąsowski‡

Abstract

Twenty years ago, modal and mixed specifications were proposed as
abstract models of system behavior. In this paper, we explain the nature
and utility of such specifications, relate them to other formalisms, showcase
some of their established applications, and mention some existing tool sup-
port. We also present some recent complexity results for decision problems
underlying such applications and list some remaining open problems.

1 Introduction
After one of the presentations at the FOSSACS 2008 conference questions had
been asked about modal and mixed specifications:

What are they? What popular and simple model of computation do
they resemble? To what other formalisms can they be related?

One could easily continue asking:

What kind of applications of mixed or modal specifications are known?
Do these applications have tool support? Etc.

The 20th anniversary of the publication [37] that proposed modal specifications
seems to be a suitable occasion for addressing such questions. We attempt to do
this below by summarizing what is known, and what is unknown about modal and
mixed specifications and the rich family of their associated models.

Modal specifications, often referred to as modal transition systems, have been
introduced by Larsen and Thomsen in [37]. They comprise two kinds of parts:

P1 a non-empty set of states,
∗Department of Computing, Imperial College London, aa1001,mrh@doc.imperial.ac.uk
†Department of Computer Science, Aalborg University, kgl,ulrik@cs.aau.dk
‡IT University of Copenhagen, wasowski@itu.dk

1

aa1001, mrh@doc.imperial.ac.uk
kgl, ulrik@cs.aau.dk
wasowski@itu.dk


(a)
report

request

poll

(b)

poll

log

Figure 1: (a) Specifying behavior of a measurement system by labeling transitions
with actions. (b) Similar specification of another aspect of the same sensor system.

P2 a transition relation R governing the temporal evolution of states, where
transitions are labeled with actions.

Figure 1(a) illustrates such a specification. It models behavior of a simple
measurement system, which after receiving a request, polls its sensor (poll) for a
value, and reports the value back to the requester (report).

Already in [37] the authors aptly point out that the value of specifications con-
sisting of a single P1 and a single P2 part is limited in that they cannot clearly
distinguish between behaviors insisted upon and those merely allowed. From a
theoretical perspective this means that a specification can only represent imple-
mentations to which it is bisimilar. So if a specification is concentrating on a
specific aspect of a system it models (e.g. security), it will not be consistent with
implementations that exhibit aspects not captured in that specification (e.g. log
creation). For example, in Figure 1(b), another aspect of our measurement system
is specified, namely that all polled values should be logged locally in the system
for future reference. Clearly, the models in Fig. 1(a) and Fig. 1(b) are inconsis-
tent in the sense that there exists no single implementation bisimilar to both: the
former does not allow any log actions required by the latter, while the latter does
not allow any of the request and report actions, required by the former. This
situation effectively prevents specifications of different parts or aspects of a sys-
tem from being reconciled within a single implementation through any refinement
based on simulation relations.

In order to differentiate between required and allowed aspects of a specifi-
cation we simply furnish the state set with two sets of transitions, one for the
required part (R�), and one for the allowed part (R�). So a model now consists of
a single P1 part and two P2 parts over the same sets of states and actions. Modal
specifications are such models satisfying R� ⊆ R�. Figure 2 shows two exam-
ples of modal specifications, for the respective parts of the measurement system
considered in Fig. 1.

2



(a)

log

log

log

log

report error

request
poll

reset
(b)

poll

log

request

report

Figure 2: Two modal specifications of a measurement system: (a) basic polling
and request behavior with allowed logs and error handling; (b) a log creation
aspect. Throughout figures elements of required transitions (R� ) are denoted by
solid lines, allowed transitions (R�) by dashed lines.

report
log

request
poll

Figure 3: Common implementation of both modal specifications in Fig. 2.

But what does such a modal specification mean or what does it represent? This
question is addressed by the associated refinement notion ≺ defined in [37]. If a
modal specification N refines a modal specification M (written M≺N), then N is
consistent with M, meaning that it is possible to implement both. In the extreme
case, when R� = R� in specification N and M≺N, then N is consistent with M
but cannot be refined any further up to bisimulation equivalence; it is therefore (a
model of) an implementation of M. In particular the model of Figure 1(a) can now
be considered to be an implementation, which is refining the modal specification
from Figure 2(a), but is not refining the one from Figure 2(b) – since it has no
ability to perform the required logging. Also, it is not hard to conclude that both
models of Figure 2 are consistent with each other, i.e. it is possible to satisfy both
requirements in a single implementation such as the one in Figure 3.

Mixed specifications were independently reintroduced by Dams [15, 16] as
mixed transition systems in 1996 in the context of abstract interpretation. In mixed
specifications we cannot assume that every required behavior is also allowed and
so R� ⊆ R� may not hold. Although this may seem strange, there are two good
reasons for considering violations of that inclusion.

3



• Conflicting aspects of behavior may be expressed within a single specifica-
tion, and so one would like to judge these conflicts as being irreconcilable if
the specification has no implementations [33]. But R� ⊆ R� always guaran-
tees the existence of implementations, e.g. implement R� and discard R�\R�.

• When a specification is the abstraction of a computer program, one can
increase the precision of that abstraction so that it satisfies more properties
that are true of the computer program. One way of doing this is to remove
redundant elements of R� and to discover new elements of R� [15, 16].

In the remainder of the paper we will provide a more formal discussion of
modal and mixed specifications and refinement; present the decision problems of
specifications in the context of consistency, model variants, and property valida-
tion; discuss what is known about the complexity of these decision problems; and
feature some applications and extensions of these decision problems. The selec-
tion of this material is subjective, so we also provide some references – again,
subjectively selected – for further recommended reading on topics not covered in
this paper.

2 Basics
Let us now formally define modal and mixed specifications and their refinement.
As we shall also discuss variations of these models that include atomic proposi-
tions (specifications used in [15, 16] as program abstractions), we will add a third
part out of which specifications may be built:

P3 a labeling function L : S → P(AP) that determines which atomic proposi-
tions q ∈ AP are true at what states s, the subset L(s) of AP.

A complete specification will comprise an P1 part, two P2 parts, and two P3 parts:

Definition 1. Let Σ be a non-empty set of actions and AP a non-empty set of
atomic propositions. A mixed specification M is a tuple (S ,R�,R�, L�, L�) such
that (S ,R�, L�) and (S ,R�, L�) are specifications as defined in P1-P3 above. In
particular, R�, R� are subsets of S ×Σ×S , and L�, L� are members of S → P(AP).

Thus a mixed specification consists of two separate parts: (S ,R�, L�) specifies
the required propositions and behavior over states in S , while (S ,R�, L�) expresses
allowed propositions and behavior over S . Throughout figures depicting mixed
specifications in this paper, at state s, !q denotes q ∈ L�(s), and ?q denotes q ∈
L�(s). Figure 4 shows three mixed specification with AP = {xodd, yodd} and a single
action (whose labels are therefore omitted).

4



Example 1. 1. A specification (S ,R�, L�) of required properties and behavior
can be made into a modal specification M by defining R� = S × Σ × S
and setting L�(s) = AP for all s ∈ S . This modal specification retains the
required part and allows any property or behavior at any state.

2. A specification (S ,R�, L�) of allowed properties and behavior can be made
into a modal specification M by defining R� = {} and setting L�(s) = {} for
all s ∈ S . This modal specification retains the allowed part and does not
insist on any property or behavior at any state.

Given a mixed specification, such as those constructed in Example 1, Fig. 2,
or Fig. 4 we need to be able to determine whether an implementation satisfies
that mixed specification. In particular, we need to determine what implementa-
tions are. Of course, genuine implementations will have structure and aspects that
are not captured in mixed specifications (e.g. non-functional requirements). So
implementations will have to be abstractions of real systems. Still implementa-
tions should be completely specified, which intuitively means that they contain
no optional behavior and no optional propositions in states. The specifications
consisting of one P1, one P2, and one P3 part will serve us nicely in that respect.
The appropriateness of that choice of implementations is corroborated by the fact
that implementations (S ,R, L) are simply another representation of mixed specifi-
cations M whose required and allowed part are equal, i.e. M = (S ,R,R, L, L).

Returning to the question of whether an implementation satisfies (that is to say
“implements”) a mixed specification, the answer is traditionally given through an
implementation relation. The refinement relation in [37] stipulates which specifi-
cations refine which specifications, but since our implementations are just special
specifications this refinement serves as an implementation relation at the same
time. Intuitively, refinement states that all required behavior has to be preserved
in refining states, and that refining states can only exhibit allowed behavior that is
also allowed in the states that they refine. Additionally, these demands are applied
co-inductively to successor states. Formally:

Definition 2. Let M = (S M,R�M,R
�
M, L

�
M, L

�
M) and N = (S N ,R�N ,R

�
N , L

�
N , L

�
N) be

two mixed specifications and (s0, t0) ∈ S M × S N . Then t0 refines s0 iff there is a
relation Q ⊆ S M × S N such that (s0, t0) ∈ Q, and whenever (s, t) ∈ Q then

1. for all (s, α, s′) ∈ R�M there is some (t, α, t′) ∈ R�N with (s′, t′) ∈ Q,

2. for all (t, α, t′) ∈ R�N there is some (s, α, s′) ∈ R�M with (s′, t′) ∈ Q,

3. L�M(s) ⊆ L�N(t), and

4. L�N(t) ⊆ L�M(s).

5



s0 s1 s2
M :

{!xodd} {?yodd} {!xodd}

t0 t1 t2
N1 :

{!xodd} {} {!xodd}

u0 u1 u2
N2 :

{!xodd} {!yodd} {!xodd}

Figure 4: Three modal specifications with a single action (omitted) and two atomic
propositions xodd and yodd. State s0 is refined by state t0 and by state u0; but t0 does
not refine u0, and u0 does not refine t0.

We write s0≺t0 whenever t0 refines s0 — or (M, s0)≺(N, t0) if we wish to em-
phasize the mixed specifications.

Example 2 ([27]). The three mixed specifications M, N1, and N2 in Figure 4
consist of a sequence of three states and a self-loop on the last state. There is only
a single action symbol which is therefore omitted. The set AP is {xodd, yodd}. If x
and y are integer variables, and if xodd is true at a state if the value of x is odd,
and similarly for yodd, then the specification M is an abstraction of the state space
for the following program:

(x = 1 || y = 0);
(x = 2*f(x) || y = f(y));
(x = 1 || y = 0);

where f is an unspecified function of type int → int and c1 || c2 denotes the
parallel execution of commands c1 and c2. The specifications N1 and N2 show
two possible implementations of M, corresponding to whether yodd at state s1 is
refined to being false or true. Thus we have (M, s0)≺(N1, t0) and (M, s0)≺(N2, u0);
but neither (N1, t0)≺(N2, u0) nor (N2, u0)≺(N1, t0) hold.

With a refinement notion in hand we can now define the set of implementations
of a mixed specification: Let M be a mixed specification with state s0. Then
I(M, s0), the set of implementations of (M, s0), is defined to contain exactly those
pairs of implementations and states (J, j) such that (M, s0)≺(J, j). For example, in
Fig. 4 (N1, t0) and (N2, u0) are in I(M, s0), but (N2, u0) is not in I(N1, t0).

It is not difficult to see that ≺ is a transitive relation. So if (M, s0)≺(N, t0),
then I(N, t0) ⊆ I(M, s0). The converse is, surprisingly, false. Figure 5 shows

6



s0

s1 s2 s3

s4

M : t0

t1 t2

t3

N :

Figure 5: (Due to Harald Fecher.) Two mixed specifications M and N with
I(M, s0) = I(N, t0) but where (N, t0) is not refined by (M, s0).

two modal specifications that have the same set of implementations but where
one does not refine the other. This is why refinement is sometimes referred to
as “modal” refinement and why the relationship I(N, t0) ⊆ I(M, s0) is called the
“thorough” refinement (e.g. in [36]). So thorough refinement is defined as an
inclusion of sets of implementations, such that one specification refines the other
if every implementation of the former is also an implementation of the latter.

Incidentally, modal refinement is strikingly similar to the two-player case [2]
of alternating simulation [3], a game-theoretic notion of refinement. In alternating
simulation inputs are treated as uncontrollable actions, while outputs are consid-
ered to be controllable. Similarly, in modal refinement determinstic implementa-
tions have no control on providing required transitions, while they have a certain
freedom of choosing allowed transitions in modal refinement. In [35] it has been
argued that modal refinement is strictly more expressive than alternating simu-
lation for deterministic input/output games, since the latter are a special case of
the former. In [35] a selection of weak (observational) modal refinements are
discussed with the agenda of aligning modal refinement better with alternating
simulation in the nondeterministic case as well.

Another form of incompleteness of modal refinement occurs in the context of
composition operators of modal and mixed specifications, e.g. parallel composi-
tion. Given a set of inference rules that define such a composition operator for
implementations, for instance the CCS [41] parallel composition ||, one can obtain
a new operator ||m for modal specifications by simply doubling every inference rule
for || in a may (R�) and a must (R�) version. This can be seen in Figure 6, which
illustrates the definition of the synchronization rule for modal specifications. As-
suming that refinement is a precongruence with regards to || – meaning that Mi≺Ni

for i = 1, 2 implies (M1 ||N1)≺(M2||N2) – one can expose an incompleteness of the
corresponding composition operator ||m for modal specifications.

7



N a
−→ N′ M a

−→ M′

N ||M a
−→ N′ ||M′′

. . .

N a
−→�N′ M a

−→�M′

N ||m M a
−→�N′ ||m M′

. . .

N ad^N′ M ad^M′

N ||m M ad^N ||m M′
. . .

(1)

Figure 6: Structural operational semantics for synchronous parallel composition
operator. On the left: a sole composition rule for labeled transition systems. On
the right: two copies of that very composition rule for modal transition systems,
using respectively must and may transitions. The parallel composition of two
modal specifications using ||m has a must transition if both specifications require
it; equally, the parallel composition has a may transition if both specifications
allow it.

Firstly, note that || and ||m, when restricted to implementations are the same
operators. Secondly, a reasonable expectation is that the set of implementations
of M ||m N would equal the set of implementations I || J with I an implementa-
tion of M, and J an implementation of N. In short, any implementation of a
composed specification should be representable as the composition of component
implementations, and the composition of component implementations should be
an implementation of the composed specification. The latter holds since refine-
ment is a precongruence for ||m, so we know that I || J = I ||m J is an implemen-
tation of M ||m N for all I ∈ I(M) and J ∈ I(N). But the converse is false: there
are implementations of the composed specifications that are not representable as
compositions of component implementations, see Figure 7. In fact it is not even
known, whether the following problem is decidable: establish if a given imple-
mentation of a composition of two modal specifications can be implemented by a
composition of implementations of these specifications.

3 Decision Problems
Suppose a modeler has provided a set of mixed specifications {Mi | 0 < i ≤ k}
with k ≥ 1, where si is a designated initial state for Mi and each (Mi, si) models a
particular aspect of a system. A fundamental question is whether these aspects can
interact and co-exist such that they are all realizable in a single implementation.
We can phrase this question in terms of our refinement notion.

CI A finite set of mixed specifications with initial states {(Mi, si) | 0 < i ≤ k}
with k ≥ 1 is said to have a common implementation iff there is an imple-
mentation (J, j) such that (Mi, si)≺(J, j) for all 0 < i ≤ k.

8



N :

a

b

c

M :
a

a

b

c

N ||mM :
a

a

b

c

P :

a b

Figure 7: Illustration of the incompleteness of parallel composition ||m for modal
specifications: M and N are modal specifications, N ||m M is their modal parallel
composition. But P is a legal implementation of N ||m M that does not arise as a
parallel composition I || J of implementations of N and M, respectively.

Figure 2(a) shows (M1, s1) with initial state s1, Figure 2(b) shows (M2, s2) with
initial state s2, and Figure 3 depicts a common implementation (J, j) of the two.

A positive answer to the common implementation problem verifies the con-
sistency of finitely many models of a system. Observe that we may equally well
use the common implementation problem to investigate or expose flaws in a sys-
tem model. Suppose that the mixed specification (M, s0) is a desired model of a
system and (F, t0) is a mixed specification that models a particular flaw. Now, if
we can show that there does not exist any common implementation of both mixed
specifications, then the model is inconsistent with the flaw. Consequently, any sys-
tem that implements this model cannot exhibit the respective error. Conversely,
a common implementation of (M, s0) and (F, t0) may provide important clues on
how the mixed specification M needs to be revised in order to eliminate the flaw.

One often considers a special case of the common implementation problem,
namely for k = 1, which asks whether (M0, s0) has any implementations, or, in
other words, whether (M0, s0) is consistent:

C A mixed specification M with initial state s0 is consistent iff I(M, s0) is non-
empty, i.e., iff there exists an implementation (J, j) with (M, s0)≺(J, j).

Not every mixed specification is consistent. Figure 8 shows a mixed specifi-
cation that does not have any implementations.

There is a simple static way in which one can ensure that a mixed specification
M = (S ,R�,R�, L�, L�) is consistent, by demanding that everything that is required

9



request

request

poll

poll

poll

loglog

Figure 8: A mixed specification that is not consistent.

is also allowed. This is achieved through the inclusions

R� ⊆ R� (2)
L�(s) ⊆ L�(s) (∀s ∈ S ) (3)

A mixed specification M = (S ,R�,R�, L�, L�) is also called a modal specification
if it satisfies all inclusions in (2–3). It is easy to see that a modal specification M =

(S ,R�,R�, L�, L�) is consistent at all of its states. For s ∈ S , one implementation
of (M, s) is ((S ,R�,R�, L�, L�), s).

The common implementation problem CI and the consistency problem C cor-
respond to satisfiability problems, as they appeal to an existential quantification
over implementations. But there is also a natural decision problem for mixed
specifications that corresponds to a validity problem.

TR A mixed specification M with state s0 is thoroughly refined by a mixed
specification N with state t0 iff I(N, t0) ⊆ I(M, s0).

We already saw one technique for establishing positive instances of TR: to
show I(N, t0) ⊆ I(M, s0) show that (M, s0)≺(N, t0) holds. We also saw that this
technique cannot be used for showing negative instances of thorough refinement
I(N, t0) * I(M, s0) as the non-existence of any refinement relation between s0

and t0 says nothing about the relationship of I(M, s0) and I(N, t0) in general, as
demonstrated in Figure 5. Consequently, direct algorithms are needed for TR
in order to determine with certainty whether all implementations of one mixed
specification are also implementations of another mixed specification.

The last decision problem considered here comes in a satisfiability and a valid-
ity flavor. Suppose a mixed specification M with initial state s0 models a system.
We want to validate or explore properties of that system, expressible in some tem-
poral logic, through the validation or exploration of the mixed specification M. If

10



ϕ is such a property, we can ask – as originally proposed in [11] – whether there
exists an implementation of M that satisfies ϕ.

GMC Given a mixed specification M with initial state s0 and a temporal logic
formula ϕ, the generalized model checking problem asks whether there is
an implementation (J, j) of (M, s0) that satisfies ϕ.

Logics typically considered for model checking include linear-time tempo-
ral logics such as LTL, and branching-time temporal logics such as CTL and the
modal mu-calculus (see e.g. [21]). For these logics GMC can be seen as a kind of
restricted satisfiability problem, which establishes whether properties ϕ are con-
sistent with a mixed specification. We can turn GMC into a validity problem in
the usual fashion: decide GMC for ¬ϕ and (M, s0). If the answer is negative, then
all implementations of (M, s0) satisfy ϕ. We study issues associated with such
validation in more detail in Section 7.

4 Complexity
Having presented the essential decision problems CI, C, TR, and GMC we shall
now discuss their computational complexity. Let us start by introducing special
classes of specifications, used in the determination of lower bounds.

A modal specification (S ,R�,R�, L�, L�) with R� = R� and Σ being a singleton
is called a partial Kripke structure. All three modal specifications in Figure 4
are examples of partial Kripke structures. As shown in [30], this definition of
partial Kripke structures is equivalent to the one that introduced these models in
the literature [10]. In this manner, the implementations of partial Kripke structures
correspond to the familiar Kripke structures, and all partial Kripke structures are
consistent.

A mixed (resp. modal) specification (S ,R�,R�, L�, L�) with empty set AP is
called a mixed (resp. modal) transition system, and abbreviated as (S ,R�,R�).
Their implementations are called labeled transition systems, and often denoted
simply by a pair (S ,R). Figure 2 shows modal transition systems and Fig. 3 depicts
a labeled transition system.

We will use partial Kripke structures for a discussion of lower bounds for gen-
eralized model checking, and modal and mixed transition systems for a discussion
of lower bounds for the other three decision problems. That choice simply echoes
the respective choices made in the extant literature [11, 6].

Lower bound for CI for modal specifications. We establish a lower bound for
the common implementation problem for modal transition systems. This lower

11



bound will therefore also apply to modal and mixed specifications in general. We
record that the size |M | of a mixed specification M = (S ,R�,R�, L�, L�) with finite
state set S is defined as

|S | + |R� ∪ R� | +
∑
s∈S

|L�(s) ∪ L�(s) | (4)

Generalized Geography (GENGEO) is known to be a PSPACE-complete decision
problem [24, 32]. An instance of GENGEO considers a directed graph G with a
finite set of vertices V , an edge relation E ⊆ V × V , and a designated vertex vα.
Two players, Verifier and Refuter, play a game on G where each play of the game
results in a finite sequence (v0, v1)(v1, v2) . . . (vn−2, vn−1)(vn−1, vn) of non-repeating
edges (vi, vi+1) from E, determined as follows:

1. Initially, Verifier chooses an edge (v0, v1) ∈ E with v0 = vα.

2. Refuter chooses an edge (v1, v2) ∈ E not chosen already in that play.

3. Verifier chooses an edge (v2, v3) ∈ E not chosen already in that play.

4. Refuter and Verifier strictly alternate their moves in this fashion until a
player faces a vertex vn that has no outgoing edge or only outgoing edges
that were already chosen in that play. Then that player looses that play.

The decision problem for G is whether Verifier has a strategy that, if followed
by her, will ensure her that she wins all plays in that game.

Example 3 (quoted after [53]). Consider the graph G with vertices v0, . . . , v8

shown in Figure 9. Verifier has a winning strategy from vertex v0 in G:

• Clearly, the initial move of Verifier has to be from v0 to either v1 or v2.

• If Verifier were to move to v2, Refuter could then move to v8 and so Verifier
would lose. So Verifier moves from v0 to v1.

• Refuter moves to v3 as there is only one edge with v1 as source.

• Verifier then moves to v4, leaving Refuter only moves to either v2 or v6.

• Regardless of Refuter’s next move, Verifier can then move to v8 and wins.

In order to reduce GENGEO to CI, for a given graph G and initial state vα we
construct a finite set of modal transition systems such that

• the sum of their sizes is polynomial in the size of G, and

12



v0

v1

v2

v3

v4

v5

v6

v7

v8

Figure 9: An instance of GENGEO with a winning strategy for the Verifier, an
edited version of the example found in [53].

• they have a common implementation iff Verifier has a winning strategy in
the GENGEO game for G from vα.

The construction is such that a winning strategy can be translated with relative
ease into a common implementation of these modal transition systems. The harder
part of the reduction proof is, for a given common implementation of these modal
transition systems, to synthesize a winning strategy for GENGEO in G? One may
think of the former as a soundness and the latter as a completeness argument.

The intuition behind this reduction is that transitions in R� are used to encode
all possible game moves of Refuter, forcing an implementation to consider every
choice of Refuter in that game. Dually, choices of Verifier are encoded in R� and
so any implementation is allowed to make such a choice for Verifier. The less
straightforward part is the design of additional modal transition systems that act
as “monitors” and ensure that at least one, and no repeating, response by Verifier
is being made at all times in a common implementation. This reduction therefore
establishes PSPACE-hardness of CI for modal transition systems.

Example 4. Figures 10-12 show the set of modal transition systems whose CI
instance the instance G of GENGEO reduces to. Unlabeled transitions have an
implicit label π < E, transitions labeled with sets of labels denote one such tran-
sition for each such label.

Lower bound for C for mixed specifications. We exploit the above PSPACE-
hardness result to reduce CI for modal transition systems to C for mixed transition
systems. Figure 13 shows the construction for a finite set of modal transition sys-
tems {(Mi, si) | 0 < i ≤ k} with k ≥ 1. The size of that mixed transition system
is quadratic in the size of the instance of CI. Therefore it suffices to show that the
mixed transition system (M, ck) has an implementation iff the instance of CI has
a common implementation. Given a common implementation (J, j) of all (Mi, si)

13



1

1

1
2

s1

(P1, s1) :

en

e0

E

...
1 1 2E

E

s2

(P2, s2) :

Figure 10: Modal specifications (P1, s1) and (P2, s2) together ensure that Verifier
can always continue to play. Assume E = {e0, . . . en}; a state tag 1 (resp. 2) indi-
cates that Verifier (resp. Refuter) can make a next move. All unlabeled transitions
are labeled by an implicit π label.

se e

Σ \ {e} Σ \ {e}Me :

te
e fn

f0

ΣΣ \ {e} ...

Ne :

Figure 11: Specifications Me, Ne instantiated for each e ∈ E and the set { f0, . . . , fn}

of edges whose source is the target of e. Specification Me ensures that edge e is
visited at most once; Ne ensures that only edges that follow e directly will be
visited immediately after a visit of e.

we can replace each (Mi, si) in (M, ck) with (J, j) and implement all outgoing tran-
sitions from all states ci. It is easily seen that this provides an implementation of
(M, ck). Conversely, let (Ĵ, ĵ) be an implementation of (M, ck). Then the pattern
of required and allowed transitions on all paths from ck to any si in M is such that
the relation witnessing (M, ck)≺(Ĵ, ĵ) enforces existence of a state j in Ĵ such that
(Ĵ, j) is a common refinement – and so a common implementation – of all (Mi, si).

Combining the reduction of GENGEO to CI for modal transition systems with
the reduction of the latter to C for mixed transition systems implies that C for
mixed transition systems is PSPACE-hard.

Lower bound for TR for mixed specifications. With PSPACE-hardness of C
for mixed specifications at hand, we can prove PSPACE-hardness of TR for mixed
specifications as follows: Given a mixed transition system M with initial state s,
we claim that (M, s) is consistent iff not I(N, t) ⊇ I(M̂, ŝ), where N is the labeled
transition system with state set {t} and no transitions whatsoever, and M̂ extends
M with a fresh state ŝ and a single transition (ŝ, π, s) ∈ R� \R� where π is an action
not present in M.

First, if (M, s) is consistent, any implementation (J, j) thereof results immedi-
ately into an implementation of (M̂, ŝ) by adding a fresh state ĵ with a transition
( ĵ, π, j) to J matching (ŝ, π, s). But this is then not an implementation of (N, t) and

14



s0

en

e0

Σ...

(P0, s0) :

1

1 2

2

e f

Σ\{?, e, f}

Σ\{?, e, f}
{e, f}

f

Σ

sef(Mef , sef ):

Figure 12: Specification P0 ensures that Verifier begins by choosing one of the
edges {e0, . . . , en}, whose source is v0. For each pair of adjacent edges e and f
we instantiate a specification Me f , which ensures that CI explores for all moves e
those responses f whose sources are the target of e, unless e was already chosen
or f was already chosen by Refuter.

s1

c2 s2

c3 s3

ck sk

(M1, s1)

(M2, s2)

(M3, s3)
...

...
...
· · ·

· · ·

(Mk, sk)

Figure 13: A mixed specification that conjoins mixed specifications Mi with initial
states si together. All outgoing transitions from all ci have labels with a special
action that does not occur in the action set for any Mi.

so I(N, t) + I(M̂, ŝ).
Second, from I(N, t) + I(M̂, ŝ) one gets an implementation (Ĵ, ĵ) of (M̂, ŝ)

that is not an implementation of (N, t). From the latter we infer the existence of a
transition out of ĵ to some state j in Ĵ, which then has to match (ŝ, π, s) as the only
outgoing transition from ŝ in M̂. But then the co-inductive nature of refinement
tells us that (Ĵ, j) is an implementation of (M, s) and so the latter is consistent.

Lower bound for TR for modal specifications. The PSPACE-hardness argu-
ment for TR with mixed specifications does not apply directly to TR for modal
specifications. That reduction required M to be a mixed specification since C for
modal specifications is a trivial problem. Therefore we require a bespoke argu-
ment for the lower bound of TR for modal specifications, which we now provide
for modal transition systems.

This reduction exploits the fact that deciding the truth of QCNF formulae, a
closed quantified Boolean formulae with propositional kernel in 3CNF form, is

15



PSPACE-complete [24, pp. 171-2]. Consider, e.g., the following formula

ϕQ = ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x) (5)

This formula reads that for every Boolean value x, there exists a Boolean value
y such that x is true iff y is true. Clearly, ϕQ is true. One way of determining
this is to turn ϕQ into a DAG with branches for choices of quantifiers, on which
Verifier and Refuter play a strictly alternating game, and where truth corresponds
to the existence of a winning strategy for Verifier. This approach will not work as
a reduction, though, since the game graph of formulae ϕ may be exponential in
the size of ϕ. Another problem is how to relate a winning strategy in this game to
an instance of thorough refinement for modal transition systems. Remember that
TR involves two and not just one graph-like object.

The first problem is overcome by letting a decision point for variable x branch
to two successors which then do two things:

• they merge to a common state for the next layer of decisions (thus avoiding
the exponential blow-up), but

• they also provide “spike transitions” to dead end states that can act as “stores”
for values chosen for variable x.

Universally quantified x first branch out with required transitions, existentially
quantified y first branch out with allowed transitions. Conjunction, disjunction,
and literals are then modeled accordingly. For formula ϕ, this specifies a modal
transition system Nϕ with initial state sϕ, shown in Figure 14 for ϕQ.

The second problem is overcome by thinking of the implementations of (Nϕ, sϕ)
as strategies that may win and so witness truth of ϕ, and to devise another modal
transition system Mϕ with initial state tϕ such that the implementations of (Mϕ, tϕ)
correspond to, and cover all, non-winning strategies for witnessing the truth of ϕ.
We can then say that formula ϕ is true iff I(Nϕ, tϕ) * I(Mϕ, sϕ), i.e., iff there is a
strategy that is not loosing and so winning.

The construction of Mϕ is somewhat involved as it needs to capture all possible
failures of potential strategies for the truth of ϕ in a game semantics, given in the
form of implementations of (Mϕ, sϕ). Figure 15 illustrates this for formula (5).
Each of the columns represent a certain category of erroneous implementations.
The left most column, for instance represents all those implementations that are
so short that they do not select a value for the existentially quantified variable y.

Since |Mϕ | and |Nϕ | are polynomial in the size of ϕ, we obtain the desired
PSPACE-hardness of TR for modal transition systems.

16



vx v¬x
∀x

vy v¬y
∃y

∧

∨

v¬yvxvyv¬x

Figure 14: Modal transition system NϕQ representing the evaluation game graph
of the formula in (5).

sφ

C∃y

C∨

vx

v¬x

Cx

v¬x

vx

C¬x

vy

v¬y

Cy

v¬y

vy

C¬y

Figure 15: Modal transition system MϕQ representing all flawed evaluations of the
formula in (5) in a game semantics.

17



Lower bound for GMC for partial Kripke structures The computational com-
plexity of GMC for such models is a function of the size of the model M and of
the size of the formula ϕ for the temporal logic that ϕ belongs to. Here we only
consider the complexity in terms of the size of ϕ, and only for the branching-time
logics CTL and modal mu-calculus. As pointed out in [11], generalized model
checking is a generalization of both model checking and satisfiability checking.
To see how GMC generalizes model checking, note that any instance of GMC
for an implementation J and property ϕ simply asks whether the model check of
ϕ on J is true. This is so since any refinement between implementations is just
bisimulation, and bisimilar models satisfy the same formulae of CTL and of the
modal mu-calculus.

To appreciate that GMC generalizes satisfiability checking, consider the par-
tial Kripke structure M⊥ with state set {s⊥}, transition relation {(s⊥, s⊥)}, and la-
beling functions satisfying L�(s⊥) = {} and L�(s⊥) = AP. It is straightforward
to argue that all states of all partial Kripke structures with set of atomic proposi-
tions AP refine (M⊥, s⊥). In particular, I(M⊥, s⊥) is the set of all partial Kripke
structures over AP. Thus the satisfiability of ϕ over partial Kripke structures is
equivalent to a positive answer to GMC applied to (M⊥, s⊥) and ϕ.

Since satisfiability for CTL, as well as for the modal mu-calculus, is EXPTIME-
complete, it was inferred in [11] that GMC is EPXTIME-hard for both logics in
the size of the formula.

We summarize the results on lower bounds in Table 1.

Table 1: Tabular summary of the lower bounds provided.

Modal specifications Mixed specifications

Common implementation PSPACE-hard PSPACE-hard

Consistency trivial PSPACE-hard

Thorough refinement PSPACE-hard PSPACE-hard

GMC of CTL and mu-calculus EXPTIME-hard EXPTIME-hard

Upper bounds. One can show that the decision problems CI, C, and TR are
in EXPTIME. For mixed specification M, we associate with each of its states s a
recursion variable Xs and a system of recursive equations, one for each s ∈ S [33]:

Xs =
( ∧

(s,α,s′)∈R�
〈α〉Xs′

)
∧

(∧
α∈Σ

[α]
( ∨
(s,α,s′)∈R�

X′s
))
∧

(∧
L�(s)

)
∧ ¬

(∨
(AP\L�(s))

)
(6)

18



Each Xs denotes a subset of S and one solves (6) simultaneously for all s such that
each solution set Xs is maximal. This set Xs then contains exactly those states t
of M for which (M, s)≺(M, t). One can also unwind this recursion syntactically in
the modal mu-calculus so that the solution set Xs is represented by a characteristic
formula [1] ψs with greatest fixed-points only. In that manner we can reduce CI
and C to checking the satisfiability of

∧k
i=1 ψsi and ψs0 (respectively). Similarly,

TR reduces to checking the validity of ¬ψt0 → ψs0 . Unfortunately, the size of
each ψsi may be exponential in |Mi | and so this reduction places these decision
problems into 2EXPTIME. To lower these upper bounds, one can translate the
recursive equations for Xs compositionally into alternating tree automata As. The
reductions to satisfiability and validity, as observed for characteristic formulae ψs

above, still apply. But the size of As is linear in the size of |M |. This EXPTIME
upper bound is folklore knowledge but does not seem to have been published prior
to [6].

A similar upper bound for GMC can be obtained by converting ϕ into an equiv-
alent alternating tree automata Aϕ, a linear transformation in the size of ϕ, and
noting that there is an implementation of (M, s) satisfying ϕ iff the alternating tree
automata As∧Aϕ, which accepts the intersection of the languages that are accepted
by As and Aϕ, has a non-empty language. Since non-emptiness is in EXPTIME
and since intersection has linear overhead for these automata, we see that GMC is
in EXPTIME in the size of ϕ for CTL and for the modal mu-calculus. That upper
bound was originally given in [11].

5 Extensions
Historically modal transition systems [37] predate mixed transition systems [15],
although the latter were introduced independently. As already stated, mixed tran-
sition systems extend modal transition systems by dropping the static consistency
requirement, that R� ⊆ R�.

One of the first attempts to apply modal transition systems included the so-
lution of equation systems [38, 54] involving bisimulation [43, 40] constraints
with CCS-like contexts embedding an unknown process X. It turns out that the
set of all solutions of such an equation system is characterized by a disjunctive
modal transition system, which differs from a regular modal transition system by
including must transitions which model disjunctions of target states and actions.
Technically the must transition relation R� is a subset of S × 2Σ×S . A given im-
plementation has the choice of implementing at least one of the branches in the
disjunction. The modal refinement relation has been extended accordingly [38].

Figure 16 shows a simple disjunctive modal transitions system, a more precise
model of our measurement system from Section 1. The specification has one dis-

19



request

report
log

report
poll

log

report

Figure 16: A disjunctive modal transition system modeling a measurement system
with optional logging.

junctive must transition, which specifies that at least one of the two actions log and
report must be implemented by the target state of the poll action. The complete
specification thus ensures that after a poll it is optional to log the measured value
before having to report it.

One-selecting modal transition systems, proposed by Schmidt and Fecher [48,
49, 47], are a strengthening of disjunctive modal transition systems and their re-
finement. More precisely one-selecting modal transition systems interpret dis-
junctive transitions according to an exclusive-or semantics such that exactly one
(and not at least one) of the target states can be implemented. They also in-
clude disjunctive may transitions, which would not bring any additional expres-
sive power to disjunctive modal transition systems, but do constitute a nontrivial
extension. In [49] Schmidt and Fecher show that disjunctive modal transition
systems and one-selecting modal transition systems can express the same sets of
implementations, by supplying transformations between both kinds of models that
preserve the respective sets of implementations. At the same time, they demon-
strate that one-selecting modal transition systems have a strictly more expressive
refinement preorder when compared to disjunctive modal transition systems. This
follows from a proof that no transformation from one-selecting modal transition
systems to disjunctive modal transition systems is monotone with respect to the
respective refinement notions. Such a monotone transformation is possible in the
other direction, though.

For example, in interpreting the specification of Figure 16 as a one-selecting
modal transition system we decrease the allowed set of implementations. Now
it is strictly specified that either reporting should be done immediately, or after
performing a log. In the original interpretation as a disjunctive modal transition
system, implementations were able to provide both choices.

In 1993 Čerāns and colleagues presented timed modal specifications – an ex-
tension of modal specification with real time [13], or, in other words, a general-

20



ization of real time process calculi to allow loose specifications. The theory was
accompanied by a corresponding verification tool, E.

Modal transition systems and their modal refinement can be seen as an ex-
tension themselves, namely of extended transition systems and of their partial
bisimulation [39, 52, 10]. Extended transition systems (S ,R, ↑) extend transition
systems (S ,R) with a divergence predicate s ↑ α of type S × Σ, saying that not all
transitions with source s and labeled with α may be present. One can represent
(S ,R, ↑) as a modal transition system by setting R� = R and R� = R ∪ {(s, α, s′) ∈
S × Σ × S | s ↑ α}. It is then a pleasant surprise that partial bisimulations be-
tween two extended transition systems are captured by modal refinement of their
corresponding representations as modal transition systems. See [30] for details.

6 Applications in Software Engineering
In Section 2 we have mentioned the considerable overlap of expressive power
between refinement and alternating simulation for deterministic 2-player games.
Since alternating simulation and 2-player games are a popular base to model rich
behavioral interfaces for components [2], it seems natural to consider building in-
terface theories around modal specifications and refinement [35, 7, 44]. Modal
specifications bring their usual advantage to interface theories, allowing to model
required and optional ways of interacting with a component. Alternating simu-
lation enforces a more rigid structure than modal specifications in this case, by
making all input steps required transitions, and output steps allowed transitions.
In the context of interface theories the question of completeness of refinement
and complexity of thorough refinement has been less pressing so far, since only
deterministic and consistent interfaces were proposed (refinement is complete for
such modal specifications). When multiple interfaces are associated with a single
component [7, 44] in order to express multiple viewpoints, the common imple-
mentation question seems particularly relevant.

An application, which is closely related to interfaces, is modeling variability
in families of software products. In software product line engineering one con-
siders configurable components, which may exhibit different behavior, depending
on configuration. As already argued modal specifications fit well in this usage
scenario, as they are naturally equipped with means of expressing variation in be-
havior using may transitions, which are not required [23, 35, 22]. For example
the specification of Figure 2(a) can be interpreted as a model of a family of mea-
surement systems, with some of them being able to do error handling, and some
not providing this functionality. Questions that naturally arise with these speci-
fications are TR (corresponding to partial specialization of a configurable com-
ponent), CI (whether there exist configurations of components which make them

21



compatible), and GMC (whether all implementations guarantee safety properties,
and whether there exist implementations fulfilling some requirements).

The line of work on behavioral model merging (e.g. [51, 9, 50]) considers
a very interesting problem of combining partial models constructed by multiple
stakeholders, for example during requirements engineering. The basic choice here
is that merging of several models should result in a common refinement of all of
them, which is minimal with respect to ≺. It turns out that in general a minimum
common refinement is not uniquely defined [29]. As CI is trivially reducible to
the common refinement problem, we note that the latter must be at least PSPACE-
hard (and indeed EXPTIME-complete as we will explain later on). Nonetheless,
a heuristic for merging models may construct an informative common refinement
that can aid system comprehension. Also, in [50] an algorithm is presented that
synthesizes from a safety property ϕ, expressible in a 3-valued variant of linear-
time temporal logic (whose “fluents” allow state-based model checking for event-
based models), a modal transition system M(ϕ) such that the modal transition
systems that satisfy ϕ in a 3-valued semantics defined in loc. cit. are exactly those
modal transition systems that refine M(ϕ). So M(ϕ) can be seen as a character-
istic model for ϕ. The MTSA tool provides functionality for model merging and
synthesis, and is available as an Eclipse plug-in [19].

Early on a verification system called TAV [12, 8] was developed for modal
transition systems. The TAV system supported compositional modeling and effi-
cient checking of refinement using a local verification technique [34] that avoids
building the complete state space.

7 Model Checking and Semantic Minimization
A mixed or modal specification represents all of its implementations, and can
therefore satisfy properties in at least two ways:

• Sat (M, s, ϕ) holds iff there is an implementation (J, j) of (M, s) satisfying ϕ,

• Val (M, s, ϕ) holds iff all implementations (J, j) of (M, s) satisfy ϕ.

The second judgment illustrates another need for consistency checking: if
(M, s) is inconsistent, then Val (M, s, ϕ) is true for all ϕ! Therefore, a consis-
tency check of (M, s) is needed to rule out or to detect such undesired vacuity.
The duality, that Sat (M, s, ϕ) holds iff Val (M, s,¬ϕ) does not, remains to be true
even for inconsistent specifications (M, s).

Of course, Sat (M, s, ϕ) is just asking whether GMC holds for (M, s) and ϕ.
So both judgments Sat (M, s, ϕ) and Val (M, s, ϕ) are EXPTIME-complete in the
size of ϕ when ϕ is in CTL or the modal mu-calculus [11]. This prompts the

22



(M, s) |=p q iff q ∈ L�(s)
(M, s) |=o q iff q ∈ L�(s)

(M, s) |=m ¬ϕ iff not (M, s) |=¬m ϕ

(M, s) |=m ϕ1 ∧ ϕ2 iff (M, s) |=m ϕ1 and (M, s) |=m ϕ2

(M, s) |=m EXϕ iff ∃ (s, s′) ∈ R with (M, s′) |=m ϕ

(M, s) |=m EGϕ iff ∃ infinite R-path π beginning in s
with (M, t) |=m ϕ for all states t on π

(M, s) |=m E
[
ϕ1 Uϕ2

]
iff ∃ infinite R-path π = s0s1s2 . . . and j ≥ 0 with s = s0,

(M, s j) |=m ϕ2, and (M, si) |=m ϕ1 for all 0 ≤ i < j

Figure 17: Satisfaction relations |=p and |=o for computation tree logic (CTL) over
partial Kripke structure M = (S ,R, L), where m ∈ {o, p} and ¬o = p and ¬p = o.

question of whether these judgments cannot be computed by cheaper means –
such as model checking – for property patterns ϕ that occur in practice, and
this is indeed the case for the patterns documented at the pattern repository site
patterns.projects.cis.ksu.edu [4].

For ϕ from CTL or the modal mu-calculus and a partial Kripke structure M
with state s one can introduce two judgments (M, s) |=o ϕ and (M, s) |=p ϕ whose
semantics is defined as for ordinary Kripke structures, except that |=o has an op-
timistic view of atomic propositions and |=p interprets them pessimistically. We
illustrate this for computation tree logic (CTL):

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | E
[
ϕUϕ

]
, (7)

where q ∈ AP, and other propositional connectives and modalities are derived in
the usual manner. The semantics for |=p and |=o is depicted in Figure 17. Note
that the pessimistic semantics considers L�(s) as those atomic propositions true at
state s, whereas the optimistic semantics uses the larger set L�(s). Also, both se-
mantics interpret conjunctions compositionally. The treatment of negation reveals
that both semantics are mutually recursive, reflecting the duality of satisfiability
and validity. The semantics of modalities are like the standard ones for Kripke
structures, since R� = R� for partial Kripke structures.

The connection between these semantics and the judgments Sat (M, s, ϕ) and
Val (M, s, ϕ) is easily established: for all M, s, and ϕ we have

23



(UA) (M, s) |=p ϕ implies Val (M, s, ϕ)

(OA) Sat (M, s, ϕ) implies (M, s) |=o ϕ

The first item (UA) states that (M, s) |=p ϕ under-approximates Val (M, s, ϕ),
the second item (OA) expresses that (M, s) |=o ϕ over-approximates Sat (M, s, ϕ).
In practice, this means that a positive model check (M, s) |=p ϕ certifies that all
implementations of (M, s) satisfy ϕ. On the other hand, if (M, s) |=p ϕ turns out to
be false, we do not know whether all implementations of (M, s) satisfies ϕ or not.

Example 5. [11] Consider the partial Kripke structure M from Figure 4. We have
(M, s0) |=o AF yodd since yodd ∈ L�(s1), noting that AF stands for ¬EG¬.

The expression AGϕ stands for ¬E
[
tt U¬ϕ

]
where tt is a special atomic pro-

position contained in
⋂

s∈S L�(s). So AG (xodd∨¬yodd) states that all states on
all infinite paths satisfy that either x is odd or y is even. We have (M, s0) |=o

AG (xodd ∨ ¬yodd) since there is only one infinite path s0s1sω2 from s0 and (M, si) |=o

xodd ∨ ¬yodd holds for i = 0, 1, 2. The latter is clear for i = 0, 2 since then
xodd ∈ L�(si), and for i = 1 we do not have (M, s1) |=p yodd (since yodd < L�(s1))
and so (M, s1) |=o ¬yodd follows.

Combining both facts, we get (M, s0) |=o (AF yodd)∧AG (xodd ∨¬yodd). But we
do not have Sat (M, s0, (AF yodd) ∧ AG (xodd ∨ ¬yodd)). To see this, let us suppose
by way of contradiction that there is an implementation (J, j0) of (M, s0) satisfying
(AF yodd) ∧ AG (xodd ∨ ¬yodd). In particular, j0 satisfies AF yodd and so there is a
path from j0 to some jk in J such that jk satisfies yodd. Since s1 is the only state
s in M with yodd ∈ L�(s) we infer that s1 has to be refined by jk. Since j0 also
satisfies AG (xodd ∨¬yodd), we know that jk satisfies xodd ∨¬yodd as it is reachable
from j0. Therefore jk satisfies yodd ∧ xodd. But then s1 must satisfy xodd ∈ L�(s1)
since jk refines s1, a contradiction.

Although the semantics |=p and |=o can be computed with the same complex-
ity as the familiar semantics |= for Kripke structures [11], Example 5 reveals their
potential weakness: the compositional treatment of conjunction may not detect
dependencies within such conjuncts; in this instance, the conflicting needs of hav-
ing to make yodd true and false (respectively) at state s1.

This raises the question of whether there are formulae that do not exhibit such
weakness for any model, or whether we can transform such formulae in order to
eradicate such weaknesses. We call ϕp a pessimistic semantic minimization of ϕ
[25] iff for all partial Kripke structures M and states s we have that Val (M, s, ϕ)
iff (M, s) |=p ϕp. That is to say, the validity judgment for ϕ has the same result as
the model check for ϕp with respect to |=p. Dually, ϕo is an optimistic semantic
minimization of ϕ [25] iff for all partial Kripke structures M and states s we have
that Sat (M, s, ϕ) iff (M, s) |=o ϕo.

24



Of particular interest is whether we can choose ϕp to be ϕ (we then call ϕ
pessimistically self-minimizing), or whether we can choose ϕo to be ϕ (we then call
ϕ optimistically self-minimizing). Note that ϕ is pessimistically self-minimizing iff
¬ϕ is optimistically self-minimizing. Dually, ϕ is optimistically self-minimizing
iff ¬ϕ is pessimistically self-minimizing.

Pessimistic self-minimization of a ϕ of interest is extremely handy, as we
can then model check (M, s) |=p ϕ cheaply and know that the result is that for
Val (M, s, ϕ). It turns out that many practically important CTL formulae are pes-
simistically self-minimizing. For example,

AG
(
q ∧ ¬r → A

[
¬p W r

])
(8)

the CTL encoding of the specification pattern “Absence of p, Between q and
r.” [20] is pessimistically self-minimizing. This can be shown by means of com-
positional proof rules developed in [25, 4]. One such rule is:

(AU Rule) If ϕ and ψ are pessimistically self-minimizing, ψ is a uni-
versal path formula, and ϕ and ψ do not share any atomic proposi-
tions, then A

[
ϕ U ψ

]
is pessimistically self-minimizing.

These rules can establish the pessimistic self-minimization of rather complex
properties, such as

¬E
[
¬q U (q ∧ EF (p ∧ (EG (¬s) ∨ EF (s ∧ (E [¬t U z] ∨ EX (EG (¬t)))))))

]
(9)

the CTL encoding of “Constrained Chain after q” [20].
Not all patterns from patterns.projects.cis.ksu.edu are pessimistically

self-minimizing. But, surprisingly, all have pessimistic semantic minimizations
that transform the original formula in subtle and minimal ways. For example, the
pattern “Absence of p, Before r.” is encoded in CTL as

A
[
(¬p ∨ AG¬r) W r

]
(10)

and is not pessimistically self-minimizing, as can be seen by considering the par-
tial Kripke structure in Figure 18. But

A
[
(¬p ∨ AX (AG¬r)) W r

]
(11)

is a pessimistic semantic minimization of the formula in (10). One can conclude
this by first writing the formula in (10) as the equivalent

¬E
[
¬r U (¬r ∧ ¬ (¬p ∨ AG¬r))

]
(12)

25



s s′
M:

{!p, ?r} {}

Figure 18: A partial Kripke structure such that Val
(
M, s,A

[
(¬p ∨ AG¬r) W r

] )
holds but (M, s) |=p A

[
(¬p ∨ AG¬r) W r

]
does not.

and then, by using the aforementioned compositional rules, determine whether the
unnegated E

[
¬r U (¬r ∧ ¬ (¬p ∨ AG¬r))

]
can be subject to equivalence transfor-

mations that result in an optimistically self-minimizing formula. Although (11)
results from (10) by unfolding the AG modality once, this heuristic will not al-
ways work in trying to compute optimistic or pessimistic semantic minimizations.

Even worse, some CTL formulae do not have optimistic or pessimistic seman-
tic minimizations even within CTL* (which contains CTL). One such example
is the formula A

[
(EXq) U (¬q ∨ r)

]
[25]. Note that this AU formula does not

satisfy the preconditions of the (AU Rule) since its two sub-formulae share an
atomic proposition q. One can show, though, that all formulae of the modal mu-
calculus have optimistic semantic minimizations as well as pessimistic semantic
minimizations [25]. One possible proof [42] observes that distributive formulae
with non-redundant propositional clauses, a normal form for mu-calculus enjoy-
ing linear-time satisfiability checks [31], are optimistically self-minimizing.

Since self-minimization is such an attractive property, one wonders about the
complexity of deciding whether a given ϕ is optimistically, or pessimistically,
self-minimizing. First of all it is easy to see that all valid formulae are op-
timistically self-minimizing, and that unsatisfiable formulae are pessimistically
self-minimizing but not optimistically so. We list the relevant results from [5]:

• For propositional logic, deciding whether ϕ is optimistically self-minimizing
is coNP-complete, and so is the same question for the pessimistic case. De-
ciding whether ϕ is optimistically self-minimizing but neither valid nor pes-
simistically self-minimizing is in DP and coNP-hard. The same complexity
applies to deciding whether ϕ is pessimistically self-minimizing but neither
unsatisfiable nor optimistically self-minimizing.

• For propositional modal logic, obtained from (7) by removing the clauses
for EG and EU, these three decision problems all turn out to be PSPACE-
hard and in EXPSPACE.

26



• For the modal mu-calculus, all these three decision problems are EXPTIME-
hard and in 2EXPTIME.

For the latter two logics it would be of interest to see whether these complex-
ity gaps can be narrowed. For all three logics, it would also be nice to gain a
better understanding of the complexity of deciding whether a ϕ is pessimistically
and optimistically self-minimizing. The known upper bounds for this are coNP,
EXPSPACE, and 2EXPTIME (respectively) [5].

We conclude this section by revisiting characteristic formulae ψs0 for states s0

of partial Kripke structures M. It is not hard to show that

(N, t0) |=p ψs0 iff (M, s0)≺(N, t0) (13)

We claim that ψs0 is pessimistically self-minimizing iff for all partial Kripke struc-
tures N and states t0 we have that thorough refinement I(N, t0) ⊆ I(M, s0) equals
modal refinement (M, s0)≺(N, t0).

First, assume that ψs0 is pessimistically self-minimizing. Let (M, s0)≺(N, t0) be
false. We need to show that I(N, t0) ⊆ I(M, s0) is false, too. Since (M, s0)≺(N, t0)
is false we get that (N, t0) |=p ψs0 is false as well by (13). By assumption, this
means that Val

(
N, t0, ψs0

)
is false, too. So there has to exist some implementation

(J, j) of (N, t0) that does not satisfy ψs0 . By (13) again, this implies that (J, j) is
not an implementation of (M, s0).

Second, assume that for all partial Kripke structures N and states t0 we have
that the thorough refinement I(N, t0) ⊆ I(M, s0) equals the modal refinement
(M, s0)≺(N, t0). Let Val

(
N, t0, ψs0

)
be true. It suffices to show that (N, t0) |=p ψs0

is true as well. By (13) again, we get this from showing that (M, s0)≺(N, t0). By
assumption, it therefore suffices to show that I(N, t0) ⊆ I(M, s0). But all imple-
mentations of (N, t0) satisfy ψs0 since Val

(
N, t0, ψs0

)
is true, and so they must be

implementations of (M, s0), too, by (13).
The example of Figure 5, witnessing that thorough and modal refinement are

different for modal transition systems can be translated into the world of partial
Krikpe structures (along the lines of [28]). As a consequence, not all characteristic
formulae are pessimistically self-minimizing.

We have already said that |=p can be decided at the same cost as its 2-valued
counterpart |=. In [26] it is shown that modal transition systems can be incre-
mentally abstracted by modal transition systems such that the cost of computing
abstract models is the same as in the 2-valued world, where transition systems are
abstracted by simulating transition systems. Furthermore these abstractions can
be synthesized symbolically using BDDs, and they are sound for temporal logics
that may mix universal and existential path quantifiers, such as CTL.

This program of computing abstractions automatically is continued in [27],
but now with a focus on GMC. That paper also studies fragments of temporal

27



logics for which GMC has linear complexity in the size of the model.

8 Open Problems
Our presentation of modal and mixed specifications identified some open research
issues or desired tool support, which we would like to list here in the hope that the
community may help with resolving them.

The results in Table 1 can be improved. Recent, not yet published, work of
the authors of this paper describes a reduction of acceptance of input for a linearly
bounded alternating-time Turing machine (a known EXPTIME-complete prob-
lem) to CI for modal transition systems. The reductions presented in this paper
therefore provide a knock-on effect for that reduction, meaning that all PSPACE-
hard/EXPTIME results in Table 1 can be strengthened to being EXPTIME-com-
plete. There is one notable exception though. Our reductions do not have TR
for modal specifications as a target, since the reduction from C to TR involves a
non-modal specification.

O1 What is the exact complexity of the TR problem for modal specifications?

We currently believe that this is more likely to be in PSPACE (and so PSPACE-
complete) than EXPTIME-hard.

The open problem O1 has a more general instance. The systems of equa-
tions (6) derived from specifications present characteristic formulas in vectorized
form. It is folklore knowledge that satisfiability of such vectorized formulas is in
EXPTIME. But what is their exact complexity for Satisfiability, Validity, and Im-
plication? Note that the complexity of the latter cannot automatically be derived
from the complexities of the former since formulas in vectorized form do not have
explicit support for negation.

O2 What is the exact complexity of Satisfiability, Validity, and Implication for
formulas given as greatest fixed-point equations in vectorized form?

To see the connection of O2 with O1, let M and N be modal specifications with
states s0 and t0 (respectively). Then the thorough refinement I(N, t0) ⊆ I(M, s0)
holds iff the implication ψt0 → ψs0 is valid over implementations, i.e. if all im-
plementations that satisfy ψt0 also satisfy ψs0 . Our aforementioned unpublished
result of the EXPTIME-completeness of CI for modal specifications appears to
be extendable to settle O2 above such that all of its three decision problems are
EXPTIME-complete; this argument, which does not resolve O1 above, will be
made in the upcoming PhD Thesis of Antonik.

28



Another question is whether there is a way in which one can avoid either that
thorough and modal refinement are different, or that thorough refinement has such
high computational complexity. One could approach this in various ways.

First, observe that thorough refinement is a notion derived from, and so de-
termined by, modal refinement: from the definition of modal refinement one de-
rives the definition of what implementations are for specifications, which then
determines what constitutes a thorough refinement. Therefore, one could imagine
alternative co-inductive definitions of (modal) refinement such that their derived
notion of total refinement turns out to capture that modal refinement exactly, and
so also has low computational complexity. A natural design constraint for this is
that any modified definition of modal refinement should still be intuitive and have
nice properties, e.g. be a precongruence for parallel composition operators.

Second, one could consider a sub-class of specifications (and so a correspond-
ing sub-class of implementations) and restrict the existing modal and thorough
refinement to it. This may filter out counter-examples of the kind seen in Fig-
ure 5. A natural design constraint for this is not to rule out specifications that may
actually be desired in modeling and validation activities.

O3 Is there a way of either modifying modal refinement or of restricting the
class of specifications such that modal and thorough refinement are equal
or, failing that, both have low computational complexity?

For propositional modal logic and the modal mu-calculus, we saw consider-
able gaps in the lower and upper bounds for the computational complexities of
deciding whether a formula is optimistically (or pessimistically) self-minimizing.

O4 For modal logics such as propositional modal logic, CTL, and the modal
mu-calculus: what is the exact complexity of deciding whether a formula is
pessimistically self-minimizing?

We also studied a composition operator for synchronization of modal specifi-
cations. We saw that the composition of implementations is again an implementa-
tion. But not all implementations of such a parallel composition are representable
as parallel compositions of implementations.

O5 For which composition operators of modal specifications is it decidable
whether an implementation of a composition of modal specifications is rep-
resentable as the composition of implementations?

Finally, we point out the need for tool support for the decision problems dis-
cussed in this paper. This raises the question of a suitable back-end formalism
into which these problems would be translated for subsequent analysis. Greatest

29



fixed-point formulae in vectorized form, and their decision problems of Satisfia-
bility, Validity, and Implication appear to be a rather obvious choice for CI, C, and
TR since front-ends could then compile models into such formulae with relative
ease. Alternating tree automata or their variants may be suitable for GMC.

9 Concluding Remarks
As we have not aimed at writing a comprehensive survey of work on modal spec-
ifications and their variants, the resulting presentation certainly suffers from in-
completeness. Let us conclude with mentioning a few papers as further recom-
mended reading in particular areas of interest.

Godefroid and Jagadeesan show in [28] how various variants of modal transi-
tion systems such as partial Kripke structures and what we called mixed specifi-
cations are equivalent in the following sense: one can translate one kind of model
efficiently into another such that the respective refinement notions are being pre-
served and reflected. Similarly, temporal logic expressions have efficient transla-
tions that preserve meaning. So the complexity results for CI, C, TR, and GMC
extend to these variants directly via the reductions given in [28]. Similarly, the
complexity results about deciding optimistic and pessimistic self-minimization
for partial Kripke structures carry over to such variants. Unfortunately, the com-
positional proof rules for showing self-minimization [25, 5] are brittle under these
reductions, and so new proof rules have to be devised for these variant models,
e.g. for modal transition systems.

The paper [30] also makes connections between modal transitions and modal
shape graphs, as used in 3-valued shape analysis [45].

In [32] the authors show PSPACE-hardness of solving process algebra equa-
tions involving contexts. The problem consists of deciding whether some process,
in the form of a labeled transition system, exists that, embedded in the given con-
text, satisfies the given inequality or equality. The equations involve bisimulation,
weak bisimulation and modal refinement. That paper also establishes that given
that a context is deterministic, in the sense that one action from the same state
cannot lead to different states, then some equations can be solved in polynomial
time.

In [46] a logical-relation calculus is being developed for the construction of
Galois connections, which are an effective and elegant device for construction ab-
stract interpretations [14]. This calculus can combine under-approximating and
over-approximating Galois connections, can synthesize the optimal mixed transi-
tion systems of [15], and can prove the soundness and optimality of these mod-
els. This work can be seen as bringing together the techniques of abstract model
checking with those of abstract interpretation.

30



Last, but definitely not least, the paper [18] convincingly argues that automata
provide a simple and elegant framework in which one can represent concrete mod-
els, abstractions, and properties so that important analysis questions reduce to fa-
miliar problems in automata theory such as non-emptiness checks. Such automata
often have a finite maximal model M(ϕ) for a property ϕ expressible in the modal
mu-calculus: the model is finite state, satisfies ϕ, and abstracts any other model
that satisfies ϕ – where “abstraction” may be based either on simulation relations
for automata or on the inclusion of the languages they accept. This is in contrast
to the use of modal and mixed specifications: there are formulas ϕ of the modal
mu-calculus for which there are no mixed or modal specifications that are finite
and maximal for ϕ for either modal or thorough refinement [17].

Acknowledgments
We thank Nir Piterman for commenting on drafts of this manuscript. Discussions
with Sebastian Uchitel inspired part of the material in Sections 8 and Section 6.
Part of the research reported here was carried out under the grants Efficient Speci-
fication Pattern Library for Model Validation (EP/D50595X/1) and Complete and
Efficient Checks for Branching-Time Abstractions (EP/E028985/1), funded by the
UK EPSRC. Wąsowski was partly funded by the Center for Embedded Software
Systems (CISS), Aalborg University.

References
[1] Luca Aceto and Anna Ingolfsdottir. Characteristic formulae: from automata to logic.

Bulletin of the European Association for Theoretical Computer Science, February
2007. Concurrency Column.

[2] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of
the Ninth Annual Symposium on Foundations of Software Engineering (FSE), pages
109–120, Vienna, Austria, September 2001. ACM Press.

[3] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Vardi. Alternating
refinement relations. In Davide Sangiorgi and Robert de Simone, editors, Proceed-
ings of the Ninth International Conference on Concurrency Theory (CONCUR’98),
volume 1466 of LNCS, pages 163–178. Springer, 1998.

[4] Adam Antonik and Michael Huth. Efficient patterns for model checking partial state
spaces in CTL ∩ LTL. Electr. Notes Theor. Comput. Sci., 158:41–57, 2006.

[5] Adam Antonik and Michael Huth. On the complexity of semantic self-minimization.
Electr. Notes Theor. Comput. Sci., 2008. To appear as Proc. of AVoCS 2007.

31



[6] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej
Wąsowski. Complexity of decision problems for mixed and modal specifications.
In FoSSaCS, volume 4962 of LNCS. Springer, 2008.

[7] Albert Benveniste. Multiple viewpoint contracts and residuation. In 2nd Interna-
tional Workshop on Foundations of Interface Technologies (FIT), April 2008.

[8] Anders Børjesson, Kim Guldstrand Larsen, and Arne Skou. Generality in design and
compositional verification using tav. Formal Methods in System Design, 6(3):239–
258, 1995.

[9] Greg Brunet, Marsha Chechik, and Sebastián Uchitel. Properties of behavioural
model merging. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors,
FM, volume 4085 of Lecture Notes in Computer Science, pages 98–114. Springer,
2006.

[10] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with 3-
valued temporal logics. In Nicolas Halbwachs and Doron Peled, editors, CAV, vol-
ume 1633 of Lecture Notes in Computer Science, pages 274–287. Springer, 1999.

[11] Glenn Bruns and Patrice Godefroid. Generalized model checking: Reasoning about
partial state spaces. In Catuscia Palamidessi, editor, CONCUR, volume 1877 of
Lecture Notes in Computer Science, pages 168–182. Springer, 2000.

[12] Anders Børjesson, Kim Guldstrand Larsen, and Arne Skou. Generality in design and
compositional verification using tAV. In FORTE ’92 Proceedings, pages 449–464,
Amsterdam, The Netherlands, The Netherlands, 1993. North-Holland Publishing
Co.

[13] Kārlis Čerāns, Jens Chr. Godskesen, and Kim Guldstrand Larsen. Timed modal
specification - theory and tools. In CAV ’93: Proceedings of the 5th International
Conference on Computer Aided Verification, pages 253–267, London, UK, 1993.
Springer-Verlag.

[14] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, pages 238–252, 1977.

[15] Dennis Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, July 1996.

[16] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[17] Dennis Dams and Kedar S. Namjoshi. The existence of finite abstractions for
branching time model checking. In LICS, pages 335–344. IEEE Computer Soci-
ety, 2004.

[18] Dennis Dams and Kedar S. Namjoshi. Automata as abstractions. In Radhia Cousot,
editor, VMCAI, volume 3385 of Lecture Notes in Computer Science, pages 216–232.
Springer, 2005.

32



[19] Nicolás D’Ippolito, Dario Fishbein, Howard Foster, and Sebastian Uchitel. MTSA:
Eclipse support for modal transition systems construction, analysis and elaboration.
In eclipse ’07: Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, pages 6–10, New York, NY, USA, 2007. ACM.

[20] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE, pages 411–420, 1999.

[21] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[22] Alessandro Fantechi and Stefania Gnesi. A behavioural model for product families.
In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 521–524, New York, NY, USA, 2007. ACM.

[23] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foundation for be-
havioural conformance in software product line architectures. In ROSATEA ’06
Proceedings, pages 39–48, New York, NY, USA, 2006. ACM Press.

[24] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[25] Patrice Godefroid and Michael Huth. Model checking vs. generalized model check-
ing: Semantic minimizations for temporal logics. In LICS, pages 158–167. IEEE
Computer Society, 2005.

[26] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based model
checking using modal transition systems. Lecture Notes in Computer Science,
2154:426–440, 2001.

[27] Patrice Godefroid and Radha Jagadeesan. Automatic abstraction using generalized
model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV, volume
2404 of Lecture Notes in Computer Science, pages 137–150. Springer, 2002.

[28] Patrice Godefroid and Radha Jagadeesan. On the expressiveness of 3-valued models.
In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik Mukhopadhyay,
editors, VMCAI, volume 2575 of Lecture Notes in Computer Science, pages 206–
222. Springer, 2003.

[29] Altaf Hussain and Michael Huth. Automata games for multiple-model checking.
Electr. Notes Theor. Comput. Sci., 155:401–421, 2006.

[30] Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems: A
foundation for three-valued program analysis. Lecture Notes in Computer Science,
2028, 2001.

[31] David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and related
results. In Jirí Wiedermann and Petr Hájek, editors, MFCS, volume 969 of Lecture
Notes in Computer Science, pages 552–562. Springer, 1995.

33



[32] Bengt Jonsson and Kim Guldstrand Larsen. On the complexity of equation solving
in process algebra. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT,
Vol.1, volume 493 of Lecture Notes in Computer Science, pages 381–396. Springer,
1991.

[33] Kim Guldstrand Larsen. Modal specifications. In Joseph Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Com-
puter Science, pages 232–246. Springer, 1989.

[34] Kim Guldstrand Larsen. Efficient local correctness checking. In Gregor von
Bochmann and David K. Probst, editors, CAV, volume 663 of Lecture Notes in Com-
puter Science, pages 30–43. Springer, 1992.

[35] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wąsowski. Modal I/O automata
for interface and product line theories. In Rocco De Nicola, editor, ESOP, volume
4421 of Lecture Notes in Computer Science, pages 64–79. Springer, 2007.

[36] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wąsowski. On modal refine-
ment and consistency. In Luís Caires and Vasco Thudichum Vasconcelos, editors,
CONCUR, volume 4703 of Lecture Notes in Computer Science, pages 105–119.
Springer, 2007.

[37] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS, pages
203–210. IEEE Computer Society, IEEE Computer Society, 1988.

[38] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using modal transition
systems. In Fifth Annual IEEE Symposium on Logics in Computer Science (LICS),
4–7 June 1990, Philadelphia, PA, USA, pages 108–117, 1990.

[39] Robin Milner. A modal characterisation of observable machine-behaviour. In Egidio
Astesiano and Corrado Böhm, editors, CAAP, volume 112 of Lecture Notes in Com-
puter Science, pages 25–34. Springer, 1981.

[40] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Sci-
ence, 25, 1983.

[41] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[42] Shiva Nejati, Mihaela Gheorghiu, and Marsha Chechik. Thorough checking revis-
ited. In FMCAD, pages 106–116. IEEE Computer Society, 2006.

[43] D. Park. Concurrency and automata on infinite sequences. In Proceedings of 5th GI
Conference, volume 104 of LNCS, 1981.

[44] Jean-Baptiste Raclet. Residual for component specifications. In 4th International
Workshop on Formal Aspects of Component Software (FACS), September 2007.

[45] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. In POPL, pages 105–118, 1999.

[46] David A. Schmidt. A calculus of logical relations for over- and underapproximating
static analyses. Sci. Comput. Program., 64(1):29–53, 2007.

34



[47] Heiko Schmidt. Comparing disjunctive modal transition systems with an one-
selecting variant. In NWPT’06 – The 18th Nordic Workshop on Programming Theory
(NWPT’06) Reykjavík, Iceland, 18-20 October, 2006, Reykjavík, Iceland, October
2006. Reykjavík University.

[48] Heiko Schmidt. Comparing disjunctive modal transition systems with their one-
selecting variant. Master’s thesis, Christian-Albrechts-Universität zu Kiel, 2006.

[49] Heiko Schmidt and Harald Fecher. Comparing disjunctive modal transition systems
with a one-selecting variant. To appear in the Journal of Logic and Algebraic Pro-
gramming, 2007.

[50] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model synthesis
from properties and scenarios. In ICSE, pages 34–43. IEEE Computer Society, 2007.

[51] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural models. In
Richard N. Taylor and Matthew B. Dwyer, editors, SIGSOFT FSE, pages 43–52.
ACM, 2004.

[52] D. J. Walker. Bisimulation and divergence. Inf. Comput., 85(2):202–241, 1990.

[53] Wikipedia. Generalized geography — Wikipedia, The Free Encyclopedia, 2007.
[Online; accessed 8-May-2008].

[54] Liu Xinxin. Specification and Decomposition in Concurrency. PhD thesis, Depart-
ment of Mathematics and Comnputer Science, Aalborg University, April 1992.

35


	Introduction
	Basics
	Decision Problems
	Complexity
	Extensions
	Applications in Software Engineering
	Model Checking and Semantic Minimization
	Open Problems
	Concluding Remarks

