
FIT 2005 Preliminary Version

Interface Input/Output Automata:
Splitting Assumptions from Guarantees

Kim G. Larsen 1 Ulrik Nyman 1 Andrzej Wąsowski 1

Center for Embedded Software Systems (CISS), Aalborg University, Denmark

Abstract

We propose a new look at one of the most fundamental types of behavioral interfaces:
discrete time specifications of communication—directly related to the work of de
Alfaro and Henzinger [2]. Our framework is concerned with distributed non-blocking
asynchronous systems in the style of Lynch’s I/O-automata [11], relying on a context
dependent notion of refinement based on relativized language inclusion.

There are two main contributions of the work. First, we explicitly separate as-
sumptions from guarantees, increasing the modeling power of the specification lan-
guage and demonstrating an interesting relation between blocking and non-blocking
interface frameworks. Second, our composition operator is systematically and for-
mally derived from the requirements stated as a system of inequalities. The derived
composed interfaces are maximal in the sense of behavior, or equivalently are the
weakest in the sense of assumptions. Finally, we present a method for solving sys-
tems of inequalities as used in our setup.

Key words: software design, programming languages, components

1 Introduction

Interfaces play an essential role in any software engineering methodology sup-
porting component based system development. Traditionally static type in-
formation, type checking, annotations and inference have been used to decide
whether or not two components are compatible. Static types, or static inter-
faces, are necessarily very conservative and usually very weak. Most typically
type correctness implies only simple safety properties and rejects many pairs
of components as incompatible, even if they could effectively cooperate in
practice. The goal of the work presented in this article is grossly the same as
that of de Alfaro’s and Henzinger’s in [2,3]: to provide a more expressive way
of describing component interfaces, especially for model driven development
processes, when most typically finite state models can be used.

1 Email: {kgl,ulrik,wasowski}@cs.aau.dk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Following our predecessors, we believe that enriching interfaces with de-
scriptions of behaviors gives enough power to meet the typical requirements.
Thus we choose to model behavior of the components using automata. We
explicitly split the assumptions and guarantees about a given component into
two different automata though. Each interface consists of an environment
and a specification. An environment automaton describes the assumptions
that the component makes about the behavior of its surroundings. A speci-
fication automaton describes the guarantees that the component gives about
the output that it will deliver.

A significant advantage of composite interfaces is that one of the parts can
be changed without changing the other part. Thus the same assumptions can
be used for multiple interfaces. It has been argued before [8] that such a setup
is useful for modeling software product lines: a family of component variants
may be specified using a single specification (guarantee) and multiple environ-
mental restrictions. A clever compiler may use such a restricted interface to
derive specialized versions of components from a single source code.

An interesting theoretical side effect of our exposition, is an implicit cor-
respondence drawn between blocking and non-blocking interface theories. A
single blocking interface automaton of [2] expresses both the assumptions of a
component and the guarantees that it provides. When an interface is not able
to accept some input, it effectively assumes that any compatible environment
will never provide it. Once we make our systems non-blocking, the same effect
is achieved by enriching interfaces with an explicit description of permissible
behavior of the surroundings (the environment component of the interface in
our case). We demonstrate that in this way a very similar kind of theory is
obtained for non-blocking systems. Rightly so, the theory is obtained with
solely use of standard notions such as I/O-automata, relativized refinement,
modal transition systems that were available long before research in the inter-
face theories emerged. There seems to be no indication that a blocking theory
could not be obtained in the same way.

Composition of interfaces is a central construction in any interface theory:
what is the interface implemented by any two components implementing two
given interfaces? A new achievement of our work is that the composition is
derived systematically. Instead of proposing the operator and proving proper-
ties about it, we state requirements for it in form of a system of inequalities,
and derive a result of the composition systematically as a maximal solution
of this system. As a result properties of composition hold by construction.

The next section introduces the framework by means of an adapted ver-
sion of an example originating from [3]. In sections 3 and 4 we define the
Input/Output automata and interfaces. Section 5 defines the composition of
interfaces, and section 6 gives a method for solving systems of inequality used
in earlier sections. Sections 7 and 8 discuss the related work and conclude.

0 1

send?

ok !

send ok fail

(a) The environment EnvClient

describing the assumptions.

0 1

send !

ok?

send ok fail

(b) The specification SpecClient

describing the guarantees.

Fig. 1. The interface Client consisting of EnvClient and SpecClient .

2 Example

An interface of a component is given by two automata: the environment
automaton describes the assumptions that are made about the environment in
which the component can function, while the specification automaton states
the guarantees that the component provides about the output delivered.

Figure 1 gives an interface for a simple client component having two inputs
and one output. Figure 1(a) shows the environment part, EnvClient , which
describes the assumptions that the component designer has made about the
environment. The arrows going into or away from the rounded box around
the automaton describe the static type (signature) of the environment. The
specification, which for the Client is shown in Figure 1(b), will always have the
inverse signature. The environment automaton specifies that even though the
static type allows the possibility of the fail input, the emission of this input
is disallowed by the dynamic type for all compliant execution environments.
One can still use the Client component in a context that syntactically permits
fail, but the behavior of the Client is only guaranteed in environments never
actually producing this input.

Both EnvClient and SpecClient are input enabled, meaning that they accept
any input in any state, as long as the input belongs to the signature. We
adopt a notational convention that transitions corresponding to ignoring an
input (input self-loops) are not drawn. Thus in the above example there is one

implicit transition 1
send ?

−−−→1 in the environment EnvClient . One of the implicit

transitions of SpecClient is 0
fail ?
−−→0.

Fig. 2 gives the environment assumptions of a component TryTwice that is
composable with the Client component. Fig. 3 gives the output guarantees of
TryTwice. The two components do not form a closed system, but are intended
for use together with a LinkLayer component, which remains unspecified.

Observe that all the environments, which we have shown until now, are
just reflections of their accompanying specifications, in the sense that what is

5

0 1 2 3 4

6

ack!ok?
ack!

send ! trnsmt? nack ! trnsmt?

fail? nack!

send ok fail

trnsmt ack nack

Fig. 2. The environment EnvTryTwice describing the assumptions of the TryTwice

component.

5

0 1 2 3 4

6

ack?ok!
ack?

send? trnsmt! nack? trnsmt!

fail! nack?

send ok fail

trnsmt ack nack

Fig. 3. The specification SpecTryTwice describing the guarantees of the TryTwice

component.

an input in the specification is an output in the environment and vice versa.
This is caused by the fact that they have been created directly from a blocking
example in [3], which closely links the assumptions to guarantees. However,
our motivation behind modeling the environment and the specification sep-
arately was that one component could be used in several environments or
several components can be used in the same environment. Fig. 4 gives an
alternative environment for the SpecTryTwice specification. This environment
disallows sending of a nack as a response to a trnsmt request. It is also unable
to send a fail event to the Client component. Now consider an implementation

5

0 1 2

ok?
ack!

send! trnsmt?

send ok fail

trnsmt ack nack

Fig. 4. The environment EnvNoNack with different assumptions about the environ-
ment for SpecTryTwice .

of a communication layer in which it is indicated that the implementation of
TryTwice will run in the environment EnvNoNack . The actual source code of
TryTwice’s implementation could be automatically specialized to the environ-
ment of this specific configuration. In this particular case the error handling
code could be removed as the component no longer needs to be able to handle
a nack reply.

The two environments impose different restrictions on a possible LinkLayer

component. The original EnvTryTwice together with SpecTryTwice requires that
LinkLayer does not send two nack replies in a row, whereas the EnvNoNack

environment would enforce that the LinkLayer never sends a nack reply at all.
At the same time EnvTryTwice composed with the Client will never produce
two nack messages sent in a row, as this may lead to a failure in the Client

(the environment may produce a disallowed fail).

3 Input/Output Automata

Definition 3.1 An I/O automaton A = (statesA, startA, inA, outA, stepsA) is
a 5-tuple, where statesA is a set of states, startA ⊆ statesA is a non empty
set of initial states, inA is a set of input actions, outA a set of output actions
(inA ∩ outA = ∅), and stepsA ⊆ statesA ×(inA ∪ outA ∪{τ}) × statesA is a set
of transitions, where τ is a fixed internal action contained in neither inA nor
outA. I/O automata are input enabled: for every state s and any input action
i ∈ inA there exists a state s

′ and a transition (s, i, s′) ∈ stepsA.

It is convenient to abbreviate inA ∪ outA as extA and extA ∪{τ} as actA.
In order to increase clarity we often explicitly suffix actions with direction of
communication. If (s, a, s′) ∈ stepsA, then we write s

a!
−→s′ if a ∈ outA, and

s
a?
−→s′ if a ∈ inA. Notice that labels a! and a? still denote exactly the same
action, and we can drop the suffixes whenever the direction of communication
is clear from the context or irrelevant.

Definition 3.2 An execution of an I/O-automaton A starting in a state s0

is a finite sequence of labels s0, a0, s1, a1, s2, a2, . . . , sn−1, an−1, sn such that
all si’s are members of statesA, all ai’s are members of actA and for every
k = 0 . . . n− 1 it is the case that sk

ak−−→A sk+1.

Definition 3.3 A trace σ of an I/O-automaton A is an execution ψ of A
starting in a state s0 ∈ startA, with all the states and internal τ actions
deleted:

σ = ψ � extA

where σ � X denotes the trace created from σ by removing all symbols that
are not in the set X. The set of all traces of automaton A is denoted TrA.

Two I/O-automata A and B are syntactically composable if their input and
output sorts do not overlap: inA ∩ inB = ∅ and outA ∩ outB = ∅. Two syn-
tactically composable automata A = (statesA, startA, inA, outA, stepsA) and
B = (statesB, startB, inB, outB, stepsB) can be composed into a single automa-
ton A|B = (statesA|B, startA|B, inA|B , outA|B, stepsA|B), where statesA|B =
statesA × statesB, startA|B = startA × startB, inA|B = inA ∪ inB \ outA \ outB,
outA|B = outA ∪ outB \ inA \ inB, and stepsA|B are all the transitions defined
according to the following rules:

s1
a
−→s

′
1 a ∈ extA \ extB

(s1, s2)
a
−→(s′1, s2)

s2
a
−→s

′
2 a ∈ extB \ extA

(s1, s2)
a
−→(s1, s

′
2)

s1
a
−→s

′
1 s2

a
−→s

′
2

(s1, s2)
τ
−→(s′1, s

′
2)

In practice unreachable states may be removed from the product, without
affecting any of the results presented below.

The standard notion of refinement for I/O automata is based on language
inclusion:

Definition 3.4 An I/O-automatonA refines (implements) an I/O-automaton
B, written A 6 B, if they have the same signatures, inA = inB and outA =
outB, and the language of A is included in the language of B: TrA ⊆ TrB .

4 Interfaces

An interface is a specification of services provided (or guaranteed) by a com-
ponent and a specification of assumptions under which these services will be
provided. To emphasize this dual nature of interfaces, we define an interface
model to be a pair (E, S) of I/O-automata: E modeling the environmental
assumptions, and S modeling the provided guarantees.

Definition 4.1 A pair of I/O-automata (E, S) is an interface if E models an
environment closing a specification S, i.e. inE = outS and outE = inS.

The environment automaton E drives the specification automaton S. Any
implementation I of S may only, if it is communicating with a component
conforming to E, provide the behaviors of S. The behavior of I on sequences

of inputs that cannot be provided by E is not constrained. The notion of
language inclusion (Def. 3.4) is not suitable for expressing this kind of context-
dependent refinement. To remedy this deficiency we introduce a relativized
form of refinement that directly treats the two parts of interfaces:

Definition 4.2 An I/O-automaton I refines an I/O-automaton S in the envi-
ronment E, written E |= I 6 S, iff both I and S are syntactically composable
with E (inI = inS = outE and out I = outS = inE) and

TrE ∩Tr I ⊆ TrE ∩TrS

We say that I implements the interface (E, S), if I refines S in E (E |= I 6 S).

If (E, S) is an interface, then (F, S) is an interface with stronger assump-
tions if F is an environment that can see more differences between potential
implementations than E can see. In other words F allows a smaller set of
implementations than E. We will also say that (E, S) has weaker assump-
tions than (F, S) (allows a bigger set of implementations). We formalize this
intuition by introducing an information ordering on environments:

Definition 4.3 An I/O-automaton F is more discriminating than an I/O-
automaton E, written E v F , if F can distinguish more systems than E (so
F -relativized refinement is a stronger relation than E-relativized refinement):

E v F iff ∀S1, S2.F |= S1 6 S2 ⇒ E |= S1 6 S2

There exists a very powerful and simple characterization of discrimination
based on trace inclusion:

Theorem 4.4 Let E, F be two I/O-automata such that inE = inF , outE =
outF , and inE is nonempty. Then E v F if and only if E 6 F .

Note that while the definition of discrimination is intentional and abstract
(quantifies over all possible systems), the characterization given by Theo-
rem 4.4 is reduced to a machine checkable procedure like model checking.
Moreover the proofs involving discrimination can now be reduced to language
inclusion proofs, which greatly simplifies further developments.

The notion of discrimination and its simple characterization will soon prove
fundamental. If E v F and some implementation I implements (F, S) it is also
known to implement (E, S). So we can reason about the classes of environ-
ments that I is suitable for. Moreover such strenghtening of the environment
part of the interface allows performing optimizations on implementations: if
I implements (E, S) in general, but in the specific network of distributed sys-
tems I interacts with an environment that is not more discriminating than F ,
the compiler is allowed to optimize the implementation with respect to this
specific environment, for example removing unnecessary behavior.

Perhaps most importantly for the current work, we will use discrimina-
tion as the order on the space of automata, which will be instrumental to

characterize the power of the interfaces synthesized in the framework.

5 Interface Compositions

We would like to approximate compositions of components by compositions
of their interfaces. For any two compatible interfaces we should be able to
derive an interface of their composition, or more precisely the one that is
implemented by any two implementations of the respective interfaces.

We say that two interfaces are syntactically composable if the I/O-automata
comprising them are pointwise syntactically composable (see p. 6). This guar-
antees that any two components I1 and I2 implementing two syntactically
composable interfaces (E1, S1) and (E2, S2) respectively, are also syntacti-
cally composable. The question that we want to address is whether I1 and
I2 are also dynamically compatible, so that I1 does not violate the environ-
mental assumptions of E2 and that I2 does not violate the environmental
assumptions of E1.

Moreover we shall be interested in establishing what is the interface im-
plemented by I1|I2, if they are indeed compatible. We may be tempted to
say that the interface of the composed system is the composition of interfaces:
(E1|E2, S1|S2). Unfortunately the construction proposed in such an ad hoc,
unmotivated way, will likely be unsound. 2 Instead we state the requirements
for the resulting composition intentionally, in general terms. We want to re-
quire that the result of composition of (E1, S1), with (E2, S2) is an interface
(E, S1|S2), such that composition of any two implementations I1, I2 of (E1, S1)
and (E2, S2), implements (E, S1|S2):

∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S1|S2 . (1)

We shall hope that there exists a maximal such environment E with respect
to v. In such a case no other environment F satisfying (1) could be more
critical about comparing the implementations to their specifications. This
corresponds to E being the weakest assumption possible for the composed
interface, which is a highly desirable property of any composition operator.

Finally the environment satisfying requirement (1) may not always exist.
For example this is the case, if S1 unconditionally, independently of E’s be-
havior, violates the assumptions of S2 expressed in E2. In this case (E1, S1)
and (E2, S2) are said to be incompatible.

Figure 5 shows an interface AlwaysFail , which has a signature compatible
with the signature of Client . Nevertheless the dynamic types of Client and
AlwaysFail are incompatible in that they share only one nonempty trace,
consisting of one step, and this trace ends in a deadlock.

Let us now continue more formally with a theorem stating that the re-
quirement (1) given above is well defined, i.e: we can find a unique solution

2 Indeed the construction mentioned here uses too weak assumptions to be generally correct.

0 1

send?

fail!

send ok fail

(a) EnvAlwaysFail

0 1

send!

fail?

send ok fail

(b) SpecAlwaysFail

Fig. 5. The interface AlwaysFail .

to it, where uniqueness is understood in terms of the discriminating power:

Theorem 5.1 For any two interfaces (E1, S1) and (E2, S2), if there exists an
environment E such that

∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S1|S2 (2)

then there also exists a greatest such E with respect to v.

The above theorem can be treated as a sanity check on our requirements
for interface composition. Still, although sane, the requirements themselves
seem very general. They include a universal quantification over all possible
implementations. Even if the requirement is known to have a solution with a
unique set of traces in the general case, the existence proof is not constructive,
or frankly, it is completely useless if one wanted to implement the framework.
For that reason we propose a conservative characterization of the composi-
tion operator, and then develop it formally, showing a constructive algorithm
computing it.

Intuitively we should require that any environment E satisfying (1) should
not force S1 into behavior towards S2 that would violate S2’s environmental
assumptions. Similarly E should not drive S2 into behavior that would violate
S1’s environmental assumptions expressed in E1. This intuition brings us to
the following system of behavioral inequalities:

{

E|S1 v E2

E|S2 v E1

(3)

It turns out that this characterization subsumes the first one. Any solution of
(3) also satisfies (1), or alternatively the set of solutions of (3) is embedded in
the lattice of solutions of (1):

Theorem 5.2 (Soundness) Consider any two interfaces (E1, S1), (E2, S2)

and an environment E such that
{

E|S1 v E2

E|S2 v E1

For any two I/O-automata I1 and I2 if

E1 |= I1 6 S1 and E2 |= I2 6 S2

then also

E |= I1|I2 6 S1|S2 .

Now briefly consider the theorem in the opposite direction. Can we indeed
prove that the set of solutions of (1) is the same as the set of solutions to (3)?
In fact this is not possible in the general case, as E1 and E2 can be made
artificially small: in such a case there will be many E’s that satisfy (1), but
do not satisfy (3). Consider the following counter example.

Let E1 and E2 both be mute environments, i.e. they do not produce any
outputs, despite their signatures containing some. A mute environment M
consists of a single state with self-loop transitions for all the inputs contained
in its signature and no other transitions. At the same time let S1, S2 be
universal specifications, i.e. they can produce all input-enabled traces allowed
by their signatures. A universal specification U consists of a single state with
self-loops for all inputs and outputs contained in the signature.

We can easily conclude that E1 |= I1 6 S1 for any I1 (because S1 has all
possible traces and thus implies Tr I1 ∩TrE1

⊆ TrS1
∩TrE1

for all I1). Simi-
larly E2 |= I2 6 S2 for any I2. Also E |= I1|I2 6 S1|S2 for any statically suit-
able E because of the maximality of S1 and S2. Since the latter holds for
any E it also holds for the universal (the maximal) one. But then E|S1 66 E2

because the left hand side of the inequality is universal while the right hand
side is mute. By Theorem 4.4 we arrive at E|S1 6v E2. So a universal E is
a valid set of assumptions for the interface (E, S1|S2) according to (1), but it
cannot be derived as a solution of (3) due to unnecessary restrictiveness of E1

and E2.

We conjecture that it is possible to prove a restricted form of the com-
pleteness theorem (the reverse of Thm. 5.2), where some assumptions about
the strength of the environmental parts of interfaces are made (namely that
E1 and E2 are not too strong with respect to S1 and S2). Nevertheless we
envision that this result would only be of theoretical interest. In practice the
designer wants to have the freedom to produce his interfaces by combining
variants of environments with the same system specification and vice versa,
without worrying about their relative strength. Thus, it is necessary to allow
non-maximal versions of environment components.

Consider the above example once again. The problem with E being uni-
versal is that it obeys our intended property (1), but still is able to drive I1 and

I2 into some states that environments satisfying (3) would never be able to
force them into. This cannot possibly cause any correctness problems because
of the generality of S1 and S2 that indeed allow all possible behavior. Never-
theless it may affect the product line derivation process. A clever compiler can
specialize I1 and I2 with respect to E1 and E2 so that the size of the generated
code (or other objective function) is minimized, without E1 and E2 noticing
any difference. If we then use such specialized implementations in the com-
position (I1|I2), the synthesized general environment E will potentially see
the difference between their original versions and the specialized ones. For
that reason it is better for the interface derivation framework to respect the
instructions of the designer and avoid synthesizing environment components
of interfaces that are more general (weaker) than the environment components
of interfaces being composed. So ultimately we recommend adhering to the
stronger characterization (3). After all the designer might have strengthened
the assumptions in E1 and E2 intentionally.

Last but not least we have to consider the case where the interfaces are
incompatible. If no E exists that can ensure that the assumptions of the
components are met then we term the two components incompatible, as given
by the following definition:

Definition 5.3 Interfaces (E1, S1), (E2, S2) are incompatible if there is no
I/O-automaton E such that:

E|S1 v E2 and E|S2 v E1 .

The method for solving systems of inequalities presented in the next section
will also detect this situation.

6 Systems of Behavioral Inequalities

As we have just argued, computing compositions of interfaces requires a
method for finding solutions of systems of linear inequalities. In particular
we are interested in systems of inequalities of the following form:

C(E) :











E|S1 v F1

...

E|Sm v Fm

(4)

where {Si}i=1..m and {Fi}i=1..m are constants (fixed known I/O-automata) and
E is a single unknown. We are interested in finding one of the greatest such
E’s with respect to v. If no solutions exist then incompatibility between
components should be reported.

Notice that for all i such that inE|Si
is empty (and correspondence between

refinement and simulation breaks) the ith constraint can be removed from the
system. It does not restrict E’s behavior in any way. Ultimately, thanks

to Theorem 4.4, we can restrict our problem to solving inequalities of the
following kind:

C(E) :











E|S1 6 F1

...

E|Sm 6 Fm

(5)

where all inE|Si
sets are nonempty. For simplicity of exposition we shall also

assume that all I/O-automata involved in the systems are deterministic. Oth-
erwise they can be determinized without loss of information, as long as our
refinement criterion is based on language inclusion. It should be emphasized
though, that this assumption is not inherent to the method.

We should now state a property similar to Theorem 5.1, but formulated for
systems of inequalities instead of our intentional requirements for composition.
This time we expand it to any number of constraints and do not require that
all the I/O-automata come from the same interfaces.

Theorem 6.1 Let {(Ei, Si)}i∈1..m be a finite set of interfaces, and {Fi}i∈1..m

be a finite set of environments, such that for each i ∈ 1..m. inEi
= inFi

6= ∅
and outEi

= outFi
. Let C(E) be a system of inequalities containing a constraint

E|Si 6 Fi for each i ∈ 1..m:

C(E) :











E|S1 6 F1

...

E|Sm 6 Fm

If C(E) has a solution (an I/O-automaton satisfying all the constraints), then
C(E) also has a greatest solution with respect to v.

We solve the systems of inequalities by first constructing a corresponding
modal transition system, and then choosing a maximal solution from its states
and transitions. Intuitively modal transition systems can be seen as I/O-
automata with transition set partitioned into two may and must classes.

Definition 6.2 A modal transition system is a quadruple S = (Q,A,−→may,

−→must), where Q is a set of systems of constraints (states), A is a set of actions,

−→may ⊆ Q×A×Q is the may transition relation, and −→must ⊆ Q×A×Q is
the must transition relation.

Systems of inequalities can be seen as sets of constraint pairs {(S1, F1), . . . ,
(Sm, Fm)} over the solution E. The constraints evolve over time, when any of
their components, including the unknown E, take some actions. This evolution
comprises not only state changes of the I/O-automata, but also removing and
introducing constraints. Clearly, legal actions of the unknown component E
in any of its states are dependent on the states of the constraints—on what
all the Si’s and all the Fi’s can do. This is why we label states of our modal
transition systems with systems of inequalities (sets of constraints). All the

steps that are allowed by the constraints, but are not strictly required should
give rise to may transitions in the modal transition system. While all the
steps that are strictly required give rise to corresponding must transitions.

Formally a set of constraints {(S1, F1), . . . , (Sm, Fm)} induces a modal tran-
sition system E = (Q,A0,−→may,−→must) where Q is the set of constraints over
states of Si’s and Fi’s enriched with a distinct primitive constraint False,
A0 is equal to the set {(S1, F1), . . . , (Sm, Fm)} of initial constraints, and the
transition relations are defined according to the following rules:

E
a!
−→mayE

′ if and only if both of the following rules are satisfied:

(i) For all (S, F) ∈ E such that a ∈ outE \ inS: if there exists F
′ such that

F
a!
−→F ′ then (S, F ′) ∈ E ′ else False ∈ E ′

(ii) For all (S, F) ∈ E such that a ∈ outE ∩ inS and S
a?
−→S ′ also (S ′, F) ∈ E ′

E
a?
−→mustE

′ if and only if both of the following rules are satisfied:

(i) For all (S, F) ∈ E such that a ∈ inE \ outS and F
a?
−→F ′ also (S, F ′) ∈ E ′

(ii) For all (S, F) ∈ E such that a ∈ inE ∩ outS if S
a!
−→S ′ then (S ′, F) ∈ E ′

Each state E ∈ Q of E is minimal such that it satisfies the above transition
rules and the following closure rules:

(i) whenever (S, F) ∈ E and a ∈ extS ∩ extF and S
a
−→S ′ and F a

−→F ′ then
also (S ′, F ′) ∈ E.

(ii) whenever (S, F) ∈ E and a ∈ extS ∩ extF and S
a!
−→S ′ and there is no F ′

such that F
a!
−→F ′ then also False ∈ E.

Definition 6.3 A state consistency relation S over a modal transition system
E = (Q,A,−→may,−→must) is a subset of Q such that if E ∈ S then False /∈ E
and whenever E a

−→mustE
′ then E ′ ∈ S.

Definition 6.4 A consistent set of transitions T of a modal transition system
E = (Q,A,−→may,−→must) with respect to a state consistency relation S is a
maximal subset of −→may ∪ −→must, where whenever (s, a, s′) ∈ T then s ∈ S
and s′ ∈ S.

Theorem 6.5 (Soundness & Completness) Let C(E) be a system of in-
equalities

C(E) :











E|S1 6 F1

...

E|Sm 6 Fm

and E = (Q,A,−→may,−→must) be a modal transition system induced by C. Then
the maximal solution of C(E) is an I/O-automaton E such that its set of states
statesE is a maximal consistency relation over E ,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =
m
⋃

i=1

(inFi
\ inSi

) ∪
m
⋃

i=1

(outSi
\ outFi

)

outE =
m
⋃

i=1

(outFi
\ outSi

) ∪
m
⋃

i=1

(inSi
\ inFi

),

and its set of transitions stepE is a maximal consistent set of transitions of
E with respect to statesE. If the maximal state consistency relation of E is
empty then C has no solutions.

In practice a greatest solution can be found without constructing the entire
modal transition system induced by C(E). Instead a fixpoint computation is
applied, which only constructs the consistent part. We start with the set of
statesQ equal to the initial set of inequalities and then add transitions and new
states applying the transition rules and the closure rules described above. If
a state containing False is found then the exploration is not pursued beyond
that point. Also all may transitions targeting this state, so far and in the
future, should be dropped. If there are any must transitions targeting a False
state then not only the transitions leading to it, but also their source states
(transitively backwards over must transitions) are dropped. The computation
reaches a fixpoint on a greatest solution of C(E), or on the empty sets of states
and transitions, when the system of inequalities has no solutions at all.

7 Related Work

Interface automata have been originally proposed by de Alfaro and Henzinger
in [2,3], and then extended with time and resource information in [1] and [4].
Our work relates directly to the original, discrete version of [2]. It can be seen
as an alternative, more systematic approach of reaching similar results. To
strengthen the case, we have used some examples from [3] in this presenta-
tion, adapting them to our framework. We have also aligned our terminology
with [2] as much as possible.

Alfaro’s and Henzinger’s setting considers blocking systems, natural in
modeling of transaction services (like web services). A similar approach is
taken in [12], also targeting compatibility of web services. We work in the
input-enabled asynchronous setting of I/O-automata [11], which is closer to
implementation of embedded systems, and preferred in design of distributed
algorithms. Interestingly we reach very similar results to [2], as we exploit
models of environments to encode information similar to blocking.

Another advantage of our work is that we explicitly guarantee maximality

of the interface composition, and that our composition operator is formally
derived as a solution to a system of constraints, while in [2] it is proposed in a
more arbitrary fashion. Last, but not least, the explicit separation of assump-
tions (environments) and guarantees (specifications), absent in [2] increases
the modeling capabilities allowing modeling variants of similar components,
by embedding them in various environments [8]. Interestingly the authors
of [3] discuss stateless interfaces with explicit assume/guarantee separation,
but they do not take this division all the way into the behavioral framework.

To the best of our knowledge similar properties have not been studied in
the I/O automata community yet.

The notion of relativized refinement and equivalence (more precisely sim-
ulation and bisimulation) is due to Larsen [5,6]. It was also applied in the
setting of protocol verification [10], automatic program testing [9] and mod-
eling software product lines [8]. Here we have adapted it to a relativized
language inclusion based refinement.

The general method of solving systems of behavioral equations using dis-
junctive modal transition systems and bisimulation as a requirement was pub-
lished in [7]. The method presented in section 6 is an adaptation of this ear-
lier work to an input-enabled setting and language-inclusion based refinement.
The original method does not assume determinism of processes in the system
of constraints.

8 Conclusion & Future Work

We have proposed an interface theory for networks of distributed asynchronous
components modeled as input-enabled I/O automata. The very characteris-
tic feature of our interfaces was an explicit separation of assumptions from
guarantees. Apart from the usual software engineering advantages offered by
such separation, here it allows a possibility of describing families of related
interfaces that model families of related components (product lines).

Our deriviation of interface composition has been systematic: we have
stated requirements for composition and reduced the problem to finding a so-
lution of a corresponding system of behavioral inequalities. We have described
an automatic method for solving systems of inequalities arising in our setup.

In the future we would also like to investigate systematic deriviation of the
specification part of an interface composed from (E1, S1) and (E2, S2). In the
present work we have somewhat arbitrarily decided to set it to S1|S2, whereas
it would be interesting to arrive at this result from general requirements in
a more systematic manner. The second awaited extension is the support for
contravariant refinement: namely one that would allow refinement between
specification of various signatures in the spirit of [2]. Finally it may prove
interesting to weaken the power of environment components by introducing
concepts similar to color-blindness [8], in order to increase the modeling power
for defining software product lines.

References

[1] Alfaro, L., T. Henzinger and M. I. A. Stoelinga, Timed interfaces, in:
A. Sangiovanni-Vincentelli and J. Sifakis, editors, EMSOFT 02: Proc. of 2nd
Intl. Workshop on Embedded Software, Lecture Notes in Computer Science
(2002), pp. 108–122.

[2] Alfaro, L. and T. A. Henzinger, Interface automata, in: Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE) (2001), pp.
109–120.

[3] Alfaro, L. and T. A. Henzinger, Interface-based design, in: In Engineering
Theories of Software Intensive Systems, proceedings of the Marktoberdorf
Summer School (2004).

[4] Chakabarti, A., L. de Alfaro, T. A. Henzinger and M. I. A. Stoelinga, Resource
interfaces, in: R. Alur and I. Lee, editors, EMSOFT 03: 3rd Intl. Workshop on
Embedded Software, Lecture Notes in Computer Science (2003).

[5] Larsen, K. G., “Context Dependent Bisimulation Between Processes,” Ph.D.
thesis, Edinburgh University (1986).

[6] Larsen, K. G., A context dependent equivalence between processes, Theoretical
Computer Science 49 (1987), pp. 184–215.

[7] Larsen, K. G., Equation solving using modal transition systems, in: Fifth Annual
IEEE Symposium on Logics in Computer Science (LICS), 4–7 June 1990,
Philadelphia, PA, USA, 1990, pp. 108–117.

[8] Larsen, K. G., U. Larsen and A. Wąsowski, Color-blind specifications for
transformations of reactive synchronous programs, in: M. Cerioli, editor,
Proceedings of FASE, Edinburgh, UK, April 2005, Lecture Notes in Computer
Science (2005), accepted.

[9] Larsen, K. G., M. Mikucionis and B. Nielsen, Online testing of real-time systems
using uppaal, in: Formal Approaches to Testing of Software (FATES), Linz,
Austria. September 21, 2004, Lecture Notes in Computer Science 1644 (2005).

[10] Larsen, K. G. and R. Milner, A compositional protocol verification using
relativized bisimulation, Information and Computation 99 (1992), pp. 80–108.

[11] Lynch, N., I/O automata: A model for discrete event systems, in: Annual
Conference on Information Sciences and Systems, Princeton University,
Princeton, N.J., 1988, pp. 29–38.
URL http://theory.lcs.mit.edu/tds/papers/Lynch/princeton88.pdf

[12] Rajamani, S. K. and J. Rehof, Conformance checking for models of
asynchronous message passing software, in: E. Brinksma and K. G. Larsen,
editors, 14th International Conference on Computer Aided Verification (CAV),
Lecture Notes in Computer Science 2404 (2002), pp. 166–179.

http://theory.lcs.mit.edu/tds/papers/Lynch/princeton88.pdf

	Introduction
	Example
	Input/Output Automata
	Interfaces
	Interface Compositions
	Systems of Behavioral Inequalities
	Related Work
	Conclusion & Future Work
	References

