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Abstract. We consider decision problems for modal and mixed transi-
tion systems used as specifications: the common implementation problem
(whether a set of specifications has a common implementation), the con-
sistency problem (whether a single specification has an implementation),
and the thorough refinement problem (whether all implementations of
one specification are also implementations of another one). Common im-
plementation and thorough refinement are shown to be PSPACE-hard for
modal, and so also for mixed, specifications. Consistency is PSPACE-
hard for mixed, while trivial for modal specifications. We also supply
upper bounds suggesting strong links between these problems.

1 Introduction

Bisimulation equivalence [1] is widely accepted as a correctness criterion for
realizations of abstract specifications. Bisimulation is, however, a rather strong
relation that severely, and often unnecessarily, limits the choices of designers in
how specifications should be realized. At the same time, the main alternative,
bisimulation’s sister preorder simulation [1], is often too weak to use in this
context as it only limits faulty behaviours, without enforcing any correct ones.

In order to address these shortcomings, Larsen and Thomsen [2] have pro-
posed modal transition systems and the accompanying modal refinement, in this
paper referred to simply as refinement. Modal transition systems feature re-
quired and allowed transitions able to simultaneously describe an under- and
over-approximation of behavior within a single specification. Modal refinement
generalizes both simulation and bisimulation, letting the specifier choose the re-
quired level of strictness in the spectrum between the two. In [3] Larsen argued
that any sufficiently expressive specification language necessarily must accom-
modate inconsistent specifications, akin to inconsistent logical formulæ, and thus
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lifted the consistency requirement. The same type of systems were independently
reintroduced by Dams as mixed transition systems [4, 5].

Here we establish complexities of several decision procedures for this family
of specification languages, addressing several long outstanding open problems:

CI Deciding whether k > 1 modal transition systems have a common imple-
mentation is PSPACE-hard in the sum of the sizes of these k systems.

C Deciding whether a mixed transition system is consistent, i.e. whether it has
an implementation, is PSPACE-hard in the size of that system.

TR Deciding whether one modal transition system thoroughly refines another
modal transition system is PSPACE-hard in the size of these systems.

We show quite strong links between these problems. In particular we effi-
ciently reduce problems of type CI to problems of type C, and problems of type
C to problems of type TR—though mixed, not necessarily modal, transition sys-
tems are the targets of that latter reduction. All three problems C, CI, and TR
are shown to be in EXPTIME.

We begin with discussing the related work in Section 2 and introducing the
basic concepts in Section 3. The hardness results and the aforementioned problem
reductions for common implementation, consistency, and thorough refinement
are the subject of Sections 4, 5, and 6 respectively. A general discussion, including
the provision of upper bounds, is given in Section 7. We conclude in Section 8.

2 Related Work

Our terminology differs from that used in [6]: what we call “modal transition
systems” and “mixed transition systems” are called respectively “syntactically
consistent modal transition systems” and “modal transition systems” therein.

In [7] a superpolynomial algorithm was given for deciding CI for k > 1 modal
specifications. The algorithm is exponential in k, but polynomial if k is fixed. In
particular, it computes a common implementation if there is one. These upper
bounds also follow easily from the polynomial algorithm for consistency checking
of a conjunction of disjunctive modal transition systems, as studied in [8].

Larsen et al. [6] show that TR is coNP-hard, while C is NP-hard. We strength-
en both of these bounds here. They also hint at exponential upper bounds for
both problems, without arguing how these can be achieved. We elaborate on
how to attain these bounds, by giving precise reductions in Section 7.

Hussain and Huth [9] present an example of two modal specifications that
have a common implementation but no greatest common implementation.

Fischbein et al. [10] use modal specifications for behavioral conformance
checking of products with specifications of product families. They propose a
new thorough refinement whose implementations are defined through a refine-
ment notion that generalizes branching bisimulation. The thorough refinement
obtained in this manner is finer than weak refinement, and argued to be more
suitable for conformance checking. In the light of the present work it is very
likely that this refinement can be shown to be PSPACE-hard in the size of the
specifications.
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3 Background

Let us begin with defining the basic objects of interest in our study [11, 4, 12]:

Definition 1. For an alphabet Σ, a mixed transition system M is a triple
(S,R2, R�), where S is a set of states and R2, R� ⊆ S×Σ×S are must- and may-
transitions relations respectively. A modal transition system is a mixed transition
system satisfying R2 ⊆ R�; all its must-transitions are also may-transitions. A
pointed mixed (respectively modal) transition system (M, s) is a mixed (modal)
transition system M with a designated initial state s ∈ S. The size |M | of a
mixed (modal) transition system M is defined as |S |+ |R2 ∪R� |. All transition
systems considered here are finite, i.e. Σ and S are always finite sets.

Throughout this paper we refer to pointed modal (mixed) transition systems
as modal (mixed) specifications. Throughout figures, solid arrows denote R2-
transitions, dashed arrows denote R�-transitions. Arrows without labels have an
implicit ?-label, where ? is an action with context-dependent meaning. Two ex-
amples of modal specifications are depicted in Fig. 1, while a mixed specification
that is not a modal specification can be seen in Fig. 5.

Modal refinement [11, 4, 12] is a refinement relationship for mixed specifi-
cations that allows verifying that one such specification is more abstract than
another. It generalizes bisimulation [13] to underspecified models:

Definition 2. A mixed specifications (N, t0) = ((SN , R
2

N , R
�
N ), t0) refines an-

other mixed specification (M, s0) = ((SM , R2

M , R�M ), s0) over the same alphabet,
written (M, s0)≺(N, t0), iff there is a relation Q ⊆ SM × SN containing (s0, t0)
and whenever (s, t) ∈ Q then

1. for all (s, a, s′) ∈ R2

M there exists some (t, a, t′) ∈ R2

N with (s′, t′) ∈ Q.
2. for all (t, a, t′) ∈ R�N there exists some (s, a, s′) ∈ R�M with (s′, t′) ∈ Q.

Deciding whether one finite-state mixed specification refines another one is in P.

Labeled transition systems over an al-

s0

s1 s2 s3

s4
M :

t0

t1 t2

t3
N :

Fig. 1. Specifications (M, s0), (N, t0)
with I(M, s0) = I(N, t0) (so I(M, s0)
⊆ I(N, t0)), but not (N, t0)≺(M, s0)

phabet Σ are pairs (S,R) where S is a
set of states and R ⊆ S×Σ×S is a tran-
sition relation. We identify labeled tran-
sition systems (S,R) with modal transi-
tion systems (S,R,R). The set of im-
plementations I(M, s) of a mixed spec-
ification (M, s) are all pointed labeled
transition systems (T, t) refining (M, s).
Note that I(M, s) may be empty in gen-
eral, but is guaranteed to be non-empty
if M is a modal transition system.

Example. (Due to Harald Fecher) Fig-
ure 1 shows modal specifications (M, s) and (N, t) over alphabet {?}. Rela-
tion Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t3)} witnesses that (N, t0) refines
(M, s0), but (M, s0) does not refine (N, t0).
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As in [6] we define the thorough refinement (M, s)≺th(N, t) to be the predi-
cate I(N, t) ⊆ I(M, s). Transitivity of refinement ensures that refinement soundly
characterizes thorough refinement: (M, s)≺(N, t) implies (M, s)≺th(N, t). But
the converse does not hold: completeness of refinement for thorough refinement,
is known to be false [14–16]; Figure 1 provides a counterexample.

We shall now formally define the problems that we study, and briefly discuss
their significance.

Common implementation (CI): given k > 1 mixed specifications (Mi, si), is
the set

⋂k
i=1 I(Mi, si) non-empty? For example, (M1, s1) could be our system

model and all other (Mi, si) could be definitions of faulty behavior (respectively
features). Common implementations are then possible implementations of our
model that can exhibit all k − 1 faults (features).
Consistency (C): Is I(M, s) non-empty for a mixed specification (M, s)? Specifi-
cation formalisms need the ability to express inconsistencies so that conflicts in
systems or their design are detectable. Equally, inconsistent specifications may
well result from the composition of consistent specifications.
Thorough refinement (TR): Does a mixed specification (N, t) thoroughly refine
a mixed specification (M, s), i.e., do we have I(N, t) ⊆ I(M, s)? As refinement
is only sound but not complete for thorough refinement, the question arises of
whether thorough refinement has an efficient, e.g. co-inductive, definition that
can be integrated in refinement tools.

We assume that specifications are finite-state, given their abstract nature.
But implementations may (have to) be infinite-state as we otherwise cannot
express important features, e.g. unbounded ranges of data types. For the three
decision problems studied in this paper, it turns out that they won’t change if we
restrict implementations to finite-state ones. For example, a mixed specification
(M, s) is consistent in the infinite sense iff its characteristic modal mu-calculus
formula Ψ(M,s) [17] is satisfiable. Appealing to the small model theorem for that
logic, Ψ(M,s) is satisfiable iff it is satisfiable over finite-state implementations.
We can reason in a similar manner about common implementation, through
the formula

∧
i Ψ(Mi,si). Finally, (M, s)≺th(N, t) is false iff Ψ(N,t) ∧ ¬Ψ(M,s) is

satisfiable. This justifies that we consider only finite-state specifications and
implementations.

Throughout this paper we work with Karp reductions, many-one reductions
computable by deterministic Turing machines in polynomial time. This choice
is justified since we reduce problems that are PSPACE-complete.

4 Common Implementation

We show that the CI problem is PSPACE-hard for modal specifications, which
then automatically renders the same hardness result for mixed specifications.

Theorem 3. Let {(Mi, si) | 1 ≤ i ≤ k} with k > 1 be a finite family of modal
specifications over the same action alphabet Σ. Deciding emptiness of the set⋂k

i=1 I(Mi, si) is PSPACE-hard in
∑k

i=1 |Mi |.
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We argue for this by reduction from the Generalized Geography game [18, 19].

Definition 4. A rooted, directed graph is a structure G = (V,E, v0), where V
is a finite set of vertices, E ⊆ V × V is a set of edges and v0 ∈ V is the root.
For an edge e = (u, v) ∈ E we write tgt e for v and src e for u, and we define
Follow(e) := {f ∈ E | tgt e = src f} and Init := {e ∈ E | src e = v0}.

For G = (V,E, v0) the two-player Generalized Geography game on G is played
according to the following rules:

“The two players alternate choosing a new edge from E. The first edge
chosen (by player 1) must have its source at v0 and each subsequently
chosen edge must have its source at the vertex that was the target of the
previous edge and must not have been previously chosen in the game.
The first player unable to choose such a new edge loses.” [18, p. 254]

The generalized geography problem (GenGeo) is whether given a rooted di-
rected graph G does there exist a winning strategy for player 1 in the Generalized
Geography game played on G? GenGeo is PSPACE-complete [18].

Proof (of Theorem 3). We reduce GenGeo to checking CI of k modal specifi-
cations {(Mi, si)}, where both k and each |Mi | are at most polynomial in the
size of G. The reduction should be such that a common implementation of all
(Mi, si), if it exists, will explicitly give the winning strategy for Player 1.

We will create a set of modal specifications for each kind of conditions im-
posed by the game. All specifications will share an alphabet Σ = E∪{?}, where
? is a fresh name such that ? /∈ E. Choosing an edge in the game corresponds
to taking a transition in these specifications.

Let us begin with modal specifications (P1, s1) and (P2, s2) presented in Fig-
ure 2, which ensure that Player 1 can always continue – a necessary condition
for obtaining a winning strategy. Transitions with labels X ⊆ Σ denote sets of
transitions, one for each e ∈ X. We keep track of whose turn it is in the game by
distinguishing Player 1 states from Player 2 states, labeling states with Player
numbers for the sake of clarity. Observe that both P1 and P2 oscillate between
Player 1 and Player 2 decisions. Each Player 2 move is modeled directly by a
single transition, while a Player 1 move is modeled by exactly two transitions; a
?-transition followed by a regular edge transition. As will be seen later, disjunc-
tive choices will only occur in Player 1 mode, so ?-transitions used to encode
disjunctions are there only for Player 1 states. Specification P1 limits choices of
Player 1 to a disjunction of all legal actions, while P2 enforces that at least one
of these choices is indeed taken.

Let us continue with the remaining GenGeo game rules. We can enforce
that an edge e is played at most once using a modal specification (Me, se) shown
in the left part of Figure 3. This specification models a flag that disallows any
further e-transitions once e has been used. Similarly, for each edge e create a
modal specification (Ne, te), as shown in the right part of Figure 3, to constrain
the moves following an e move to edges directly following it. Ne has a ?-labeled
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1

1

1
2

s1

(P1, s1) :

en

e0

E

...
1 1 2E

E

s2

(P2, s2) :

Fig. 2. Modal specifications (P1, s1) and (P2, s2) together ensuring that Player 1 can
always continue playing. Assume E = {e0, . . . en}

se e

Σ \ {e} Σ \ {e}Me :

te
e fn

f0
ΣΣ \ {e} ...

Ne :

Fig. 3. Specifications Me, Ne instantiated for each e ∈ E and {f0, . . . , fn} = Follow(e)

loop on its middle state to account for both Player 1 and Player 2 moves. Recall
that if e was played by Player 2, then in our encoding it will be first followed by
a ? before Player 1 plays any subsequent edge. The requirement that Player 1
should choose one of the transitions leaving the root as the first move is enforced
by (P0, s0) as shown in the left part of Figure 4.

We are left with the last and the most complex game rule, namely that when-
ever Player 1 makes a choice then Player 2 has to be able to respond with any
so far unused edge f following that choice. Our implementation, which directly
represents the strategy, should thus have all transitions representing possible
choices in such a state. We model this by creating a specification (Mef , sef ) for
every pair of edges e and f such that f ∈ Follow(e) \ {e}. The idea is that each
modal transition system Mef enforces an f transition after an e transition has
been chosen by Player 1, unless f has already been used (either by Player 1 or
Player 2), or e has been used by Player 2. See the right part of Figure 4.

The answer to GenGeo(V,E, v0) is yes iff the answer to CI is yes for ⋃
i=0..2

{(Pi, si)}

 ∪ ⋃
e∈E

{(Me, se), (Ne, te)} ∪
⋃

f∈Follow(e)\{e}

{(Mef , sef )}

 . (1)

The size of each of these O(|E|2) specifications is O(|E|). ut

Corollary 5. The common implementation problem for k > 1 mixed specifica-
tions is PSPACE-hard in the size of these specifications.

Proof. This follows from Theorem 3 and the fact that the set of mixed specifi-
cations is a superset of the set of modal specifications. ut
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s0

en

e0
Σ...

(P0, s0) :

1

1 2

2

e f

Σ\{?, e, f}

Σ\{?, e, f}
{e, f}

f

Σ

sef(Mef , sef ):

Fig. 4. Specifications (P0, s0) and (Mef , sef ) assuming that Init = {e0, . . . , en}

5 Consistency

Let us now show that consistency of a single mixed specification is PSPACE-
hard in its size. We achieve this by appealing to Theorem 3, and reducing CI for
several modal specifications to the C for a single mixed specification.

Theorem 6. Consistency of a mixed specification is PSPACE-hard.

Proof. By Theorem 3, it suffices to show how k > 1 mixed specifications (Mi, si)
can be conjoined into one mixed specification (M, ck) with |M | being polyno-
mial in

∑
i |Mi | such that (M, ck) has an implementation iff all (Mi, si) have a

common implementation.
Figure 5 illustrates the construc- s1

c2 s2

c3 s3

ck sk

(M1, s1)

(M2, s2)

(M3, s3)
...

...
...
· · ·

· · ·

(Mk, sk)

Fig. 5. Conjunction of k mixed specifi-
cations into one mixed specification

tion, which originates in [6], by show-
ing a conjunction of states s1, s2, s3
up to sk. In order to conjoin two states
s1 and s2, two new ?-transitions are
added from a fresh state c2 to each
of s1, s2. One of the ?-transitions is
a may ?-transition and the other is a
must ?-transition. Only two states can
be conjoined directly in this way, but
the process can be iterated as many
times as needed, as seen in the figure,
by adding a corresponding number of
?-transitions to the newly conjoined systems. Observe that the resulting specifi-
cation is properly mixed (not modal). Its size is linear in

∑
i |Mi | and quadratic

in k, which itself is O(
∑

i |Mi |).
If the specifications that are being conjoined have a common implementation,

then the new specification will also have an implementation which is the same
implementation prefixed with a sequence of k−1 ?-transitions. Conversely if the
new mixed specification has an implementation, then this implementation will
contain at least a sequence of k−1 ?-transitions, followed by an implementation
that must individually satisfy all the systems that have been conjoined. ut
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6 Thorough Refinement

We show PSPACE-hardness of TR for mixed specifications by appeal to Theo-
rem 6 and a reduction of consistency checks to thorough refinement checks.

Theorem 7. Thorough refinement of mixed specifications is PSPACE-hard in
the size of these specifications.

Proof. By Theorem 6 deciding C for a mixed specification is PSPACE-hard.
Therefore it suffices to reduce C to TR. Let (M, s) be a mixed specification over
Σ. Consider a modal specification (N, t) over Σ ∪ {?} with N = ({t}, {}, {}),
which only has a single state and no transitions. From (M, s) construct the mixed
specification (M ′, s′) over Σ∪{?} by prefixing s with a new state s′ and a single
transition (s′, ?, s) ∈ R�M ′\R2

M ′ . Then (M ′, s′) is a mixed specification that has
(N, t) as an implementation, where Q = {(s′, t)} is the witnessing refinement
relation. We show that (M, s) is consistent iff not (N, t)≺th(M ′, s′).

1◦ If (M, s) is consistent, then it has an implementation (L, l), from which we
get an implementation (L′, l′) of (M ′, s′) by creating a new state l′ with
a transition (l′, ?, l). But then (M ′, s′) has an implementation that is not
allowed by (N, t) and so I(M ′, s′) 6⊆ I(N, t).

2◦ Conversely, if I(M ′, s′) 6⊆ I(N, t) then there exists an implementation (L, l′)
of (M ′, s′), which is not an implementation of (N, t) – and so (L, l′) has a
transition (l′, ?, l). Moreover (L, l) refines (M, s) since (L, l′) refines (M ′, s′)
and s is the unique successor of s′ in M ′. Thus (M, s) is consistent.

Remark: Observe that the first argument above would also work for refinement
instead of thorough refinement. However we would not be able to get the second
implication for refinement, due to its incompleteness. ut

Let us now strengthen Theorem 7 to the subclass of modal specifications, by
a polynomial reduction from the PSPACE-complete decision problem QUAN-
TIFIED 3SAT [18, pp. 171-2] of computing the truth value of closed quantified
Boolean formulæ in 3CNF. These formulæ are of the form Qx1 . . . Qxn. χ, where
each Q is ∃ or ∀ and χ is a propositional formula over x1, . . . , xn in 3CNF. We
refer to them as QCNF formulæ in here. We can assume without loss of gen-
erality that our formulæ do not contain any clauses with duplicate literals, nor
vacuously true clauses. We use ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x) as a running example.

We present the semantics of QCNF formulæ in a style that will facilitate
our proof. Each formula ϕ can be rewritten into a set of valuation trees. The
non-deterministic rewrite system for this is depicted in Figure 6. Universal quan-
tification rewrites into branching, existential quantification into a choice, and
the 3CNF kernel χ into the set of variables selected to be true on the path
from the tree root to that kernel node. The terminals of this rewrite system for
term (ϕ, ∅) are valuation trees of ϕ. One such valuation tree for the formula
∀x∃y (¬x∨ y)∧ (¬y∨x) can be seen in Figure 7. Each leaf of a valuation tree T
contains all those xi that are true in the respective model for the propositional
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(∀xϕ′, V ) 
1 0

x

(ϕ′, V ∪ {x}) (ϕ′, V )

(∃xϕ′, V ) 1 0

x

(ϕ′, V ∪ {x})

x

(ϕ′, V )

or

(χ′, V ) V

Fig. 6. Semantics of QCNF as a non-
deterministic rewrite system

x

y y

{x, y} ∅

1 0

01

Fig. 7. Valuation tree witnessing the
truth of ∀x ∃y (¬x ∨ y) ∧ (¬y ∨ x)

kernel formula χ. We define T |= ϕ to mean that all models of leaves of T satisfy
the kernel χ of ϕ. Finally, ϕ is defined to be true iff there is a valuation tree T
for ϕ such that T |= ϕ. For example, T |= ϕ for the valuation tree T in Fig. 7,
as the CNF kernel (¬x∨ y)∧ (¬y ∨x) is true in both models {x, y} (x and y are
true) and ∅ (x and y are false). Thus, ϕ is true.

In Figure 8 we present a second non-deterministic rewrite system whose ter-
minals are potential valuation trees. In this new system there is no path context,
existential quantification has two more rewrite rules, and the CNF kernel may
rewrite into any subset of its variables. The terminals of this rewrite system are
potential valuation trees of ϕ. By construction, every valuation tree is a potential
valuation tree. A potential valuation tree that is not a valuation tree is called a
flawed valuation tree. Figure 9 shows a valuation tree for our running example
with three kinds of flaws: the leftmost y node has no successor, the rightmost y
node has two successors, and the leaf set {x, y} is inconsistent with the 0 label
for x on its path.

Our reduction constructs for any ϕ of QCNF two modal specifications (Nϕ, tϕ)
and (Mϕ, sϕ) such that

I(Nϕ, tϕ) ⊆ I(Mϕ, sϕ) iff ϕ is false. (2)

The intuition behind the construction is that (Nϕ, tϕ) models potential valuation
trees and (Mϕ, sϕ) models flawed, and only flawed, valuation trees of ϕ.

More precisely, these modal specifications are such that any valuation tree T
with T |= ϕ can be transformed into an implementation of (Nϕ, tϕ) that is not
an implementation of (Mϕ, sϕ) and, conversely, that any element of I(Nϕ, tϕ) \
I(Mϕ, sϕ) can be transformed into such a valuation tree T with T |= ϕ.

Both models are defined over the following alphabet

Σϕ = {?} ∪ {vxi
, v¬xi

| 1 ≤ i ≤ n} (3)

9



∀xϕ′  
x

ϕ′

1 0

ϕ′

∃xϕ′  x

∃xϕ′  
x

ϕ′
w where w ∈ {0, 1}

∃xϕ′  ∀xϕ′

χ any subset of variables of χ

Fig. 8. Non-deterministic rewrite sys-
tem for QCNF deriving potential valu-
ation trees

x

y y

{x, y} ∅

1 0

01

Fig. 9. Flawed valuation tree for for-
mula ∀x ∃y (¬x ∨ y) ∧ (¬y ∨ x)

where x1, . . . , xn is the set of variables of ϕ.1 Specification (Nϕ, tϕ) is defined
by structural induction on ϕ according to the rules presented in Figure 10. The
initial state tϕ has a must ?-transition to the continuation of the compilation
of Nϕ. Each quantifier Qxi gets translated into a diamond shaped model of
?-transitions, where the upper half consists of must and may transitions for
quantifiers ∀ and ∃ (respectively). The corners of diamonds have “spikes”, tran-
sitions labeled with a “truth value” vxi

or v¬xi
, for quantifier variable xi, to a

dead-end state. After all quantifiers have been compiled in this manner, con-
junction is compiled as a fork of two must ?-transitions, disjunction as a fork of
two may ?-transitions, and literals compiled as spikes of truth values. See the
result of this compilation for our running example in Figure 11.

Refinement, as defined for modal speci-
sϕ

C∃xi

1≤i≤n

C∨ Cxi

1≤i≤n

C¬xi

1≤i≤n

Fig. 12. Structure of modal spe-
cification (Mϕ, sϕ): ?-transitions
lead from sϕ to components that
detect possible flaws in potential
valuation trees of ϕ

fications, does not guarantee that a fork of
may ?-transitions (present in the compila-
tion of ∃xi and ∨) will implement at least
one of these may ?-transitions. Also, an
implementation may be inconsistent as to
its choice of truth values vxi

or v¬xi
. Each

path through a sequence of diamonds cor-
responds to a choice of such truth values,
recorded in the respective spike transition.
When such a path reaches the compilation
of a propositional literal, that literal may
well be inconsistent with the spike for that literal encountered en route. In total,
these are then the static criteria for corresponding to a flawed valuation tree,
and hence drive the construction of specification (Mϕ, sϕ), whose architecture
is depicted in Fig. 12. Initial state sϕ has may ?-transitions to modal specifi-
1 A stronger, albeit more complicated, reduction is possible to TR of specifications

over a singleton alphabet. We show the simpler variant here for the sake of clarity.
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ϕ 
tϕ

[ϕ]

[∀xϕ′] 
vx v¬x

[ϕ′]

[∃xϕ′] 
vx v¬x

[ϕ′]

[ϕ1 ∧ ϕ2] 

[ϕ1] [ϕ2]

[ϕ1 ∨ ϕ2] 

[ϕ1] [ϕ2]

[xi] vxi

[¬xi] v¬xi

Fig. 10. Deterministic rules rewriting a QCNF for-
mula ϕ into a specification (Nϕ, tϕ)

vx v¬x
∀x

vy v¬y
∃y

∧

∨

v¬yvxvyv¬x

Fig. 11. Modal specifica-
tion (Nϕ, tϕ) for ϕ =
∀x∃y (¬x ∨ y) ∧ (¬y ∨ x)

cations, components that each encode a potential flaw for a valuation tree. For
each variable xi of ϕ we have a component

– C∃xi
, whose Mϕ-implementations have no “witness” for ∃xi, i.e., no may

transitions on the top of the diamond encoding the quantifier.
– Cxi

, whose Mϕ-implementations have a path on which there is some vxi

spike but where, on that same path, a v¬xi-transition occurs subsequently
– C¬xi

, whose Mϕ-implementations have a path on which there is some v¬xi

spike but where, on that same path, a vxi-transition occurs subsequently.

Finally there is a component C∨ whose Mϕ-implementations all have a path
of 3n ?-transitions to a dead-end state, and so no such implementation can
encode all disjunctions of ϕ correctly.

Based on the constructions we can present the following theorem.

Theorem 8. Thorough refinement between modal specifications is PSPACE-
hard in the size of these specifications.

Since the modal transition systems Nϕ and Mϕ can be constructed in poly-
nomial time in the size of ϕ, it suffices to show that (3) holds. The proof of this
fact can be found in the Appendix.

Note that, by construction, (({sϕ}, ∅, ∅), sϕ) is an implementation of (Mϕ, sϕ)
but not of (Nϕ, tϕ). So the result also applies to strict thorough refinement.

Corollary 9. Strict thorough refinement, whether I(N, t) ⊂ I(M, s), is PSPACE-
hard in |M | and |N | for modal and thus also for mixed specifications.
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Fig. 13. Modal specification (Mϕ, sϕ) for ϕ = ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x). All incoming
and outgoing transitions of all loop states are labeled with Σϕ (omitted for clarity)

7 Discussion

First, we relate our results to the complexity of related problems. Second, we
discuss and derive our upper bounds.

In [20] efficient translations are given between various classes of 3-valued
models such that these translations preserve and reflect the respective refine-
ment notions. These classes of models are all consistent and one of them sub-
sumes modal transition systems. Therefore our complexity results for common
refinement and thorough refinement for modal transition systems transfer to
these model classes if we define our three concepts in the same manner for each
respective notion of refinement. In particular, our complexity results apply to
partial Kripke structures and Kripke modal transition systems.

It is likely that our results extend to “weak” refinement notions that general-
ize weak bisimulation. This, however, requires a further study. Such refinement
notions were systematically studied in [6].

The “conjunction” gadget used in reducing the common implementation
problem for modal transition systems to consistency of a mixed transition system
(Section 5) is able to identify states uniquely based on the may/must pattern
of transitions encountered en route from the initial state. Nominals, used in hy-
brid logic [21], are a well known mechanism for identifying states uniquely. One
can show NP-hardness of the common implementation problem for two modal
transition systems already if such systems are enriched with nominals [22].
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If specifications are “closed under negation” in that ¬(M, s) has the comple-
ment of I(M, s) as set of implementations, then thorough refinement reduces to
common implementation: (M, s)≺th(N, t) is false iff (M, s) and ¬(N, t) have a
common implementation. From the results in [17] it follows easily that modal
transition systems do not have such a negation. Support of negation for specifi-
cations should require more structure than that found in mixed transition sys-
tems. Another open problem is whether non-empty languages I(M, s) accepted
by mixed specifications (M, s) can also be accepted by modal specifications; in
other words—if a mixed specification is consistent, is it refinement-equivalent to
a modal specification?

Generalized model checking [23] considers judgments GMC(M, s, ϕ) which
hold iff there is an implementation of (M, s) that satisfies ϕ. For pointed modal
specifications (M, s) and Hennessy-Milner formulae ϕ this is PSPACE-complete
in the size of ϕ [23, 20]. For each such ϕ there are 1 ≤ m <∞ pointed modal spec-
ifications (Mi, si) such that GMC(M, s, ϕ) is false iff I(M, s) ⊆

⋃m
i=1 I(Mi, si)

[17]. Intuitively, the union on the right-hand side is the set of implementations
that satisfy ¬ϕ. In general, m > 1 so there seems to be no natural and direct
reduction of generalized model checking to thorough refinement. For ϕ in CTL,
GMC(M, s, ϕ) is EXPTIME-complete [23, 20] but 1 < m or m =∞ may hold.

We finally discuss what upper bounds we can provide for the decision prob-
lems presented in this paper. Mixed and modal specifications (M, s) have char-
acteristic formulæ Ψ(M,s) [17] in the modal µ-calculus such that pointed labeled
transition systems (L, l) are implementations of (M, s) iff (L, l) satisfies Ψ(M,s).
The common implementation and consistency problem reduce to satisfiability
checks of

∧
i Ψ(Mi,si) and Ψ(M,s), respectively. The thorough refinement problem

of whether (M, s)≺th(N, t) reduces to a validity check of ¬Ψ(N,t) ∨ Ψ(M,s).

Validity checking of such vectorized modal µ-calculus formulæ is in EXP-
TIME (an unpublished popular wisdom, for which we give a formal argument
here). One way in which this membership in EXPTIME can be seen is by trans-
lating the problem into alternating tree automata. It is well known that formulæ
Ψ(M,s) can be efficiently translated [24] into alternating tree automata A(M,s)

(with parity acceptance condition) that accept exactly those pointed labeled
transition systems that satisfy Ψ(M,s). Since non-emptiness, intersection, and
complementation of languages is in EXPTIME for alternating tree automata,
we get our EXPTIME upper bounds if these automata have size polynomial in
|M |. Since the size of Ψ(M,s) may be exponential in |M | we require a direct
translation from (M, s) into a version of A(M,s). The formulæ Ψ(M,s) can be
written as a system of recursive equations [3] Xs = bodys for each state s of
M . We can therefore construct all A(M,s) in a compositional manner: whenever
Xs refers in its bodys to some Xt, then A(M,s) has a transition to the initial
state of A(M,t) at that point. This A(M,s) generates the same language as the
one constructed from Ψ(M,s), by appeal to the existence of memoryless winning
strategies in parity games. The system of equations is polynomial in |M |, and
so the compositional version of A(M,s) is polynomial in the size of that system
of equations. We summarize:
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Theorem 10. The common implementation, consistency and thorough refine-
ment problems are all in EXPTIME for modal and mixed specifications.

8 Conclusion

We studied modal and mixed specifications and their fundamental decision prob-
lems: consistency (a form of realizability), common implementations (a conjunc-
tive form of consistency), and thorough refinement (a form of implication) of
specifications. We established that all these decision problems are in EXPTIME
and PSPACE-hard for mixed as well as for modal specifications – keeping in
mind that all modal specifications are consistent by construction. These results
showed that some of these decision problems are at least as hard as others studied
here. This raises the question of whether they in fact have the same complexity.

Table 1. Tabular summary of the results provided in this paper

Modal specifications Mixed specifications

Common implementation PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

Consistency trivial PSPACE-hard, EXPTIME

Thorough refinement PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME
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