On Efficient Program Synthesis from Statecharts

Andrzej WasowskKi
Department of Innovation
IT University of Copenhagen
2400 Copenhagen NV, Denmark

wasowski@it-c.dk

ABSTRACT

Program synthesis from hierarchical state diagrams has for
long been discussed in various communities. My aim is to
provide an efficient, lightweight code generation scheme suit-
able for resource constrained microcontrollers.

I describe an initial implementation of SCOPE—a hier-
archical code generator for a variant of the statechart lan-
guage. I shall discuss several techniques implemented in
the tool, namely imposing and exploiting a regular hierar-
chy structure, labeling schemes for fast ancestor queries, im-
provements in exiting states, compile-time scope resolution
for transitions, and various details of compact runtime rep-
resentation.

The resulting algorithm avoids the exponential code growth
exhibited by tools based on flattening of hierarchical state
machine. At the same time it demonstrates that it is possi-
ble to maintain reasonable speed and size results even for
small models, while preserving the hierarchy at runtime.
SCOPE currently produces code that is comparable with
that of industrial tools (IAR visualSTATE) for small models
and clearly wins for bigger ones.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—State Diagrams

General Terms

Algorithms, Performance

Keywords

Program synthesis, automatic code generation, statecharts,
embedded systems

1. INTRODUCTION

Statecharts[8], or hierarchical state diagrams, have proved
to be a successful behavioral modeling formalism. The intu-
ition behind their visual syntax increases productivity, while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

LCTES 03 June 11-13, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-5813-647-1/03/0006 ...$5.00.

formal semantics supports development of tools for program
synthesis and validation. Inclusion into UML standard has
brought statecharts into the very center of software engineer-
ing technology. One of the emerging research problems is
development of efficient automatic program synthesis tech-
niques, as existing solutions are mostly focused on code read-
ability and round trip engineering. The efficiency aspects
are usually left behind. This is acceptable for production of
workstation software, but still remains an issue for smaller
target platforms such as resource constrained embedded sys-
tems, which quickly become ubiquitous due to tremendous
success of mobile devices.

One approach to efficient program synthesis from state-
charts uses flattening—a process of translation into a set
of parallel Mealy machines. This results in simplification
of runtime interpreter and allows its very efficient imple-
mentation. Unfortunately abandoning the hierarchy may
cause exponential growth of the model[4], which leads to
exponential growth of the program size. Thus the flattening
technique seems to be useful only for smaller models. The
code generation scheme presented here avoids the code ex-
plosion problem by preserving the hierarchy information at
execution time.

Although important, linear code size is not the only de-
mand. The complexity term should have a small constant
factor, so that the gain is obtained already for small mod-
els, not only asymptotically. The time cost of single reac-
tion should be minimized, which seems to be a difficulty, as
maintenance of hierarchy introduces slow operations at run-
time. Countermeasures should be taken to reduce number
of ancestor queries, improve efficiency of single query and
propose an internal runtime representation with small time
overheads.

SCOPEJ[13] is a code generator, demonstrating several
techniques for decreasing the practical disadvantages of hi-
erarchical approach. This paper describes some of its more
important implementation details.

2. OVERVIEW

We shall use a statechart of figure 2a to introduce some
basic concepts. Each statechart consists of states organized
in a hierarchy. T'wo states are in parent-children relation if
one directly contains another. The sets of descendants and
ancestors are defined by transitive closures of respectively
children and parent relations. For example C' is a child of
A and H belongs to descendants of A. The outermost state
A is called a root state. The innermost states (like D and
H) are basic states. B, C' and G are called or-states as only

actions

CURRENT STATE
prev
REACTION Gstate
events RELATION [
next state

Figure 1: Structure of synthesized program.

one of their children can be active at a time, whereas A is
an and-state, because both of its children (B and C) shall
be active simultaneously.

Each transition has a single explicit source state and a
single explicit target. Label of the transition contains the
name of activating event, set of positive conditions (states
demanded to be active, when transition fires), negative con-
ditions (states demanded to be inactive) and an action. The
action may contain host language function calls, expressions,
triggering signals (local events) and additional targets to be
activated.

The set of active states is called a configuration. Transi-
tions specify how configuration is changed in reaction to dis-
crete events. Black marks attached to states (initial mark-
ers) indicate members of the initial configuration of active
states. Finally both states and transitions have actions as-
signed. These are executed when states are entered and
exited or transitions fired.

The program build of statechart model has two fundamen-
tal components (figure 1): the current state configuration
and the reaction relation. The configuration describes the
set of active states. In hardware synthesis techniques it is
usually realized using a feedback register. The reaction re-
lation (sum of all transitions) defines how the configuration
advances in response to external stimuli. It corresponds to
combinational block of hardware implementations (see [6]
for an example).

In a flattened representation the configuration compo-
nent is implemented as a vector of activity indicators for
all states. Operations performed on the configuration are
limited to testing and setting values of those boolean flags.
The reaction relation component is a list of rules containing
guards, actions and target states. Both the configuration
and the relation representation are rather simple. In the hi-
erarchical case the configuration component contains both
the hierarchy tree and the set of active states (gray on fig-
ure 1). It can be seen as a query answering engine, making
decisions based on the content of the set and shape of the
hierarchy tree. The operations performed are activity tests
and exiting/entering a state.

SCOPE'’s hierarchy tree is represented in integer arrays.
States are divided into two disjoint sets: or-states and and-
states. This solution brings a multitude of small savings,
starting from shortening integers used for identifying states
ending up on elimination of runtime checks for state types.
States are labeled in an order that allows fast ancestorship
checks based on label comparisons. Moreover, whole parts
of the hierarchy can be exited by performing set difference of
current state set and the interval characterizing the subtree
to be exited. Last but not least, an extension of labeling

scheme is proposed, which exploits monotonicity of label se-
quences, to detect the end of children list and thus eliminate
some markers from representation.

SCOPE supports a dialect of statecharts implemented by
the industrial tool IAR visualSTATE[9]. Similarly to STATE-
MATE it allows transitions with targets concurrent to the
source of the transition. Such transitions introduce a prob-
lem of dynamic scopes: one cannot decide at compile time
what is the actual scope of the state change (what part of
hierarchy should be affected). An algorithm for imposing
static scopes has been designed and implemented. It en-
sures that all transitions have scopes detectable at compile
time, thus removing this severe disadvantage of hierarchical
representations.

The SCOPE code generator performs reasonably on small
and simple models. Results are especially good for bigger
models, when it clearly wins compared with the industrial
implementation based on flattening. More work remains
to be done, especially in the area of implementation of the
reaction relation, which should improve the results further.

The structure of the paper is as follows. Section 3 de-
scribes technical details of SCOPE’s implementation. Sec-
tion 4 evaluates both theoretically and empirically solutions
described in section 3. Section 5 comments on some ex-
amples of similar work. Finally section 6 concludes and
indicates future work directions.

The semantics of statecharts language itself is not pre-
sented here. Should details be needed please refer to the
original paper by Harel[8] and to our formal definition[16].

3. TECHNICAL DESCRIPTION

The runtime representation has been designed with mod-
est space requirements and fast access in mind. The ba-
sic observation was that despite the multitude of attributes
for states and transitions, developers hardly ever use all
of them. Thus commonly used elements (initial markers,
source states, targets) should be implemented cheaply, whereas
it is acceptable to use more space and access time for exotic
ones (multiple targets, complicated conditions, exit/entry
actions, history).

For instance an initial marker is an example of commonly
used element: it must be present once for each or-state. Ini-
tial markers are entirely eliminated from SCOPE’s runtime
representation in terms of space usage. Instead children lists
are reordered, so initial states become lists’ heads.

An average transition most likely will only have a simple
condition (a source state and a discrete event), an action
and a single target state. These fields, stored in the static
part of transition record, are quickly accessible using fixed
offsets. Multiple targets, a complex guard, and a transition
scope are kept in the variable section of the record. Slower
and more expensive field type indicators are used in this
part, which is acceptable for rarely used elements.

The target language of SCOPE is C[10]. Despite the ad-
vances in optimization technology, C compilers face hard
problems caused by the type system and highly impera-
tive semantics of the language. For instance, an automatic
code generator is rather likely to produce redundant identi-
cal pieces of code, including complete function bodies. The
C compiler must maintain all identical pieces to guaran-
tee correctness of pointer comparisons (if function pointers
are used). To avoid the problem identical pieces of code
should not be generated to begin with. A dynamic table

\3®!

(a)

C
exit: a2(IE‘ . . ,

NEEES

'Cl

i S

'Gl 'Gl '2|

() (d)

Figure 2: (a) A simple statechart (b) hierarchy tree (c) and-states labeled in DFS postorder, children visited
from right to left. Superscripts indicate left edges of descendants interval. (d) Dual ordering of or-states.

of C code snippets is implemented, which only saves frag-
ments not seen before. Program fragments are saved in this
table, which is then used to build the actual C program.
This uniqueness detection uses a trivial syntactic criterion
(identity), sufficient for automatically generated code and
reasonable for user written code (as we speak of short ac-
tions and expressions without local variables).

3.1 Hierarchy Tree

The hierarchy tree (see figure 2b) is the essential data
structure of runtime representation. The language requires
that children of and-states are always or-states, but or-states
can have both types of children. This asymmetry increases
modeling flexibility, but seems to be a burden at runtime.
Regular alternation is introduced by inserting dummy single-
childed and-states between two consecutive or-states (see G’
on figure 2b). This permits to recognize state type by its
position in the tree, saving both space (no runtime type
information) and time (no dynamic type-checks). Addition-
ally, separate name spaces for and-states and or-states can
be used. State identifiers are reused and become shorter
(space saving). The two parts of the tree can be saved in
separate arrays. A simplified example is given in figure 3.
All additional state attributes including parent information
and entry/exit actions are omitted. The # marks used in
th figure denote end-of-record markers.

In practice state addresses (array indexes) are used as
state identifiers. If any of the two arrays becomes longer
than integer type sufficient to represent the number of states
of given type, state offsets double their size, which would
immediately affect the size of identifiers and hence all arrays.
To defer this undesirable effect an intermediate dictionary
(an array of offsets) is created in such case and states are
addressed by an extra indirection at runtime. It can be

{B i 4¢
or-states D} E} F#]G}J}# [H| 1 #]
(A {DIEJFG H T

and-states ‘B‘C‘#‘#‘#‘#‘G‘#‘#‘#‘#‘

Figure 3: Hierarchy of fig.2b encoded in two arrays

shown that the space cost of dictionary is always smaller
than the saving on the array size.

Ancestorship queries are the most important operation on
the hierarchy tree. They are performed whenever a state ac-
tivity condition is evaluated, i.e. when selecting transitions
to fire and when selecting routes of activation for cross-level
transitions or transitions targeting non-basic states. ITAR
visualSTATE statecharts contain even more activity checks
than UML state diagrams, since synchronization by states
is much more natural for them than synchronization by sig-
nals.

The trivial implementation of hierarchical ancestorship
check demands traversing the path between two states. Un-
fortunately the most expensive case, when ancestorship does
not hold, seems to be the most common one. To diminish
the problem a simple labeling scheme is proposed supporting
checks based only on state labels.

Assume that and-states are numbered in depth-first-search
order (postorder, with left-to-right visiting of children). Then
the identifier assigned to given state s is greater than the
identifier assigned to any of its descendants and all of them
are greater than the identifier assigned to the leftmost de-
scendant of s (see figure 2c). For each and-state an interval of
ancestorship identifiers can be computed. Then the left end-
point of the interval needs to be saved for each and-state.
The right end-point of the interval is the state identifier,
which is always known when reaching the state. As such it
does not need to be saved separately.

The labeling can be exploited even further to eliminate
some record markers from the structure. Recall that and-
states and or-states have separate name spaces, which means
that they can be labeled in different ways. Note that the
interval labeling of and-states does not necessarily demand
for state identifiers to be consecutive numbers. Recall also
that state identifiers are used as state pointers, which means

oz B8
or-states ‘6 7 4 5 l 2 3 —mf?

111243,445,6,7,8

and-states ‘inf‘inf‘inf‘inf‘inf‘z‘inf‘ 3‘ 1‘inf‘

Figure 4: Array encoding of tree in figure 2d

that states are arranged in the same order in the arrays in
which they are visited by labeling algorithm.

It can be shown that if or-states are labeled in order dual
to the one presented for and-states (DFS, preorder, with
right to left visiting of children) both arrays exhibit an in-
teresting property. Children lists in the or-state array form
strictly increasing sequences of values, while sequences of
children on lists in the and-state array are strictly decreasing
(see figure 2d). Moreover the monotonicity is always broken
between lists of children of two neighboring states. This in-
formation can be used to distinguish record boundaries and
remove end-of-state markers. If the state contains more at-
tributes than children list (namely entry/exit actions) they
are saved in front of the state record preceded by a marker:
negative infinity for array of and-states and positive infinity
for array of or-states. A guarding mark should also be ap-
pended in the end of the arrays and for basic states (having
empty children lists).

Figure 4 shows runtime representation for the tree of fig-
ure 2d. Additional fields have been suppressed and consecu-
tive numbers instead of actual offsets were used to increase
readability. The saving is especially visible in or-states ar-
ray, which by definition does not contain any leaves, and for
deeper models with many internal nodes.

3.2 State Configuration Encoding

I have experimented with two simple state encoding tech-
niques: set-based encoding and flag-based encoding—a vari-
ant of classical 1-hot state assignment adopted for software
implementation of statecharts. The set encoding is more
compact, while the flag encoding yields faster programs.
The set encoding relies heavily on optimized ancestor queries
described in section 3.1. Performance of the encodings is
compared in section 4.

3.2.1 Set-based Encoding

Instead of the full vector of activity flags for all states,
the set-based encoding maintains only a set of active basic
states. Activity queries for non-basic states are answered
using this set and the hierarchy tree.

Programming in constrained environment discourages use
of dynamic memory management. This means that static
buffers, rather than dynamic data structures, should be used
to represent sets and queues. The set of active states is a
simple buffer of elements with empty cells in the end. The
lack of gaps between elements is important as we shall see
that efficiency of state activity tests depends on the actual
number of elements filled in. The configuration implemen-
tation does not prevent overflows. To guarantee safety, a
bound on configuration size must be found statically by
SCOPE.

The exact maximum size of the configuration can be com-
puted using reachability analysis. Unfortunately this is ex-
pensive and may be impossible in practice for bigger models.
A cheaper estimation is needed.

A simple recursive algorithm is used to give an upper
bound of the configuration size. The bound for each basic
and-state is assumed to be 1. The bound for each or-state
is the maximum of bounds for its children. The bound for
each and-state is the sum of children’s bounds. Although
very simple, this algorithm gives a good improvement over
the trivial bound—the number of all basic states. The esti-
mation is exact for purely sequential or entirely flat models.

Interval labeling and set-based encoding can also be used
for optimizing some of the state exit operations. Observe
that whenever a transition is fired all states within its scope
should be exited and then new states should be activated.
Standard exit procedure starts from active leaves of the re-
spective subtree and proceeds towards the top executing all
exit actions on the way. This can be improved for some
states.

An and-state is said to be ezit-pure if none of its descen-
dants has any exit actions assigned. For such state another
exit algorithm may be proposed. Instead of traversing the
subtree and executing empty exit actions, one can scan the
set of active states and simply delete all states between the
end-points of the interval representing the subtree.

3.2.2 Flag-based Encoding

An alternative encoding for statechart configuration would
preserve the information about all states (not only the ba-
sic states). The idea is to store identifier of active child for
each or-state (or a distinct value if the state is inactive it-
self). This way activity checks become very efficient (and
constant time) at the cost of updating the information for
more states, whenever a transition fires. Also more writable
memory is needed, which often is the most scarce resource.

Hardware implementations of similar encodings[6] use [log n]
bits for each or-state, where n is the number of its children.
Access to subparts of machine word is relatively inefficient,
when it comes to software implementations. A vector of cells
with fixed size can be used instead. The cell size should be
sufficiently big to store the information for or-state node
with highest out-degree.

3.3 Signal Queue

The local events queue is implemented in a ringbuffer.
Unfortunately overflow-safety is not guaranteed as no esti-
mation is given for signal queue size currently. The user
is obliged to provide a safe value at code generation time.
This can be obtained from the visualSTATE model-checker,
which however may exhibit usual termination problems of
reachability analysis.

3.4 Transitions

Transitions are stored in a simple hash table, with events
being hash keys. Each event has a linear list of transitions
assigned.

The essential improvement from basic implementation of
the semantics is the static scope resolution algorithm. The
problem of dynamic scope resolution stems from the pres-
ence of transitions that modify part of configuration con-
current to transition’s source state. Such transitions usu-
ally have several possible scopes and the actual decision on
which of them should be used (exited and entered) needs to
be postponed until runtime, when the part of configuration
in question is known. Compile-time scope resolution formu-
lates and solves a boolean equation for possible scopes for
each transition separately.

The boolean equation is formulated over logical variables
representing activity of states. If formula ¢; describes the
set of all statically valid state configurations and ¢; the
guard condition of transition t, then the algorithm com-
putes satisfiable assignments of the formula ¢ = 3S5. ¢ A ¢,
where S is the set of all states, which are not ancestors of
target states of t. Each satisfiable assignment of ¢ represents

abstract

syntax
statechart > model
front-end transformations
C concrete
concrete abstract syntax

C abstract

syntax syntax
\ 7 syntax

internal > static data code C pretty
translator manager B generator B printer

intermediate
representation

IR + addressing data
+ int types.

Figure 5: A structure of SCOPE implementation.

a group of state configurations in which ¢ may be enabled.
For each target of ¢ consider a path in the hierarchy tree
between root state and the target. For given satisfying as-
signment a few consecutive states in the beginning of the
path (closest to root) are active and the remaining states
are inactive—due to hierarchy properties. The last active
state in the path (the most remote one from root), is the
scope of the state shift to the target in all configurations
represented by this assignment.

The algorithm multiplies the transition if several scopes
are detected. Guards are refined assuring that each of new
transitions has a different scope, all scopes are statically
computable and transitions are mutually exclusive (no two
of them can be active at the same time). To achieve that it
suffices to add the scope of transition to the positive condi-
tions and the next state on the path to the target (the first
inactive state) to negative conditions. The implementation
is based on binary decision diagrams. Precise description
has been given in [15]

The transitions, which exhibit the problem, are extremely
rare in real life models. This makes the replication feasible.
Moreover only the source and target states are multiplied
for the transition as the remaining components are shared
between the copies. At the same time a significant and ex-
pensive computation can be shifted from runtime to compile
time.

Another simple, but practically successful, optimization is
the introduction of several target types called modes. Most
importantly we distinguish flat and non-flat targets of tran-
sitions. Informally a target is flat if an arrow drawn to it
from the transition source does not cross statechart levels
(it remains within the same or-state). Nonflat targets need
to be decorated by scopes as described previously. However,
the computation of scope for flat targets is very cheap and
can be done by looking up the parent of the source state in
the hierarchy tree. Thus scope information does not need
to be saved for majority of transitions, bringing yet another
space saving.

3.5 Variables

According to the semantics of statecharts updates to the
variables should only be visible after the step is completed.
The assignment to x in a transition action should not affect
any value of x in other expressions evaluated within the
same step. This problem is classically solved using double-
buffering of variables. The lvalue and the rvalue of a variable
have to be separated.

The technique used is actually identical to maintaining

two copies of state configuration: one for the current configu-
ration and one for the next step’s configuration. Classical so-
lution maintains two runtime variables for each model vari-
able. One copy (rvalue) is used for reads, the other (Ivalue)
for write accesses. After the step is completed the lvalues
vector is copied over the rvalues vector. If the number of
variables is big, the cost of this operation may be signifi-
cant. Also the size of writable memory employed increases.
For this reason developers of highly constraint systems avoid
double buffering, following the modeling style which is not
prone to such subtleties.

Currently SCOPE does not implement this technique, al-
though the extension would be straightforward. All experi-
ments with visualSTATE (see section 4) have been performed
with double buffering switched off to account for this differ-
ence.

3.6 Tool Structure

Figure 5 presents the structure of SCOPE implementa-
tion. The tool accepts models in TAR visualSTATE file for-
mat. After initial stages, model transformations are applied
(e.g.removal of dynamic scopes). The actual construction
of runtime data structures is done in the translator, which
saves them in internal bytecode format. The internal for-
mat refrains from using actual integer identifiers, concrete
types and addresses. Then static data manager analyzes the
output of translation to decide what are proper lengths for
various attributes and whether dictionaries for state names
are needed. Actual addresses are assigned at this stage and
access macros for various fields generated as needed. Finally
the actual code generator uses this information and the in-
termediate representation to produce the C program. The
output should be compiled together with the static runtime
library customized by model dependent constants and pre-
Pprocessor macros.

4. EVALUATION

Let n be the number of all states in the model and ¢ the
number of transitions. The hierarchy tree and transition ta-
ble can easily be implemented in respectively O(n) and O(t)
space. The only point where the linearity can be broken is
removal of dynamic scopes, which occasionally multiplies
transitions. A transition can be multiplied at most O(d™)
times, where d stands for depth of the tree and m is the
maximum over number of targets on a single transition. For-
tunately this term can be considered constant and is small
in real models. The number of possible scopes is usually two
or three. Also it is typical to have at most one dynamically
scoped target on a transition (statically scoped targets do
not cause any multiplication). Finally it is extremely un-
common to actually meet dynamically scoped transitions in
real life models.

Linearity of hierarchical approach is a clear improvement
over the flattening method. The practical challenge is to
lower complexity constants sufficiently, so that use of the
technique becomes feasible for relatively small models. This
goal is already achieved by SCOPE.

The size of current state vector in the flattening model is
proportional in the number of state machines (assuming that
the outdegree of each node is small), whereas it is propor-
tional only to the number of leaf state machines in set-based
encoding. This is a constant factor improvement observable

Executable Size [bytes] Execution Time [s]
Model states trans. depth VS | SC-SE ratio | SC-FE ratio | ram VS | SC-SE ratio | SC-FE ratio
actions01 4 1 3 596 3752 1.04 3704 1.03 0 7.61 6.27 0.82 6.02 0.79
drusinsky89 19 14 3 976 4192 1.05 4 144 1.04 4 9.64 7.67 0.80 7.99 0.83
lift 18 19 4 452 4432 1.00 4372 0.98 0 | 15.66 30.33 1.94 21.30 1.36
peer 275 192 23 | 12 644 | 10 352 0.82 | 10 536 0.83 56 | 20.66 31.81 1.54 26.31 1.27
triosO1 1121 840 28 164 | 19 848 0.70 | 24 108 0.86 | 271 541 730 1.35 255 0.47
trios03 1121 840 60 196 | 22 048 0.37 | 24 684 0.41 271 1139 751 0.66 260 0.23

Table 1: Speed and size results: IAR visualSTATE 4.3 vs SCOPE 0.11

in practical applications. The flag-based encoding remains
as costly as flattening method.

Similarly, elimination of end-of-state markers brings a con-
stant saving of space in representation of the hierarchy. So
does elimination of field indicators for commonly used ele-
ments (for instance initial states).

Single state activity test in the flattening approach uses a
constant time. With the set-based encoding and traversal of
the hierarchy tree the worst case for activity test is O(dn).
SCOPE reduces this to theoretical complexity of O(n) us-
ing descendants interval labeling. In practice n becomes the
number of active basic states (much less than number of ba-
sic states). Despite the improvements this is still worse than
constant time of flattening approach. One should remember
that latter introduces potentially exponentially more tests,
which neutralizes the difference. Flag-based encoding enjoys
the best of the two—the number of tests is not increased and
each test takes the constant time.

Updates on the current state are more expensive in the hi-
erarchical case (at least O(nd) depending on the operation),
while they are O(d) for the flat case. There are two reasons
why the difference is smaller in practice. First, most of tran-
sitions are fired on the level of leaves (d = 1), second—(in
set-based encoding) the cost is lowered for many of subtrees
using pure exits, which perform several updates simultane-
ously using the same linear time O(n).

Experiments have been carried on both with SCOPE and
TAR visualSTATE. Generated programs have been compiled
with GCC 3.2 (optimization for size) on x86 PC running
Linux. Sizes are bare executables in bytes. Only the con-
trol algorithm and the runtime library were linked in. All
references to external functions have been substituted with
dummies. Running times are given in seconds, measured
by triggering 107 random events, reinitializing the state ma-
chine before each event with probability of 0.01. The mea-
suring was performed on a 450 MHz Pentium II.

Table 1 presents selected results. The states column con-
tains the total number of states (both and-states and or-
states), trans shows the total number of transitions (exclud-
ing initial transitions), while depth gives the depth of hierar-
chy tree (counting both and-states and or-states). The mini-
mal depth is 3, which is observed for flat models. VS denotes
visualSTATE, SC-SE denotes SCOPE in state-based encod-
ing mode, SC-FFE denotes SCOPE using the flag-based en-
coding. Ratios are computed with respect to the visualSTATE
measurements. The ram column presents the size of writable
memory consumed additionally by the flag-based encoding
comparing to set-based encoding.

Similar experiments have been carried on using a nonop-

timizing compiler (LCC for Linux) and optimizing embed-
ded systems compilers from IAR Systems. The results were
comparable; the only part of the program, that can be opti-
mized by C compiler is the runtime library. TAR compilers
for PIC and AVR platforms shown that the flat and hier-
archical runtime libraries differ about 5% in size. Static
integer tables encoding model data are beyond the scope of
ordinary compiler optimizations and thus they remain the
same from platform to platform. I report GCC results since
this is the most widely accessible reference platform.

Actions01 is a trivial example containing two basic states
connected by a single transition. The size differences reflect
the sizes of runtime engines. The hierarchical library seems
to be only slightly bigger. The version of the library using
flag-based encoding is smaller than the one for set-based
encoding as the logics involved is much simpler.

Drusinsky89[5] and lift show that the size of code pro-
duced by SCOPE is comparable to that of IAR visualSTATE
for small models. The difference seems to be acceptable.
The latter of the two, lift, is a flat statechart (a set of con-
current state machines). It demonstrates the performance
strength of flattening approach on flat models, or rather
conversely, its relative weakness on hierarchical models for
which costly expansions are performed. The interpreter for
the flat structure is very efficient. What slows it down is the
growth of the structure itself (not observed for flat models).

A typical medium size model with irregular structure is
represented by peer. The last two models, trios01 and trios03,
are highly concurrent and uniformly deep (the whole struc-
ture is equally deep). The latter one uses deep history on
top level. Such models exhibit the size explosion problem of
the flattening approach.

The overall result is that hierarchical generation technique
seems to be feasible for small models, and scales extremely
well to large ones. Also if the cost incurred on writable
memory is acceptable in given application, the flag-based
encoding should be used as this brings efficiency gains over
the set-based approach.

5. RELATED WORK

There is a multitude of statechart translators available.
Most of them take hierarchical code generation approach,
without performing more significant optimizations [17, 14,
11]. The tree is encoded in a nested switch statement or in
a class hierarchy with virtual methods (the latter is referred
to as state pattern, see [1] for a generalized version). How-
ever much less care is taken to make the implementation
efficient. The focus is more on code readability an use of
natural constructs of target language than efficiency. The

usefulness of such tools for constrained embedded systems
is not usually considered.

Erpenbach[7] in his thesis focuses mostly on the worst
case reaction time analysis, proposing only a very simple
hierarchical representation based on switch statements. He
also addresses the double-buffering problem for variables,
proposing an optimization which reorders the transitions to
decrease the need for double buffering—so that assignments
happen after read accesses, if possible.

Bjorklund, Lilius and Porres[3] devise an intermediate lan-
guage, that should be compilable efficiently. Nevertheless,
the use of flattening in course of translation indicates possi-
ble exponential growth of code.

I have chosen the hierarchical approach, inspired mostly
by implementation of Behrmann and others [2]. However I
considered the idea of guard value memoization (to speed up
condition evaluation) as unsuitable for constrained systems,
where writable memory is a scarce resource.

Drusinsky[6] and Ramesh[12] discuss the state encoding
problem from hardware implementation perspective. Both
encodings proposed are more compact than those presented
here. A hardware implementation can very efficiently ex-
tract single bits and groups of bits from the state register,
whereas this seems to be expensive in software. Apart from
this difference Drusinsky’s encoding is very much alike to the
flag-based encoding of SCOPE. Both papers are very brief
on explaining the structure of combinational block which
implements the reaction relation. The applicability of these
results for software synthesis should still be investigated.

My algorithm approximating cardinality of the active ba-
sic states set can be seen as a simpler version of Drusinsky’s
algorithm for finding maximum-cardinality exclusivity set
presented in [6].

6. CONCLUSION AND FUTURE WORK

I have presented implementation of SCOPE—a tool for
synthesis of programs from statechart specifications. This
seems to be the first non flattening translator oriented at ef-
ficiency and constrained embedded systems. Only few lan-
guage elements are not supported yet. Most importantly
timer events and do reactions. All of them seem to be
straightforward extensions, which will not break the gen-
eral approach. It should be emphasized that in contrary to
other approaches I have not experienced any problems with
incorporating history and deep history fields.

A number of solutions have been discussed and their in-
fluence on efficiency evaluated both theoretically and empir-
ically. These have been divided into two categories: those
keeping the complexity at linear level and those increasing
the efficiency of operations. The resulting tool seems to ful-
fill its initial goal. It performs well on big examples, while
retaining feasibility for smaller models. In addition it has
been established that the flag-based encoding yields more ef-
ficient programs, which however use more writable memory
than the set-based encoding.

According to my knowledge this is the first ever attempt
to evaluate a code generation technique for statecharts quan-
titatively, instead of just describing the approach. This con-
trasts with traditionally well evaluated results for hardware
synthesis.

There are still improvements to be made. A shift from
a simple hash table of transition lists to a more advanced
structure avoiding some of the repetitive condition tests

should bring further speed gains. In future I would like
to investigate, how more adaptivity could be incorporated
into the compilation algorithm, which would allow it to meet
hard size constraints set by developers.

7. ACKNOWLEDGMENTS

Henrik Reif Andersen introduced the flattening approach
to me. Kaare Kristoffersen disclosed details of implementa-
tion only briefly described in [2]. T would also like to thank
Peter Sestoft for supervision and Christian Worm Mortensen
for patient and fruitful discussions on data structures used
in SCOPE. TAR Systems provided me with visualSTATE tool
and the compilers for embedded platforms. Last but not
least—all three anonymous reviewers made valuable sugges-
tions of improvements.

8. REFERENCES

[1] J. Ali and J. Tanaka. Converting statecharts into Java
code. In Proceedings of the 5th International
Conference ion Integrated Design and Process
Technology (IDPT’99), Dallas, Texas, June 1999.

[2] G. Behrmann, K. Kristoffersen, and K. G.Larsen.
Code generation for hierarchical systems. In
NWPT’99 — The 11th Nordic Workshop on
Programming Theory, Uppsala, Sweden, Sept. 1999.

[3] D. Bjorklund, J. Lilius, and I. Porres. Towards
efficient code synthesis from statecharts. In A. Evans,
R. France, and A. M. B. Rumpe, editors, Practical
UML-Based Rigorous Development Methods -
Countering or Integrating the eXtremists. Workshop
of the pUML-Group., Lecture Notes in Informatics
P-7, Toronto,Canada, October 1st, 2001. GI.

[4] D. Drusinsky and D. Harel. On the power of
cooperative concurrency. In Proceedings of
Concurrency ’88, volume 335 of Lecture Notes in
Computer Science, pages 74-103, New York, 1985.
Springer-Verlag.

[5] D. Drusinsky and D. Harel. Using statecharts for
hardware description and synthesis. IEEE
Transactions on Computer Aided Design,
8(7):798-807, 1989.

[6] D. Drusinsky-Yoresh. A state assignment procedure
for single-block implementation of state charts. IEEE
Transactions on Computer-Aided Design,
10(12):1569-1576, 1991.

[7] E. Erpenbach. Compilation, Worst-Case Ezecution
Times and Schedulability Analysis of Statecharts
Models. PhD thesis, Department of Mathematics and
Computer Science of the University of Paderborn,
Apr. 2000.

[8] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8:231-274, 1987.

[9] IAR Inc. IAR visualSTATE®.
http://www.iar.com/Products/VS/.

[10] International standard. Programming Languages - C.
Ref. ISO/IEC 9899:1999(E).

[11] A. Knapp and S. Merz. Model checking and code
generation for UML state machines and
collaborations. In D. Haneberg, G. Schellhorn, and
W. Reif, editors, Proceedings of 5th Workshop on

Tools for System Design and Verification, Technical
Report 2002-11, pages 59—64. Institut fiir Informatik,
Universitat Augsburg, 2002.

S. Ramesh. Efficient translation of statecharts into
hardware circuits. In 12th International Conference on
VLSI Design, pages 384-389. IEEE Computer Society
Press, Jan. 1999.

SCOPE: A statechart compiler.
http://www.mini.pw.edu.pl/ wasowski/scope.

E. Sekerinski and R. Zurob. iState: A statechart
translator. In M. Gogolla and C. Kobryn, editors,
UML 2001 - The Unified Modeling Language, Toronto,
Canada, October 2001, volume 2185 of Lecture Notes
in Computer Science, pages 376-390. Springer-Verlag,
2001.

A. Wasowski and P. Sestoft. Compile-time scope
resolution for statecharts transitions. In Proceedings of
Workshop on Critical Systems Development with UML
(CSDUML), Dresden, Germany, Sept. 2002. TR of
Munich University of Technology.

A. Wasowski and P. Sestoft. On the formal semantics
of visualSTATE statecharts. Technical Report
TR-~2002-19, IT University of Copenhagen, Sept. 2002.
A. Ziindorf. Rigorous object oriented software
development with Fujaba. Unpublished Draft, 2000.

