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The Language of Statecharts

e State hierarchy:

— parallel /sequential decompositions

— The root is an and-state

— Basic states (leaves) are and-states

— Initial, history and deep history

e Entry/exit actions.
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e Transitions: event + guard + action + targets

e Dynamic
microstep, fire,
evaluate guard, init.

semantics
exit,

relations:
enter,

macrostep,
execute action,



Runtime Overview

e Runtime engine

queue —> state * queue
queue —-> state * queue
queue —-> state * queue

—> state * queue

macrostep event * state —-> state
microstep : event * state *
fire tran * state *
exit orstate * state x*
enter targets * orstate * state * queue
e Runtime data structures
actions
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Flattening = Hierarchy Elimination
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Conjunct condition that D is active

Refine guards conjuncting condition that A is active

Code generated: flat set of rules and state vector, very simple runtime
[visualSTATE] [Bjorklund, Lilius, Porres, Turku, Finland, 2001]
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SCOPE: Hierarchical Code Generator
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Hierarchy tree
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e Regular type alternation

e Separate namespace for and-states and or-states
e Shorter state identifiers at runtime

e No runtime type-checks for states

e Simpler runtime library
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Hierarchy tree (Il)

e The tree can be splitted in two arrays (# is end-of-state):
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e State names are naturals
e Cheaper of following is chosen automatically:
— Offsets in the state array
— Consecutive numbers with dictionary of offsets
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Active State Set

Only active basic state set

Implemented as prioritized buffer (no gaps)
Safety demands a bound

Trivial bound: number of basic states
Simple improvement:

bound (Basic s) =1
bound (ORState s) = maximum bound (children s)
bound (ANDState s) = sum bound (chlidren s)

This is exact for strictly sequential or strictly flat models
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Interval Labeling

e Trivial method needs ancestorship checks — use state labeling

e Label and-states in depth-first-search post-order, left to right
visitting of children
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e Ancestorship is reduced to two comparisons: is given state in
interval of descendants of s?

e Only leftmost descendant (LMD) needs to be saved in the array.
o Exit-purity
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Let's label or-states in order precisely dual to the one used for

and-states
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Removal of # marks

e Children lists are composed of monotonic sequences (increasing for

e This can be used to remove end-of-state markers (#)

-

or-states and decreasing for and-states).
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Scope of Transition
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Dynamic Scope

e Three legal configurations activating the transition.
e All contain D.
e Also contain one of F', H or 1
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e Scope of target E is always B

e Scope of target H depends on active configuration of C' ....
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Dynamic Scope (1)

Runtime detection is slow and affects all transitions.
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Dynamic Scope (l11)

The problematic transition in our example:
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can be rewritten with two rules:
le{D,F}{}]/a : |[BJE|CIH
le{D,G}{}]/a : [BJE|GH

e Adding extra positive conditions can ensure static scopes.

e Scope performs this rewriting analyzing number of possible
solutions to scope-equation (BDD based implementation)
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Complexity Evaluation

n — number of states, ¢ — number of transitions
d — model depths, m — maximum over number of targets

e Linear size vs exponential size with flattening
e Scope resolution cost up to O(d™) space but constant in practice.
e Size of current state (constant factor difference):

— flattening: linear in number of state machines
— SCOPE: linear in number of leaves

e Elimination of end-of-state markers — constant saving

e Ancestorship test — constant time

e Activity test: O(n) vs constant time of flattening
— but exponentially less tests

e State update:
— flattening: O(d)

— hierarchical: at least O(nd), improved with exit-purity
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Experimental Evaluation

Pentium Il 450 Mhz, GCC ver3.2, optimizing for size, bare executable sizes in bytes

Model states | transitions VS size SCP size | ratio
actions01 4 1 3 596 3840 | 1.07
drusinsky89 19 14 3 976 4288 | 1.08
lift 18 19 4 452 4496 | 1.01
peer 275 192 12 644 10 352 | 0.82
triosO1 1121 840 28 164 19 944 | 0.71
trios03 1121 840 60 196 23 008 | 0.38
Running time measured with 107 random events, probability of reinitialization 0.01
Model states | transitions VS time SCP time | ratio
actions01 4 1 6.24 469 | 0.75
drusinsky89 19 14 8.11 6.28 | 0.77
lift 18 19 14.08 29.78 | 2.11
peer 275 192 21.40 29.42 | 1.37
triosO1 1121 840 534 712 | 1.34
trios03 1121 840 1137 763 | 0.67
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Summary

e Conclusion

— Experimental and complexity-theoretical evaluation of code
generation methods have been presented.

— Hierarchical code generation is feasible speed-wise
— Hierarchical code generation can yield much smaller code
— It performs decently for small models and well for bigger ones

e Future work
— Optimize the structure of transitions (decision diagrams)
— Make algorithm adaptive (meeting constraints)
— Evaluate against self-implemented flattening
— Evaluate against state-pattern code generation method
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A Statechart Cooker

Standby() and Closed

MicrowaveOven

StandbyButton() /

g

Main

Overheated

SafetyDelay() / Beep

DoorOpened()

HeatAlarm() / Beep()

Closed

P
entry: LightOn()

exit: LightOff()
exit: StopEmiter()
exit: StopGrill()

Start() :

ed.Emiter.ldle]

Emiter
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ModePressed() /

ModePressed() /
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Transitions — Trivia

e Hashed into buckets by activating event
e Each bucket simply contains a list of transitions to be checked (and

fired).
e This can still be optimized | TBD

e Scope of transition

e Semantics of firing: exit scope — execute action — enter scope

e Assume scopes can be computed statically

e There should be a scope saved for each transition

e But not for flat transitions, for which it can be cheaply computed

-

=T University of Copenhagen 20



Varia

e C compiler may not remove redundant code
e So do not generate it!

e Some elements are used more often than others

e Example: Initial markers may not be kept at all (just reorder states)

e Example: transition source, event and target should come
"for-free”, while other attributes may be more costly
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Internal Structure of SCOPE

abstract
syntax
statechart model
front-end > transformations
j C concrete
concrete abstract syntax
SyntaX SyntaX C abstract f
\ 4 syntax
internal > static data code C pretty
translator manager > generator > printer
intermediate IR + addressing data
representation + Int types.
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Experiment conditions

e Pentium I, 450 Mhz, running Linux

e GCC ver 3.2, optimizing for size (-Os)

e Bare executable sizes in bytes.

e Only control algorithm (structures 4+ runtime engine).
e External functions substituted with dummies.

e Size results similar for LCC on PC (non optimizing) and optimizing
embedded systems compilers.

e Running time measured for feeding 10” random events with
probability of model initialization before each event equal to 0.01.
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