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t. Alfaro and Henzinger use alternating simulation in a two player game as are�nement for interfa
e automata [1℄. We show that interfa
e automata 
orrespond toa subset of modal transition systems of Larsen and Thomsen [2℄, on whi
h alternatingsimulation 
oin
ides with modal re�nement. As a 
onsequen
e a more expressive inter-fa
e theory may be built, by a simple generalization from interfa
e automata to modalautomata. We de�ne modal I/O automata, an extension of interfa
e automata withmodality. Our interfa
e theory that follows 
an express liveness properties, disallowingtrivial implementations of interfa
es, a problem that exists for theories build around sim-ulation preorders. In order to further exemplify the usefulness of modal I/O automata,we 
onstru
t a behavioral variability theory for produ
t line development.1 Introdu
tionAn interfa
e theory [1, 3�7℄ is a type-system-like theory for 
omponent languages,where types (interfa
es) des
ribe 
omponents (implementations) with 
omposi-tion being the only operator available. A type error proves that either a 
om-ponent does not 
onform to its interfa
e, or that two 
omposed 
omponents arein
ompatible. Sin
e the overall stru
ture of these type systems is so simple, itis often a

epted not to give typing rules expli
itly when des
ribing interfa
etheories (for example [1, 3�6℄), fo
using instead on the essential ingredients of
onforman
e, 
ompatibility and 
omposition.Regular, non-
omponent types are only applied to existing obje
ts in pro-gram 
ode. In 
ontrast for interfa
e theories it makes sense to dis
uss interfa
esas spe
i�
ations of appli
ation's ar
hite
ture in isolation from a
tual sour
e 
ode.An interfa
e abstra
ts the 
omponent in terms of the assumptions made by the
omponent and the guarantees that it provides. One reasons about possible 
on-ne
tions between 
omponent implementations (
ompositions) by using proper-ties of 
omposition of interfa
es; most importantly independent implementability(that any implementations 
onforming to 
ompatible interfa
es are 
ompatible)and generality properties (that the 
omposition of interfa
es produ
es an interfa
ewith the weakest assumptions and strongest guarantees).We 
onsider behavioral interfa
e theories suitable for spe
i�
ation of 
om-muni
ation proto
ols between 
omponents (web servi
es or embedded systems).Su
h theories typi
ally require a 
ontravariant treatment of inputs and outputsto ensure deadlo
k-free implementations: inputs guaranteed by the spe
i�
ation



are always o�ered by the implementation and that the implementation neverprodu
es more outputs than the spe
i�
ation. This observation led de Alfaro,Henzinger and 
olleagues [1, 3, 4℄ to a 
on
lusion that game theoreti
al modelsof intera
tion are most suitable as building blo
ks for behavioral interfa
e theo-ries. While we do appre
iate the values of the game theoreti
al formulations, wedisagree with some 
laims in the above 
ited work and argue that game formu-lations are insu�
ient in themselves: there is a genuine value in 
ombining thegame theoreti
al approa
h with more traditional formulations based on transitionsystems, or more pre
isely on modal transition systems.The two worlds of game models and modal transition systems 
onvey largelyorthogonal information about the moves of a system. Game models spe
ify whohas 
ontrol over transitions, while modal transition systems fo
us on require-ments, modality : whi
h moves are allowed and whi
h are required. In this paperwe try to relate the two worlds, explain their weaknesses and their qualities.Eventually we 
ombine them into a uni�ed interfa
e theory.Game theoreti
al notions of 
onforman
e are often based on alternating sim-ulation [8℄. We show that alternating simulation in a two player setting, as usedin interfa
e automata [1, 9℄, is just a spe
ial 
ase of modal transition systems re-�nement developed by Larsen and Thomsen [2℄ in the late eighties. This suggeststhat the real value of the game theoreti
 approa
h to 
omponent theories doesnot lie in the use of alternating simulation, but in the use of 
ontrol informationin the 
omposition synthesis algorithms.Not surprisingly then, modal transition systems themselves 
annot be usedto build an interfa
e theory, without adding 
ontrol information. We build anew interfa
e theory around modal I/O automata, whi
h 
ombine features ofboth game theoreti
 models and modal transition systems. Thanks to this new
ombination, our interfa
es are now able to express liveness properties, whi
h wasimpossible in existing interfa
e theories (after this work has been 
ompleted wehave learned about [10℄, whi
h a
hieves a similar e�e
t in a di�erent setting).In order to further demonstrate the usefulness of our modal I/O automata,we 
onstru
t a produ
t line [11�13℄ theory. In simple words a produ
t line is a setof similar produ
ts built by 
ombining assets from a 
ommon platform availablein the development pro
ess. The di�eren
es between the produ
ts are referred toas variability. Our theory is a behavioral formalism for des
ribing the variabilityof 
omponents. The theory supports de
iding whether given requirements 
anbe satis�ed by 
hoosing 
on
rete instan
es from the set of available assets. Thistheory, though very small, is to the best of our knowledge one of the very fewattempts at des
ribing software produ
t lines in a behavioral fashion, and unlikethe previous work [14℄, whi
h takes a top-down approa
h to des
ribing produ
tfamilies, it fa
ilitates a bottom up 
onstru
tion of produ
ts, whi
h is how prod-u
t line development is more typi
ally understood in the software engineering
ommunity. This 
ontribution is not meant to be 
omprehensive, highly devel-oped and well set in the tradition of the produ
t line development. It should be
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send! ok? fail?Fig. 1. The Client interfa
e (left) and a trivial implementation of it (right).understood as a simple example that emphasizes the semanti
 di�eren
e betweenmodeling 
omponents in 
omponent based development and modeling assets forprodu
t family development. We do hope to extend this theory soon and reportabout it separately in detail.The paper pro
eeds as follows. In the next se
tion we shall explain the mainresults of the paper in nonte
hni
al terms. Our main results 
on
entrate in se
-tions 3, 5 and 6. In Se
tion 3 we draw a 
orresponden
e between the alternatingsimulation and observational modal re�nement. In Se
tion 4 modal I/O automataare de�ned, whi
h are then used to 
onstru
t an interfa
e theory in Se
tion 5 anda produ
t line theory in Se
tion 6. Se
tions 5 and 6 are largely independent,though they share a lot of intuitions. We 
on
lude in Se
tion 7.2 Interfa
e Automata vs Modal Automata: An ExampleConsider an example interfa
e automaton for a Client 
omponent (Fig. 1 (left),originally presented in [1℄). This simple model des
ribes a 
omponent that o

a-sionally may want to send a pa
kage, and on
e it has made the request it is readyto re
eive an a
knowledgment. The signature of the interfa
e also mentions a failinput, but the 
omponent is never able to re
eive it. This means that Client isonly 
apable of intera
ting with network links that never fail.In interfa
e automata, due to a game theoreti
 semanti
s, all outputs are
ontrolled by the 
omponent itself (
alled the Output player), while all inputsto su
h 
omponents are 
ontrolled by the environment player (
alled the Inputplayer). An implementation 
onforms to the interfa
e i� whenever some inputis o�ered by the interfa
e, then it is also o�ered by the implementation, andwhenever an implementation produ
es any output, this output is also present inthe interfa
e (
onforman
e formalized as alternating simulation [8℄).Su
h a notion of 
onforman
e implies that 
ompatibility 
an be passed frominterfa
es to 
omponents: if there is no winning strategy for the input playerthat leads to a deadlo
k in the interfa
e automaton, then there won't be su
ha strategy for the same player that intera
ts dire
tly with any implementation.Similarly if there is no strategy for the output player that leads to an output that
annot be a

epted by the environment, then there is also no su
h strategy forany of the implementations.



14 15 16 17 18

19

202122

2 2 2 2

2
2

2 3

2

2

3

23

trnsmt! log! up?

send? ok! fail!

send? trnsmt! nack? trnsmt!
ack?

ack?ok!

nack?fail!
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

202122

3 2 2 2

2
2

3

2

2

3

23

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?Fig. 2. DataLink layer with nontrivial modalities (left). Composition DataLink ⊗Client (right). State22 is an error state, where DataLink 
an produ
e the fail a
tion, not a

epted by Client .Unfortunately this notion of 
onforman
e, though very mu
h safety oriented,does not enfor
e that the implementations take on any useful a
tivities at all.Consider for example the diagram on the right side of Fig. 1. It presents a modelof an implementation that does not perform any a
tions ever. In other wordsthis is a network appli
ation that does not use the network at all. Still this newmodel 
onforms to its interfa
e on the left, as in its initial state it does not addany illegal outputs and it o�ers all the inputs that were o�ered by the interfa
e.If we turn this into the terminology used in modal transition systems it meansthat all the inputs are required, whi
h is indi
ated by the 2 (must) modality onthe 
orresponding transition, and the outputs are allowed, whi
h is indi
ated bythe 3 (may) modality on the transitions. In a modal transition systems perspe
-tive, 
onforman
e is based on modal re�nement [2℄. This re�nement requires thatwhenever an implementation makes a step, then it must be possible to mimi
 itby an allowed transition of the spe
i�
ation; whenever the spe
i�
ation makes arequired step it must be possible to mat
h it with some required step of the 
or-responding state in the implementation. With the assignment of may to outputtransitions and must to input transitions this sounds nearly like the alternatingsimulation des
ribed above. In Se
tion 3 we prove that indeed the two relations
oin
ide if we require that the may transition relation is input-enabled.Consequently modality gives stri
tly more modeling power than alternatingre�nement. Various modalities 
an be assigned to a
tions regardless of whom
ontrols them. Instead of allowing all possible extensions on inputs, as in interfa
eautomata, the designer is able to 
ontrol what extensions are allowed. For examplewe 
an 
hange the Client model of Fig. 1 to have a must modality (2) on the send!transition, whi
h will have the e�e
t that now all the implementations must beable to pro
eed produ
ing an output. This would rule out trivial implementationsas the one presented on the right side of Fig. 1.The game theoreti
 formulation of 
onforman
e gives a 
ertain interpretationto inputs and outputs. Namely that inputs are in
oming requests for servi
e(for example remote pro
edure 
alls), while outputs are outgoing requests for



14 15 16 17 18

19

20

3 2 2 2

2
2

3

2

2

3

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

2021

3 2 2 2

2
2

3

2

2

3

2

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
down?

linkStatus!

up?

linkStatus! ack? nack? down?Fig. 3. Composed interfa
es LinkLayer |Client and variability models LinkLayer ·Clientservi
e (also remote pro
edure 
alls, albeit in the other dire
tion). With su
han interpretation it be
omes 
lear that removing servi
es from the promised listshould be illegal, while removing 
alls to external servi
es is perfe
tly �ne. This isexa
tly what alternating simulation a
hieves. What it misses is a more 
omplexstru
ture of 
ommuni
ation.In asyn
hronous systems some messages indeed 
onvey 
alls for servi
e, how-ever many other return feedba
k from the servi
es (return a value). When a givenoutput models returning a value from a 
omponent, then 
learly it should neverbe removed, as then the whole 
omponent be
omes useless. Fig. 2 illustrates an-other interfa
e modeling a data link layer, whi
h exploits the interplay between
ontrol and modality. The must modality is pla
ed on transmt! transitions, asthe data link layer would be useless if the implementation was permitted not toforward pa
kets down the sta
k. Similarly the transition sending ba
k the errormessage 
annot legally be removed. At the same time the 
all for linkStatus! is amay transition as some implementations are allowed not to 
onsult the hardwarelink expli
itly to dete
t errors. Finally not all implementations are for
ed to beable to work with links that fail twi
e in a row, whi
h is modeled by the se
ondna
k! transition being a may transition.Now 
onsider how the two interfa
es of Fig. 1 (left) and Fig. 2 (left) should be
omposed. The 
omposition resembles a produ
t 
omputation (taken separatelyfor the may transition relation and the must transition relation). As a resultwe obtain the interfa
e presented on the right side of Fig. 2. Be
ause the 
lient
omponent was so weak, the ultimate interfa
e shows a system that possibly maynever do anything. However if Client will send some pa
kets, these pa
kets will
ertainly be pro
essed by the 
omposition, unless the hardware link is broken. Insu
h a 
ase it might be that the implementation will produ
e a fail!message whi
hwill 
ause a deadlo
k with the 
urrent version of the Client (this 
an happen whenthe 
omposition is in state 22). Sin
e we 
annot modify the 
omposed system weinstead synthesize a new interfa
e whi
h restri
ts the use of the 
omposition inorder to guarantee error freeness. States of the 
omposition that 
an experien
edeadlo
ks are 
alled error states. We follow Alfaro and Henzinger in removingerror states, and transitively all states from whi
h error states 
an be rea
hed



by following internally 
ontrollable transitions of the 
omponent (outputs andinternal a
tions). This leads to the interfa
e on Fig. 3 (left), expressing the fa
tthat this 
omponent works well as long as the physi
al link never goes down.The pruning me
hanism des
ribed above would not be possible without the in-formation des
ribing whi
h transitions are internally 
ontrollable being expli
itlypresent in the model. It does not seem possible to 
ompute the safe fragment ofthe produ
t automaton, by just investigating the modalities of transitions. Whilewe have said that modal re�nement is stri
tly more expressive than alternatingsimulation, the 
ontrol information of interfa
e automata has its unique qualitiestoo: it enables valuable synthesis algorithms not otherwise possible.Let us now revisit the model of Fig. 2 (left) giving it a di�erent interpretationthan previously. Instead of per
eiving it as an abstra
tion of a 
omponent, weshould now see it as a des
ription of a set of 
omponents. A modal automatondes
ribes in fa
t a whole, often in�nite, set of possible implementation automata3.One 
an think of them as all possible 
on�gurations of the model. This feature ofmodal automata suggests the possibility of using them as a behavioral formalismin des
ribing variability in produ
t lines.A produ
t line is a 
olle
tion of produ
ts that are similar in that they o�eroverlapping fun
tionality, and in that they are built from assets sele
ted froma 
ommon platform. In here we want to des
ribe both assets and the wholeprodu
t line by modal I/O automata. If ea
h of the assets is modeled as a modalI/O automaton we 
an model the 
apabilities of the family by 
omposing thesedes
riptions. However this time we would not be interested in a 
omposition thatguarantees 
ompatible behavior of any sele
tion of assets. It is normally expe
tedthat not all the assets in a produ
t line platform are mutually 
ompatible. Someof them will deadlo
k (for example a failing link layer and our Client 
omponent).The requirement for 
omposing the variability des
riptions is not to synthesize aninterfa
e that guarantees 
orre
tness of 
omposition of all possible 
ombinationof assets, but to pre
isely des
ribes what the 
orre
t 
ombinations are: i.e. whatare the deadlo
k free behaviors respe
ting the modalities that 
an be 
onstru
tedwith the available automata.It turns out that a 
omposition like that exists and it resembles the pruningof the produ
t automaton for interfa
e automata. The only di�eren
e is that nowerror states are the states where the error must be possible to realize (so oneparty must be required to produ
e an output that the other party must not beallowed to re
eive) and that we prune all the states from whi
h rea
hing an errorstate is unavoidable (in our interfa
e theory we have pruned states from whi
hrea
hing errors might be possible).The result of 
omposing Client and LinkLayer using the variability modelsemanti
s is presented on the right side of Figure 3. This result 
ontains a slightly3 This is also true for interfa
e automata, though to a mu
h lesser extent. Due to the la
k of modalitythe set of implementations for an interfa
e automaton is mu
h simpler than it 
an be for a modalautomaton.



bigger model than the interfa
e automaton 
omposition on the left. It states thatthere exists a pair of assets (implementations of Client and LinkLayer) su
h thatit is able to a

ept a link down message without an error message. The transitionwith the down message was removed in the interfa
e 
ompositions as, for somepairs of implementations, it would lead to a deadlo
k.Can a given spe
i�
ation be implemented by 
hoosing 
omponents from avail-able assets? Is the result of the 
omposition the most general possible, 
ontainingall possible legal produ
ts? Can we �nd what the 
on�guration of these elementsshould be? We address some of these questions in se
tion 6, with an intention ofelaborating more in up
oming work.3 Alternating Simulation vs Modal Re�nementLet us begin with de�ning modal automata, a version of modal transition sys-tems [2℄ extended with signatures. A modal automaton has two transition rela-tions indi
ating respe
tively allowed (may) and required (must) behavior.De�nition 1 (Modal Automaton). A modal automaton S is a six tuple: S =
(statesS, startS, extS, intS,−→3

,−→2
) where statesS is a �nite set of states, startS

∈ statesS is the initial state, extS and intS are disjoint sets of external and internala
tions and a
tS = extS ∪ intS, −→3S ⊆ statesS × a
tS × statesS is the maytransition relation des
ribing allowed behavior, and −→2S ⊆ statesS × a
tS ×statesS is the must transition relation des
ribing required behavior.Throughout the paper we sometimes use the symbols �!�, �?� and �;� after ana
tion. This is done in order to in
rease the readers intuition of whether the a
tionis respe
tively an output, input or internal a
tion. No symbol is used when thea
tion 
an be of more than one type. These symbols 
ould be left out 
ompletelyas it is the identity of the a
tion that is signi�
ant.In the following we write s τ−→∗
2
s′ meaning that there exists a sequen
e ofinternalmust a
tions leading from s to s′. The same is de�ned formay transitions.A modal automaton is synta
ti
ally 
onsistent if everything that is required isalso allowed, su
h that−→2

⊆ −→3
. In the following we only 
onsider synta
ti
ally
onsistent modal automata. A modal automaton is an implementation if the twotransition relations 
oin
ide.A modal automaton des
ribes a set of possible implementations. Simplisti
allywhen re�ning a modal automaton spe
i�
ation into an implementation one 
anremove a may transition, that does not have a 
orresponding must transitions orstrengthen it into a must transition. In general this re�nement is not synta
ti
,but behavioral, so it is not the synta
ti
 transitions that are re�ned but thea
tual steps taken by the transition system. The same transition 
an be re�neddi�erently ea
h time it is taken.



De�nition 2 (Modal Re�nement). For a pair of modal automata S and Twith the same signature, a binary relation R ⊆ statesS × statesT is a modalre�nement if whenever sRt and a ∈ a
tS it holds thatif t a−−→2
t′ then ∃s′.s a−−→2

s′ and (s′, t′) ∈ R.if s a−−→3
s′ then ∃t′.t a−−→3

t′ and (s′, t′) ∈ R.Modal re�nement ≤mis de�ned as the largest su
h relation. We say that a modalautomaton S modally re�nes a modal automaton T , written S ≤m T , i� thereexists a modal re�nement 
ontaining (startS, startT ).Observational modal re�nement is a weaker re�nement in whi
h the two modalautomata 
an take internal transitions, that 
annot be dire
tly observed by theother automaton. In absen
e of internal a
tions the observational re�nement 
o-in
ides with the non-observational one.De�nition 3 (Observational Modal Re�nement). For a pair of modal au-tomata S and T with the same signature, a binary relation R ⊆ statesS × statesTis an observational modal re�nement if whenever sRt and a ∈ a
tS it holds thatif t a−−→2
t′ and a ∈ extT then ∃s′. s a−−→2

s′ ∧ (s′, t′) ∈ R.if s a−−→3
s′ and a ∈ extS then ∃t′.t τ−→∗

3
t′.∃t′′. t′ a−−→3

t′′ ∧ (s′, t′′) ∈ R.if s a−−→3
s′ and a ∈ intS then ∃t′.t τ−→∗

3
t′.(s′, t′) ∈ RObservational modal re�nement ≤∗mis de�ned as the largest su
h relation. We saythat a modal automaton S observationally re�nes a modal automaton T if thereexists an observational modal re�nement 
ontaining (startS, startT ).Interfa
e Automata [1℄ 
an be 
onsidered a subset of modal automata in whi
hthe external a
tions extS are partitioned into inputs inS and outputs outS.De�nition 4 (Interfa
e Automaton). An interfa
e automaton P is a tuple

P = (statesP , startP , inP , intP , outP ,−→P ) where statesP is a �nite set of states,startP ∈ statesP is the initial state, inP , outP and intP are three pairwise dis-joint sets of input, output and hidden (internal) a
tions respe
tively, and −→P ⊆statesP × a
tP × statesP is the set of transitions where a
tP = inP ∪ outP ∪ intP .We require that the transition relation is input-deterministi
 su
h that for all
s, s′, s′′ ∈ statesP and all input a
tions a ∈ inP if s a?−−→s′ and s a?−−→s′′ then s′ = s′′.Similarly as for Modal Automata we de�ne s τ−→∗s′ for Interfa
e Automatato mean that there exists a sequen
e of internal transitions leading from s to
s′. We de�ne alternating simulation for interfa
e automata as 
ommonly used insoftware spe
i�
ation [9℄, whi
h is slightly less general than the original [1℄:De�nition 5 (Alternating Simulation). For a pair of interfa
e automata Sand T with the same signature, a binary relation R ⊆ statesS × statesT is analternating simulation if whenever sRt and a ∈ a
tS it holds that:if t a?−−→t′ and a ∈ inT then ∃s′.s a?−−→s′ and (s′, t′) ∈ Rif s a!−→s′ and a ∈ outS then ∃t′.t τ−→∗t′.∃t′′.t′ a−→t′′ and (s, t′′) ∈ R



if s a;−→s′ and a ∈ intS then ∃t′.t τ−→∗t′ and (s′, t′) ∈ RAlternating simulation ≤ais de�ned as the largest su
h relation. We say that Ssimulates T , written S ≤a T , if there exists an alternating simulation 
ontaining
(startS, startT ).In order to 
ompare interfa
e automata with modal automata, we 
onstru
ta translation fun
tion T mapping from the former to the latter. The result ofthe translation always ful�lls the 
onditions listed below. It is easy to see thatfor modal automata that ful�ll these 
onditions a reversed mapping 
an be 
on-stru
ted, too.1. The may transition relation is input enabled, meaning that for ea
h state

s ∈ statesS and ea
h input a
tion a ∈ inS there exists a state s′ and a maytransition s a?−−→3
s′2. The 
onstru
ted modal automaton is synta
ti
ally 
onsistent: −→2

⊆ −→33. Must transitions are only labeled by inputs: −→2S ⊆ statesS × inS × statesSLet smayall be a fresh state that allows all behavior but does not require any be-havior. If U denotes the universe of all inputs, su
h that for all interfa
e automata
P , inP ∈ U , then we de�ne the translation fun
tion as follows:
T (statesP , startP , inP , outP , intP ,−→P ) = (statesS, startS, extS, intS,−→3

,−→2
)where statesS = statesP ∪ {smayall}, startS = startP , extS = U ∪ outP , intS = intPand s1

a−−→3

S s2 if s1
a−→Ps2 and a ∈ outP ∪ intPand s3

a−−→2

S s4 and s3
a−−→3

S s4 if s3
a−→Ps4 and a ∈ inPand s3

a−−→3

S smayall if ∀s′ ∈ statesP (s3, a, s′) /∈ −→P and a ∈ U ,and smayall is a fresh state su
h that ∀a ∈ a
tS.smayall
a−−→3

S smayall.Theorem 6. Alternating simulation and observational modal re�nement 
oin-
ide for interfa
e automata in the following sense:for any two interfa
e automata S, T : S ≤a T i� T (S) ≤∗m T (T ) (1)Theorem 6 suggests that the usefulness of game theoreti
al models for 
omponenttheories does not lie in its 
onforman
e relation. The 
rux is the use of 
ontrolinformation in synthesis algorithms, when paths to error states are pruned. If thisis the 
ase we 
an 
onstru
t an interfa
e theory based on modal re�nement andmodal automata augmented with 
ontrol information. Sin
e modal re�nement isri
her and we 
an use a generalization of the synthesis algorithm used for interfa
eautomata, we will obtain a more expressive interfa
e theory.The fa
t that alternating simulation 
oin
ides with the observational versionof modal re�nement is expe
ted, be
ause De�nition 5 embeds a 
losure on inter-nal transitions. In fa
t in the absen
e of internal a
tions alternating simulation
oin
ides with the regular modal re�nement, as des
ribed in De�nition 2, whi
his easy to prove. In order to simplify the developments we use the regular modalre�nement (≤m) from now on, even though most of our theorems 
an reasonablybe 
onsidered for the observational re�nement (≤∗m), too.



4 Modal I/O AutomataLet us now de�ne modal I/O automata, an extension of modal automata with
ontrol information, that will be the main ingredients of our interfa
e theory andthe produ
t line theory 
oming in the next se
tions.De�nition 7. A modal I/O automaton S is a tuple S = (statesS, startS, inS, outS,intS,−→3
,−→2

), where statesS is a set of states, startS ∈ statesS is an initialstate, inS, outS and intS are pairwise disjoint sets of inputs, outputs and internala
tions respe
tively (a
tS = inS∪outS∪intS), −→3S ⊆ statesS×a
tS×statesS is amay-transition relation, and −→2S ⊆ statesS ×a
tS × statesS is a must-transitionrelation. Like previously we only 
onsider synta
ti
ally 
onsistent modal I/O au-tomata here, so −→2
⊆ −→3

.The 
omposition for modal I/O automata 
ombines both the modal aspe
tsand the 
ommuni
ations aspe
ts. Two modal I/O automata S1,S2 are 
omposeablei� their a
tions only overlap on 
omplementary types: (inS1
∪ intS1

) ∩ (inS2
∪intS2

) = ∅ and (outS1
∪ intS1

) ∩ (outS2
∪ intS2

) = ∅. The 
omposition S1 ⊗ S2gives rise to a modal I/O automaton S su
h that statesS = statesS1
× statesS2

,startS = (startS1
, startS2

), inS = (inS1
\ outS2

) ∪ (inS2
\ outS1

), outS = (outS1
\inS2

) ∪ (outS2
\ inS1

), intS = intS1
∪ intS2

∪ (inS1
∩ outS2

) ∪ (outS1
∩ inS2

). Thetransition relations are given by the following rules (see Fig. 2 for an example):
s1

a!−→γs
′
1 s2

a?−−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}
s1

a?−−→γs
′
1 s2

a!−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}

s1
a−→γs

′
1 a /∈ a
tS2

s1 ⊗ s2
a−→γs

′
1 ⊗ s2

γ ∈ {2, 3}
s2

a−→γs
′
2 a /∈ a
tS1

s1 ⊗ s2
a−→γs1 ⊗ s′2

γ ∈ {2, 3}For te
hni
al reasons (e�
ien
y and simpli
ity) we always assume that un-rea
hable states are removed after 
omputing a 
omposition (both here and inlater se
tions). The following theorem is a simple 
orollary from the general fa
tthat the modal re�nement is a pre
ongruen
e [15, 16℄:Theorem 8. Modal re�nement is a pre
ongruen
e with respe
t to the above 
om-position operator: for any four modal I/O automata T1, T2, S1, S2 su
h that
T1 ≤m S1 and T2 ≤m S2 it holds that T1 ⊗ T2 ≤m S1 ⊗ S2.The 
omposition operator (⊗) de�ned above 
orresponds to a usual 
ompo-sition of software (hardware) 
omponents. Whenever we use it below we meanan unrestri
ted 
onne
tion of 
omponents, whi
h does not pre
lude deadlo
ks orother kinds of errors. We shall soon introdu
e two seemingly similar 
ompositionoperators, (|) and (·) having a very di�erent use. In fa
t they are algorithms syn-thesizing spe
i�
ations of how a result of simple 
omposition (⊗) should be usedin order to guarantee the absen
e of 
ertain errors.



5 A Modal Interfa
e TheoryInterfa
e theories support 
omponent based development. The aim is to spe
ify
omponent interfa
es and from these interfa
es to derive the interfa
es of 
om-posite 
omponents. The novel aspe
t of the interfa
e theory presented here is thatthe 
omponents 
an spe
ify both required and allowed behavior, 
onsequently itis suitable for expressing liveness properties.In our spe
i�
 interfa
e theory an interfa
e is given by a modal I/O automaton.A given interfa
e spe
i�es a set of potential implementations (
on
rete implemen-tations have identi
al transition relations −→3
= −→2

). The goal of our interfa
etheory is to be able to use interfa
e des
riptions to des
ribe legal implementa-tions of 
omponents in a 
omponent based system. The implementation relation,the relation that spe
i�es whi
h implementations 
onform to a given interfa
edes
ription is modal re�nement ≤m. From the interfa
e des
riptions of two 
om-ponents it should be possible to derive the interfa
e of the 
ombined 
omponent.This is done without knowing more about the implementations, than the fa
tthat they 
onform to their individual interfa
e spe
i�
ation.The result of 
omposing two interfa
es is a subset of the result of 
omposingtwo modal I/O automata, in whi
h all possible internally 
ontrollable paths lead-ing to error states are removed. An error state is a state in whi
h one 
omponent
an output something that the other 
omponent might be unable to re
eive:err i
S1,S2

= {(s1, s2) ∈ statesS1⊗S2
| there exists a ∈ intS1⊗S2

and states s′1, s′2su
h that (s1
a!−−→3

S1 s′1 and s2 6 a?−−→2

S2) or (s2
a!−−→3

S2 s′2 and s1 6 a?−−→2

S1)} (2)State 22 on Fig. 2 is an error state, witnessed by the fail a
tion.We are now ready to de�ne the set of states of the 
omposition:statesS1|S2
=

∞⋂

n=0

prunen
i (statesS1⊗S2

\err i
S1,S2

) , (3)where prunei(S) = {s ∈ S | ∀s′ ∀a ∈ intS1⊗S2
. s a−−→3

s′ implies s′ ∈ S}, whi
h is amonotoni
 fun
tion that removes, from the set of states S, all those states thatin one internally 
ontrollable step may rea
h a state that is not in S.See Figure 3 (left) for an example of how pruning works. State 22 has beenremoved as an error state, then state 21 was pruned as an error state 
an berea
hed from it by the internally 
ontrollable transition log!. Then all transitionsinvolving states 21 and 22 were removed. State 20 remains in the result as themust transition labeled down is externally 
ontrollable.De�nition 9 (Composition). The 
omposition of two interfa
es S1 and S2is de�ned if S1 and S2 are 
omposable modal I/O automata and startS1⊗S2
∈statesS1|S2

(see above). The 
omposition results in a modal I/O automaton S1|S2su
h that S1|S2 = (statesS1|S2
, startS1⊗S2

, inS1⊗S2
, outS1⊗S2

, intS1⊗S2
,−→3

S1⊗S2 ∩
(statesS1|S2

×a
tS1⊗S2
×statesS1|S2

),−→2

S1⊗S2 ∩(statesS1|S2
×a
tS1⊗S2

×statesS1|S2
)).



Two interfa
es are 
ompatible if the set of states resulting from 
omposition,statesS1|S2
, 
ontains the initial state (startS1

, startS2
).A desirable property of an interfa
e theory is that 
omponents 
an be im-plemented independently of ea
h other on
e the spe
i�
ations are known. Thefollowing theorem formally states that this theory satis�es the property.Theorem 10 (Independent Implementability). For any two 
ompatible in-terfa
es S1, S2 and for any two implementations I1, I2, I1 ≤m S1 and I2 ≤m S2,it holds that I1 ⊗ I2 ≤m S1|S2.This has three impli
ations. First, I1 ⊗ I2 would deliver all the required behaviorpromised by S1|S2 as long as it intera
ts with an environment obeying S1|S2.Se
ond, I1 ⊗ I2 will not do anything that S1|S2 would not allow in su
h anenvironment. Third, sin
e S1|S2 does not 
ontain error states then I1 ⊗ I2 willnot deadlo
k.Theorem 11 (Deadlo
k Freeness Preservation). For any two 
ompatibleinterfa
es S1, S2, any two implementations I1, I2, so I1 ≤m S1 and I2 ≤m S2,and any interfa
e T 
ompatible with S1|S2, if T ⊗ (S1|S2) has no rea
hable errorstates then T ⊗ (I1 ⊗ I2) has no rea
hable error states.Finally the 
omposition operator (|) is 
ommutative and asso
iative up tograph isomorphism.6 A Produ
t Line TheoryIn produ
t line development one typi
ally maintains a family of existing assetsthat are 
omposed in a bottom-up fashion in order to build a produ
t. Here weassume that existing assets are su�
ient to build the produ
t and no genuinelynew programming is required. Assets are organized in small subfamilies, that 
anbe thought of as 
on�gurable 
omponents. Choosing an asset from a subfamily isa 
on�guration pro
ess. We model subfamilies as modal I/O automata, and 
allthem variability models, to distinguish them from interfa
es. The 
on�gurationpro
ess amounts to �nding a suitable modal re�nement of a variability model.There is a need for a me
hanism for 
omposing variability models, to enablereasoning about the produ
ts that 
an be 
onstru
ted using available assets.As in the interfa
e theory we are interested in 
omputing the legal uses for the
omposition of two models, without rea
hing error states. However we weaken therequirement this time: we do not require that all possible pairs of implementationsgive an error free 
omposition, but only that there exists a pair of implementationsthat 
an avoid errors under a suitable use.Two variability models are 
omposable if their input, output and hidden a
-tions do not overlap (the general rule for modal I/O automata). Two 
omposablefamilies 
an be 
omposed, resulting in a des
ription of a higher level 
omponentfamily. The signature of this variability model is found in the same way as for



modal I/O automata. The requirement for the des
ription of this more abstra
tfamily is that a spe
i�
ation that re�nes its des
ription 
an be realized by 
hoos-ing some 
on
rete implementations from both lower level families involved. Sothat in e�e
t one 
an 
on�gure the �nal produ
t by 
on�guring the abstra
t
omposed variability model, being sure that the sele
ted 
on�guration 
an bere�ned to 
on�gurations of ea
h of the smaller 
omponents, available in the 
ol-le
tion of assets. We give a su�
ient 
ondition for a re�nement of a variabilitymodel to be de
omposable.The ultimate 
omposition 
losely resembles the 
omposition (|) for interfa
eautomata: it uses the regular modal I/O automata 
omposition (⊗) �rst and thenremoves error states. However now only internally 
ontrollable required transitionsare pruned, while in the interfa
e theory we had also removed states rea
hableby allowed exe
utions of the same kind. The very existen
e of allowed internally
ontrolled exe
ution to an error state was 
onsidered dangerous in the interfa
etheory�it is not in the produ
t line theory. This is be
ause we are not interestedin eliminating errors by all means, but only in making sure that there exist error-free realizations of the spe
i�
ation. For two synta
ti
ally 
omposable variabilitymodels we de�ne the set of error states, err v
S1,S2

, to be:err v
S1,S2

= {(s1, s2) ∈ statesS1⊗S2
| there exists a ∈ intS1⊗S2

and states s′1, s
′
2su
h that (s1

a!−−→2
s′1 and s2 6 a?−−→3

) or (s1 6 a?−−→3
and s2

a!−−→2
s′2)} (4)In Figure 2 (right) state 22 is still an error state, though for a di�erent reasonthan previously: in state 22 the LinkLayer must be able to produ
e fail, but the

Client is not allowed to re
eive it. If a produ
t of two variability models 
ontainsan error state it means that there exist 
on�gurations of 
omposed assets that
annot safely work together. However, in the same spirit as in the interfa
e the-ory, we 
an 
ompute the set of legal uses that guarantee that there exist pairsof 
ompatible 
on�gurations to intera
t with them. We remove from the produ
t
S1 ⊗ S2 all the states that a

ording to the variability spe
i�
ation must be ableto rea
h an error state. If there is no states left then the two variability modelsare in
ompatible. Otherwise we arrive at a spe
i�
ation of states and transitionsamong the 
ompatible states that 
onstraint possible legal implementations ob-tained from these two families. Formally:statesS1·S2

=
∞⋂

n=0

prunen
v(statesS1⊗S2

\errv
S1,S2

) , (5)where prunev(S) = {s ∈ S | ∀s′. ∀a ∈ intS1⊗S2
∪ outS1⊗S2

. s a−−→2
s′ and s′ ∈ S}.We 
ompute the two transition relations for the 
omposition, by proje
ting thetransition relations of the parallel 
omposition S1⊗S2 onto the new set of states:

−→3

S1·S2 = −→3

S1⊗S2 ∩ (statesS1·S2
× a
tS1⊗S2

× statesS1·S2
) (6)

−→2

S1·S2 = −→2

S1⊗S2 ∩ (statesS1·S2
× a
tS1⊗S2

× statesS1·S2
) . (7)



Finally we 
an state the 
omplete result of the 
omposition: a modal I/O au-tomaton S1 ·S2 su
h that S1 · S2 = (statesS1·S2
, (startS1

, startS2
), inS1⊗S2

, outS1⊗S2
,intS1⊗S2

,−→3

S1·S2,−→2

S1·S2) and all the 
omponents are de�ned above.De�nition 12. Two variability models are 
ompatible if they are 
omposable andtheir 
omposition is nonempty.It turns out that observationally 
onsistent re�nements of 
ompositions ofvariability models are realizable with existing assets. We de�ne observational
onsisten
y for states of a single automaton. Let t A−−→2

∗t′ mean that t′ is rea
hablefrom t via a possible empty sequen
e of required transitions labeled by possiblydi�erent a
tions from a set A.De�nition 13. Let T be a modal automaton and let A ⊆ a
tT be a set of a
tions.A relation C ⊆ statesT × statesT is an observational 
onsisten
y relation withrespe
t to A if for any pair of states (t1, t2) ∈ C the following two properties hold:1. ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A. ∀t′′1. t
′
1

a−−→2
t′′1 implies ∃t′2. t2

a−−→3
t′2∧(t′′1, t

′
2) ∈ C.2. ∀t′2. if t2

A−−→2

∗t′2 then ∀a /∈ A. ∀t′′2. t
′
2

a−−→2
t′′2 implies ∃t′1. t1

a−−→3
t′1∧(t′1, t

′′
2) ∈ C.Two states are observationally 
onsistent if there exists an observational 
onsis-ten
y relation relating them. A set of states is said to be observationally 
onsistentwith respe
t to A if all possible pairs of states from the set are observationally
onsistent with respe
t to A. An automaton T is observationally 
onsistent withrespe
t to A i� the set {startT} is an observationally 
onsistent set.The following theorem states the existen
e of de
omposition formally:Theorem 14 (De
omposability). Let T1, T2 be deterministi
 
omposable vari-ability models, and S be a 
on�guration (a deterministi
 variability model itself)su
h that S ≤m T1 · T2, and T1, S are observationally 
onsistent with respe
t toa
tT1

\ a
tT2
and T2, S are observationally 
onsistent with respe
t to a
tT2

\ a
tT1
.Then there exist S1 and S2 su
h that S1 ≤m T1 and S2 ≤m T2 and S1 ⊗ S2 ≤m S.A version of the theorem, not requiring observational 
onsisten
y, does nothold, whi
h 
an be demonstrated with a 
ounter-example, not in
luded here.An important 
orollary is that the de
omposition 
an be 
arried over down topre
ise 
on�gurations: if a 
on
rete 
on�guration of a produ
t is required, thenthere exist 
on
rete 
on�gurations of assets to realize it. The question whethera spe
i�
ation is realizable with given assets is redu
ed to establishing observa-tional 
onsisten
y and a modal re�nement between the postulated requirementand the variability model. Consequently the abstra
t variability model 
an be
ommuni
ated to 
on�guration engineers and used to 
on�gure �nal produ
ts.Let us 
lose our dis
ussion with a statement that the (·) operator is generalenough to des
ribe all implementations safely realizable with existing assets.Theorem 15 (Completeness). For any two 
ompatible variability models T1,

T2 and any two 
ompatible 
on
rete implementation spe
i�
ations I1, I2, where
I1 ≤m T1 and I2 ≤m T2 it holds that I1 · I2 ≤m T1 · T2.



7 Con
lusion & Future WorkWe have investigated the relation between alternating simulation as used in in-terfa
e automata and observational modal re�nement, 
on
luding that former isa 
ase of the latter. We have argued that the strength of the game theoreti
 ap-proa
h to interfa
e theories does not lie in alternating re�nement itself, but in thelabeling of transitions with 
ontrol information; in partitioning the a
tions intointernally and externally 
ontrollable. We have extended modal transition sys-tems with this information and demonstrated that in this way interfa
e theoriestra
king liveness properties, 
an be built. Finally we have presented a produ
tline theory des
ribing variability in behavior of 
omponent families.In the future we would like to extend the produ
t line theory of Se
tion 6to a full featured theory based on observational modal re�nement and study itsproperties in depth. Also it appears interesting to investigate the relation betweenthe general notion of alternating re�nement [8℄ and (modal) transition systems,lifting the restri
tions a

epted in Se
tion 3 after the interfa
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A ProofsThis appendix 
ontains proofs of theorems and lemmas, along with some 
oun-terexamples for negative 
laims or one-way impli
ations. The appendix is not anintegral part of the paper, and reading it is not required in order to assess thevalue of the results.A.1 Appendix for Se
tion 3This se
tion uses formulations of Alternating Simulation and Observational ModalRe�nement with ǫ-
losure(s) instead of s τ−→∗.Proof (of Theorem 6). The proof will be divided into two dire
tions. First we willprove that
∀S, T ∈ IA. S ≤a T =⇒ T (S) ≤∗m T (T ).We will prove this by showing that alternating simulation is a subset of ob-servational modal re�nement on the translation of IA: ≤a ⊆ ≤∗m. This will beshown by showing that the following relation is a modal re�nement.

R = {(s, t)|∃ŝ, t̂.s = T (ŝ) ∧ t = T (t̂) ∧ ŝ ≤a t̂} ∪ {(s, smayall)|s ∈ statesS}This is shown in three di�erent 
ases, one for ea
h of the rules that de�neobservational modal re�nement.1. Must transition, external a
tion: Take t.t a−−→2
t′ ∧ a ∈ extT . We 
an 
on-
lude from the de�nition of translation that this 
ase only exists for a ∈ inT .By R we have that ∃t̂.t̂ a?−−→t̂′. From the de�nition of Alternating Simulationwe have that ∃ŝ.ŝ a?−−→ŝ′∧(s′, t′) ∈ R. By translation we have that s a−−→2

s′ andthis implies that (s′, t′) ∈ R.2. May transition, external a
tion: Take s.s a−−→3
s′∧a ∈ outS∪inS it means,by R, that ∃ŝ.ŝ a−→ŝ′2.1 a ∈ outS ∧ ŝ a!−→ŝ′, by ŝ ≤a t̂ and the de�nition of alternating simulation wehave that t̂ a!−→t̂′ ∧ ŝ′ ≤a t̂′. By translation we have t a−−→3

t′ this all impliesthat (s′, t′) ∈ R.2.2 a ∈ inS∧ ŝ a?−−→ŝ′∧ t̂ a?−−→t̂′, by ŝ ≤a t̂, the de�nition of alternating simulationand the fa
t that IA are input deterministi
 we have that ŝ a?−−→ŝ′∧ ŝ′ ≤a t̂′and this implies that (s′, t′) ∈ R.2.3 a ∈ inS ∧ ŝ a?−−→ŝ′ ∧ t̂ 6 a?−−→, by translation we have t a?−−→3
smayall and byde�nition of R we have that (s, smayall) ∈ R3. May transition, internal a
tion: Take s.s a−−→3

s′ ∧ a ∈ intS it means, by
R and translation, that ŝ a;−→ŝ′ ∧ s = T (ŝ). By the de�nition of alternatingsimulation we have that ∃t̂′.t̂ τ−→∗t̂′ ∧ ŝ′ ≤a t̂′. By translation we have that
∃t′.t τ−→∗

3
t′.t′ = T (t̂′). This all implies (s′, t′) ∈ R.



We will now prove the other dire
tion:
∀S, T ∈ IA. S ≤a T ⇐= T (S) ≤∗m T (T ).We will prove this by showing that observational modal re�nement, on thetranslation of IA, is a subset of alternating : ≤∗m ⊆ ≤a. This will be shown byshowing that the following relation is an alternating simulation.

Q = {(ŝ, t̂)|∃s, t.s = T (ŝ) ∧ t = T (t̂) ∧ s ≤∗m t}This will be split into three 
ases, one for ea
h of the rules in the de�nitionof Alternating Simulation.1. Take t̂ a?−−→t̂′ by Q and translation we have that a ∈ inT ∧ t a−−→2
t′. We have by

s ≤∗m t and the de�nition of Observational Modal Re�nement that ∃s′.s a−−→2
s′∧

s′ ≤m t′ and by translation we have that ŝ a−→ŝ′ where s′ = T (ŝ′) whi
h impliesthat (ŝ′, t̂′) ∈ Q.2. Take ŝ a!−→ŝ′, by Q and translation we have that a ∈ outS.s a−−→3
s′. We have by

s ≤∗m t and the de�nition of Observational Modal Re�nement that ∃t′.t τ−→∗
3
t′.

∃t′′. t′ a−−→3
t′′ and s′ ≤∗m t′′. By translation we have that this will give rise to asequen
e of internal transitions followed by an a transition su
h that we knowthat ∃t̂′.t̂ τ−→∗t̂′.t̂′ a!−→t̂′′ ∧ ŝ′ ≤a t̂′′ This all implies that (ŝ′, t̂′′) ∈ Q.3. Take ŝ a;−→ŝ′. By Q and by translation we have that a ∈ intS ∧ s a−−→3

s′ Wehave by s ≤∗m t and the de�nition of Observational Modal Re�nement that
∃t′.t τ−→∗

3
t′ ∧ s′ ≤∗m t′. By translation we know that this sequen
e of zero ormore internal transitions will give rise to an identi
al sequen
e of internaltransitions su
h that ∃t̂′.t̂ τ−→∗t̂′ and ŝ′ ≤a t̂′. This all implies that (ŝ′, t̂′) ∈ Q

⊓⊔A.2 Appendix for Se
tion 4Lemma 16. For any two 
omposeable and synta
ti
ally 
onsistent modal I/Oautomata S1, S2 their parallel 
omposition S1⊗S2 is also synta
ti
ally 
onsistent.A.3 Appendix for Se
tion 5Proof (of Theorem 10). This theorem is proven by showing that the relation Ris a modal re�nement:
R = {(i, s) ∈ statesI1⊗I2×statesS1|S2

|i = (i1, i2)∧s = (s1, s2)∧i1 ≤m s1∧i2 ≤m s2}The proof is divided into two 
ases, one for ea
h of the rules in the de�nitionof modal re�nement.



1. s a−−→2
s′. This means that (s1, s2)

a−−→2
(s′1, s

′
2) .We want to show that ∃i′.i a−−→2

i′ ∧ (i′, s′) ∈ R. This will be divided into �vesub 
ases depending on how (s1, s2)
a−−→2

(s′1, s
′
2) is a
hieved. Several of these
ases are symmetri
 versions of ea
h other.1.1 s1

a!−−→2
s′1 ∧ a ∈ intS1|S2

. We know that s2
a?−−→2

s′2 must exists, else theoutput transition would have been pruned. We know i1 ≤m s1 ∧ i2 ≤m s2whi
h gives us i1
a!−−→2

i′1 ∧ i2
a?−−→2

i′2. So take i = (i′1, i
′
2), by de�nition of

I1 ⊗ I2 we have that i a−−→2
i′ and this implies that (i′, s′) ∈ R.1.2 This 
ase is 
ompletely symmetri
, where it is s2 that outputs.1.3 s1

a!−−→2
s′1 ∧ a ∈ outS ∧ a ∈ extS1|S2

by i1 ≤m s1 we have that i1
a!−−→2

i′1 ∧
i′1 ≤m s′1. Also in this 
ase we have, by 
omposability, that s′2 = s2∧ i′2 = i2and (i1, i2) a!−−→2

(i′1, i2). For i′ = (i′1, i2) ∧ s′ = (s′1, s2) this all implies that
(i′, s′) ∈ R.1.4 s1

a?−−→2
s′1∧a ∈ inS∧a ∈ extS1|S2

. This 
ase is symmetri
 with the previous
ase.1.5 s1
a;−−→2

s′1∧a ∈ intS∧a ∈ intS1|S2
. This 
ase is symmetri
 with the previous
ase. All three 
ases also have symmetri
 
ases where the transition inquestion is part of S2.2. i a−−→3

i′ this means that (i1, i2)
a−−→3

(i′1, i
′
2).We want to show that ∃s′.s a−−→3

s′ ∧ (i′, s′) ∈ R. This will be divided into �vesub 
ases depending on how (i1, i2)
a−−→3

(i′1, i
′
2) is a
hieved. Several of these
ases are symmetri
 versions of ea
h other.2.1 i1

a!−−→3
i′1∧i2

a?−−→3
i′2. By R and the de�nition of≤mwe have that s1

a!−−→3
s′1∧

s2
a!−−→3

s′2 ∧ i′1 ≤m s′1 ∧ i′2 ≤m s′2 whi
h gives us that ((i′1, i
′
2), (s

′
1, s

′
2)) ∈ R.2.2 This 
ase is 
ompletely symmetri
, where it is i2 that outputs.2.3 i1 a!−−→3

i′1 ∧ a ∈ outI ∧ a ∈ extI1⊗I2 by i1 ≤m s1 we have that s1
a!−−→3

s′1 ∧
i′1 ≤m s′1. Also in this 
ase we have, by 
omposability, that s′2 = s2∧ i′2 = i2and (s1, s2)

a!−−→3
(s′1, s2). For i′ = (i′1, i2)∧ s′ = (s′1, s2) this all implies that

(i′, s′) ∈ R.2.4 i1
a?−−→3

i′1∧a ∈ inI ∧a ∈ extI1⊗I2 . This 
ase is symmetri
 with the previous
ase.2.5 i1
a;−−→3

i′1∧a ∈ intI ∧a ∈ intI1⊗I2. This 
ase is symmetri
 with the previous
ase. All three 
ases also have symmetri
 
ases where the transition inquestion is part of I2.
⊓⊔Proof (of Theorem 11).The proof pro
eeds as a 
ontrapositive proof in whi
h we show that if an errorstate was rea
hable in T ⊗ (I1 ⊗ I2) then an error state would also be rea
hablein T ⊗ (S1|S2). There are two ways in whi
h an error state 
ould be rea
hable in

T ⊗ (I1 ⊗ I2).1. err i
T,(I1⊗I2)

∩ rea
hable(T ⊗ (I1 ⊗ I2))is non empty.



2. Π2(rea
hable(T ⊗ (I1 ⊗ I2))) ∩ err i
I1,I2

is non empty.Contrapositive proof:1. Assume that (t, i) ∈ err i
T,(I1⊗I2)

and that (t, i) is rea
hable. No we want toshow that ∃(t, s) ∈ err i
T,(S1|S2) and that (t, s) is rea
hable.Be
ause t is rea
hable and I1 ⊗ I2 ≤m S1|S2 (Theorem 10) we know that

∃s ∈ statesS1|S2
and i ≤m s ∧ s is rea
hable by may transitions in S1|S2.1.1 t a!−−→3

t′ ∧ i 6 a?−−→2
∧ a ∈ intT⊗(I1⊗I2) but then s 6 a?−−→2

. We now needto argue that (t, s) is rea
hable by may transitions. This follows from
I1 ⊗ I2 ≤m S1|S2 (Theorem 10). Be
ause of 
onsisten
y we only 
onsidermay transitions.Exe
utions of T and I1⊗I2 is a sequen
e of may transitions of T and I1⊗I2.All the may transitions of I1 ⊗ I2 
an be mat
hed by may transitions of
S1|S21.2 i a!−−→3

i′ ∧ t 6 a?−−→2
∧ a ∈ intT⊗(I1⊗I2). The argument is identi
al to theprevious 
ase.2. Assume that i1

a!−−→3
i′1 ∧ i2 6 a?−−→2

and ∃t.(t, i1, i2) is rea
hable. This impliesthat s1
a!−−→3

s′1 ∧ s2 6 a?−−→2
. So we 
an 
on
lude that an error state would berea
hable in T ⊗ (S1|S2) in this 
ase.Lemma 17. For any two 
omposeable and synta
ti
ally 
onsistent modal inter-fa
e automata S1, S2 their parallel 
omposition S1|S2 is also synta
ti
ally 
onsis-tent.Theorem 18 (Asso
iativity). ∀S1, S2, S3. pairwise 
ompatible S1|(S2|S3) is iso-morphi
 with (S1|S2)|S3.A.4 Appendix for Se
tion 6Lemma 19. For any two 
omposeable and synta
ti
ally 
onsistent modal vari-ability models S1, S2 their parallel 
omposition S1 · S2 is also synta
ti
ally 
on-sistent.De�nition 20 (A-
losure). For a set of a
tions A we de�ne an A-
losure ofa pair of states (s, t1) ∈ statesS × statesT1

as a subset Σ of statesS × statesT1
onsisting of (s, t1) itself and all pairs (s′, t′1) in whi
h s′ 
an be rea
hed from sby following a sequen
e of steps from −→2

S labeled solely by a
tions in A and t′1
an be rea
hed from t1 by following an identi
al sequen
e (sequen
e with the samelabels) of steps from −→2

T1. Closures for pairs of states of S and T2 are de�nedanalogously.De�nition 21 (A-
losure). We lift de�nition 20 to sets of pairs of states, su
hthat the result is simply the union of the A-
losures of all pairs.



Let t A−−→2

∗t′ mean that t′ is rea
hable from t via a possible empty sequen
e ofrequired transitions labeled by a
tions from a set A (possibly di�erent a
tions).We will de�ne observational 
onsisten
y for states of a single automata.De�nition 22. Let T be a modal automaton and let A ⊆ a
tT be a set of a
tions.A relation C ⊆ statesT × statesT is an observational 
onsisten
y relation withrespe
t to A if for any pair of states (t1, t2) ∈ C the following two properties hold:1. ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A. ∀t′′1. t
′
1

a−−→2
t′′1 implies ∃t′2. t2

a−−→3
t′2∧(t′′1, t

′
2) ∈ C.2. ∀t′2. if t2

A−−→2

∗t′2 then ∀a /∈ A. ∀t′′2. t
′
2

a−−→2
t′′2 implies ∃t′1. t1

a−−→3
t′1∧(t′1, t

′′
2) ∈ C.Two states are observationally 
onsistent if there exists an observational 
onsis-ten
y relation relating them. A set of states is said to be observationally 
onsistentwith respe
t to A if all possible pairs of states from the set are observationally 
on-sistent with respe
t to A.An automaton T is observationally 
onsistent with respe
t to A i� the set

{startT} is an observationally 
onsistent set.Lemma 23. Consisten
y is transitive in the following sense: for a 
onsisten
yrelation C if (t1, t2) ∈ C and (t2, t3) ∈ C then (t1, t3) ∈ C.Lemma 24. Let S, T1, T2 be modal I/O automata and S ≤m T1 · T2. If s ∈statesS and t2 ∈ statesT2
are observationally 
onsistent states wrt to a
tT2

\ a
tT1then proje
tions of (a
tT2
\a
tT1

)�
losure(s, t2) on the �rst and se
ond4 
omponentgive observationally 
onsistent sets of states with respe
t to the same set of a
tionsa
tT2
\ a
tT1

.Similarly if s ∈ statesS and t1 ∈ statesT1
are observationally 
onsistent stateswrt to a
tT1

\ a
tT2
then proje
tions of (a
tT1

\a
tT2
)�
losure(s, t1) on the �rst andse
ond 
omponent give observationally 
onsistent sets of states with respe
t to thesame set of a
tions a
tT1

\ a
tT2
.These 
laims generalize also to sets of 
onsistent states.Proof (of Thm. 14). We shall 
onstru
t S1 and S2 exhibiting the requirements ofthe theorem. The signatures of S1 and S2 are identi
al to those of T1 and T2:intSi

= intTi
, outSi

= outTi
, intSi

= intTi
. (8)Sin
e S ≤m T1 · T2 there exists the least relation R ⊆ statesS × (statesT1

×statesT2
), whi
h is a modal re�nement of T1 · T2 by S. LetstatesS1

= {(Σ1, t1) | t1 ∈ statesT1
and Σ1 ⊆ {(s, t2) | (s, (t1, t2)) ∈ R}} (9)statesS2

= {(Σ2, t2) | t2 ∈ statesT2
and Σ2 ⊆ {(s, t1) | (s, (t1, t2)) ∈ R}} (10)4 For the 
urrent version of the proof we only need to 
laim 
onsisten
y when proje
ted on the �rst
omponent.



andstartS1
= (Σ0

1 , startT1
), where Σ0

1 =(a
tT2
\a
tT1

)�
losure(startS, startT2
) (11)startS2

= (Σ0
2 , startT2

), where Σ0
2 =(a
tT1

\a
tT2
)�
losure(startS, startT1

) (12)We 
reate only one transition relation for ea
h of S1 and S2 (or more pre
iselyboth will have two, but identi
al transition relations). Intuitively this transitionrelation for S1 will 
ontain all steps allowed by T1 and required by S. Formallyit is given by the following rules:
a ∈ a
tS1

\a
tS2
t1

a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ′
1 = {(s′, t2) | ∃(s, t2)∈Σ1. s

a−−→3

Ss′}

(Σ1, t1)
a−−→3

S1((a
tT2
\a
tT1

)�
losure(Σ′
1), t

′
1)

(13)
a ∈ a
tS1

∩a
tS2
t1

a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ′
1 = {(s′, t′2) | ∃(s, t2)∈Σ1. s

a−−→3

Ss′ ∧ t2
a−−→3

T2t′2}

(Σ1, t1) a−−→3

S1((a
tT2
\a
tT1

)�
losure(Σ′
1), t

′
1)

(14)
a ∈ a
tS1

∩a
tS2
t1

a−−→2

T1t′1 ∀(s, t2)∈Σ1. s 6 a−−→2

S

(Σ1, t1)
a−−→3

S1(∅, t′1)
(15)

a ∈ a
tS1
\a
tS2

t1
a−−→2

T1t′1

(∅, t1) a−−→3

S1(∅, t′1)
(16)We take the must transition relation −→2

S1 to be identi
al with −→3

S1 . Notethat e�e
tively S1 follows all must transition relations of S in its sort, ex
eptthat whenever T1 requires an input that is not followed by S (as T2 is not able tosyn
hronize on this input), we redire
t the transition relation to a region where allmust transitions of T1 are mapped. We do that as minimum addition to maintainre�nement of T1 by S1, on the fun
tionality not explored by S.We refrain from showing the rules for S2 here�they 
an be easily 
onstru
tedby analogy, as the problem is entirely symmetri
.It is 
lear that the 
onstru
ted systems S1 and S2 are deterministi
�the
losure operation is deterministi
 and we apply to a unique maximal set for ea
ha
tion in ea
h parti
ular sour
e state.Lemma 25. The rules for transitions of S1 ensures that if the originating statebelongs to statesS1
then the target state will also belong to statesS1

.An entirely symmetri
 lemma 
an be made for S2.



Proof. (Lemma 25) First we need to argue that the initial state startS1
∈ statesS1

.Firstly startT1
∈ statesT1

whi
h satis�es the �rst part of the requirement for statesin statesS1
. Now we need to show that (a
tT2

\a
tT1
)�
losure(startS, startT2

) ⊆
{(s, t2) | (s, (t1, t2)) ∈ R}. The state from whi
h the 
losure is 
al
ulated namely,
({(startS, startT2

)}, startT1
), is part of statesS1

be
ause (startS1
, (startT1

, startT2
)) ∈

R. All the transitions that are taken in the 
al
ulation of the 
losure are on a
-tions not involving T1 and are taken simultaneously by S and T2, whi
h ensuresthat all pairs of states Σ′
1 that are rea
hed will still ful�ll the requirement forbeing in statesS1

.The rest of the proof 
onsists of four 
ases, one for ea
h rule. We need toargue for transitions generated by ea
h of the four rules that the target state willbe in statesS1
, given that the sour
e state is. Transitions generated by rule (13)ensure this be
ause the states that are in Σ′

1 have taken one transition that is ona non shared a
tion of T1. This transition is taken simultaneously by T1 and S.Finally the 
losure also preserves the property, by the same argument as before.The argument for rule (14) is similar, the only di�eren
e being that the �rsttransition is on a shared a
tion and is taken by S, T1 and T2. Rule (15) and (16)are di�erent. Here the argument is that ∅ is a subset of {(s, t2) | (s, (t1, t2)) ∈ R}.We want to show that 1◦ S1 ≤m T1, 2◦ S2 ≤m T2 and 3◦ S1 ⊗ S2 ≤m S.
1◦ Show that

R1 = {((Σ1, t1), t1) |Σ1 ∈ statesS1
and t1 ∈ statesT1

} (17)is a modal re�nement of T1 by S1.Consider an arbitrary pair of states ((Σ1, t1), t1) ∈ R1 and a transition t1
a−−→2

T1t′1.We want to show that there exists a state (Σ′
1, t

′
1) and a transition su
h that

(Σ1, t1)
a−−→2

S1(Σ′
1, t

′
1) and ((Σ′

1, t
′
1), t

′
1) ∈ R1

1.1◦ If Σ1 = ∅ then take Σ′
1 to be ∅ and the 
orresponding transition existsdue to rule (16) or rule (15). In the 
ase of rule (15) the premise that

∀(s, t2) ∈ Σ1 is trivially true.
1.2◦ Let a be an a
tion of T1 that is not shared with T2, or similarly a ∈a
tS1

\ a
tS2
. We want to apply rule (13) and want to show that thepremises are ful�lled. The �rst two premises are ful�lled by the 
ase thatwe are looking at. The third premise is ful�lled by the following argu-ment. Be
ause t′1 is making a step we have that (t1, t2) a−−→2

T1·T2(t′1, t2). Bythe de�nition of statesS1
and R1 we have that (s, (t1, t2)) ∈ R for ev-ery pair (s, t1) ∈ Σ1. Be
ause R is a modal re�nement of T by S wehave that s a−−→2

Ss′ and (s′, (t′1, t2)) ∈ R for every pair (s, t1) ∈ Σ1. Thethird premise will trivially hold and we 
an even 
on
lude that Σ′
1 will benonempty. Now we 
an apply rule (13) and we 
an 
on
lude that indeed

(Σ1, t1)
a−−→3

S1(((a
tT2
\a
tT1

)�
losure(Σ′
1), t

′
1). From this we 
an 
on
ludethat a similar must transition exists be
ause the two transition relations are



identi
al. Finally we 
an 
on
lude that (((a
tT2
\a
tT1

)�
losure(Σ′
1), t

′
1) ∈ R1be
ause the generated transitions stay within statesS1

and t′1 ∈ statesT1
.

1.3◦ Let a be an a
tion of T1 that is shared with T2, or similarly a ∈ a
tS1
∩a
tS2

.We want to apply rule (14) and (15), in two di�erent sub 
ases, and wantto show that the premises are ful�lled. The �rst two premises of both rulesare ful�lled by the 
ase that we are looking at. The third premise of rule(14) and (15) are ea
h others opposites, su
h that the one is true when theother is false and vise versa. Looking at the 
ase where ∃(s, t2) ∈ Σ1.s a−−→2

S,whi
h is exa
tly the third premise of rule (14), then we 
an 
on
lude thatthe last premise for rule (14) is true by the following argument. Be
ause
S is 
onsistent we know that there is a transition s a−−→3

S. Be
ause R is amodal re�nement of T by S and we 
an 
on
lude that the only way thatthis transition 
an exist is if a similar transition t2
a−−→3

T2t′2 exists su
h that
(t1, t2)

a−−→3

T1·T2. The fourth premise of rule (14) is trivially true, but we
an now 
on
lude that Σ′
1 is nonempty. Now we 
an apply rule (14) andwe 
an 
on
lude that indeed (Σ1, t1) a−−→3

S1(((a
tT2
\a
tT1

)�
losure(Σ′
1), t

′
1).From this we 
an 
on
lude that a similar must transition exists be
ausethe two transition relations are identi
al. Finally we 
an 
on
lude that

(((a
tT2
\ a
tT1

)�
losure(Σ′
1), t

′
1) ∈ R1 be
ause the generated transitionsstay within statesS1

and t′1 ∈ statesT1
.Now turning to the other sub 
ase where ∀(s, t2) ∈ Σ1 s 6 a−−→2

S. In this
ase there are no must transitions in S requiring the behavior but S1will have the behavior be
ause T1 requires it. From this we 
an 
on
ludethat (∅, t1) a−−→3

S1(∅, t′1) and that a similar must transition exists be
ausethe two transition relations are identi
al. Finally we 
an 
on
lude that
(((a
tT2

\a
tT1
)�
losure(∅), t′1) ∈ R1 be
ause the generated transitions staywithin statesS1
and t′1 ∈ statesT1

.This �nishes one dire
tion of the proof. Lets now 
onsider a may transition
(Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1). We need to show that a transition t1

a−−→3

T1t′1 exists su
hthat ((Σ′
1, t

′
1) ∈ R1)

1.4◦ This transition 
ould have been generated by one of the four rules (13)-(16). In two of the 
ases we 
an dire
tly 
on
lude that a transition t1
a−−→3

T1t′1exists. In the other two 
ases we 
an 
on
lude that this transition existsbe
ause the rules require a similar must transition and T1 is synta
ti
ly
onsistent. Now it follows dire
tly from Lemma 25 that (Σ′
1, t

′
1) ∈ R1

2◦ The proof that S2 ≤m T2 is entirely symmetri
 to the proof that S1 ≤m T1.



3◦ Show that S1 ⊗ S2 ≤m S. We do that by arguing that
R2 = {(((Σ1, t1), (Σ2, t2)), s) |

((a
tT1
\a
tT2

)�
losure(s, t1) ⊆ Σ2 and
((a
tT2

\a
tT1
)�
losure(s, t2) ⊆ Σ1 and

Π1(Σ1) is observationally 
onsistent wrt a
tT2
\a
tT1

and
Π1(Σ2) is observationally 
onsistent wrt a
tT1

\a
tT2
} (18)is a modal re�nement of S by S1 ⊗ S2. First we should argue that

((startS1
, startS2

), startS) ∈ R2 . (19)Obviously
(a
tT2

\a
tT1
)�
losure(startS, startT2

) ⊆ Σ0
1 and (20)

(a
tT1
\a
tT2

)�
losure(startS, startT1
) ⊆ Σ0

2 (21)(a
tually equalities hold). Observational 
onsisten
y of proje
tions of Σ0
1 and

Σ0
2 follows from 
onsisten
y of S, T1, T2 and Lemma 24.We shall dis
uss that the may transition relation preserves the re�nement.Take any (((Σ1, t1), (Σ2, t2)), s) ∈ R2 and a transition step

((Σ1, t1), (Σ2, t2))
a−−→3

S1⊗S2((Σ′
1, t

′
1), (Σ

′
2, t

′
2)) (22)We want to �nd a state s′ su
h that s a−−→3

Ss′ and ((Σ′
1, t

′
1), (Σ

′
2, t

′
2)), s

′) ∈ R2.Note that due to the way R2 is 
onstru
ted we know that neither Σ1 nor Σ2are empty. The transition step of the 
omposition must then be 
reated byboth 
omponents taking a shared a
tion (and both following rule (14)) or byone 
omponent taking a non-shared a
tion, by rule (13), and the other not
hanging state.Observe that rule (16), 
an never give rise to su
h a transition as it wouldrequire Σ1 or Σ2 to be empty, whi
h we have just ruled out.
3.1◦ Let a ∈ a
tS1

∩ a
tS2
. We want to �rst argue that both 
omponents takesteps generated by rule (14) and not rule (15). The latter would requirethat either t1 or t2 enjoys a must transition ti

a−−→2

Tit′i. If both transitionsexisted, they would imply that also s a−−→2

Ss′ (sin
e (s, (t1, t2)) ∈ R, Sis deterministi
), whi
h would 
ontradi
t the joint premises of the rules.So only one of the two must transitions 
an exist. But then the other
omponent is taking a transition generated by rule (14) implying that
s a−−→2

Ss′, 
ontradi
ting premises of rule (15) (for both 
omponents). Inother words rule (15) 
ould not have been used, so for some sets Σ′′
1 , Σ′′

2 :
(Σ1, t1)

a−−→3

S1((a
tT2
\a
tT1

)�
losure(Σ′′
1 ), t′1) (23)

(Σ2, t2)
a−−→3

S2((a
tT1
\a
tT2

)�
losure(Σ′′
2 ), t′2) (24)



From that we derive that rule (14) must have been used to 
reate both ofthese transitions, whi
h implies that there exists (s1, p2) ∈ Σ1 su
h that
s1

a−−→2

Ss′1 for some state s′1. Sin
e Π1(Σ1) is an observationally 
onsistentset with respe
t to a
tT2
\ a
tT1

then there exists a state s′ su
h that
s a−−→3

Ss′ and (s′1, s
′) is an observationally 
onsistent pair of states. Sin
e Sis deterministi
 the same argument 
an be used for all elements in Π1(Σ

′′
1 )5,whi
h with help of Lemmas 23 and 24 leads us to a 
on
lusion that the�rst 
omponent of (a
tT2

\a
tT1
)�
losure(Σ′′

1 ) is observationally 
onsistentwrt (a
tT2
\a
tT1

).Sin
e rule (14), or more pre
isely its 
ounterpart for S2, must have beenused to 
onstru
t transition (24) we 
an also 
on
lude that t2
a−−→3

T2t′2. Soby premises of rule (14) instantiated for transition (23) we 
on
lude that
(s′, t′2) ∈ Σ′′

1 and hen
e is in the 
losure.Symmetri
 arguments 
an be used to argue that the �rst 
omponent ofthe 
losure of Σ′′
2 is observationally 
onsistent wrt a
tT1

\ a
tT2
, and that

(s′, t′1) ∈ Σ′′
2 and hen
e also in its 
losure, whi
h �nishes the proof of this
ase.

3.2◦ Let a ∈ a
tS1
\ a
tS2

. Then we know that:
(Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1) and Σ′

2 = Σ2 and t′2 = t2 . (25)It easy to 
on
lude that the step of T1 has been generated by rule (13) andnot rule (16) (we have already argued against this 
ase above: Σ1 6= ∅).The fa
t that (Σ1, t1) is able to make an a step by rule (13) implies thatsome state of s paired with some state of T2 in Σ1 requires su
h a step.By observational 
onsisten
y of Π1(Σ1) we have that ne
essarily s a−−→3

Ss′for some s′. Moreover (s′, t2) ∈ Σ′
1 (by rule (13)) and (s′, t′1) ∈ Σ2 sin
e

(s′, t′1) ∈ (a
tT1
\ a
tT2

)�
losure(s, t1) = Σ2. Sin
e Σ2 does not 
hange,there is no need to argue for its 
onsisten
y. Consisten
y of Π1(Σ
′
1) followsfrom the fa
t that a transition is taken, whi
h 
annot move outside the
onsistent set (a hidden must transition).

3.3◦ The 
ase when s takes a transition over a non-shared a
tion of S2 is entirelysymmetri
.Observe that impli
itly (by analyzing all intera
tion possibilities) we haveruled out a possibility of a deadlo
k between S1 and S2.Let us now turn towards the must transition relations. Assume that for somea
tion a and state s′ we have that s a−−→2

Ss′.
3.4◦ Let a ∈ a
tT1

∩a
tT2
. Sin
e (s, (t1, t2)) ∈ R and S is synta
ti
ally 
onsistent,we get that (t1, t2)
a−−→3

T1·T2(t′1, t
′
2) for some t′1, t′2 and further that t1

a−−→3

T1t′15 In the nondeterministi
 
ase we would probably have to extend the de�nition of observational
onsisten
y with a universal quanti�er, instead of the existential, whi
h it is using now.



and t2
a−−→3

T2t′2. But these imply by rule (14) that (Σ1, t1)
a−−→3

S1(Σ′
1, t

′
1),where (a
tT2

\a
tT1
)�
losure(s′, t′2) ⊆ Σ′

1 and similarly (Σ2, t2) a−−→3

S2(Σ′
2, t

′
2),where (a
tT1

\a
tT2
)�
losure(s′, t′1) ⊆ Σ′

2.We have 
hosen that the must transition relations of both S1 and S2 areidenti
al with their respe
tive may transition relations, so we 
an 
on
ludethat ((Σ1, t1), (Σ2, t2))
a−−→2

S1⊗S2((Σ′
1, t

′
1), (Σ

′
2, t

′
2)).Observational 
onsisten
y of the �rst 
omponents of Σ′

1 and Σ′
2 
an beargued as in earlier 
ases (existen
e of a single must transition of s guar-antees that none of s transitions labeled in a and sour
ed in states of Σi
an leave outside the set of 
onsistent states).

3.5◦ Let a ∈ a
tT1
\a
tT2

. Sin
e (s, (t1, t2)) ∈ R and S is synta
ti
ally 
onsistent,we get that (t1, t2)
a−−→3

T1·T2(t′1, t2) and further that t1
a−−→3

T1t′1. But this im-plies by rule (13) that (Σ1, t1)
a−−→3

S1(Σ′
1, t

′
1), where (a
tT2

\a
tT1
)�
losure(s′, t2) ⊆

Σ′
1. Also (a
tT1

\a
tT2
)�
losure(s′, t′1) ⊆ Σ2 sin
e the transition performedby this pair is within the original 
losure (a
tT1

\a
tT2
)�
losure(s, t1), whi
hwas a subset of Σ2.As we have 
hosen that must transition relation of S1 is identi
al with itsmay transition relation, we 
an 
on
lude that:

((Σ1, t1), (Σ2, t2))
a−−→2

S1⊗S2((Σ′
1, t

′
1), (Σ2, t2)) . (26)Finally Σ′

1 is observationally 
onsistent as s only takes a hidden transitionhere (with respe
t to the set of ignored a
tions), whi
h �nishes the prooffor this 
ase.
3.6◦ The 
ase where S2 takes an independent step is symmetri
. ⊓⊔Observe that the above theorem 
an be used to generate de
ompositions ofsimulations and bisumulations (whi
h are spe
ial 
ases of modal re�nement).Proof (Thm. 15). Show that

R3 = {((i1, i2), (t1, t2)) ∈ statesI1·I2 × statesT1·T2
| i1 ≤m t1 ∧ i2 ≤m t2} (27)is a modal re�nement of T1 · T2 by I1 · I2.

1◦ Consider (i1, i2)
a−−→3

(i′1, i
′
2). We have to 
onsider four 
ases: 1.1◦ a ∈ extI1·I2,

i1
a−−→3

i′1 and i2 = i′2. As i1 ≤m t1 there must exist a t′1 su
h that t1
a−−→3

t′1 and
i′1 ≤m t′1, so ((i′1, i2), (t

′
1, t2)) ∈ R3. By de�nition of the 
omposition operator(·) we get that (t1, t2)
a−−→3

(t′1, t2): the only possibility for it 
ould not hold iswhen (t′1, t2) has been pruned in T1 · T2, so there exists a sequen
e of internally
ontrollable must transitions leading from (t′1, t2) to an error state (t′′1, t
′′
2) where

t′′k
a!−−→3

t′′′k and t′′3−k 6 a?−−→3
, where k ∈ 1, 2. But then a 
orresponding sequen
ewould exist in I1 · I2, meaning that (i1, i2)

a−−→3
(i′1, i2) was not possible to beginwith (also pruned). Finally it is easy to see ((s′1, s

′
2), (t

′
1, t

′
2)) ∈ R3.

1.2◦ a ∈ extI1·I2, i2
a−−→3

i′2 and i1 = i′1 is symmetri
.



1.3◦ a ∈ intI1·I2, i1
a!−−→3

i′1 and i2
a?−−→3

i′2. Then by i1 ≤m t1 and i2 ≤m
t2 we 
on
lude that there exists t′1, t′2 su
h that t1 a!−−→3

t′1 and t2 a?−−→3
t′2 and

i′1 ≤m t′1 and i′2 ≤m t′2. By de�nition of the 
omposition operator (·) we get that
(t1, t2)

a−−→3
(t′1, t

′
2): the only possibility for it 
ould not hold is when (t′1, t

′
2) hasbeen pruned in T1 · T2, so there exists a sequen
e of internally 
ontrollable musttransitions leading from (t′1, t

′
2) to an error state (t′′1, t

′′
2) where t′′k

a!−−→3
t′′′k and

t′′3−k 6 a?−−→3
, where k ∈ 1, 2. But then a 
orresponding sequen
e would exist in

I1 · I2, meaning that (i1, i2)
a−−→3

(i′1, i
′
2) was not possible to begin with. Finally itis easy to see ((s′1, s

′
2), (t

′
1, t

′
2)) ∈ R3.

1.4◦ a ∈ intI1·I2, i2
a!−−→3

i′2 and i1
a?−−→3

i′1. The argument follows as in 1.3◦.
2◦ Consider (t1, t2)

a−−→2
(t′1, t

′
2). We have four sub
ases again out of whi
h 2are interesting.

2.1◦ a ∈ extT1·T2
and t1

a−−→2
t′1 and t2 = t′2. Then by i1 ≤m t1 there exist i′1su
h that i1

a−−→2
i′1 and i′1 ≤m t′1. By similar argument as above (i1, i2)

a−−→2
(i′1, i2)(be
ause if (i′1, i2) was pruned then so was (i1, i2), for whi
h we assumed that itwas not) and (i′1, i

′
2), (t

′
1, t

′
2) ∈ R3.

2.2◦ a ∈ extT1·T2
and t2

a−−→2
t′2 and t1 = t′1. Argument as above.

2.3◦ a ∈ intT1·T2
and t1 a!−−→2

t′1 and t2 a?−−→2
t′2. Then by i1 ≤m t1 and i2 ≤m

t2 there exist i′1 and i′2 su
h that i1
a−−→2

i′1 and i2
a−−→2

i′2 and i′1 ≤m t′1 and
i′2 ≤m t′2. By a similar argument involving the de�nition of (·) as above we get
(i1, i2)

a−−→2
(i′1, i

′
2) (as if (i′1, i

′
2) then so would (i1, i2) whi
h was assumed not tobe pruned). So ((i′1, i

′
2), (t

′
1, t

′
2)) ∈ R3, whi
h �nishes the proof. ⊓⊔


