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ABSTRACT
We present a polynomial upper bound for flattening of UML
statecharts. An efficient flattening technique is derived and
implemented in SCOPE—a code generator targeting con-
strained embedded systems. Programs generated with this
new technique are both faster and smaller than those pro-
duced by non-flattening code generators. Our approach
scales well for big models and exhibits good properties with
respect to memory usage, automatic analysis of worst-case
reaction time and automatic validation of memory safety.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—State Diagrams

General Terms
Algorithms, Performance, Languages

Keywords
Program synthesis, automatic code generation, statecharts,
semantics, embedded systems

1. INTRODUCTION
The language of statecharts [17, 20] is a popular model-
ing formalism for design and development of reactive sys-
tems. Statecharts owe this popularity to their intuitive vi-
sual syntax and formalized semantics. The language is cen-
tered around the finite state machine paradigm extended
with concurrency and hierarchy.
Flattening, understood as removing hierarchy and retain-
ing concurrency, is a central transformation for statecharts.
Its applications range from constructing operational seman-
tics for hierarchical models [18] through model-checking [12],
automatic testing [4, 6, 21] up to software and hardware syn-
thesis [5]. Flat statecharts can be implemented using a sim-
pler runtime system and less mutable data structures, which
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results in reduced consumption of RAM. Both properties
are crucial in development of resource-constrained embed-
ded systems. Understanding computational properties of
flattening emerges as one of the vital steps in exploration of
properties of statecharts. This paper approaches the prob-
lem from two angles. First, a formal statement of complexity
is given. Second, a practical optimized implementation and
experiments are evaluated.
There is a bit of controversy on the exact meaning of the
term flattening. Note that our definition is substantially dif-
ferent from the expansion to a product machine. A product
machine is easy to implement in a code generator, but the
expansion process is trivially exponential, ruling out practi-
cal applications. The flat form we consider is a predecessor
language of statecharts: a set of traditional Mealy machines
operating concurrently. Our notions of hierarchy, concur-
rency and flattening are similar to those of [2, 3, 25, 12] and
substantially different from [9, 22, 24].
Our complexity proof proceeds in a standard way pre-
senting an algorithm producing a flattened statechart that
is only polynomially bigger than the given hierarchical one.
The result is relatively surprising as it contradicts a widely
held but informal belief that a polynomial solution does
not exist.
The complexity–theoretic proof is easily adapted to a
more efficient flattening algorithm that replaces expensive
signal communication with cheap sequential rule process-
ing. This algorithm is implemented and evaluated using
SCOPE [23]—an efficient and compact code generator for
embedded systems. Experiments show that the quality of
resulting code exceeds the quality of programs synthesized
by an advanced non-flattening code generator.
The presentation is divided into 4 parts. Section 2 for-
malizes the problem: the source and target statechart lan-
guages, an implementation relation and a specification of
flattening. Section 3 rigorously describes the flattening al-
gorithm and assets its correctness. Section 4 focuses on the
practical implementation: efficiency-oriented mutations and
optimizations, as well as experimental evaluation. Section 5
examines the meaning of the result against the existing re-
search and compares to other code generation approaches.

2. FLATTENING PROBLEM
Let us start with a description of hierarchical statecharts
(source language), flat statecharts (target language) and
the desired properties of the flattening translation from one
to the other. The statechart of Fig. 1 will be used as
a running example.
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Figure 1: Hierarchical statechart and the hierarchy tree defined by the ↘ relation. Entry and exit actions
on states are suppressed. So are all uninteresting transitions. It is assumed that all states are reachable. A
node with primed label denotes a dummy or-state (a single thread in a trivially concurrent and-state).

2.1 Hierarchical Statecharts
Consider a subset of UML statecharts. Let State be a
finite set of states, divided into two disjoint classes State and
and State or of and-states and or-states respectively. A root
state and the substate relation ↘ form a hierarchy of states
such that:

[or root] root ∈ Stateor
[and leaves] ∀s1 ∈ State or. ∃s2 ∈ State and. s1↘ s2

[alternation] ∀s1, s2 ∈ State . s2↘ s1 ⇒ s1 ∈ Stateand ∧
s2 ∈ Stateor ∨ (s1 ∈ State or ∧ s2 ∈ Stateand)

[rooted] ∀s ∈ State .root↘∗ s

[acyclic] ∀s1, s2 ∈ State . ¬(s2↘+ s1 ∧ s1↘+ s2)

[one parent] ∀s1, s2, s3 ∈ State .
s2↘ s1 ∧ s3↘ s1 ⇒ s2 = s3

The relation imposes a directed tree structure on states,
rooted in root . The root node is an or-state and all leaves are
and-states. State types alternate between and and or on all
paths from root to leaves. If s1↘ s2 then we say that s2 is a
child of s1 with s1 = parent(s2) and s2 ∈ children(s1). Mem-
bers of the path from s to root are denoted by ancest∗(s).
Below we present some values for the example of Fig. 1:

State and = {A, B, C1, C2, D1, D2, E1, C11, C12, D11, D12, . . . }
Stateor = {root , A′

, D, E, C
′
1, D

′
1, E

′
1}

(↘) = {(root , A), (root , B), (A,A
′), (B, D), (B, E),

(A′
, C1), (A

′
, C2), (D, D1), (D, D2), (E, E1),

(C1, C
′
1), (D1, D

′
1), (E1, E

′
1), (C

′
1, C11), . . . }

Each or-state s has a distinguished child called an initial
state. This state, written ini(s) and marked , is entered
by default by any transition that targets s without specify-
ing further targets. Some or-states are called history states.
Whenever a history state is entered, the child that was ac-
tive most recently is entered instead of the usual ini(s). D

is a history state. D1, marked H , is its initial history value.

ini : Stateor → Stateand = [root 7→ A, A
′ 7→ C1,

C
′
1 7→ C11, D 7→ D1, D

′
1 7→ D11, E 7→ E1, E

′
1 7→ E11]

Let Event denote a finite set of environment events, Signal
a finite set of model internal events (signals) and Output a
finite set of model generated outputs. In the example:

Event = {e1, e2} Signal = {s1} Output = {o1, o2}

An action is a sequence of signals and outputs. We as-
sign an entry and exit action to each and-state. Those are
generated whenever s is entered (exited). Exit outputs are
generated in a bottom-up manner: first basic active states
are exited, then their parents, and so on. Entry actions are
generated in a top-down manner from outer to inner states.

en, ex : State and → (Output ∪ Signal)∗ .

A guard is a logical formula over and-states. The set of all
guards Guard is generated by the grammar:

g ::= true | s | g ∧ g | ¬g , where s ∈ State and. (1)

A transition is a tuple (s, e, g, os, ts) ∈ Trans , where

Trans = State and × (Event ∪ Signal) ×Guard ×
× (Output ∪ Signal)∗ ×P(Stateand) .

We shall usually write s [e:g]/os
−−−−−−→ts, where s denotes the source

state, e is a triggering event, g is a guard, os is the action
generated when the transition fires and ts is a set of target
states. The model of Fig. 1 has the following transitions:

Trans = {t1, t2, t3, . . . } , where

t1 = D1
[e1:D1 ∧ D12 ∧ ¬E11]/〈o1, s1〉
−−−−−−−−−−−−−−−−−−−−−−−−−−→C11 ,

t2 = A [s1:A ∧ ¬C2]/〈o2〉
−−−−−−−−−−−−−−−→B ,

t3 = C2
[e2:C2]/〈〉
−−−−−−−−−→{D12, E1} .

The source state condition s is included in the guard condi-
tion g. It is also indicated separately to guarantee a unique
visual representation of transitions and to support the no-
tion of scope for transitions. A scope t is defined as the
nearest common or-ancestor of the source and target states
({s} ∪ ts). Informally the scope represents the extent to
which a transition may modify the state configuration. The
scopes of transitions on Fig. 1 are: scope(t1) = scope(t2) =
scope(t3) = root .
Using the above definitions we define a statechart S as
a tuple:

S = (Stateand, Stateor,↘, ini,

Event , Signal ,Output , ex, en,Trans) .

The set of active states σ is called an active configura-
tion. In every run of the statechart the root state is entered
upon initialization and remains active throughout execution.
The following invariant holds for all states before and after
processing an event: if an and-state is active, then all its



children are active, if an or-state is active, then exactly one
of its children is active as well:

[root active] root ∈ σ

[ancestors active] ∀s ∈ σ. ancest(s) ⊆ σ

[and active] ∀s ∈ (State and ∩ σ).children(s) ⊆ σ

[or active] ∀s1 ∈ (Stateor ∩ σ).∃!s2 ∈ σ. s1↘ s2 .

Active configuration is used to establish a satisfaction rela-
tion for guards. References to states are considered true if
the given state is active, i.e. σ |= s iff s ∈ σ. The remaining
part of the satisfaction relation is defined in a usual way.
Apart from the configuration, recently active children for
all history or-states needs to be maintained in the execution
state. The set of history values η contains exactly one and-
state child, for each history or-state.
The initial configuration σ0 of the statechart is computed
by closure of the ini function and the above invariants. The
initial history set η0 is computed by selecting the range of
ini function on the domain of history states. In the example:

σ0 = {root , A,A
′
, C1, C

′
1, C11} η0 = {D1} .

A signal queue q ∈ Signal∗ is maintained for local events.
This is a FIFO-like structure, where signals generated by
actions are appended at the end and signals yet to be pro-
cessed are popped from the beginning.
A transition is enabled if its triggering event e is present
and its guard is satisfied in the current configuration. An
enabled transition fires: it exits its scope generating exit
actions; generates its own action; and enters its targets gen-
erating entry actions.
A statechart is executed in synchronous steps. The
finest step is called a microstep. A microstep in presence
of a given single event or a signal e advances the exe-
cution state from 〈σ0, η0, q0〉 to the new value 〈σ1, η1, q1〉
generating a sequence of outputs os, which is the con-
catenation of actions with the local signals filtered out:
〈σ0, η0, q0〉 e os−−−→

micro
〈σ1, η1, q1〉. The generated local signals

are appended to the end of the new queue.
Statecharts are input-enabled : a microstep can be taken
for any event or signal in any execution state. In a nonde-
terministic statechart several choices may be possible for a
given event.
A complete reaction to an environment event e ∈ Event
is called a macrostep: 〈σ0, η0〉 e os−−−−→

macro
〈σ1, η1〉. A macrostep,

executed in a configuration σ0 places an external event
e in an empty signal queue and iterates microsteps pop-
ping queue events and signals one-by-one until the queue
is emptied. The final configuration and history reached by
the iteration of microsteps is the final configuration of the
macrostep. The sequence of outputs generated is the con-
catenation of sequences generated by microsteps. In Fig. 1,
the presence of event e1 may give rise to a macrostep con-
sisting of a single microstep. The e2 event may trigger a
macrostep consisting of two microsteps. First e2 is pro-
cessed, which generates s1, and then s1 is processed.
The model size is the sum of size of states plus the size
of transitions plus the maximal length of the signal queue
in any execution. The sizes of states and transitions are
defined as numbers of primitive elements they contain.

2.2 Flat Statecharts
A flat statechart comprises a set of state groups and an
initial configuration with sets of events, signals, outputs and
transitions. We shall denote all elements of flat statecharts
with primed names, to distinguish them from elements of
the hierarchical statecharts.

S = ({M ′
1, . . . , M

′
k}, σ′

0,Event
′
, Signal ′,Output ′,Trans ′)

State groups M ′
(i) are a partitioning of the state set and

State ′ =
Sk

i=1 M ′
i . Guards are defined over elements of

State ′ as in (1). Events, signals and outputs are catego-
rized in sets as previously. States do not have any actions
assigned (only transitions have). There are no history states.
State machines are never reinitialized, so history would not
make much sense.
A configuration σ′ ⊆ State ′ of the flat statechart is a set
containing exactly one state for each state group:

[unambigous] ∀i = 1 . . . k. ∃s ∈ Mi. Mi ∩ σ
′ = {s}

The initial configuration σ′
0 is an explicit part of the model.

Signal queues are used as before and the microstep and
macrostep relations are defined analogously as for hierar-
chical statecharts in terms of transition firing.
The type of transitions is the same as for hierarchical
statecharts, but the transition firing is somewhat different.
There is no notion of scope and exiting. Transition fires by
generating its output action and adjusting the active config-
uration. If {t′1, . . . , t′l} is a possibly empty set of targets of a
transition t′ (each of them a member of M ′

1, . . . , M
′
l respec-

tively) then the new state configuration σ′
1 is computed by

substituting the old members of state groups for the targets:

σ
′
1 = σ

′
0 \ (

l
[

i=1

M
′
i) ∪ {t′1, . . . , t′l} . (2)

The size measure of the flat statechart should be under-
stood similarly as before, reflecting the sum of transition
and state sizes plus the maximal queue length.
Any flat statechart can be seen as a hierarchical statechart
of a special structure, where all the state groups are really
history or-states. By defining a lean language of flat state-
charts we can avoid many superfluous empty attributes in
the translation scheme. Also the primary difference between
hierarchical and flat interpreters is indicated more clearly.
The mechanism of transition firing in the flat interpreter per-
forms very simple operations on the configuration—see (2).
The hierarchical interpreter demands recursive traversals of
state hierarchy, not only consuming more writable mem-
ory, but also demanding use of complex data structures
at runtime [26].

2.3 Flattening

Definition 1 (Simulation). A flat statechart S ′ in
configuration σ′

0 simulates a hierarchical statechart S in con-
figuration and history (σ0, η0), written (S ′, σ′

0) . (S, σ0, η0),
iff

∀e, os, σ
′
1. σ

′
0

e os−−−−→
macro

σ
′
1 ⇒ ∃σ1, η1.

〈σ0, η0〉 e os−−−−→
macro

〈σ1, η1〉 ∧ (S ′
, σ

′
1) . (S, σ1, η1)

Definition 2 (Implementation). A flat statechart
S ′ implements a hierarchical statechart S, written



S ′ . S, iff for initial configurations σ′
0 and σ0 it holds

that (S ′, σ′
0) . (S, σ0, η0).

Definition 3 (Flattening). Let F be an algorithm
translating hierarchical statecharts to flat statecharts. F is
a flattening algorithm if for any hierarchical statechart S it
yields a flat statechart S ′ such that S ′ . S.

Note that simulation is a strong notion in the input-
enabled synchronous setting. In particular it is not the case
that the empty flat statechart (with no states and transi-
tions) implements all hierarchical statecharts. An empty
statechart can accomodate any sequence of inputs without
producing a single output. The hierarchical statechart has
to match each of these executions in the same fashion (with-
out any outputs). Clearly this can only be fullfiled by hier-
archical statecharts which never produce any outputs.

Theorem 4. For any hierarchical statechart S there ex-
ists a flat statechart S ′ such that S ′ . S and the size of S ′

is at most polynomial in the size of S.

In fact this result holds even if the set of internal signals of
S ′ is restricted to two distinctive values (note that this is
a restriction on the target, not the source language, which
would be trivial). This can be concluded using binary encod-
ing techniques presented in [27], but shall not be discussed
further here.

3. POLYNOMIAL FLATTENING
We shall present the flattening algorithm in a declarative
style, as a syntax-driven transformation of statechart ele-
ments. Consider a hierarchical statechart: S = (State and,
State or,↘, ini, ex, en,Event , Signal ,Output ,Trans). We
shall show how to construct a flat statechart S ′ = (M ′, σ′

0,

Event , Signal ′,Output ,Trans ′) such that S ′ . S.

3.1 States
The state groupsM ′ of S ′ are the children sets of or-states
in the hierarchical model S. We add an extra state group
{I } containing a single fresh state I, used to implement
administrative internal rules.

M
′ = {children(s) | s ∈ State or} ∪ {{I }}

The initial configuration σ′
0 is computed by taking the range

of the hierarchical function ini and adding the extraneous I
state, which is the only, hence trivially initial, state in its
group. Let us write the state groups and the initial configu-
ration for the example of Fig. 1. Note the states belonging
to σ′

0 but not to σ0 (for instance D1):

M ′ = {{A, B}, {C1, C2}, {D1, D2}, {E1},
{C11, C12}, {D11, D12}, {E11, E12}, {I }}

σ′
0 = rng ini ∪ {I } = {A, C1, C11, D1, D11, E1, E11, I}

The number of groups, the number of states in S ′, and
the size of σ′

0 are linear in |State |.

3.2 Guards
Guards are flattened by computing an ancestor closure
over states of S. This way the [ancestors active] invariant of
the hierarchical configurations is enforced for the flat state-

charts at the transition level. The invariant would not hold
for flat configurations directly.

flat(g) =

8

>

>

>

>

<

>

>

>

>

:

true if g = true

¬flat(g1) if g = ¬g1

flat(g1) ∧ flat(g2) if g = g1 ∧ g2
V

p∈ancest∗(s)\Stateor

p if g = s, s ∈ State and

This transformation gives raise to at most polynomial
growth of transition size.

3.3 Action Transitions
Entry and exit actions are not available in the flat target
language. We shall implement them by generating an action
transition for each of them. For each and-state s, define the
following transitions:

t
ex

s = I [e
ex
s :flat(s)]/ex(s)

−−−−−−−−−−−−−−→I t
en

s = I [e
en
s :flat(parent

2(s))]/en(s)
−−−−−−−−−−−−−−−−−−−−−→s,

where eexs and eens denote fresh signals not belonging to
Event ∪ Signal ∪Output . These signals may now be used to
trigger entry and exit actions. Note that the exit transition
will fire if s is active, while the entry transition only activates
s if the nearest and-state ancestor is active, so that invariant
[ancestors active] is preserved. The action transitions for C1

of Fig. 1 are:

I
[eex

C1
:C1 ∧ A]/ex(C1)

−−−−−−−−−−−−−−−−−→I and I
[een

C1
:A]/en(C1)

−−−−−−−−−−−−−→C1 .

Similarly an action transition is generated for each hierar-
chical transition t:

tt = I [et:true]/ost
−−−−−−−−−−→I ,

where et is a fresh signal. This signal may now be used to
trigger the action of the original hierarchical transition. An
action transition corresponding to transition t1 in Fig.1 is:

I [et1
:true]/〈o1, s1〉

−−−−−−−−−−−−−−−→I .

Later on we shall schedule action transitions in the proper
sequences to implement traces of original statechart. Note
that so far we have added a number of transitions linear in
the number of states and transitions in the original model.

3.4 Interface
The input and output alphabets cannot be changed, oth-
erwise the flat statechart would violate the implementation
condition trivially. The set of internal signals is extended
with the administrative signals mentioned before plus a new
one for each history state:

Signal ′ = Signal ∪ {eens |s ∈ State and} ∪ {eexs |s ∈ Stateand}
∪ {et|t ∈ Trans} ∪ {ehs |s is a history state} .

The size of Signal ′ is linear in the size of the original model.

3.5 Entry Schedule
Firing a hierarchical transition has three phases: exit
the scope, execute actions, and enter the scope. In a
flat statechart we can realize the entering and exiting
phases by generating signal schedules. Schedules are se-
quences of administrative signals, which when interpreted
by microstep iteration realize the semantics of the original
hierarchical transition.
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Figure 2: Entry schedules for t1(left), t2(middle) and t3(right). The path of t1 is static, t2 relies on dynamic
history choice, t3 circumvents history with explicit guiding targets.

An entry schedule has two parts: a statically computable
part and a dynamic, history-dependent, part. The static
part can be determined at compile time by computing a clo-
sure of the ini function guided by the set of explicit targets.
The computation of the schedule continues until a history
state is reached (see Fig. 2). Two mutually recursive func-
tions entror

ts and entrand
ts realize this hierarchy traversal guided

by the set of goal states ts stopping at history states and ba-
sic states. They generate signals firing the entry transitions
of respective states and a history transition if needed. The
history state can only be bypassed if the targets below it
are explicitly specified (see the example of t3 on Fig. 2).
Otherwise the function needs to follow all possible history
versions, relying on the [ancestors active] invariant encoded
in entry transitions to stop entering wrong paths.

entror
ts : Stateor → Signal∗ =

= λs.

8

>

>

>

<

>

>

>

:

〈een
s , eh

s 〉ˆentrandts (s1)ˆ . . . ˆentrand
ts (sp)

if s is a history state and ∀t ∈ ts. s 6↘∗t

〈een
def ts(s)〉ˆentrandts (def ts(s))

otherwise

where s1, . . . , sp = children(s) in some order.

entrand
ts : Stateand → Signal∗ = λs.entror

ts(s1)ˆ . . . ˆentror
ts(sp),

where s1, . . . , sp = children(s) in some order.

def ts : Stateor → Stateand = λs.

(

p if s↘ p ∧ ∃t ∈ ts.p↘∗ t

ini(s) otherwise

The ˆ operator denotes concatenation of sequences. The
statecharts semantics does not specify in which order con-
current components should be entered by entrand

ts . Any or-
der consistent with ↘, including interleaved entry traces of
concurrent components, is legal. The entrand

ts function given
above corresponds to a single deterministic choice of such se-
quence. The omission of other choices is permitted because
our implementation relation does not require all possible or-
derings to be preserved.
Function def ts is a helper, which determines a default
child for a given or-state. It checks whether further targets
are specified below the given or-state, and follows the indi-
cated path if available. A compile-time algorithm cannot
continue deeper beyond history states as the actual entering
schedule depends on the runtime properties of these states.
An administrative history signal eh

s is triggered instead and a
history transition is added for each child p of history state s:

I
[ehs :flat(p)]/〈eenp 〉
−−−−−−−−−−−−−−→I

These history transitions are similar to entry transitions, ex-
cept that they have stronger firing conditions. The guard
flat(p) guarantees that only one of these transitions will fire
whenever eh

s is triggered—the one entering the most recently
active child—which corresponds to a runtime choice of en-
try schedule. An entry schedule of a transition is computed
starting with its scope and the set of targets. The sched-
ule of t2 is 〈een

B , eh
D, een

D11
, een

E1
, een

E11
〉. The schedule of t3 is

〈een
B , een

D1
, een

D12
, een

E1
, een

E11
〉 (see Fig. 2).

3.6 Exit Schedule
Exit schedules are much easier to compute than entry
schedules. For a given scope s we define extr(s) to be
the sequence of exit signals for and-state descendants of s

produced in postorder traversal. For instance extr(A) =
〈eexC11

, eexC12
, eexC1

, eexC2
, eexA 〉. An entry or exit schedule cannot

be longer than |State and|.

3.7 Transition Schedule
Each hierarchical transition t = s [e:g]/os

−−−−−−→ts is translated
to a flat transition t′ which schedules the relevant ac-
tion transitions realizing the semantics. The condition
part of the transition remains unchanged, except for the
flattened guard:

t
′ = s [e:flat(g)]/extr(scope(t))ˆ〈et〉ˆentror

ts(scope(t))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→I

Consider the result obtained for the transition t1 of
our example:

t
′
1 = D1

[e1:γ]/extr(root
′)ˆ〈et1

〉ˆentror
{C11}(root′)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→I , (3)

where γ = (D1 ∧B)∧ ((D12 ∧D1 ∧B∧)∧¬(E11 ∧E1 ∧B)).
Trans ′ is the set of all action transitions, history
transitions and scheduling transitions. There are at
most 3|State and| + |Trans | new transitions in the flat
model and each of them is at most 2|State and| times
long. The size change is within the polynomial bounds
in the size of hierarchical model, or more precisely in
O(|State |2 + |State | · |Trans |). The size of the flat statechart
is bounded by the square of the size of the original hierar-
chical statechart.

4. CODE GENERATION
Although polynomial, the algorithm of the previous sec-
tion remains rather inefficient. Our goal is to eliminate ex-
cess transitions, simplify guards, and reduce the number of
administrative signals. The resulting flat rulesets are ex-
tremely simple to represent and interpret using a minimal
runtime system. SCOPE’s interpreter uses tiny amounts
of writable memory: an order of 10 integers plus the size
of the current configuration vector and a very shallow call



stack. This is a significant advantage over the previous
hierarchical version.

4.1 Implementation
Let φ be a formula overapproximating the set of reachable
configurations of hierarchical model. One cheap approxima-
tion, used by SCOPE, is the set of all statically legal con-
figurations (configurations satisfying the invariants). Bet-
ter approximations can be used, including exact reachable
state space representations [11]. This would increase the ac-
curacy of the optimizations to follow, at the price of code
generation time.

4.1.1 Administrative signals
Massive use of signals is a disadvantage at runtime as
it demands writable memory for maintenance of the signal
queue. We can get rid of administrative signals by exploit-
ing the fact that code generation is actually solving a sim-
pler than generic flattening. The main difference is that at
runtime transitions are processed and fired in some fixed de-
terministic order. This order may substitute a signal queue
in guaranteeing proper schedules of action transitions. For
instance the t1 transition of Fig. 1 can be flattened to:

exit:
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:

D11
[e1:D11 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(D11)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

D12
[e1:D12 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(D12)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

D2
[e1:D2 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(D2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

D1
[e1:D1 ∧ (D12 ∧ ¬E11)]/ex(D1)
−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

E1
[e1:E1 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(E1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

. . .

(4)

output:

n

D1
[e1:D1 ∧ (D12 ∧ ¬E11)]/〈o1, s1〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅ (5)

entry:

n

D1
[e1:D1 ∧ (D12 ∧ ¬E11)]/en(A)ˆen(C1)ˆen(C11)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

(6)

Remember that the empty set of targets of the flat transition
means that the active state configuration remains unchanged
(see (2)). Although similar to loops, transitions with no
targets are more efficient to execute.
The above sequence has been obtained by instantiating a
transition for every signal of the schedules of t′1. Its top–
down interpretation corresponds to firing t′1. In the generic
algorithms of the previous section we would use a signal
queue to guarantee this sequencing. Presently no adminis-
trative signals are used, but guards are evaluated multiple
times and entry/exit transitions cannot be reused.

4.1.2 Guard Analysis
Guard analysis may be used to eliminate superfluous tran-
sitions and computations. Note that the flat function pro-
duces guards with redundant conditions (see γ in (3)). Such
guards can be improved, by optimization performed under
the assumption that formula φ holds. This automatically
removes references to constantly true variables, superflu-
ous states (such us E1, which is equivalent to E). Re-
moval of variables should be accompanied by removal of
corresponding states from the flat structure. There is no
need to represent them at runtime. For example groups of
states containing E1 and I would be eliminated and guards
simplified respectively.
While performing guard analysis, unsatisfiable guards can
be found on transitions. Transitions containing them can

be discarded. For example the exit transition from state D2

in (4) will never fire as D1 and D2 may never be active at
the same time according to φ. SCOPE relies on a BDD [10]
engine [16] in the implementation of guard analysis.

4.1.3 Merging Transitions
Some transitions in the sequence can be merged saving
space and increasing the execution speed. Whenever guards
of two subsequent transitions are equivalent (under φ), the
two rules can be merged into a single one whose action is the
concatenation of original actions and whose set of targets
is the union of the original sets. A special case, which is
particularly easy to detect, is that of the last two entries in
every group implementing a single transition. For example
transitions (5) and (6) can be combined yielding:

D1
[e1:D1 ∧ (D12 ∧ ¬E11)]/〈o1〉ˆen(A)ˆen(C1)ˆen(C11)ˆ〈s1〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

Although much more complex, merging is also applied to
exit transitions. Exit transitions, or parts of thereof, can
be joined if there is some firm knowledge about the source
states of given transition (inferred from the guard). In the
extreme case, when the knowledge about the source and
target states is complete the transition gets translated to a
single rule. This is the case with t3:

C2
[e2:γ]/ex(C2)ˆex(C1)ˆex(A)ˆen(B)ˆen(D1)ˆen(D12)ˆen(E1)ˆen(E11)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅ ,

where γ = C2 ∧ C1 ∧ A.

4.2 Language Extensions
The source language language can be extended with var-
ious features, which do not break the complexity result.
Parameterized events (value passing), arithmetic variables,
timed transitions, expressions and function calls in guards
and outputs are entirely orthogonal to the problem. Deep
history, fork and join transitions, do-reactions and internal
rules can be described as syntactic sugar, expanded within
polynomial bounds. Multiscope transitions and priorities
for conflict resolutions can be eliminated using algorithms
similar to those of [28, 13, 7].

4.3 Experimental Evaluation
The algorithm has been evaluated using both artificial
and real industrial examples. Efficiency has been measured
against the older version of SCOPE [26] that used hierar-
chy preserving code generation, which is known to perform
comparably to industrial implementations such as visual-
state. Executable sizes and execution times are reported
for skeleton control programs with dummy action and guard
functions, compiled by gcc ver. 3.2 targeting x86 PC (see
Table 1). Execution time has been measured for feeding the
compiled system with 107 random events in repetitive series
(run on Linux, 450MHz Pentium II). More experiments has
been carried out with GCC for AVR and H8/300, exhibiting
similar results (see Table 2). This confirms the expectation
that the code generated from statecharts is hard for com-
pilers to optimize and there is a need for advanced analysis
and transformations on the model level.
The first model, actions01, is the smallest model which
can be built with visualstate designer. It contains two
states and a single transition. This model exhibits the dif-
ference between sizes of runtime libraries. The difference
does not increase for bigger examples—both algorithms scale
well. However, the flattened code is faster, simpler and



executable size execution time
Model states trans. depth

FL-CG HI-CG ratio FL-CG HI-CG ratio

actions01 4 1 3 3 036 3 704 0.82 5.71 6.03 0.95

lift 18 19 3 3 644 4 372 0.83 15.29 21.41 0.71

clockradio 20 27 7 4 652 4 108 0.88 8.84 11.69 0.76

cdplayer 21 16 7 3 560 4 312 0.83 9.38 11.77 0.80

peer 275 192 23 9 252 10 536 0.88 15.19 26.16 0.58

trios01 1121 840 9 20 772 24 108 0.86 335 255 1.31

trios03 1121 840 9 19 972 24 684 0.81 288 259 1.10

Table 1: Speed and size results: hierarchical code generation vs flattening-based code generation. FL-CG
denotes code generation for flat models, HI-CG denotes direct code generation for hierarchical models (an
older version of SCOPE). Executable sizes in bytes, timings in seconds.

H8 executable size AVR executable size AVR runtime vs model size
Model

FL-CG HI-CG ratio FL-CG HI-CG ratio FL rtime FL model HI rtime HI model

actions01 1 312 1 906 0.69 952 1 592 0.60 313 25 925 50

lift 1 750 2 356 0.74 1 428 2 076 0.69 459 353 1 047 412

clockradio 2 116 2 640 0.80 1 856 2 412 0.77 377 826 947 800

cdplayer 1 700 2 344 0.73 1 400 2 108 0.66 353 431 1 027 465

peer 6 298 7 226 0.87 6 076 7 004 0.87 530 4 684 1 226 4 888

trios01 17 670 18 326 0.96 17 396 18 212 0.96 409 16 371 1 143 16 454

trios03 16 878 20 064 0.84 16 604 19 980 0.83 409 15 580 1 229 18 134

Table 2: Left: sizes of executables compiled with two microcontroller back-ends of gcc 3.3.2 (h8300-hms-
gcc and avr-gcc). Right: sizes of the runtime interpreter and the runtime model representation for gcc-avr
compiled code. These numbers are included in the complete executables of the left side. Approximately 600
bytes is left out in each line, used by gcc for internal initialization code.

smaller, despite the fact that less engineering effort had been
put in the implementation of the runtime. No size explosions
are visible for big models (trios01, trios03). Peer, the biggest
real life example, a complicated model of a very advanced
coffee machine exhibits a particularly good result, which is
perhaps the best recommendation of our approach.
The lift example is a flat statechart and as such is not
affected by flattening. Still the flattened version operates
much faster than hierarchical one as the hierarchical inter-
pretation is relatively expensive. Flat models constitute an
important class of models, appreciated by engineers for its
simplicity and good applicability to small size tasks. It is
thus comforting that a single code generation scheme, the
one based on flattening, performs well for both flat and hi-
erarchical models.
The last two models (from trios series) are artificial ex-
amples. They consist of triples of and-states and or-states
interleaved several times. These kind of examples is used
in [27], in order to demonstrate the superpolynomial na-
ture of flattening in absence of sequential message passing.
As expected, no explosion is observed in present results,
where we exploit the sequential nature of code generation.
Such highly concurrent models are hardly met in industrial
applications, which makes the slow-down reported not es-
sential. Also none of the industrial cases we know suffers
from to slow interpretation of the generated control code.
Speed seems to be much less an issue than code size and
memory consumption.

5. RELATED WORK
Both the upper bound result and the efficiency of the im-
plementation are somewhat surprising as numerous authors
presented flattening algorithms suffering from size explosion
or informally conjectured about the superpolynomial hard-
ness of this problem [26, 12, 8, 3, 9, 21].
It has been recently established [27] that the flattening
problem does explode if the target language of flat state-
charts does not include queue-based signal communication.
In [27] a family of (α, β)-models is exhibited such that for
any family member its flat implementation must necessar-

ily be at least Ω(2
√

|State|) if we do not allow use of sig-
nals. Moreover a formal relation between this bound and the
amount of concurrency and sequential computation in the
model is established. The lower bound increases together
with the increase of concurrency in the statechart. Thus
a lower bound, which is arbitrarily close to an exponential
function may be shown using (α, β)-models.
The joint conclusion of the present paper and [27] is that
equipping the target formalism with signal queues vastly
increases expressiveness. Indeed, if the queue is unbounded,
one obtains a language of infinite state systems. However
in practice the size of the queue is bounded. The algorithm
presented here only demands finite bounded queues, with
length polynomial in the model size.
Two classic works on succinctness of statecharts are
[14, 2]. Drusinsky and Harel [14] discuss the succinctness
gain caused by introduction of bounded cooperative concur-
rency, disregarding the impact of hierarchy on model size.
Alur et al.[2] discuss the interplay between nondetermin-



ism, concurrency and hierarchy. Unfortunately among all
relations discussed in their paper they omit the one inter-
esting for its application in program synthesis: the relation
between hierarchical concurrent statecharts and flat con-
current ones. Also they permit sharing of subhierarchies,
corresponding roughly to dropping the [unique parent] re-
quirement on ↘. This feature certainly affects succinct-
ness but so far has not been incorporated into main stream
modeling languages.
Literature contains numerous examples of statechart
translation. Many so called hierarchical code generators
[26, 1, 29] struggle to represent hierarchy explicitly at run-
time. They usually employ complicated execution mecha-
nisms, making the runtime code more error-prone and more
expensive to execute, especially in terms of writable memory
consumption. The author is not aware of any published ma-
terial on flattening-based code generator not suffering from
the explosion problem.
The full language of statecharts incorporates model vari-
ables, which can be used in guards and action expressions.
In the implementation these variables need to be double-
buffered to guarantee stable execution of a microstep, so
that results of computations do not affect what transitions
are fired in the same microstep. A copy of variable’s value at
the end of the last step is used in the evaluation of guards,
while the actual value may be modified by transition ac-
tions. This way transitions can be fired on-the-fly along with
the evaluation of guards. Erpenbach [15] exploits the or-
der of transitions to minimize the amount of necessary dou-
ble buffering between variables. Our flattening algorithm is
fully compatible with his approach, because we have only
demanded that rules within a group implementing a sin-
gle hierarchical transition maintain a specific order. We do
not impose any restrictions on the relative order among the
groups themselves, which suffices for Erpenbach’s algorithm.

6. CONCLUSION
I have presented an upper-bound proof for flattening of
hierarchical statecharts, one of the most central and wide-
spread transformations applied to statechart models. This
result contradicts a common but informal belief that flatten-
ing cannot be solved without size explosion. I argued that
the algorithm is correct and commented on the applicabil-
ity of it to typical language variants. Another conclusion
following from both present paper and [27] is that signal
communication with buffers is a powerful feature of state-
charts, which can vastly increase succinctness of models.
In the second part of the paper a detailed description of
an optimized implementation has been given. This is the
core algorithm of the newest version of the SCOPE code
generator. The code generated by the new procedure is fast
and compact and exhibits good properties with respect to
writable memory consumption. Its simplicity makes it suit-
able for automatic validation. Unlike hierarchical code gen-
erators, our new technique performs well both for flat and
non-flat models, which is important in practice.
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Figure 3: An imprecise but intuitive overview of results of flattening of statechart of Fig. 1.

State groups and initial configuration:

M = {{A, B}, {C1, C2}, {D1, D2}, {E1}, {C11, C12}, {D11, D12}, {E11, E12}, {I }}
s
0 = {A, C1, C11, D1, D11, E1, E11, I }

External and internal events:

Event ′ = {e1, e2}
Signal ′ = {s1, e
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D, et1 , et2 , et3}

Exit transitions:

I [e
ex
A
:A]/ex(A)

−−−−−−−−−−−→I , I
[eex

B
:B]/ex(B)

−−−−−−−−−−−→I , I
[eexC1

:C1 ∧ A]/ex(C1)

−−−−−−−−−−−−−−−−−→I , I
[eexC2

:C2 ∧ A]/ex(C2)

−−−−−−−−−−−−−−−−−→I , I
[eexD1

:D1 ∧ B]/ex(D1)

−−−−−−−−−−−−−−−−−−→I , I
[eexD2

:D2 ∧ B]/ex(D2)

−−−−−−−−−−−−−−−−−−→I ,

I
[eex

E1
:E1 ∧ B]/ex(E1)

−−−−−−−−−−−−−−−−−→I , I
[eex

C11
:C11 ∧ C1 ∧ A]/ex(C11)

−−−−−−−−−−−−−−−−−−−−−−−−→I , I
[eex

C12
:C12 ∧ C1 ∧ A]/ex(C12)

−−−−−−−−−−−−−−−−−−−−−−−−→I , I
[eex

D11
:D11 ∧ D1 ∧ B]/ex(D11)

−−−−−−−−−−−−−−−−−−−−−−−−−→I ,

I
[eexD12

:D12 ∧ D1 ∧ B]/ex(D12)

−−−−−−−−−−−−−−−−−−−−−−−−−→I , I
[eexE11

:E11 ∧ E1 ∧ B]/ex(E11)

−−−−−−−−−−−−−−−−−−−−−−−−−→I , I
[eexE12

:E12 ∧ E1 ∧ B]/ex(E12)

−−−−−−−−−−−−−−−−−−−−−−−−−→I

Entry transitions:

I [e
en
A :true]/en(A)

−−−−−−−−−−−−−→A, I [e
en
B :true]/en(B)

−−−−−−−−−−−−−→B, I
[een

C1
:A]/en(C1)

−−−−−−−−−−−−−→C1, I
[een

C2
:A]/en(C2)

−−−−−−−−−−−−−→C2, I
[een

D1
:B]/en(D1)

−−−−−−−−−−−−−→D1, I
[een

D2
:B]/en(D2)

−−−−−−−−−−−−−→D2,

I
[eenE1

:B]/en(E1)

−−−−−−−−−−−−−→E1, I
[eenC11

:C1 ∧ A]/en(C11)

−−−−−−−−−−−−−−−−−−−→C11, I
[eenC12

:C1 ∧ A]/en(C12)

−−−−−−−−−−−−−−−−−−−→C12, I
[eenD11

:D1 ∧ B]/en(D11)

−−−−−−−−−−−−−−−−−−−−→D11,

I
[een

D12
:D1 ∧ B]/en(D12)

−−−−−−−−−−−−−−−−−−−−→D12, I
[een

E11
:E1 ∧ B]/en(E11)

−−−−−−−−−−−−−−−−−−−→E11, I
[een

E12
:E1 ∧ B]/en(E12)

−−−−−−−−−−−−−−−−−−−→E12

Action transitions (for original hierarchical transitions):

I [et1
:true]/〈o1, s1〉

−−−−−−−−−−−−−−−→I , I
[et2

:true]/〈o2〉
−−−−−−−−−−−−→I , I

[et3
:true]/〈〉

−−−−−−−−−−→I

History entries:

I
[eh

D
:D1]/〈een

D1
, een

D11
〉

−−−−−−−−−−−−−−−−−−→I , I
[eh

D
:D2]/〈een

D2
〉

−−−−−−−−−−−−−→I

Schedule transitions (bold on the diagram above):

t
′
1 = D1

[e1:(D1 ∧ B) ∧ ((D12 ∧ D1 ∧ B) ∧ ¬(E11 ∧ E1 ∧ B))]/〈eex
C11

, eex
C12

, eex
C1

, eex
C2

, eex
A

, eex
D11

, eex
D12

, eex
D1

, eex
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, eex
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, eex
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t
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2 = A

[s1:A ∧ ¬(C2 ∧ A)]/〈eex
C11

, eex
C12

, eex
C1

, eex
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, eex
A

, eex
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Figure 4: Complete ruleset produced during flattening. Observe the inefficiencies, which can be removed
using techniques of section 4, especially redundant checks in guards and need for a long local events buffer.
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APPENDIX

A. EXAMPLE RESULTS
Fig. 3 presents an overview of the flat statechart produced
by applying the algorithm of section 3 to the model of Fig. 1.
Notation is imprecise, aiming at intuitive explanation. We
use a hierarchical syntax to express flat statecharts. All
state machines are marked history, to reflect the fact that
the top state is never exited. More precise account of the
transformation can be found on Fig. 4.

B. CORRECTNESS SKETCH

Definition 5. A state configuration and a history set
(σ, η) of hierarchical statechart and a configuration σ′ of a
flat statechart correspond, written σ′ ∼s (σ, η), iff all main-
tain their respective correctness invariants and:

1. σ ∩ Stateand ⊆ σ
′ ⊆ Stateand ∪ {I }

2. ∀s ∈ σ
′
.s 6= I ⇒ (s ∈ σ ∨ ancest+(s) ∩ State and 6⊆ σ

′)

3. η ⊆ σ
′

Proposition 6. The initial configuration σ0 and history
set η0 of hierarchical statechart and the initial configuration
σ′

0 of the flattened statechart correspond: σ′
0 ∼s (σ0, η0).

Proposition 7. If σ′ ∼s (σ, η) then

∀g ∈ Guard . (σ |= g ⇐⇒ σ
′ |= flat(g))

Proposition 8. If t′ is a flattened version of t and
σ′ ∼s (σ, η) ∧ q′ = q then enabled(t′) ⇐⇒ enabled(t).

Definition 9. A ministep is a sequence of microsteps of
a flat statechart iterated until the queue only contains ele-
ments of Signal (no administrative signals).

Proposition 10. If σ′
0 ∼s (σ0, η0) ∧ q′0 = q0 and

the flattened statechart can perform a ministep
(σ′

0, q
′
0)

os−−−→
mini

(σ′
1, q

′
1) then there exist a sequence of hierar-

chical microsteps such that (σ0, q0, η0)
os−−−−→

micro

∗
(σ1, q1, η1)

and σ′
1 ∼s (σ1, η1) ∧ q′1 = q1.

Proposition 11. If σ′
0 ∼s (σ0, η0) and the flattened stat-

echart can perform a microstep σ′
0

e os−−−−→
macro

σ′
1 then there

exists a hierarchical macrostep (σ0, η0)
e os−−−−→

macro
(σ1, η1) and

σ′
1 ∼s (σ1, η1).


