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The Language of Statecharts

• State hierarchy:

– parallel/sequential decompositions

– The root is an and-state

– Basic states (leaves) are and-states

– Initial, history and deep history

• Entry/exit actions.
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• Transitions: event + guard + action + targets

• Dynamic semantics relations: macrostep,
microstep, fire, exit, enter, execute action,
evaluate guard, init.
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Runtime Overview

• Runtime engine

macrostep : event * state -> state
microstep : event * state * queue -> state * queue
fire : tran * state * queue -> state * queue
exit : orstate * state * queue -> state * queue
enter : targets * orstate * state * queue

-> state * queue

• Runtime data structures
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Flattening = Hierarchy Elimination
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Refine guards conjuncting condition that A is active

Conjunct condition that D is active

Code generated: flat set of rules and state vector, very simple runtime
[visualSTATE] [Björklund, Lilius, Porres, Turku, Finland, 2001]
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SCOPE: Hierarchical Code Generator
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Hierarchy tree
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• Regular type alternation

• Separate namespace for and-states and or-states

• Shorter state identifiers at runtime

• No runtime type-checks for states

• Simpler runtime library
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Hierarchy tree (II)

• The tree can be splitted in two arrays (# is end-of-state):
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• State names are naturals

• Cheaper of following is chosen automatically:

– Offsets in the state array

– Consecutive numbers with dictionary of offsets
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Active State Set

• Only active basic state set

• Implemented as prioritized buffer (no gaps)

• Safety demands a bound

• Trivial bound: number of basic states

• Simple improvement:

bound (Basic s) = 1
bound (ORState s) = maximum bound (children s)
bound (ANDState s) = sum bound (chlidren s)

• This is exact for strictly sequential or strictly flat models
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Interval Labeling

• Trivial method needs ancestorship checks – use state labeling

• Label and-states in depth-first-search post-order, left to right
visitting of children
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• Ancestorship is reduced to two comparisons: is given state in
interval of descendants of s?

• Only leftmost descendant (LMD) needs to be saved in the array.

• Exit-purity
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Dual labeling

Let’s label or-states in order precisely dual to the one used for
and-states
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Removal of # marks

• Children lists are composed of monotonic sequences (increasing for
or-states and decreasing for and-states).

• This can be used to remove end-of-state markers (#)
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Scope of Transition

B C

F G
[ f {} {} ] /

[ f {} {E} ] /

ED

[ e {F} {} ] / a : G

A

• Targets statically annotated with scopes:

t1 : [ e {D,F} {} ] / a : [B]E [C]G
t2 : [ f {F} {} ] / − : [C]G
t3 : [ f {G} {E} ] / − : [C]F
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Dynamic Scope

• Three legal configurations activating the transition.

• All contain D.

• Also contain one of F , H or I
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• Scope of target E is always B

• Scope of target H depends on active configuration of C ....
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Dynamic Scope (II)
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Runtime detection is slow and affects all transitions.
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Dynamic Scope (III)

The problematic transition in our example:
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can be rewritten with two rules:

[ e {D,F} {} ] / a : [B]E [C]H
[ e {D,G} {} ] / a : [B]E [G′]H

• Adding extra positive conditions can ensure static scopes.

• Scope performs this rewriting analyzing number of possible
solutions to scope-equation (BDD based implementation)

IT University of Copenhagen 15



Complexity Evaluation

n – number of states, t – number of transitions
d – model depths, m – maximum over number of targets

• Linear size vs exponential size with flattening

• Scope resolution cost up to O(dm) space but constant in practice.

• Size of current state (constant factor difference):

– flattening: linear in number of state machines

– SCOPE: linear in number of leaves

• Elimination of end-of-state markers – constant saving

• Ancestorship test – constant time

• Activity test: O(n) vs constant time of flattening

– but exponentially less tests

• State update:

– flattening: O(d)
– hierarchical: at least O(nd), improved with exit-purity
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Experimental Evaluation

Pentium II 450 Mhz, GCC ver3.2, optimizing for size, bare executable sizes in bytes

Model states transitions VS size SCP size ratio

actions01 4 1 3 596 3 840 1.07
drusinsky89 19 14 3 976 4 288 1.08
lift 18 19 4 452 4 496 1.01
peer 275 192 12 644 10 352 0.82
trios01 1121 840 28 164 19 944 0.71
trios03 1121 840 60 196 23 008 0.38

Running time measured with 107 random events, probability of reinitialization 0.01

Model states transitions VS time SCP time ratio

actions01 4 1 6.24 4.69 0.75
drusinsky89 19 14 8.11 6.28 0.77
lift 18 19 14.08 29.78 2.11
peer 275 192 21.40 29.42 1.37
trios01 1121 840 534 712 1.34
trios03 1121 840 1137 763 0.67
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Summary

• Conclusion

– Experimental and complexity-theoretical evaluation of code
generation methods have been presented.

– Hierarchical code generation is feasible speed-wise

– Hierarchical code generation can yield much smaller code

– It performs decently for small models and well for bigger ones

• Future work

– Optimize the structure of transitions (decision diagrams)

– Make algorithm adaptive (meeting constraints)

– Evaluate against self-implemented flattening

– Evaluate against state-pattern code generation method
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A Statechart Cooker
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Transitions – Trivia

• Hashed into buckets by activating event

• Each bucket simply contains a list of transitions to be checked (and
fired).

• This can still be optimized TBD

• Scope of transition

• Semantics of firing: exit scope – execute action – enter scope

• Assume scopes can be computed statically

• There should be a scope saved for each transition

• But not for flat transitions, for which it can be cheaply computed
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Varia

• C compiler may not remove redundant code

• So do not generate it!

• Some elements are used more often than others

• Example: Initial markers may not be kept at all (just reorder states)

• Example: transition source, event and target should come
”for-free”, while other attributes may be more costly
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Internal Structure of SCOPE
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Experiment conditions

• Pentium II, 450 Mhz, running Linux

• GCC ver 3.2, optimizing for size (-Os)

• Bare executable sizes in bytes.

• Only control algorithm (structures + runtime engine).

• External functions substituted with dummies.

• Size results similar for LCC on PC (non optimizing) and optimizing
embedded systems compilers.

• Running time measured for feeding 107 random events with
probability of model initialization before each event equal to 0.01.
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